| 1 | //===- TensorToSPIRV.cpp - Tensor to SPIR-V Patterns ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements patterns to convert Tensor dialect to SPIR-V dialect. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Conversion/TensorToSPIRV/TensorToSPIRV.h" |
| 14 | #include "../SPIRVCommon/Pattern.h" |
| 15 | #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h" |
| 16 | #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" |
| 17 | #include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h" |
| 18 | #include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h" |
| 19 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 20 | #include "mlir/IR/AffineMap.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "tensor-to-spirv-pattern" |
| 24 | |
| 25 | using namespace mlir; |
| 26 | |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | // Operation conversion |
| 29 | //===----------------------------------------------------------------------===// |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | /// Converts tensor.extract into loading using access chains from SPIR-V local |
| 34 | /// variables. |
| 35 | class final |
| 36 | : public OpConversionPattern<tensor::ExtractOp> { |
| 37 | public: |
| 38 | (const TypeConverter &typeConverter, MLIRContext *context, |
| 39 | int64_t threshold, PatternBenefit benefit = 1) |
| 40 | : OpConversionPattern(typeConverter, context, benefit), |
| 41 | byteCountThreshold(threshold) {} |
| 42 | |
| 43 | LogicalResult |
| 44 | matchAndRewrite(tensor::ExtractOp , OpAdaptor adaptor, |
| 45 | ConversionPatternRewriter &rewriter) const override { |
| 46 | auto tensorType = cast<RankedTensorType>(extractOp.getTensor().getType()); |
| 47 | |
| 48 | if (!isa<spirv::ScalarType>(tensorType.getElementType())) |
| 49 | return rewriter.notifyMatchFailure(extractOp, "unsupported type" ); |
| 50 | if (!tensorType.hasStaticShape()) |
| 51 | return rewriter.notifyMatchFailure(extractOp, "non-static tensor" ); |
| 52 | |
| 53 | if (tensorType.getNumElements() * tensorType.getElementTypeBitWidth() > |
| 54 | byteCountThreshold * 8) |
| 55 | return rewriter.notifyMatchFailure(extractOp, |
| 56 | "exceeding byte count threshold" ); |
| 57 | |
| 58 | Location loc = extractOp.getLoc(); |
| 59 | |
| 60 | int64_t rank = tensorType.getRank(); |
| 61 | SmallVector<int64_t, 4> strides(rank, 1); |
| 62 | for (int i = rank - 2; i >= 0; --i) { |
| 63 | strides[i] = strides[i + 1] * tensorType.getDimSize(i + 1); |
| 64 | } |
| 65 | |
| 66 | Type varType = spirv::PointerType::get(adaptor.getTensor().getType(), |
| 67 | spirv::StorageClass::Function); |
| 68 | |
| 69 | spirv::VariableOp varOp; |
| 70 | if (adaptor.getTensor().getDefiningOp<spirv::ConstantOp>()) { |
| 71 | // We could use the initializer directly; but certain driver compilers |
| 72 | // have bugs dealing with that. So for now, use spirv.Store for |
| 73 | // initialization. |
| 74 | varOp = rewriter.create<spirv::VariableOp>(loc, varType, |
| 75 | spirv::StorageClass::Function, |
| 76 | /*initializer=*/nullptr); |
| 77 | rewriter.create<spirv::StoreOp>(loc, varOp, adaptor.getTensor()); |
| 78 | } else { |
| 79 | // Need to store the value to the local variable. It's questionable |
| 80 | // whether we want to support such case though. |
| 81 | return failure(); |
| 82 | } |
| 83 | |
| 84 | auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>(); |
| 85 | auto indexType = typeConverter.getIndexType(); |
| 86 | |
| 87 | Value index = spirv::linearizeIndex(indices: adaptor.getIndices(), strides, |
| 88 | /*offset=*/0, integerType: indexType, loc, builder&: rewriter); |
| 89 | auto acOp = rewriter.create<spirv::AccessChainOp>(loc, varOp, index); |
| 90 | |
| 91 | rewriter.replaceOpWithNewOp<spirv::LoadOp>(extractOp, acOp); |
| 92 | |
| 93 | return success(); |
| 94 | } |
| 95 | |
| 96 | private: |
| 97 | int64_t ; |
| 98 | }; |
| 99 | |
| 100 | } // namespace |
| 101 | |
| 102 | //===----------------------------------------------------------------------===// |
| 103 | // Pattern population |
| 104 | //===----------------------------------------------------------------------===// |
| 105 | |
| 106 | void mlir::populateTensorToSPIRVPatterns( |
| 107 | const SPIRVTypeConverter &typeConverter, int64_t byteCountThreshold, |
| 108 | RewritePatternSet &patterns) { |
| 109 | patterns.add<TensorExtractPattern>(arg: typeConverter, args: patterns.getContext(), |
| 110 | args&: byteCountThreshold); |
| 111 | } |
| 112 | |