1 | //===-- MathToLibm.cpp - conversion from Math to libm calls ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Conversion/MathToLibm/MathToLibm.h" |
10 | |
11 | #include "mlir/Dialect/Arith/IR/Arith.h" |
12 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
13 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
14 | #include "mlir/Dialect/Math/IR/Math.h" |
15 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
16 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
17 | #include "mlir/IR/BuiltinDialect.h" |
18 | #include "mlir/IR/PatternMatch.h" |
19 | #include "mlir/Pass/Pass.h" |
20 | #include "mlir/Transforms/DialectConversion.h" |
21 | |
22 | namespace mlir { |
23 | #define GEN_PASS_DEF_CONVERTMATHTOLIBM |
24 | #include "mlir/Conversion/Passes.h.inc" |
25 | } // namespace mlir |
26 | |
27 | using namespace mlir; |
28 | |
29 | namespace { |
30 | // Pattern to convert vector operations to scalar operations. This is needed as |
31 | // libm calls require scalars. |
32 | template <typename Op> |
33 | struct VecOpToScalarOp : public OpRewritePattern<Op> { |
34 | public: |
35 | using OpRewritePattern<Op>::OpRewritePattern; |
36 | |
37 | LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final; |
38 | }; |
39 | // Pattern to promote an op of a smaller floating point type to F32. |
40 | template <typename Op> |
41 | struct PromoteOpToF32 : public OpRewritePattern<Op> { |
42 | public: |
43 | using OpRewritePattern<Op>::OpRewritePattern; |
44 | |
45 | LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final; |
46 | }; |
47 | // Pattern to convert scalar math operations to calls to libm functions. |
48 | // Additionally the libm function signatures are declared. |
49 | template <typename Op> |
50 | struct ScalarOpToLibmCall : public OpRewritePattern<Op> { |
51 | public: |
52 | using OpRewritePattern<Op>::OpRewritePattern; |
53 | ScalarOpToLibmCall(MLIRContext *context, StringRef floatFunc, |
54 | StringRef doubleFunc) |
55 | : OpRewritePattern<Op>(context), floatFunc(floatFunc), |
56 | doubleFunc(doubleFunc){}; |
57 | |
58 | LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final; |
59 | |
60 | private: |
61 | std::string floatFunc, doubleFunc; |
62 | }; |
63 | |
64 | template <typename OpTy> |
65 | void populatePatternsForOp(RewritePatternSet &patterns, MLIRContext *ctx, |
66 | StringRef floatFunc, StringRef doubleFunc) { |
67 | patterns.add<VecOpToScalarOp<OpTy>, PromoteOpToF32<OpTy>>(ctx); |
68 | patterns.add<ScalarOpToLibmCall<OpTy>>(ctx, floatFunc, doubleFunc); |
69 | } |
70 | |
71 | } // namespace |
72 | |
73 | template <typename Op> |
74 | LogicalResult |
75 | VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const { |
76 | auto opType = op.getType(); |
77 | auto loc = op.getLoc(); |
78 | auto vecType = dyn_cast<VectorType>(opType); |
79 | |
80 | if (!vecType) |
81 | return failure(); |
82 | if (!vecType.hasRank()) |
83 | return failure(); |
84 | auto shape = vecType.getShape(); |
85 | int64_t numElements = vecType.getNumElements(); |
86 | |
87 | Value result = rewriter.create<arith::ConstantOp>( |
88 | loc, DenseElementsAttr::get( |
89 | vecType, FloatAttr::get(vecType.getElementType(), 0.0))); |
90 | SmallVector<int64_t> strides = computeStrides(shape); |
91 | for (auto linearIndex = 0; linearIndex < numElements; ++linearIndex) { |
92 | SmallVector<int64_t> positions = delinearize(linearIndex, strides); |
93 | SmallVector<Value> operands; |
94 | for (auto input : op->getOperands()) |
95 | operands.push_back( |
96 | rewriter.create<vector::ExtractOp>(loc, input, positions)); |
97 | Value scalarOp = |
98 | rewriter.create<Op>(loc, vecType.getElementType(), operands); |
99 | result = |
100 | rewriter.create<vector::InsertOp>(loc, scalarOp, result, positions); |
101 | } |
102 | rewriter.replaceOp(op, {result}); |
103 | return success(); |
104 | } |
105 | |
106 | template <typename Op> |
107 | LogicalResult |
108 | PromoteOpToF32<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const { |
109 | auto opType = op.getType(); |
110 | if (!isa<Float16Type, BFloat16Type>(opType)) |
111 | return failure(); |
112 | |
113 | auto loc = op.getLoc(); |
114 | auto f32 = rewriter.getF32Type(); |
115 | auto extendedOperands = llvm::to_vector( |
116 | llvm::map_range(op->getOperands(), [&](Value operand) -> Value { |
117 | return rewriter.create<arith::ExtFOp>(loc, f32, operand); |
118 | })); |
119 | auto newOp = rewriter.create<Op>(loc, f32, extendedOperands); |
120 | rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, opType, newOp); |
121 | return success(); |
122 | } |
123 | |
124 | template <typename Op> |
125 | LogicalResult |
126 | ScalarOpToLibmCall<Op>::matchAndRewrite(Op op, |
127 | PatternRewriter &rewriter) const { |
128 | auto module = SymbolTable::getNearestSymbolTable(from: op); |
129 | auto type = op.getType(); |
130 | if (!isa<Float32Type, Float64Type>(type)) |
131 | return failure(); |
132 | |
133 | auto name = type.getIntOrFloatBitWidth() == 64 ? doubleFunc : floatFunc; |
134 | auto opFunc = dyn_cast_or_null<SymbolOpInterface>( |
135 | SymbolTable::lookupSymbolIn(module, name)); |
136 | // Forward declare function if it hasn't already been |
137 | if (!opFunc) { |
138 | OpBuilder::InsertionGuard guard(rewriter); |
139 | rewriter.setInsertionPointToStart(&module->getRegion(0).front()); |
140 | auto opFunctionTy = FunctionType::get( |
141 | rewriter.getContext(), op->getOperandTypes(), op->getResultTypes()); |
142 | opFunc = rewriter.create<func::FuncOp>(rewriter.getUnknownLoc(), name, |
143 | opFunctionTy); |
144 | opFunc.setPrivate(); |
145 | |
146 | // By definition Math dialect operations imply LLVM's "readnone" |
147 | // function attribute, so we can set it here to provide more |
148 | // optimization opportunities (e.g. LICM) for backends targeting LLVM IR. |
149 | // This will have to be changed, when strict FP behavior is supported |
150 | // by Math dialect. |
151 | opFunc->setAttr(LLVM::LLVMDialect::getReadnoneAttrName(), |
152 | UnitAttr::get(rewriter.getContext())); |
153 | } |
154 | assert(isa<FunctionOpInterface>(SymbolTable::lookupSymbolIn(module, name))); |
155 | |
156 | rewriter.replaceOpWithNewOp<func::CallOp>(op, name, op.getType(), |
157 | op->getOperands()); |
158 | |
159 | return success(); |
160 | } |
161 | |
162 | void mlir::populateMathToLibmConversionPatterns(RewritePatternSet &patterns) { |
163 | MLIRContext *ctx = patterns.getContext(); |
164 | |
165 | populatePatternsForOp<math::AbsFOp>(patterns, ctx, "fabsf" , "fabs" ); |
166 | populatePatternsForOp<math::AcosOp>(patterns, ctx, "acosf" , "acos" ); |
167 | populatePatternsForOp<math::AcoshOp>(patterns, ctx, "acoshf" , "acosh" ); |
168 | populatePatternsForOp<math::AsinOp>(patterns, ctx, "asinf" , "asin" ); |
169 | populatePatternsForOp<math::AsinhOp>(patterns, ctx, "asinhf" , "asinh" ); |
170 | populatePatternsForOp<math::Atan2Op>(patterns, ctx, "atan2f" , "atan2" ); |
171 | populatePatternsForOp<math::AtanOp>(patterns, ctx, "atanf" , "atan" ); |
172 | populatePatternsForOp<math::AtanhOp>(patterns, ctx, "atanhf" , "atanh" ); |
173 | populatePatternsForOp<math::CbrtOp>(patterns, ctx, "cbrtf" , "cbrt" ); |
174 | populatePatternsForOp<math::CeilOp>(patterns, ctx, "ceilf" , "ceil" ); |
175 | populatePatternsForOp<math::CosOp>(patterns, ctx, "cosf" , "cos" ); |
176 | populatePatternsForOp<math::CoshOp>(patterns, ctx, "coshf" , "cosh" ); |
177 | populatePatternsForOp<math::ErfOp>(patterns, ctx, "erff" , "erf" ); |
178 | populatePatternsForOp<math::ExpOp>(patterns, ctx, "expf" , "exp" ); |
179 | populatePatternsForOp<math::Exp2Op>(patterns, ctx, "exp2f" , "exp2" ); |
180 | populatePatternsForOp<math::ExpM1Op>(patterns, ctx, "expm1f" , "expm1" ); |
181 | populatePatternsForOp<math::FloorOp>(patterns, ctx, "floorf" , "floor" ); |
182 | populatePatternsForOp<math::FmaOp>(patterns, ctx, "fmaf" , "fma" ); |
183 | populatePatternsForOp<math::LogOp>(patterns, ctx, "logf" , "log" ); |
184 | populatePatternsForOp<math::Log2Op>(patterns, ctx, "log2f" , "log2" ); |
185 | populatePatternsForOp<math::Log10Op>(patterns, ctx, "log10f" , "log10" ); |
186 | populatePatternsForOp<math::Log1pOp>(patterns, ctx, "log1pf" , "log1p" ); |
187 | populatePatternsForOp<math::PowFOp>(patterns, ctx, "powf" , "pow" ); |
188 | populatePatternsForOp<math::RoundEvenOp>(patterns, ctx, "roundevenf" , |
189 | "roundeven" ); |
190 | populatePatternsForOp<math::RoundOp>(patterns, ctx, "roundf" , "round" ); |
191 | populatePatternsForOp<math::SinOp>(patterns, ctx, "sinf" , "sin" ); |
192 | populatePatternsForOp<math::SinhOp>(patterns, ctx, "sinhf" , "sinh" ); |
193 | populatePatternsForOp<math::SqrtOp>(patterns, ctx, "sqrtf" , "sqrt" ); |
194 | populatePatternsForOp<math::TanOp>(patterns, ctx, "tanf" , "tan" ); |
195 | populatePatternsForOp<math::TanhOp>(patterns, ctx, "tanhf" , "tanh" ); |
196 | populatePatternsForOp<math::TruncOp>(patterns, ctx, "truncf" , "trunc" ); |
197 | } |
198 | |
199 | namespace { |
200 | struct ConvertMathToLibmPass |
201 | : public impl::ConvertMathToLibmBase<ConvertMathToLibmPass> { |
202 | void runOnOperation() override; |
203 | }; |
204 | } // namespace |
205 | |
206 | void ConvertMathToLibmPass::runOnOperation() { |
207 | auto module = getOperation(); |
208 | |
209 | RewritePatternSet patterns(&getContext()); |
210 | populateMathToLibmConversionPatterns(patterns); |
211 | |
212 | ConversionTarget target(getContext()); |
213 | target.addLegalDialect<arith::ArithDialect, BuiltinDialect, func::FuncDialect, |
214 | vector::VectorDialect>(); |
215 | target.addIllegalDialect<math::MathDialect>(); |
216 | if (failed(applyPartialConversion(module, target, std::move(patterns)))) |
217 | signalPassFailure(); |
218 | } |
219 | |
220 | std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertMathToLibmPass() { |
221 | return std::make_unique<ConvertMathToLibmPass>(); |
222 | } |
223 | |