| 1 | //===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements a straightforward conversion of an loop nest into a GPU |
| 10 | // kernel. The caller is expected to guarantee that the conversion is correct |
| 11 | // or to further transform the kernel to ensure correctness. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "mlir/Conversion/SCFToGPU/SCFToGPU.h" |
| 16 | |
| 17 | #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" |
| 18 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 19 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 20 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| 21 | #include "mlir/Dialect/GPU/Transforms/ParallelLoopMapper.h" |
| 22 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 23 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 24 | #include "mlir/IR/AffineExpr.h" |
| 25 | #include "mlir/IR/Builders.h" |
| 26 | #include "mlir/IR/IRMapping.h" |
| 27 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 28 | #include "mlir/Pass/Pass.h" |
| 29 | #include "mlir/Transforms/DialectConversion.h" |
| 30 | #include "mlir/Transforms/Passes.h" |
| 31 | #include "mlir/Transforms/RegionUtils.h" |
| 32 | #include "llvm/ADT/Sequence.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include <optional> |
| 35 | |
| 36 | #define DEBUG_TYPE "loops-to-gpu" |
| 37 | |
| 38 | using namespace mlir; |
| 39 | using namespace mlir::affine; |
| 40 | using namespace mlir::scf; |
| 41 | |
| 42 | // Name of internal attribute to mark visited operations during conversion. |
| 43 | // |
| 44 | // NOTE: The conversion originally used the following legality criteria: |
| 45 | // `!parallelOp->hasAttr(gpu::getMappingAttrName())` |
| 46 | // But the provided pattern might reject some cases based on more detailed |
| 47 | // analysis of the `mapping` attribute. |
| 48 | // To avoid dialect conversion failure due to non-converted illegal operation |
| 49 | // we use this extra Unit attribute as a marker, that the operation was checked |
| 50 | // by the pattern and is should be considered as legal in the following legality |
| 51 | // checks. The `finalizeParallelLoopToGPUConversion` function performs clean up |
| 52 | // of this extra attributes ans is supposed to be called after the dialect |
| 53 | // conversion. |
| 54 | // |
| 55 | // TODO: Implement a cleaner solution, factoring out the "matching" logic |
| 56 | // from the pattern and its callees into a separate function that can be called |
| 57 | // from both the pattern and the op legality check. |
| 58 | static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited" ; |
| 59 | |
| 60 | // Extract an indexed value from KernelDim3. |
| 61 | static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { |
| 62 | switch (pos) { |
| 63 | case 0: |
| 64 | return dim3.x; |
| 65 | case 1: |
| 66 | return dim3.y; |
| 67 | case 2: |
| 68 | return dim3.z; |
| 69 | default: |
| 70 | llvm_unreachable("dim3 position out of bounds" ); |
| 71 | } |
| 72 | return nullptr; |
| 73 | } |
| 74 | |
| 75 | // Get the lower bound-related operands of a loop operation. |
| 76 | static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { |
| 77 | return forOp.getLowerBoundOperands(); |
| 78 | } |
| 79 | |
| 80 | // Get the upper bound-related operands of a loop operation. |
| 81 | static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { |
| 82 | return forOp.getUpperBoundOperands(); |
| 83 | } |
| 84 | |
| 85 | // Get a Value that corresponds to the loop step. If the step is an attribute, |
| 86 | // materialize a corresponding constant using builder. |
| 87 | static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { |
| 88 | return builder.create<arith::ConstantIndexOp>(forOp.getLoc(), |
| 89 | forOp.getStepAsInt()); |
| 90 | } |
| 91 | |
| 92 | // Get a Value for the loop lower bound. If the value requires computation, |
| 93 | // materialize the instructions using builder. |
| 94 | static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { |
| 95 | return lowerAffineLowerBound(forOp, builder); |
| 96 | } |
| 97 | |
| 98 | // Get a Value for the loop upper bound. If the value requires computation, |
| 99 | // materialize the instructions using builder. |
| 100 | static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { |
| 101 | return lowerAffineUpperBound(forOp, builder); |
| 102 | } |
| 103 | |
| 104 | // Check the structure of the loop nest: |
| 105 | // - there are enough loops to map to numDims; |
| 106 | // - the loops are perfectly nested; |
| 107 | // - the loop bounds can be computed above the outermost loop. |
| 108 | // This roughly corresponds to the "matcher" part of the pattern-based |
| 109 | // rewriting infrastructure. |
| 110 | static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp, |
| 111 | unsigned numDims) { |
| 112 | Region &limit = forOp.getRegion(); |
| 113 | for (unsigned i = 0, e = numDims; i < e; ++i) { |
| 114 | Operation *nested = &forOp.getBody()->front(); |
| 115 | if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || |
| 116 | !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) |
| 117 | return forOp.emitError( |
| 118 | "loops with bounds depending on other mapped loops " |
| 119 | "are not supported" ); |
| 120 | |
| 121 | // The innermost loop can have an arbitrary body, skip the perfect nesting |
| 122 | // check for it. |
| 123 | if (i == e - 1) |
| 124 | break; |
| 125 | |
| 126 | auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); |
| 127 | if (forOp.getBody()->empty() || std::next(begin, 2) != end) |
| 128 | return forOp.emitError("expected perfectly nested loops in the body" ); |
| 129 | |
| 130 | if (!(forOp = dyn_cast<AffineForOp>(nested))) |
| 131 | return nested->emitError(message: "expected a nested loop" ); |
| 132 | } |
| 133 | return success(); |
| 134 | } |
| 135 | |
| 136 | static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp, |
| 137 | unsigned numBlockDims, |
| 138 | unsigned numThreadDims) { |
| 139 | if (numBlockDims < 1 || numThreadDims < 1) { |
| 140 | LLVM_DEBUG(llvm::dbgs() << "nothing to map" ); |
| 141 | return success(); |
| 142 | } |
| 143 | |
| 144 | if (numBlockDims > 3) { |
| 145 | return forOp.emitError("cannot map to more than 3 block dimensions" ); |
| 146 | } |
| 147 | if (numThreadDims > 3) { |
| 148 | return forOp.emitError("cannot map to more than 3 thread dimensions" ); |
| 149 | } |
| 150 | return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); |
| 151 | } |
| 152 | |
| 153 | namespace { |
| 154 | // Helper structure that holds common state of the loop to GPU kernel |
| 155 | // conversion. |
| 156 | struct AffineLoopToGpuConverter { |
| 157 | std::optional<AffineForOp> collectBounds(AffineForOp forOp, |
| 158 | unsigned numLoops); |
| 159 | |
| 160 | void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp, |
| 161 | unsigned numBlockDims, unsigned numThreadDims); |
| 162 | |
| 163 | // Ranges of the loops mapped to blocks or threads. |
| 164 | SmallVector<Value, 6> dims; |
| 165 | // Lower bounds of the loops mapped to blocks or threads. |
| 166 | SmallVector<Value, 6> lbs; |
| 167 | // Induction variables of the loops mapped to blocks or threads. |
| 168 | SmallVector<Value, 6> ivs; |
| 169 | // Steps of the loops mapped to blocks or threads. |
| 170 | SmallVector<Value, 6> steps; |
| 171 | }; |
| 172 | } // namespace |
| 173 | |
| 174 | // Collect ranges, bounds, steps and induction variables in preparation for |
| 175 | // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. |
| 176 | // This may fail if the IR for computing loop bounds cannot be constructed, for |
| 177 | // example if an affine loop uses semi-affine maps. Return the last loop to be |
| 178 | // mapped on success, std::nullopt on failure. |
| 179 | std::optional<AffineForOp> |
| 180 | AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) { |
| 181 | OpBuilder builder(forOp.getOperation()); |
| 182 | dims.reserve(N: numLoops); |
| 183 | lbs.reserve(N: numLoops); |
| 184 | ivs.reserve(N: numLoops); |
| 185 | steps.reserve(N: numLoops); |
| 186 | AffineForOp currentLoop = forOp; |
| 187 | for (unsigned i = 0; i < numLoops; ++i) { |
| 188 | Value lowerBound = getOrEmitLowerBound(currentLoop, builder); |
| 189 | Value upperBound = getOrEmitUpperBound(currentLoop, builder); |
| 190 | if (!lowerBound || !upperBound) { |
| 191 | return std::nullopt; |
| 192 | } |
| 193 | |
| 194 | Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(), |
| 195 | upperBound, lowerBound); |
| 196 | Value step = getOrCreateStep(currentLoop, builder); |
| 197 | if (getConstantIntValue(step) != static_cast<int64_t>(1)) |
| 198 | range = |
| 199 | builder.create<arith::CeilDivSIOp>(currentLoop.getLoc(), range, step); |
| 200 | dims.push_back(Elt: range); |
| 201 | |
| 202 | lbs.push_back(Elt: lowerBound); |
| 203 | ivs.push_back(Elt: currentLoop.getInductionVar()); |
| 204 | steps.push_back(Elt: step); |
| 205 | |
| 206 | if (i != numLoops - 1) |
| 207 | currentLoop = cast<AffineForOp>(¤tLoop.getBody()->front()); |
| 208 | } |
| 209 | return currentLoop; |
| 210 | } |
| 211 | |
| 212 | // Replace the rooted at "rootForOp" with a GPU launch operation. This expects |
| 213 | // "innermostForOp" to point to the last loop to be transformed to the kernel, |
| 214 | // and to have (numBlockDims + numThreadDims) perfectly nested loops between |
| 215 | // "rootForOp" and "innermostForOp". |
| 216 | void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp, |
| 217 | AffineForOp innermostForOp, |
| 218 | unsigned numBlockDims, |
| 219 | unsigned numThreadDims) { |
| 220 | OpBuilder builder(rootForOp.getOperation()); |
| 221 | // Prepare the grid and block sizes for the launch operation. If there is |
| 222 | // no loop mapped to a specific dimension, use constant "1" as its size. |
| 223 | Value constOne = |
| 224 | (numBlockDims < 3 || numThreadDims < 3) |
| 225 | ? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1) |
| 226 | : nullptr; |
| 227 | Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne; |
| 228 | Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne; |
| 229 | Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; |
| 230 | Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne; |
| 231 | Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; |
| 232 | Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; |
| 233 | |
| 234 | // Create a launch op and move the body region of the innermost loop to the |
| 235 | // launch op. |
| 236 | auto launchOp = builder.create<gpu::LaunchOp>( |
| 237 | rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, |
| 238 | blockSizeY, blockSizeZ); |
| 239 | |
| 240 | // Replace the loop terminator (loops contain only a single block) with the |
| 241 | // gpu terminator and move the operations from the loop body block to the gpu |
| 242 | // launch body block. Do not move the entire block because of the difference |
| 243 | // in block arguments. |
| 244 | Operation &terminator = innermostForOp.getBody()->back(); |
| 245 | Location terminatorLoc = terminator.getLoc(); |
| 246 | terminator.erase(); |
| 247 | builder.setInsertionPointToEnd(innermostForOp.getBody()); |
| 248 | builder.create<gpu::TerminatorOp>(terminatorLoc, std::nullopt); |
| 249 | launchOp.getBody().front().getOperations().splice( |
| 250 | launchOp.getBody().front().begin(), |
| 251 | innermostForOp.getBody()->getOperations()); |
| 252 | |
| 253 | // Remap the loop iterators to use block/thread identifiers instead. Loops |
| 254 | // may iterate from LB with step S whereas GPU thread/block ids always iterate |
| 255 | // from 0 to N with step 1. Therefore, loop induction variables are replaced |
| 256 | // with (gpu-thread/block-id * S) + LB. |
| 257 | builder.setInsertionPointToStart(&launchOp.getBody().front()); |
| 258 | auto *lbArgumentIt = lbs.begin(); |
| 259 | auto *stepArgumentIt = steps.begin(); |
| 260 | for (const auto &en : llvm::enumerate(First&: ivs)) { |
| 261 | Value id = |
| 262 | en.index() < numBlockDims |
| 263 | ? getDim3Value(launchOp.getBlockIds(), en.index()) |
| 264 | : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); |
| 265 | Value step = steps[en.index()]; |
| 266 | if (getConstantIntValue(step) != static_cast<int64_t>(1)) |
| 267 | id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id); |
| 268 | |
| 269 | Value ivReplacement = |
| 270 | builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id); |
| 271 | en.value().replaceAllUsesWith(newValue: ivReplacement); |
| 272 | std::advance(i&: lbArgumentIt, n: 1); |
| 273 | std::advance(i&: stepArgumentIt, n: 1); |
| 274 | } |
| 275 | |
| 276 | // We are done and can erase the original outermost loop. |
| 277 | rootForOp.erase(); |
| 278 | } |
| 279 | |
| 280 | // Generic loop to GPU kernel conversion function. |
| 281 | static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp, |
| 282 | unsigned numBlockDims, |
| 283 | unsigned numThreadDims) { |
| 284 | if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims))) |
| 285 | return failure(); |
| 286 | |
| 287 | AffineLoopToGpuConverter converter; |
| 288 | auto maybeInnerLoop = |
| 289 | converter.collectBounds(forOp, numBlockDims + numThreadDims); |
| 290 | if (!maybeInnerLoop) |
| 291 | return failure(); |
| 292 | converter.createLaunch(rootForOp: forOp, innermostForOp: *maybeInnerLoop, numBlockDims, numThreadDims); |
| 293 | |
| 294 | return success(); |
| 295 | } |
| 296 | |
| 297 | LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, |
| 298 | unsigned numBlockDims, |
| 299 | unsigned numThreadDims) { |
| 300 | return ::convertAffineLoopNestToGPULaunch(forOp: forOp, numBlockDims, numThreadDims); |
| 301 | } |
| 302 | |
| 303 | namespace { |
| 304 | struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> { |
| 305 | using OpRewritePattern<ParallelOp>::OpRewritePattern; |
| 306 | |
| 307 | LogicalResult matchAndRewrite(ParallelOp parallelOp, |
| 308 | PatternRewriter &rewriter) const override; |
| 309 | }; |
| 310 | } // namespace |
| 311 | |
| 312 | /// Tries to derive a static upper bound from the defining operation of |
| 313 | /// `upperBound`. |
| 314 | static Value deriveStaticUpperBound(Value upperBound, |
| 315 | PatternRewriter &rewriter) { |
| 316 | if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) { |
| 317 | return op; |
| 318 | } |
| 319 | |
| 320 | if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) { |
| 321 | for (const AffineExpr &result : minOp.getMap().getResults()) { |
| 322 | if (auto constExpr = dyn_cast<AffineConstantExpr>(result)) { |
| 323 | return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(), |
| 324 | constExpr.getValue()); |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | if (auto minOp = upperBound.getDefiningOp<arith::MinSIOp>()) { |
| 330 | for (Value operand : {minOp.getLhs(), minOp.getRhs()}) { |
| 331 | if (auto staticBound = deriveStaticUpperBound(operand, rewriter)) |
| 332 | return staticBound; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) { |
| 337 | if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>( |
| 338 | deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter) |
| 339 | .getDefiningOp())) |
| 340 | if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>( |
| 341 | deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter) |
| 342 | .getDefiningOp())) { |
| 343 | // Assumptions about the upper bound of minimum computations no longer |
| 344 | // work if multiplied by mixed signs, so abort in this case. |
| 345 | if ((lhs.value() < 0) != (rhs.value() < 0)) |
| 346 | return {}; |
| 347 | |
| 348 | return rewriter.create<arith::ConstantIndexOp>( |
| 349 | multiplyOp.getLoc(), lhs.value() * rhs.value()); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return {}; |
| 354 | } |
| 355 | |
| 356 | static bool isMappedToProcessor(gpu::Processor processor) { |
| 357 | return processor != gpu::Processor::Sequential; |
| 358 | } |
| 359 | |
| 360 | static unsigned getLaunchOpArgumentNum(gpu::Processor processor) { |
| 361 | switch (processor) { |
| 362 | case gpu::Processor::BlockX: |
| 363 | return 0; |
| 364 | case gpu::Processor::BlockY: |
| 365 | return 1; |
| 366 | case gpu::Processor::BlockZ: |
| 367 | return 2; |
| 368 | case gpu::Processor::ThreadX: |
| 369 | return 3; |
| 370 | case gpu::Processor::ThreadY: |
| 371 | return 4; |
| 372 | case gpu::Processor::ThreadZ: |
| 373 | return 5; |
| 374 | default:; |
| 375 | } |
| 376 | llvm_unreachable( |
| 377 | "invalid processor type while retrieving launch op argument number" ); |
| 378 | } |
| 379 | |
| 380 | /// Modifies the current transformation state to capture the effect of the given |
| 381 | /// `scf.parallel` operation on index substitutions and the operations to be |
| 382 | /// inserted. |
| 383 | /// Specifically, if a dimension of a parallel loop is mapped to a hardware id, |
| 384 | /// this function will |
| 385 | /// - compute the loop index based on the hardware id and affine map from the |
| 386 | /// mapping and update `cloningMap` to substitute all uses. |
| 387 | /// - derive a new upper bound for the hardware id and augment the provided |
| 388 | /// `gpu.launch operation` accordingly. |
| 389 | /// - if the upper bound is imprecise, insert a conditional in the `gpu.launch` |
| 390 | /// and update the rewriter to insert into the conditional's body. |
| 391 | /// If the dimension is mapped to sequential, |
| 392 | /// - insert a for loop into the body and update the rewriter to insert into |
| 393 | /// the for loop's body. |
| 394 | /// - update the `cloningMap` to replace uses of the index with the index of |
| 395 | /// the new for loop. |
| 396 | /// In either case, |
| 397 | /// - append the instructions from the loops body to worklist, in reverse order. |
| 398 | /// To note the end of the current scope in case a loop or conditional was |
| 399 | /// inserted, a sentinel (the `gpu.launch` operation) is inserted into the |
| 400 | /// worklist. This signals the processor of the worklist to pop the rewriter |
| 401 | /// one scope-level up. |
| 402 | static LogicalResult processParallelLoop( |
| 403 | ParallelOp parallelOp, gpu::LaunchOp launchOp, IRMapping &cloningMap, |
| 404 | SmallVectorImpl<Operation *> &worklist, |
| 405 | DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) { |
| 406 | // TODO: Verify that this is a valid GPU mapping. |
| 407 | // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential |
| 408 | ArrayAttr mapping = |
| 409 | parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName()); |
| 410 | |
| 411 | // TODO: Support multiple reductions. |
| 412 | if (!mapping || parallelOp.getNumResults() > 1) |
| 413 | return failure(); |
| 414 | |
| 415 | Location loc = parallelOp.getLoc(); |
| 416 | |
| 417 | auto launchIndependent = [&launchOp](Value val) { |
| 418 | return val.getParentRegion()->isAncestor(launchOp->getParentRegion()); |
| 419 | }; |
| 420 | |
| 421 | auto ensureLaunchIndependent = [&rewriter, |
| 422 | launchIndependent](Value val) -> Value { |
| 423 | if (launchIndependent(val)) |
| 424 | return val; |
| 425 | if (auto constOp = val.getDefiningOp<arith::ConstantOp>()) |
| 426 | return rewriter.create<arith::ConstantOp>(constOp.getLoc(), |
| 427 | constOp.getValue()); |
| 428 | return {}; |
| 429 | }; |
| 430 | |
| 431 | for (auto config : llvm::zip( |
| 432 | mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(), |
| 433 | parallelOp.getUpperBound(), parallelOp.getStep())) { |
| 434 | Attribute mappingAttribute; |
| 435 | Value iv, lowerBound, upperBound, step; |
| 436 | std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config; |
| 437 | auto annotation = |
| 438 | dyn_cast<gpu::ParallelLoopDimMappingAttr>(mappingAttribute); |
| 439 | if (!annotation) |
| 440 | return parallelOp.emitOpError() |
| 441 | << "expected mapping attribute for lowering to GPU" ; |
| 442 | Value newIndex; |
| 443 | gpu::Processor processor = annotation.getProcessor(); |
| 444 | |
| 445 | if (isMappedToProcessor(processor)) { |
| 446 | // Use the corresponding thread/grid index as replacement for the loop iv. |
| 447 | Value operand = |
| 448 | launchOp.getBody().getArgument(getLaunchOpArgumentNum(processor)); |
| 449 | // Take the indexmap and add the lower bound and step computations in. |
| 450 | // This computes operand * step + lowerBound. |
| 451 | // Use an affine map here so that it composes nicely with the provided |
| 452 | // annotation. |
| 453 | AffineMap lowerAndStep = AffineMap::get( |
| 454 | 1, 2, |
| 455 | rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) + |
| 456 | rewriter.getAffineSymbolExpr(1)); |
| 457 | newIndex = rewriter.create<AffineApplyOp>( |
| 458 | loc, annotation.getMap().compose(lowerAndStep), |
| 459 | ValueRange{operand, ensureLaunchIndependent(step), |
| 460 | ensureLaunchIndependent(lowerBound)}); |
| 461 | // If there was also a bound, insert that, too. |
| 462 | // TODO: Check that we do not assign bounds twice. |
| 463 | if (annotation.getBound()) { |
| 464 | // We pass as the single operand to the bound-map the number of |
| 465 | // iterations, which is (upperBound - lowerBound) ceilDiv step. To |
| 466 | // support inner loops with dynamic upper bounds (as generated by e.g. |
| 467 | // tiling), try to derive a max for the bounds. If the used bound for |
| 468 | // the hardware id is imprecise, wrap the contained code into a |
| 469 | // conditional. If the lower-bound is constant or defined before the |
| 470 | // launch, we can use it in the launch bounds. Otherwise fail. |
| 471 | if (!launchIndependent(lowerBound) && |
| 472 | !isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp())) |
| 473 | return failure(); |
| 474 | // The step must also be constant or defined outside of the loop nest. |
| 475 | if (!launchIndependent(step) && |
| 476 | !isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp())) |
| 477 | return failure(); |
| 478 | // If the upper-bound is constant or defined before the launch, we can |
| 479 | // use it in the launch bounds directly. Otherwise try derive a bound. |
| 480 | bool boundIsPrecise = |
| 481 | launchIndependent(upperBound) || |
| 482 | isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp()); |
| 483 | { |
| 484 | PatternRewriter::InsertionGuard guard(rewriter); |
| 485 | rewriter.setInsertionPoint(launchOp); |
| 486 | if (!boundIsPrecise) { |
| 487 | upperBound = deriveStaticUpperBound(upperBound, rewriter); |
| 488 | if (!upperBound) { |
| 489 | return rewriter.notifyMatchFailure( |
| 490 | parallelOp, |
| 491 | "cannot derive loop-invariant upper bound for number of" |
| 492 | "iterations" ); |
| 493 | } |
| 494 | } |
| 495 | // Compute the number of iterations needed. We compute this as an |
| 496 | // affine expression ceilDiv (upperBound - lowerBound) step. We use |
| 497 | // affine.apply here so that it composes nicely with the provided map. |
| 498 | AffineMap stepMap = AffineMap::get( |
| 499 | 1, 2, |
| 500 | ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0)) |
| 501 | .ceilDiv(rewriter.getAffineSymbolExpr(1)))); |
| 502 | Value launchBound = rewriter.create<AffineApplyOp>( |
| 503 | loc, annotation.getBound().compose(stepMap), |
| 504 | ValueRange{ |
| 505 | ensureLaunchIndependent( |
| 506 | cloningMap.lookupOrDefault(upperBound)), |
| 507 | ensureLaunchIndependent( |
| 508 | cloningMap.lookupOrDefault(lowerBound)), |
| 509 | ensureLaunchIndependent(cloningMap.lookupOrDefault(step))}); |
| 510 | // todo(herhut,ravishankarm): Update the behavior of setMappingAttr |
| 511 | // when this condition is relaxed. |
| 512 | if (!bounds.try_emplace(processor, launchBound).second) { |
| 513 | return rewriter.notifyMatchFailure( |
| 514 | parallelOp, "cannot redefine the bound for processor " + |
| 515 | Twine(static_cast<int64_t>(processor))); |
| 516 | } |
| 517 | } |
| 518 | if (!boundIsPrecise) { |
| 519 | // We are using an approximation, create a surrounding conditional. |
| 520 | Value originalBound = std::get<3>(config); |
| 521 | arith::CmpIOp pred = rewriter.create<arith::CmpIOp>( |
| 522 | loc, arith::CmpIPredicate::slt, newIndex, |
| 523 | cloningMap.lookupOrDefault(originalBound)); |
| 524 | scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false); |
| 525 | rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 526 | // Put a sentinel into the worklist so we know when to pop out of the |
| 527 | // if body again. We use the launchOp here, as that cannot be part of |
| 528 | // the bodies instruction. |
| 529 | worklist.push_back(launchOp.getOperation()); |
| 530 | } |
| 531 | } |
| 532 | } else { |
| 533 | // Create a sequential for loop. |
| 534 | auto loopOp = rewriter.create<scf::ForOp>( |
| 535 | loc, cloningMap.lookupOrDefault(lowerBound), |
| 536 | cloningMap.lookupOrDefault(upperBound), |
| 537 | cloningMap.lookupOrDefault(step)); |
| 538 | newIndex = loopOp.getInductionVar(); |
| 539 | rewriter.setInsertionPointToStart(loopOp.getBody()); |
| 540 | // Put a sentinel into the worklist so we know when to pop out of the loop |
| 541 | // body again. We use the launchOp here, as that cannot be part of the |
| 542 | // bodies instruction. |
| 543 | worklist.push_back(launchOp.getOperation()); |
| 544 | } |
| 545 | cloningMap.map(iv, newIndex); |
| 546 | } |
| 547 | |
| 548 | // Propagate custom user defined optional attributes, that can be used at |
| 549 | // later stage, such as extension data for GPU kernel dispatch |
| 550 | for (const auto &namedAttr : parallelOp->getAttrs()) { |
| 551 | if (namedAttr.getName() == gpu::getMappingAttrName() || |
| 552 | namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr()) |
| 553 | continue; |
| 554 | launchOp->setAttr(namedAttr.getName(), namedAttr.getValue()); |
| 555 | } |
| 556 | |
| 557 | Block *body = parallelOp.getBody(); |
| 558 | worklist.reserve(N: worklist.size() + body->getOperations().size()); |
| 559 | // Include scf.reduce terminator if exists and has an operand. |
| 560 | if (auto terminator = body->getTerminator(); |
| 561 | isa<scf::ReduceOp>(terminator) && terminator->getOperands().size() == 1) { |
| 562 | worklist.push_back(Elt: terminator); |
| 563 | } |
| 564 | for (Operation &op : llvm::reverse(body->without_terminator())) |
| 565 | worklist.push_back(&op); |
| 566 | return success(); |
| 567 | } |
| 568 | |
| 569 | /// Lower a `scf.parallel` operation into a corresponding `gpu.launch` |
| 570 | /// operation. |
| 571 | /// |
| 572 | /// This essentially transforms a loop nest into a corresponding SIMT function. |
| 573 | /// The conversion is driven by mapping annotations on the `scf.parallel` |
| 574 | /// operations. The mapping is provided via a `DictionaryAttribute` named |
| 575 | /// `mapping`, which has three entries: |
| 576 | /// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are |
| 577 | /// thread dimensions and 6 is sequential. |
| 578 | /// - map : An affine map that is used to pre-process hardware ids before |
| 579 | /// substitution. |
| 580 | /// - bound : An affine map that is used to compute the bound of the hardware |
| 581 | /// id based on an upper bound of the number of iterations. |
| 582 | /// If the `scf.parallel` contains nested `scf.parallel` operations, those |
| 583 | /// need to be annotated, as well. Structurally, the transformation works by |
| 584 | /// splicing all operations from nested `scf.parallel` operations into a single |
| 585 | /// sequence. Indices mapped to hardware ids are substituted with those ids, |
| 586 | /// wheras sequential mappings result in a sequential for-loop. To have more |
| 587 | /// flexibility when mapping code to hardware ids, the transform supports two |
| 588 | /// affine maps. The first `map` is used to compute the actual index for |
| 589 | /// substitution from the hardware id. The second `bound` is used to compute the |
| 590 | /// launch dimension for the hardware id from the number of iterations the |
| 591 | /// mapped loop is performing. Note that the number of iterations might be |
| 592 | /// imprecise if the corresponding loop-bounds are loop-dependent. In such case, |
| 593 | /// the hardware id might iterate over additional indices. The transformation |
| 594 | /// caters for this by predicating the created sequence of instructions on |
| 595 | /// the actual loop bound. This only works if an static upper bound for the |
| 596 | /// dynamic loop bound can be derived, currently via analyzing `affine.min` |
| 597 | /// operations. |
| 598 | LogicalResult |
| 599 | ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp, |
| 600 | PatternRewriter &rewriter) const { |
| 601 | // Mark the operation as visited for recursive legality check. |
| 602 | parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr()); |
| 603 | |
| 604 | // We can only transform starting at the outer-most loop. Launches inside of |
| 605 | // parallel loops are not supported. |
| 606 | if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>()) |
| 607 | return failure(); |
| 608 | // Create a launch operation. We start with bound one for all grid/block |
| 609 | // sizes. Those will be refined later as we discover them from mappings. |
| 610 | Location loc = parallelOp.getLoc(); |
| 611 | Value constantOne = |
| 612 | rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1); |
| 613 | gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>( |
| 614 | parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne, |
| 615 | constantOne, constantOne); |
| 616 | rewriter.setInsertionPointToEnd(&launchOp.getBody().front()); |
| 617 | rewriter.create<gpu::TerminatorOp>(loc); |
| 618 | rewriter.setInsertionPointToStart(&launchOp.getBody().front()); |
| 619 | |
| 620 | IRMapping cloningMap; |
| 621 | llvm::DenseMap<gpu::Processor, Value> launchBounds; |
| 622 | SmallVector<Operation *, 16> worklist; |
| 623 | if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist, |
| 624 | launchBounds, rewriter))) |
| 625 | return failure(); |
| 626 | |
| 627 | // Whether we have seen any side-effects. Reset when leaving an inner scope. |
| 628 | bool seenSideeffects = false; |
| 629 | // Whether we have left a nesting scope (and hence are no longer innermost). |
| 630 | bool leftNestingScope = false; |
| 631 | while (!worklist.empty()) { |
| 632 | Operation *op = worklist.pop_back_val(); |
| 633 | // Now walk over the body and clone it. |
| 634 | // TODO: This is only correct if there either is no further scf.parallel |
| 635 | // nested or this code is side-effect free. Otherwise we might need |
| 636 | // predication. We are overly conservative for now and only allow |
| 637 | // side-effects in the innermost scope. |
| 638 | if (auto nestedParallel = dyn_cast<ParallelOp>(op)) { |
| 639 | // Before entering a nested scope, make sure there have been no |
| 640 | // sideeffects until now. |
| 641 | if (seenSideeffects) |
| 642 | return failure(); |
| 643 | // A nested scf.parallel needs insertion of code to compute indices. |
| 644 | // Insert that now. This will also update the worklist with the loops |
| 645 | // body. |
| 646 | if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap, |
| 647 | worklist, launchBounds, rewriter))) |
| 648 | return failure(); |
| 649 | } else if (op == launchOp.getOperation()) { |
| 650 | // Found our sentinel value. We have finished the operations from one |
| 651 | // nesting level, pop one level back up. |
| 652 | auto *parent = rewriter.getInsertionPoint()->getParentOp(); |
| 653 | rewriter.setInsertionPointAfter(parent); |
| 654 | leftNestingScope = true; |
| 655 | seenSideeffects = false; |
| 656 | } else if (auto reduceOp = dyn_cast<scf::ReduceOp>(op)) { |
| 657 | // Convert scf.reduction op |
| 658 | auto parentLoop = op->getParentOfType<ParallelOp>(); |
| 659 | if (!parentLoop || op->getOperands().size() != 1) |
| 660 | return failure(); |
| 661 | auto operand = op->getOperands().front(); |
| 662 | auto newValue = cloningMap.lookupOrNull(from: operand); |
| 663 | if (!newValue || !operand.getType().isSignlessIntOrFloat()) |
| 664 | return failure(); |
| 665 | // Ensure reduction region is isolated from above. |
| 666 | llvm::SetVector<Value> externalValues; |
| 667 | getUsedValuesDefinedAbove(reduceOp.getRegion(0), externalValues); |
| 668 | if (externalValues.size()) |
| 669 | return failure(); |
| 670 | // Replace by gpu.all_reduce. |
| 671 | auto gpuRedOp = rewriter.create<gpu::AllReduceOp>(loc, newValue); |
| 672 | cloningMap.map(parentLoop->getResult(0), gpuRedOp.getResult()); |
| 673 | // Copy region. |
| 674 | rewriter.inlineRegionBefore(reduceOp.getRegion(0), gpuRedOp.getRegion(), |
| 675 | gpuRedOp.getRegion().begin()); |
| 676 | // Replace src.reduce.return with gpu.yield. |
| 677 | auto scfReturn = gpuRedOp.getRegion().front().getTerminator(); |
| 678 | auto ip = rewriter.saveInsertionPoint(); |
| 679 | rewriter.setInsertionPointToEnd(&gpuRedOp.getRegion().front()); |
| 680 | rewriter.replaceOpWithNewOp<gpu::YieldOp>( |
| 681 | scfReturn, scfReturn->getOperands().front()); |
| 682 | rewriter.restoreInsertionPoint(ip); |
| 683 | } else { |
| 684 | // Otherwise we copy it over. |
| 685 | Operation *clone = rewriter.clone(op&: *op, mapper&: cloningMap); |
| 686 | cloningMap.map(from: op->getResults(), to: clone->getResults()); |
| 687 | // Check for side effects. |
| 688 | // TODO: Handle region side effects properly. |
| 689 | seenSideeffects |= |
| 690 | !isMemoryEffectFree(op: clone) || clone->getNumRegions() != 0; |
| 691 | // If we are no longer in the innermost scope, sideeffects are disallowed. |
| 692 | if (seenSideeffects && leftNestingScope) |
| 693 | return failure(); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | // Now that we succeeded creating the launch operation, also update the |
| 698 | // bounds. |
| 699 | for (auto bound : launchBounds) |
| 700 | launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)), |
| 701 | std::get<1>(bound)); |
| 702 | |
| 703 | rewriter.eraseOp(op: parallelOp); |
| 704 | return success(); |
| 705 | } |
| 706 | |
| 707 | void mlir::populateParallelLoopToGPUPatterns(RewritePatternSet &patterns) { |
| 708 | patterns.add<ParallelToGpuLaunchLowering>(arg: patterns.getContext()); |
| 709 | } |
| 710 | |
| 711 | void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) { |
| 712 | target.addLegalDialect<memref::MemRefDialect>(); |
| 713 | target.addDynamicallyLegalOp<scf::ParallelOp>(callback: [](scf::ParallelOp parallelOp) { |
| 714 | return !parallelOp->hasAttr(gpu::getMappingAttrName()) || |
| 715 | parallelOp->hasAttr(kVisitedAttrName); |
| 716 | }); |
| 717 | } |
| 718 | |
| 719 | void mlir::finalizeParallelLoopToGPUConversion(Operation *op) { |
| 720 | op->walk([](scf::ParallelOp parallelOp) { |
| 721 | parallelOp->removeAttr(kVisitedAttrName); |
| 722 | }); |
| 723 | } |
| 724 | |