| 1 | //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" |
| 10 | |
| 11 | #include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h" |
| 12 | #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" |
| 13 | #include "mlir/Conversion/LLVMCommon/PrintCallHelper.h" |
| 14 | #include "mlir/Conversion/LLVMCommon/TypeConverter.h" |
| 15 | #include "mlir/Conversion/LLVMCommon/VectorPattern.h" |
| 16 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 17 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
| 18 | #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" |
| 19 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 20 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 21 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 22 | #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" |
| 23 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| 24 | #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| 25 | #include "mlir/IR/BuiltinAttributes.h" |
| 26 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
| 27 | #include "mlir/IR/BuiltinTypes.h" |
| 28 | #include "mlir/IR/TypeUtilities.h" |
| 29 | #include "mlir/Target/LLVMIR/TypeToLLVM.h" |
| 30 | #include "mlir/Transforms/DialectConversion.h" |
| 31 | #include "llvm/ADT/APFloat.h" |
| 32 | #include "llvm/Support/Casting.h" |
| 33 | #include <optional> |
| 34 | |
| 35 | using namespace mlir; |
| 36 | using namespace mlir::vector; |
| 37 | |
| 38 | // Helper that picks the proper sequence for inserting. |
| 39 | static Value insertOne(ConversionPatternRewriter &rewriter, |
| 40 | const LLVMTypeConverter &typeConverter, Location loc, |
| 41 | Value val1, Value val2, Type llvmType, int64_t rank, |
| 42 | int64_t pos) { |
| 43 | assert(rank > 0 && "0-D vector corner case should have been handled already" ); |
| 44 | if (rank == 1) { |
| 45 | auto idxType = rewriter.getIndexType(); |
| 46 | auto constant = rewriter.create<LLVM::ConstantOp>( |
| 47 | loc, typeConverter.convertType(idxType), |
| 48 | rewriter.getIntegerAttr(idxType, pos)); |
| 49 | return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, |
| 50 | constant); |
| 51 | } |
| 52 | return rewriter.create<LLVM::InsertValueOp>(loc, val1, val2, pos); |
| 53 | } |
| 54 | |
| 55 | // Helper that picks the proper sequence for extracting. |
| 56 | static Value (ConversionPatternRewriter &rewriter, |
| 57 | const LLVMTypeConverter &typeConverter, Location loc, |
| 58 | Value val, Type llvmType, int64_t rank, int64_t pos) { |
| 59 | if (rank <= 1) { |
| 60 | auto idxType = rewriter.getIndexType(); |
| 61 | auto constant = rewriter.create<LLVM::ConstantOp>( |
| 62 | loc, typeConverter.convertType(idxType), |
| 63 | rewriter.getIntegerAttr(idxType, pos)); |
| 64 | return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, |
| 65 | constant); |
| 66 | } |
| 67 | return rewriter.create<LLVM::ExtractValueOp>(loc, val, pos); |
| 68 | } |
| 69 | |
| 70 | // Helper that returns data layout alignment of a vector. |
| 71 | LogicalResult getVectorAlignment(const LLVMTypeConverter &typeConverter, |
| 72 | VectorType vectorType, unsigned &align) { |
| 73 | Type convertedVectorTy = typeConverter.convertType(vectorType); |
| 74 | if (!convertedVectorTy) |
| 75 | return failure(); |
| 76 | |
| 77 | llvm::LLVMContext llvmContext; |
| 78 | align = LLVM::TypeToLLVMIRTranslator(llvmContext) |
| 79 | .getPreferredAlignment(type: convertedVectorTy, |
| 80 | layout: typeConverter.getDataLayout()); |
| 81 | |
| 82 | return success(); |
| 83 | } |
| 84 | |
| 85 | // Helper that returns data layout alignment of a memref. |
| 86 | LogicalResult getMemRefAlignment(const LLVMTypeConverter &typeConverter, |
| 87 | MemRefType memrefType, unsigned &align) { |
| 88 | Type elementTy = typeConverter.convertType(memrefType.getElementType()); |
| 89 | if (!elementTy) |
| 90 | return failure(); |
| 91 | |
| 92 | // TODO: this should use the MLIR data layout when it becomes available and |
| 93 | // stop depending on translation. |
| 94 | llvm::LLVMContext llvmContext; |
| 95 | align = LLVM::TypeToLLVMIRTranslator(llvmContext) |
| 96 | .getPreferredAlignment(type: elementTy, layout: typeConverter.getDataLayout()); |
| 97 | return success(); |
| 98 | } |
| 99 | |
| 100 | // Helper to resolve the alignment for vector load/store, gather and scatter |
| 101 | // ops. If useVectorAlignment is true, get the preferred alignment for the |
| 102 | // vector type in the operation. This option is used for hardware backends with |
| 103 | // vectorization. Otherwise, use the preferred alignment of the element type of |
| 104 | // the memref. Note that if you choose to use vector alignment, the shape of the |
| 105 | // vector type must be resolved before the ConvertVectorToLLVM pass is run. |
| 106 | LogicalResult getVectorToLLVMAlignment(const LLVMTypeConverter &typeConverter, |
| 107 | VectorType vectorType, |
| 108 | MemRefType memrefType, unsigned &align, |
| 109 | bool useVectorAlignment) { |
| 110 | if (useVectorAlignment) { |
| 111 | if (failed(getVectorAlignment(typeConverter, vectorType, align))) { |
| 112 | return failure(); |
| 113 | } |
| 114 | } else { |
| 115 | if (failed(getMemRefAlignment(typeConverter, memrefType, align))) { |
| 116 | return failure(); |
| 117 | } |
| 118 | } |
| 119 | return success(); |
| 120 | } |
| 121 | |
| 122 | // Check if the last stride is non-unit and has a valid memory space. |
| 123 | static LogicalResult isMemRefTypeSupported(MemRefType memRefType, |
| 124 | const LLVMTypeConverter &converter) { |
| 125 | if (!memRefType.isLastDimUnitStride()) |
| 126 | return failure(); |
| 127 | if (failed(converter.getMemRefAddressSpace(type: memRefType))) |
| 128 | return failure(); |
| 129 | return success(); |
| 130 | } |
| 131 | |
| 132 | // Add an index vector component to a base pointer. |
| 133 | static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc, |
| 134 | const LLVMTypeConverter &typeConverter, |
| 135 | MemRefType memRefType, Value llvmMemref, Value base, |
| 136 | Value index, VectorType vectorType) { |
| 137 | assert(succeeded(isMemRefTypeSupported(memRefType, typeConverter)) && |
| 138 | "unsupported memref type" ); |
| 139 | assert(vectorType.getRank() == 1 && "expected a 1-d vector type" ); |
| 140 | auto pType = MemRefDescriptor(llvmMemref).getElementPtrType(); |
| 141 | auto ptrsType = |
| 142 | LLVM::getVectorType(pType, vectorType.getDimSize(0), |
| 143 | /*isScalable=*/vectorType.getScalableDims()[0]); |
| 144 | return rewriter.create<LLVM::GEPOp>( |
| 145 | loc, ptrsType, typeConverter.convertType(memRefType.getElementType()), |
| 146 | base, index); |
| 147 | } |
| 148 | |
| 149 | /// Convert `foldResult` into a Value. Integer attribute is converted to |
| 150 | /// an LLVM constant op. |
| 151 | static Value getAsLLVMValue(OpBuilder &builder, Location loc, |
| 152 | OpFoldResult foldResult) { |
| 153 | if (auto attr = dyn_cast<Attribute>(Val&: foldResult)) { |
| 154 | auto intAttr = cast<IntegerAttr>(attr); |
| 155 | return builder.create<LLVM::ConstantOp>(loc, intAttr).getResult(); |
| 156 | } |
| 157 | |
| 158 | return cast<Value>(Val&: foldResult); |
| 159 | } |
| 160 | |
| 161 | namespace { |
| 162 | |
| 163 | /// Trivial Vector to LLVM conversions |
| 164 | using VectorScaleOpConversion = |
| 165 | OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>; |
| 166 | |
| 167 | /// Conversion pattern for a vector.bitcast. |
| 168 | class VectorBitCastOpConversion |
| 169 | : public ConvertOpToLLVMPattern<vector::BitCastOp> { |
| 170 | public: |
| 171 | using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern; |
| 172 | |
| 173 | LogicalResult |
| 174 | matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor, |
| 175 | ConversionPatternRewriter &rewriter) const override { |
| 176 | // Only 0-D and 1-D vectors can be lowered to LLVM. |
| 177 | VectorType resultTy = bitCastOp.getResultVectorType(); |
| 178 | if (resultTy.getRank() > 1) |
| 179 | return failure(); |
| 180 | Type newResultTy = typeConverter->convertType(resultTy); |
| 181 | rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy, |
| 182 | adaptor.getOperands()[0]); |
| 183 | return success(); |
| 184 | } |
| 185 | }; |
| 186 | |
| 187 | /// Conversion pattern for a vector.matrix_multiply. |
| 188 | /// This is lowered directly to the proper llvm.intr.matrix.multiply. |
| 189 | class VectorMatmulOpConversion |
| 190 | : public ConvertOpToLLVMPattern<vector::MatmulOp> { |
| 191 | public: |
| 192 | using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern; |
| 193 | |
| 194 | LogicalResult |
| 195 | matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor, |
| 196 | ConversionPatternRewriter &rewriter) const override { |
| 197 | rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( |
| 198 | matmulOp, typeConverter->convertType(matmulOp.getRes().getType()), |
| 199 | adaptor.getLhs(), adaptor.getRhs(), matmulOp.getLhsRows(), |
| 200 | matmulOp.getLhsColumns(), matmulOp.getRhsColumns()); |
| 201 | return success(); |
| 202 | } |
| 203 | }; |
| 204 | |
| 205 | /// Conversion pattern for a vector.flat_transpose. |
| 206 | /// This is lowered directly to the proper llvm.intr.matrix.transpose. |
| 207 | class VectorFlatTransposeOpConversion |
| 208 | : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> { |
| 209 | public: |
| 210 | using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern; |
| 211 | |
| 212 | LogicalResult |
| 213 | matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor, |
| 214 | ConversionPatternRewriter &rewriter) const override { |
| 215 | rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( |
| 216 | transOp, typeConverter->convertType(transOp.getRes().getType()), |
| 217 | adaptor.getMatrix(), transOp.getRows(), transOp.getColumns()); |
| 218 | return success(); |
| 219 | } |
| 220 | }; |
| 221 | |
| 222 | /// Overloaded utility that replaces a vector.load, vector.store, |
| 223 | /// vector.maskedload and vector.maskedstore with their respective LLVM |
| 224 | /// couterparts. |
| 225 | static void replaceLoadOrStoreOp(vector::LoadOp loadOp, |
| 226 | vector::LoadOpAdaptor adaptor, |
| 227 | VectorType vectorTy, Value ptr, unsigned align, |
| 228 | ConversionPatternRewriter &rewriter) { |
| 229 | rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, vectorTy, ptr, align, |
| 230 | /*volatile_=*/false, |
| 231 | loadOp.getNontemporal()); |
| 232 | } |
| 233 | |
| 234 | static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp, |
| 235 | vector::MaskedLoadOpAdaptor adaptor, |
| 236 | VectorType vectorTy, Value ptr, unsigned align, |
| 237 | ConversionPatternRewriter &rewriter) { |
| 238 | rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( |
| 239 | loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align); |
| 240 | } |
| 241 | |
| 242 | static void replaceLoadOrStoreOp(vector::StoreOp storeOp, |
| 243 | vector::StoreOpAdaptor adaptor, |
| 244 | VectorType vectorTy, Value ptr, unsigned align, |
| 245 | ConversionPatternRewriter &rewriter) { |
| 246 | rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(), |
| 247 | ptr, align, /*volatile_=*/false, |
| 248 | storeOp.getNontemporal()); |
| 249 | } |
| 250 | |
| 251 | static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp, |
| 252 | vector::MaskedStoreOpAdaptor adaptor, |
| 253 | VectorType vectorTy, Value ptr, unsigned align, |
| 254 | ConversionPatternRewriter &rewriter) { |
| 255 | rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( |
| 256 | storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align); |
| 257 | } |
| 258 | |
| 259 | /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and |
| 260 | /// vector.maskedstore. |
| 261 | template <class LoadOrStoreOp> |
| 262 | class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> { |
| 263 | public: |
| 264 | explicit VectorLoadStoreConversion(const LLVMTypeConverter &typeConv, |
| 265 | bool useVectorAlign) |
| 266 | : ConvertOpToLLVMPattern<LoadOrStoreOp>(typeConv), |
| 267 | useVectorAlignment(useVectorAlign) {} |
| 268 | using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern; |
| 269 | |
| 270 | LogicalResult |
| 271 | matchAndRewrite(LoadOrStoreOp loadOrStoreOp, |
| 272 | typename LoadOrStoreOp::Adaptor adaptor, |
| 273 | ConversionPatternRewriter &rewriter) const override { |
| 274 | // Only 1-D vectors can be lowered to LLVM. |
| 275 | VectorType vectorTy = loadOrStoreOp.getVectorType(); |
| 276 | if (vectorTy.getRank() > 1) |
| 277 | return failure(); |
| 278 | |
| 279 | auto loc = loadOrStoreOp->getLoc(); |
| 280 | MemRefType memRefTy = loadOrStoreOp.getMemRefType(); |
| 281 | |
| 282 | // Resolve alignment. |
| 283 | unsigned align; |
| 284 | if (failed(getVectorToLLVMAlignment(*this->getTypeConverter(), vectorTy, |
| 285 | memRefTy, align, useVectorAlignment))) |
| 286 | return rewriter.notifyMatchFailure(loadOrStoreOp, |
| 287 | "could not resolve alignment" ); |
| 288 | |
| 289 | // Resolve address. |
| 290 | auto vtype = cast<VectorType>( |
| 291 | this->typeConverter->convertType(loadOrStoreOp.getVectorType())); |
| 292 | Value dataPtr = this->getStridedElementPtr( |
| 293 | rewriter, loc, memRefTy, adaptor.getBase(), adaptor.getIndices()); |
| 294 | replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, dataPtr, align, |
| 295 | rewriter); |
| 296 | return success(); |
| 297 | } |
| 298 | |
| 299 | private: |
| 300 | // If true, use the preferred alignment of the vector type. |
| 301 | // If false, use the preferred alignment of the element type |
| 302 | // of the memref. This flag is intended for use with hardware |
| 303 | // backends that require alignment of vector operations. |
| 304 | const bool useVectorAlignment; |
| 305 | }; |
| 306 | |
| 307 | /// Conversion pattern for a vector.gather. |
| 308 | class VectorGatherOpConversion |
| 309 | : public ConvertOpToLLVMPattern<vector::GatherOp> { |
| 310 | public: |
| 311 | explicit VectorGatherOpConversion(const LLVMTypeConverter &typeConv, |
| 312 | bool useVectorAlign) |
| 313 | : ConvertOpToLLVMPattern<vector::GatherOp>(typeConv), |
| 314 | useVectorAlignment(useVectorAlign) {} |
| 315 | using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern; |
| 316 | |
| 317 | LogicalResult |
| 318 | matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor, |
| 319 | ConversionPatternRewriter &rewriter) const override { |
| 320 | Location loc = gather->getLoc(); |
| 321 | MemRefType memRefType = dyn_cast<MemRefType>(gather.getBaseType()); |
| 322 | assert(memRefType && "The base should be bufferized" ); |
| 323 | |
| 324 | if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter()))) |
| 325 | return rewriter.notifyMatchFailure(gather, "memref type not supported" ); |
| 326 | |
| 327 | VectorType vType = gather.getVectorType(); |
| 328 | if (vType.getRank() > 1) { |
| 329 | return rewriter.notifyMatchFailure( |
| 330 | gather, "only 1-D vectors can be lowered to LLVM" ); |
| 331 | } |
| 332 | |
| 333 | // Resolve alignment. |
| 334 | unsigned align; |
| 335 | if (failed(getVectorToLLVMAlignment(*this->getTypeConverter(), vType, |
| 336 | memRefType, align, useVectorAlignment))) |
| 337 | return rewriter.notifyMatchFailure(gather, "could not resolve alignment" ); |
| 338 | |
| 339 | // Resolve address. |
| 340 | Value ptr = getStridedElementPtr(rewriter, loc, memRefType, |
| 341 | adaptor.getBase(), adaptor.getIndices()); |
| 342 | Value base = adaptor.getBase(); |
| 343 | Value ptrs = |
| 344 | getIndexedPtrs(rewriter, loc, *this->getTypeConverter(), memRefType, |
| 345 | base, ptr, adaptor.getIndexVec(), vType); |
| 346 | |
| 347 | // Replace with the gather intrinsic. |
| 348 | rewriter.replaceOpWithNewOp<LLVM::masked_gather>( |
| 349 | gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(), |
| 350 | adaptor.getPassThru(), rewriter.getI32IntegerAttr(align)); |
| 351 | return success(); |
| 352 | } |
| 353 | |
| 354 | private: |
| 355 | // If true, use the preferred alignment of the vector type. |
| 356 | // If false, use the preferred alignment of the element type |
| 357 | // of the memref. This flag is intended for use with hardware |
| 358 | // backends that require alignment of vector operations. |
| 359 | const bool useVectorAlignment; |
| 360 | }; |
| 361 | |
| 362 | /// Conversion pattern for a vector.scatter. |
| 363 | class VectorScatterOpConversion |
| 364 | : public ConvertOpToLLVMPattern<vector::ScatterOp> { |
| 365 | public: |
| 366 | explicit VectorScatterOpConversion(const LLVMTypeConverter &typeConv, |
| 367 | bool useVectorAlign) |
| 368 | : ConvertOpToLLVMPattern<vector::ScatterOp>(typeConv), |
| 369 | useVectorAlignment(useVectorAlign) {} |
| 370 | |
| 371 | using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern; |
| 372 | |
| 373 | LogicalResult |
| 374 | matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor, |
| 375 | ConversionPatternRewriter &rewriter) const override { |
| 376 | auto loc = scatter->getLoc(); |
| 377 | MemRefType memRefType = scatter.getMemRefType(); |
| 378 | |
| 379 | if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter()))) |
| 380 | return rewriter.notifyMatchFailure(scatter, "memref type not supported" ); |
| 381 | |
| 382 | VectorType vType = scatter.getVectorType(); |
| 383 | if (vType.getRank() > 1) { |
| 384 | return rewriter.notifyMatchFailure( |
| 385 | scatter, "only 1-D vectors can be lowered to LLVM" ); |
| 386 | } |
| 387 | |
| 388 | // Resolve alignment. |
| 389 | unsigned align; |
| 390 | if (failed(getVectorToLLVMAlignment(*this->getTypeConverter(), vType, |
| 391 | memRefType, align, useVectorAlignment))) |
| 392 | return rewriter.notifyMatchFailure(scatter, |
| 393 | "could not resolve alignment" ); |
| 394 | |
| 395 | // Resolve address. |
| 396 | Value ptr = getStridedElementPtr(rewriter, loc, memRefType, |
| 397 | adaptor.getBase(), adaptor.getIndices()); |
| 398 | Value ptrs = |
| 399 | getIndexedPtrs(rewriter, loc, *this->getTypeConverter(), memRefType, |
| 400 | adaptor.getBase(), ptr, adaptor.getIndexVec(), vType); |
| 401 | |
| 402 | // Replace with the scatter intrinsic. |
| 403 | rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( |
| 404 | scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(), |
| 405 | rewriter.getI32IntegerAttr(align)); |
| 406 | return success(); |
| 407 | } |
| 408 | |
| 409 | private: |
| 410 | // If true, use the preferred alignment of the vector type. |
| 411 | // If false, use the preferred alignment of the element type |
| 412 | // of the memref. This flag is intended for use with hardware |
| 413 | // backends that require alignment of vector operations. |
| 414 | const bool useVectorAlignment; |
| 415 | }; |
| 416 | |
| 417 | /// Conversion pattern for a vector.expandload. |
| 418 | class VectorExpandLoadOpConversion |
| 419 | : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> { |
| 420 | public: |
| 421 | using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern; |
| 422 | |
| 423 | LogicalResult |
| 424 | matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor, |
| 425 | ConversionPatternRewriter &rewriter) const override { |
| 426 | auto loc = expand->getLoc(); |
| 427 | MemRefType memRefType = expand.getMemRefType(); |
| 428 | |
| 429 | // Resolve address. |
| 430 | auto vtype = typeConverter->convertType(expand.getVectorType()); |
| 431 | Value ptr = getStridedElementPtr(rewriter, loc, memRefType, |
| 432 | adaptor.getBase(), adaptor.getIndices()); |
| 433 | |
| 434 | rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( |
| 435 | expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru()); |
| 436 | return success(); |
| 437 | } |
| 438 | }; |
| 439 | |
| 440 | /// Conversion pattern for a vector.compressstore. |
| 441 | class VectorCompressStoreOpConversion |
| 442 | : public ConvertOpToLLVMPattern<vector::CompressStoreOp> { |
| 443 | public: |
| 444 | using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern; |
| 445 | |
| 446 | LogicalResult |
| 447 | matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor, |
| 448 | ConversionPatternRewriter &rewriter) const override { |
| 449 | auto loc = compress->getLoc(); |
| 450 | MemRefType memRefType = compress.getMemRefType(); |
| 451 | |
| 452 | // Resolve address. |
| 453 | Value ptr = getStridedElementPtr(rewriter, loc, memRefType, |
| 454 | adaptor.getBase(), adaptor.getIndices()); |
| 455 | |
| 456 | rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( |
| 457 | compress, adaptor.getValueToStore(), ptr, adaptor.getMask()); |
| 458 | return success(); |
| 459 | } |
| 460 | }; |
| 461 | |
| 462 | /// Reduction neutral classes for overloading. |
| 463 | class ReductionNeutralZero {}; |
| 464 | class ReductionNeutralIntOne {}; |
| 465 | class ReductionNeutralFPOne {}; |
| 466 | class ReductionNeutralAllOnes {}; |
| 467 | class ReductionNeutralSIntMin {}; |
| 468 | class ReductionNeutralUIntMin {}; |
| 469 | class ReductionNeutralSIntMax {}; |
| 470 | class ReductionNeutralUIntMax {}; |
| 471 | class ReductionNeutralFPMin {}; |
| 472 | class ReductionNeutralFPMax {}; |
| 473 | |
| 474 | /// Create the reduction neutral zero value. |
| 475 | static Value createReductionNeutralValue(ReductionNeutralZero neutral, |
| 476 | ConversionPatternRewriter &rewriter, |
| 477 | Location loc, Type llvmType) { |
| 478 | return rewriter.create<LLVM::ConstantOp>(loc, llvmType, |
| 479 | rewriter.getZeroAttr(llvmType)); |
| 480 | } |
| 481 | |
| 482 | /// Create the reduction neutral integer one value. |
| 483 | static Value createReductionNeutralValue(ReductionNeutralIntOne neutral, |
| 484 | ConversionPatternRewriter &rewriter, |
| 485 | Location loc, Type llvmType) { |
| 486 | return rewriter.create<LLVM::ConstantOp>( |
| 487 | loc, llvmType, rewriter.getIntegerAttr(llvmType, 1)); |
| 488 | } |
| 489 | |
| 490 | /// Create the reduction neutral fp one value. |
| 491 | static Value createReductionNeutralValue(ReductionNeutralFPOne neutral, |
| 492 | ConversionPatternRewriter &rewriter, |
| 493 | Location loc, Type llvmType) { |
| 494 | return rewriter.create<LLVM::ConstantOp>( |
| 495 | loc, llvmType, rewriter.getFloatAttr(llvmType, 1.0)); |
| 496 | } |
| 497 | |
| 498 | /// Create the reduction neutral all-ones value. |
| 499 | static Value createReductionNeutralValue(ReductionNeutralAllOnes neutral, |
| 500 | ConversionPatternRewriter &rewriter, |
| 501 | Location loc, Type llvmType) { |
| 502 | return rewriter.create<LLVM::ConstantOp>( |
| 503 | loc, llvmType, |
| 504 | rewriter.getIntegerAttr( |
| 505 | llvmType, llvm::APInt::getAllOnes(llvmType.getIntOrFloatBitWidth()))); |
| 506 | } |
| 507 | |
| 508 | /// Create the reduction neutral signed int minimum value. |
| 509 | static Value createReductionNeutralValue(ReductionNeutralSIntMin neutral, |
| 510 | ConversionPatternRewriter &rewriter, |
| 511 | Location loc, Type llvmType) { |
| 512 | return rewriter.create<LLVM::ConstantOp>( |
| 513 | loc, llvmType, |
| 514 | rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMinValue( |
| 515 | llvmType.getIntOrFloatBitWidth()))); |
| 516 | } |
| 517 | |
| 518 | /// Create the reduction neutral unsigned int minimum value. |
| 519 | static Value createReductionNeutralValue(ReductionNeutralUIntMin neutral, |
| 520 | ConversionPatternRewriter &rewriter, |
| 521 | Location loc, Type llvmType) { |
| 522 | return rewriter.create<LLVM::ConstantOp>( |
| 523 | loc, llvmType, |
| 524 | rewriter.getIntegerAttr(llvmType, llvm::APInt::getMinValue( |
| 525 | llvmType.getIntOrFloatBitWidth()))); |
| 526 | } |
| 527 | |
| 528 | /// Create the reduction neutral signed int maximum value. |
| 529 | static Value createReductionNeutralValue(ReductionNeutralSIntMax neutral, |
| 530 | ConversionPatternRewriter &rewriter, |
| 531 | Location loc, Type llvmType) { |
| 532 | return rewriter.create<LLVM::ConstantOp>( |
| 533 | loc, llvmType, |
| 534 | rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMaxValue( |
| 535 | llvmType.getIntOrFloatBitWidth()))); |
| 536 | } |
| 537 | |
| 538 | /// Create the reduction neutral unsigned int maximum value. |
| 539 | static Value createReductionNeutralValue(ReductionNeutralUIntMax neutral, |
| 540 | ConversionPatternRewriter &rewriter, |
| 541 | Location loc, Type llvmType) { |
| 542 | return rewriter.create<LLVM::ConstantOp>( |
| 543 | loc, llvmType, |
| 544 | rewriter.getIntegerAttr(llvmType, llvm::APInt::getMaxValue( |
| 545 | llvmType.getIntOrFloatBitWidth()))); |
| 546 | } |
| 547 | |
| 548 | /// Create the reduction neutral fp minimum value. |
| 549 | static Value createReductionNeutralValue(ReductionNeutralFPMin neutral, |
| 550 | ConversionPatternRewriter &rewriter, |
| 551 | Location loc, Type llvmType) { |
| 552 | auto floatType = cast<FloatType>(llvmType); |
| 553 | return rewriter.create<LLVM::ConstantOp>( |
| 554 | loc, llvmType, |
| 555 | rewriter.getFloatAttr( |
| 556 | llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(), |
| 557 | /*Negative=*/false))); |
| 558 | } |
| 559 | |
| 560 | /// Create the reduction neutral fp maximum value. |
| 561 | static Value createReductionNeutralValue(ReductionNeutralFPMax neutral, |
| 562 | ConversionPatternRewriter &rewriter, |
| 563 | Location loc, Type llvmType) { |
| 564 | auto floatType = cast<FloatType>(llvmType); |
| 565 | return rewriter.create<LLVM::ConstantOp>( |
| 566 | loc, llvmType, |
| 567 | rewriter.getFloatAttr( |
| 568 | llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(), |
| 569 | /*Negative=*/true))); |
| 570 | } |
| 571 | |
| 572 | /// Returns `accumulator` if it has a valid value. Otherwise, creates and |
| 573 | /// returns a new accumulator value using `ReductionNeutral`. |
| 574 | template <class ReductionNeutral> |
| 575 | static Value getOrCreateAccumulator(ConversionPatternRewriter &rewriter, |
| 576 | Location loc, Type llvmType, |
| 577 | Value accumulator) { |
| 578 | if (accumulator) |
| 579 | return accumulator; |
| 580 | |
| 581 | return createReductionNeutralValue(ReductionNeutral(), rewriter, loc, |
| 582 | llvmType); |
| 583 | } |
| 584 | |
| 585 | /// Creates a value with the 1-D vector shape provided in `llvmType`. |
| 586 | /// This is used as effective vector length by some intrinsics supporting |
| 587 | /// dynamic vector lengths at runtime. |
| 588 | static Value createVectorLengthValue(ConversionPatternRewriter &rewriter, |
| 589 | Location loc, Type llvmType) { |
| 590 | VectorType vType = cast<VectorType>(llvmType); |
| 591 | auto vShape = vType.getShape(); |
| 592 | assert(vShape.size() == 1 && "Unexpected multi-dim vector type" ); |
| 593 | |
| 594 | Value baseVecLength = rewriter.create<LLVM::ConstantOp>( |
| 595 | loc, rewriter.getI32Type(), |
| 596 | rewriter.getIntegerAttr(rewriter.getI32Type(), vShape[0])); |
| 597 | |
| 598 | if (!vType.getScalableDims()[0]) |
| 599 | return baseVecLength; |
| 600 | |
| 601 | // For a scalable vector type, create and return `vScale * baseVecLength`. |
| 602 | Value vScale = rewriter.create<vector::VectorScaleOp>(loc); |
| 603 | vScale = |
| 604 | rewriter.create<arith::IndexCastOp>(loc, rewriter.getI32Type(), vScale); |
| 605 | Value scalableVecLength = |
| 606 | rewriter.create<arith::MulIOp>(loc, baseVecLength, vScale); |
| 607 | return scalableVecLength; |
| 608 | } |
| 609 | |
| 610 | /// Helper method to lower a `vector.reduction` op that performs an arithmetic |
| 611 | /// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use |
| 612 | /// and `ScalarOp` is the scalar operation used to add the accumulation value if |
| 613 | /// non-null. |
| 614 | template <class LLVMRedIntrinOp, class ScalarOp> |
| 615 | static Value createIntegerReductionArithmeticOpLowering( |
| 616 | ConversionPatternRewriter &rewriter, Location loc, Type llvmType, |
| 617 | Value vectorOperand, Value accumulator) { |
| 618 | |
| 619 | Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); |
| 620 | |
| 621 | if (accumulator) |
| 622 | result = rewriter.create<ScalarOp>(loc, accumulator, result); |
| 623 | return result; |
| 624 | } |
| 625 | |
| 626 | /// Helper method to lower a `vector.reduction` operation that performs |
| 627 | /// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector |
| 628 | /// intrinsic to use and `predicate` is the predicate to use to compare+combine |
| 629 | /// the accumulator value if non-null. |
| 630 | template <class LLVMRedIntrinOp> |
| 631 | static Value createIntegerReductionComparisonOpLowering( |
| 632 | ConversionPatternRewriter &rewriter, Location loc, Type llvmType, |
| 633 | Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) { |
| 634 | Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); |
| 635 | if (accumulator) { |
| 636 | Value cmp = |
| 637 | rewriter.create<LLVM::ICmpOp>(loc, predicate, accumulator, result); |
| 638 | result = rewriter.create<LLVM::SelectOp>(loc, cmp, accumulator, result); |
| 639 | } |
| 640 | return result; |
| 641 | } |
| 642 | |
| 643 | namespace { |
| 644 | template <typename Source> |
| 645 | struct VectorToScalarMapper; |
| 646 | template <> |
| 647 | struct VectorToScalarMapper<LLVM::vector_reduce_fmaximum> { |
| 648 | using Type = LLVM::MaximumOp; |
| 649 | }; |
| 650 | template <> |
| 651 | struct VectorToScalarMapper<LLVM::vector_reduce_fminimum> { |
| 652 | using Type = LLVM::MinimumOp; |
| 653 | }; |
| 654 | template <> |
| 655 | struct VectorToScalarMapper<LLVM::vector_reduce_fmax> { |
| 656 | using Type = LLVM::MaxNumOp; |
| 657 | }; |
| 658 | template <> |
| 659 | struct VectorToScalarMapper<LLVM::vector_reduce_fmin> { |
| 660 | using Type = LLVM::MinNumOp; |
| 661 | }; |
| 662 | } // namespace |
| 663 | |
| 664 | template <class LLVMRedIntrinOp> |
| 665 | static Value createFPReductionComparisonOpLowering( |
| 666 | ConversionPatternRewriter &rewriter, Location loc, Type llvmType, |
| 667 | Value vectorOperand, Value accumulator, LLVM::FastmathFlagsAttr fmf) { |
| 668 | Value result = |
| 669 | rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand, fmf); |
| 670 | |
| 671 | if (accumulator) { |
| 672 | result = |
| 673 | rewriter.create<typename VectorToScalarMapper<LLVMRedIntrinOp>::Type>( |
| 674 | loc, result, accumulator); |
| 675 | } |
| 676 | |
| 677 | return result; |
| 678 | } |
| 679 | |
| 680 | /// Reduction neutral classes for overloading |
| 681 | class MaskNeutralFMaximum {}; |
| 682 | class MaskNeutralFMinimum {}; |
| 683 | |
| 684 | /// Get the mask neutral floating point maximum value |
| 685 | static llvm::APFloat |
| 686 | getMaskNeutralValue(MaskNeutralFMaximum, |
| 687 | const llvm::fltSemantics &floatSemantics) { |
| 688 | return llvm::APFloat::getSmallest(Sem: floatSemantics, /*Negative=*/true); |
| 689 | } |
| 690 | /// Get the mask neutral floating point minimum value |
| 691 | static llvm::APFloat |
| 692 | getMaskNeutralValue(MaskNeutralFMinimum, |
| 693 | const llvm::fltSemantics &floatSemantics) { |
| 694 | return llvm::APFloat::getLargest(Sem: floatSemantics, /*Negative=*/false); |
| 695 | } |
| 696 | |
| 697 | /// Create the mask neutral floating point MLIR vector constant |
| 698 | template <typename MaskNeutral> |
| 699 | static Value createMaskNeutralValue(ConversionPatternRewriter &rewriter, |
| 700 | Location loc, Type llvmType, |
| 701 | Type vectorType) { |
| 702 | const auto &floatSemantics = cast<FloatType>(llvmType).getFloatSemantics(); |
| 703 | auto value = getMaskNeutralValue(MaskNeutral{}, floatSemantics); |
| 704 | auto denseValue = DenseElementsAttr::get(cast<ShapedType>(vectorType), value); |
| 705 | return rewriter.create<LLVM::ConstantOp>(loc, vectorType, denseValue); |
| 706 | } |
| 707 | |
| 708 | /// Lowers masked `fmaximum` and `fminimum` reductions using the non-masked |
| 709 | /// intrinsics. It is a workaround to overcome the lack of masked intrinsics for |
| 710 | /// `fmaximum`/`fminimum`. |
| 711 | /// More information: https://github.com/llvm/llvm-project/issues/64940 |
| 712 | template <class LLVMRedIntrinOp, class MaskNeutral> |
| 713 | static Value |
| 714 | lowerMaskedReductionWithRegular(ConversionPatternRewriter &rewriter, |
| 715 | Location loc, Type llvmType, |
| 716 | Value vectorOperand, Value accumulator, |
| 717 | Value mask, LLVM::FastmathFlagsAttr fmf) { |
| 718 | const Value vectorMaskNeutral = createMaskNeutralValue<MaskNeutral>( |
| 719 | rewriter, loc, llvmType, vectorOperand.getType()); |
| 720 | const Value selectedVectorByMask = rewriter.create<LLVM::SelectOp>( |
| 721 | loc, mask, vectorOperand, vectorMaskNeutral); |
| 722 | return createFPReductionComparisonOpLowering<LLVMRedIntrinOp>( |
| 723 | rewriter, loc, llvmType, selectedVectorByMask, accumulator, fmf); |
| 724 | } |
| 725 | |
| 726 | template <class LLVMRedIntrinOp, class ReductionNeutral> |
| 727 | static Value |
| 728 | lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, Location loc, |
| 729 | Type llvmType, Value vectorOperand, |
| 730 | Value accumulator, LLVM::FastmathFlagsAttr fmf) { |
| 731 | accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, |
| 732 | llvmType, accumulator); |
| 733 | return rewriter.create<LLVMRedIntrinOp>(loc, llvmType, |
| 734 | /*startValue=*/accumulator, |
| 735 | vectorOperand, fmf); |
| 736 | } |
| 737 | |
| 738 | /// Overloaded methods to lower a *predicated* reduction to an llvm intrinsic |
| 739 | /// that requires a start value. This start value format spans across fp |
| 740 | /// reductions without mask and all the masked reduction intrinsics. |
| 741 | template <class LLVMVPRedIntrinOp, class ReductionNeutral> |
| 742 | static Value |
| 743 | lowerPredicatedReductionWithStartValue(ConversionPatternRewriter &rewriter, |
| 744 | Location loc, Type llvmType, |
| 745 | Value vectorOperand, Value accumulator) { |
| 746 | accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, |
| 747 | llvmType, accumulator); |
| 748 | return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, |
| 749 | /*startValue=*/accumulator, |
| 750 | vectorOperand); |
| 751 | } |
| 752 | |
| 753 | template <class LLVMVPRedIntrinOp, class ReductionNeutral> |
| 754 | static Value lowerPredicatedReductionWithStartValue( |
| 755 | ConversionPatternRewriter &rewriter, Location loc, Type llvmType, |
| 756 | Value vectorOperand, Value accumulator, Value mask) { |
| 757 | accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, |
| 758 | llvmType, accumulator); |
| 759 | Value vectorLength = |
| 760 | createVectorLengthValue(rewriter, loc, llvmType: vectorOperand.getType()); |
| 761 | return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, |
| 762 | /*startValue=*/accumulator, |
| 763 | vectorOperand, mask, vectorLength); |
| 764 | } |
| 765 | |
| 766 | template <class LLVMIntVPRedIntrinOp, class IntReductionNeutral, |
| 767 | class LLVMFPVPRedIntrinOp, class FPReductionNeutral> |
| 768 | static Value lowerPredicatedReductionWithStartValue( |
| 769 | ConversionPatternRewriter &rewriter, Location loc, Type llvmType, |
| 770 | Value vectorOperand, Value accumulator, Value mask) { |
| 771 | if (llvmType.isIntOrIndex()) |
| 772 | return lowerPredicatedReductionWithStartValue<LLVMIntVPRedIntrinOp, |
| 773 | IntReductionNeutral>( |
| 774 | rewriter, loc, llvmType, vectorOperand, accumulator, mask); |
| 775 | |
| 776 | // FP dispatch. |
| 777 | return lowerPredicatedReductionWithStartValue<LLVMFPVPRedIntrinOp, |
| 778 | FPReductionNeutral>( |
| 779 | rewriter, loc, llvmType, vectorOperand, accumulator, mask); |
| 780 | } |
| 781 | |
| 782 | /// Conversion pattern for all vector reductions. |
| 783 | class VectorReductionOpConversion |
| 784 | : public ConvertOpToLLVMPattern<vector::ReductionOp> { |
| 785 | public: |
| 786 | explicit VectorReductionOpConversion(const LLVMTypeConverter &typeConv, |
| 787 | bool reassociateFPRed) |
| 788 | : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv), |
| 789 | reassociateFPReductions(reassociateFPRed) {} |
| 790 | |
| 791 | LogicalResult |
| 792 | matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor, |
| 793 | ConversionPatternRewriter &rewriter) const override { |
| 794 | auto kind = reductionOp.getKind(); |
| 795 | Type eltType = reductionOp.getDest().getType(); |
| 796 | Type llvmType = typeConverter->convertType(eltType); |
| 797 | Value operand = adaptor.getVector(); |
| 798 | Value acc = adaptor.getAcc(); |
| 799 | Location loc = reductionOp.getLoc(); |
| 800 | |
| 801 | if (eltType.isIntOrIndex()) { |
| 802 | // Integer reductions: add/mul/min/max/and/or/xor. |
| 803 | Value result; |
| 804 | switch (kind) { |
| 805 | case vector::CombiningKind::ADD: |
| 806 | result = |
| 807 | createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add, |
| 808 | LLVM::AddOp>( |
| 809 | rewriter, loc, llvmType, operand, acc); |
| 810 | break; |
| 811 | case vector::CombiningKind::MUL: |
| 812 | result = |
| 813 | createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul, |
| 814 | LLVM::MulOp>( |
| 815 | rewriter, loc, llvmType, operand, acc); |
| 816 | break; |
| 817 | case vector::CombiningKind::MINUI: |
| 818 | result = createIntegerReductionComparisonOpLowering< |
| 819 | LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc, |
| 820 | LLVM::ICmpPredicate::ule); |
| 821 | break; |
| 822 | case vector::CombiningKind::MINSI: |
| 823 | result = createIntegerReductionComparisonOpLowering< |
| 824 | LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc, |
| 825 | LLVM::ICmpPredicate::sle); |
| 826 | break; |
| 827 | case vector::CombiningKind::MAXUI: |
| 828 | result = createIntegerReductionComparisonOpLowering< |
| 829 | LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc, |
| 830 | LLVM::ICmpPredicate::uge); |
| 831 | break; |
| 832 | case vector::CombiningKind::MAXSI: |
| 833 | result = createIntegerReductionComparisonOpLowering< |
| 834 | LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc, |
| 835 | LLVM::ICmpPredicate::sge); |
| 836 | break; |
| 837 | case vector::CombiningKind::AND: |
| 838 | result = |
| 839 | createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and, |
| 840 | LLVM::AndOp>( |
| 841 | rewriter, loc, llvmType, operand, acc); |
| 842 | break; |
| 843 | case vector::CombiningKind::OR: |
| 844 | result = |
| 845 | createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or, |
| 846 | LLVM::OrOp>( |
| 847 | rewriter, loc, llvmType, operand, acc); |
| 848 | break; |
| 849 | case vector::CombiningKind::XOR: |
| 850 | result = |
| 851 | createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor, |
| 852 | LLVM::XOrOp>( |
| 853 | rewriter, loc, llvmType, operand, acc); |
| 854 | break; |
| 855 | default: |
| 856 | return failure(); |
| 857 | } |
| 858 | rewriter.replaceOp(reductionOp, result); |
| 859 | |
| 860 | return success(); |
| 861 | } |
| 862 | |
| 863 | if (!isa<FloatType>(Val: eltType)) |
| 864 | return failure(); |
| 865 | |
| 866 | arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr(); |
| 867 | LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get( |
| 868 | reductionOp.getContext(), |
| 869 | convertArithFastMathFlagsToLLVM(fMFAttr.getValue())); |
| 870 | fmf = LLVM::FastmathFlagsAttr::get( |
| 871 | reductionOp.getContext(), |
| 872 | fmf.getValue() | (reassociateFPReductions ? LLVM::FastmathFlags::reassoc |
| 873 | : LLVM::FastmathFlags::none)); |
| 874 | |
| 875 | // Floating-point reductions: add/mul/min/max |
| 876 | Value result; |
| 877 | if (kind == vector::CombiningKind::ADD) { |
| 878 | result = lowerReductionWithStartValue<LLVM::vector_reduce_fadd, |
| 879 | ReductionNeutralZero>( |
| 880 | rewriter, loc, llvmType, operand, acc, fmf); |
| 881 | } else if (kind == vector::CombiningKind::MUL) { |
| 882 | result = lowerReductionWithStartValue<LLVM::vector_reduce_fmul, |
| 883 | ReductionNeutralFPOne>( |
| 884 | rewriter, loc, llvmType, operand, acc, fmf); |
| 885 | } else if (kind == vector::CombiningKind::MINIMUMF) { |
| 886 | result = |
| 887 | createFPReductionComparisonOpLowering<LLVM::vector_reduce_fminimum>( |
| 888 | rewriter, loc, llvmType, operand, acc, fmf); |
| 889 | } else if (kind == vector::CombiningKind::MAXIMUMF) { |
| 890 | result = |
| 891 | createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmaximum>( |
| 892 | rewriter, loc, llvmType, operand, acc, fmf); |
| 893 | } else if (kind == vector::CombiningKind::MINNUMF) { |
| 894 | result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmin>( |
| 895 | rewriter, loc, llvmType, operand, acc, fmf); |
| 896 | } else if (kind == vector::CombiningKind::MAXNUMF) { |
| 897 | result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmax>( |
| 898 | rewriter, loc, llvmType, operand, acc, fmf); |
| 899 | } else { |
| 900 | return failure(); |
| 901 | } |
| 902 | |
| 903 | rewriter.replaceOp(reductionOp, result); |
| 904 | return success(); |
| 905 | } |
| 906 | |
| 907 | private: |
| 908 | const bool reassociateFPReductions; |
| 909 | }; |
| 910 | |
| 911 | /// Base class to convert a `vector.mask` operation while matching traits |
| 912 | /// of the maskable operation nested inside. A `VectorMaskOpConversionBase` |
| 913 | /// instance matches against a `vector.mask` operation. The `matchAndRewrite` |
| 914 | /// method performs a second match against the maskable operation `MaskedOp`. |
| 915 | /// Finally, it invokes the virtual method `matchAndRewriteMaskableOp` to be |
| 916 | /// implemented by the concrete conversion classes. This method can match |
| 917 | /// against specific traits of the `vector.mask` and the maskable operation. It |
| 918 | /// must replace the `vector.mask` operation. |
| 919 | template <class MaskedOp> |
| 920 | class VectorMaskOpConversionBase |
| 921 | : public ConvertOpToLLVMPattern<vector::MaskOp> { |
| 922 | public: |
| 923 | using ConvertOpToLLVMPattern<vector::MaskOp>::ConvertOpToLLVMPattern; |
| 924 | |
| 925 | LogicalResult |
| 926 | matchAndRewrite(vector::MaskOp maskOp, OpAdaptor adaptor, |
| 927 | ConversionPatternRewriter &rewriter) const final { |
| 928 | // Match against the maskable operation kind. |
| 929 | auto maskedOp = llvm::dyn_cast_or_null<MaskedOp>(maskOp.getMaskableOp()); |
| 930 | if (!maskedOp) |
| 931 | return failure(); |
| 932 | return matchAndRewriteMaskableOp(maskOp, maskedOp, rewriter); |
| 933 | } |
| 934 | |
| 935 | protected: |
| 936 | virtual LogicalResult |
| 937 | matchAndRewriteMaskableOp(vector::MaskOp maskOp, |
| 938 | vector::MaskableOpInterface maskableOp, |
| 939 | ConversionPatternRewriter &rewriter) const = 0; |
| 940 | }; |
| 941 | |
| 942 | class MaskedReductionOpConversion |
| 943 | : public VectorMaskOpConversionBase<vector::ReductionOp> { |
| 944 | |
| 945 | public: |
| 946 | using VectorMaskOpConversionBase< |
| 947 | vector::ReductionOp>::VectorMaskOpConversionBase; |
| 948 | |
| 949 | LogicalResult matchAndRewriteMaskableOp( |
| 950 | vector::MaskOp maskOp, MaskableOpInterface maskableOp, |
| 951 | ConversionPatternRewriter &rewriter) const override { |
| 952 | auto reductionOp = cast<ReductionOp>(maskableOp.getOperation()); |
| 953 | auto kind = reductionOp.getKind(); |
| 954 | Type eltType = reductionOp.getDest().getType(); |
| 955 | Type llvmType = typeConverter->convertType(eltType); |
| 956 | Value operand = reductionOp.getVector(); |
| 957 | Value acc = reductionOp.getAcc(); |
| 958 | Location loc = reductionOp.getLoc(); |
| 959 | |
| 960 | arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr(); |
| 961 | LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get( |
| 962 | reductionOp.getContext(), |
| 963 | convertArithFastMathFlagsToLLVM(fMFAttr.getValue())); |
| 964 | |
| 965 | Value result; |
| 966 | switch (kind) { |
| 967 | case vector::CombiningKind::ADD: |
| 968 | result = lowerPredicatedReductionWithStartValue< |
| 969 | LLVM::VPReduceAddOp, ReductionNeutralZero, LLVM::VPReduceFAddOp, |
| 970 | ReductionNeutralZero>(rewriter, loc, llvmType, operand, acc, |
| 971 | maskOp.getMask()); |
| 972 | break; |
| 973 | case vector::CombiningKind::MUL: |
| 974 | result = lowerPredicatedReductionWithStartValue< |
| 975 | LLVM::VPReduceMulOp, ReductionNeutralIntOne, LLVM::VPReduceFMulOp, |
| 976 | ReductionNeutralFPOne>(rewriter, loc, llvmType, operand, acc, |
| 977 | maskOp.getMask()); |
| 978 | break; |
| 979 | case vector::CombiningKind::MINUI: |
| 980 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceUMinOp, |
| 981 | ReductionNeutralUIntMax>( |
| 982 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 983 | break; |
| 984 | case vector::CombiningKind::MINSI: |
| 985 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceSMinOp, |
| 986 | ReductionNeutralSIntMax>( |
| 987 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 988 | break; |
| 989 | case vector::CombiningKind::MAXUI: |
| 990 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceUMaxOp, |
| 991 | ReductionNeutralUIntMin>( |
| 992 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 993 | break; |
| 994 | case vector::CombiningKind::MAXSI: |
| 995 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceSMaxOp, |
| 996 | ReductionNeutralSIntMin>( |
| 997 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 998 | break; |
| 999 | case vector::CombiningKind::AND: |
| 1000 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceAndOp, |
| 1001 | ReductionNeutralAllOnes>( |
| 1002 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 1003 | break; |
| 1004 | case vector::CombiningKind::OR: |
| 1005 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceOrOp, |
| 1006 | ReductionNeutralZero>( |
| 1007 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 1008 | break; |
| 1009 | case vector::CombiningKind::XOR: |
| 1010 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceXorOp, |
| 1011 | ReductionNeutralZero>( |
| 1012 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 1013 | break; |
| 1014 | case vector::CombiningKind::MINNUMF: |
| 1015 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceFMinOp, |
| 1016 | ReductionNeutralFPMax>( |
| 1017 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 1018 | break; |
| 1019 | case vector::CombiningKind::MAXNUMF: |
| 1020 | result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceFMaxOp, |
| 1021 | ReductionNeutralFPMin>( |
| 1022 | rewriter, loc, llvmType, operand, acc, maskOp.getMask()); |
| 1023 | break; |
| 1024 | case CombiningKind::MAXIMUMF: |
| 1025 | result = lowerMaskedReductionWithRegular<LLVM::vector_reduce_fmaximum, |
| 1026 | MaskNeutralFMaximum>( |
| 1027 | rewriter, loc, llvmType, operand, acc, maskOp.getMask(), fmf); |
| 1028 | break; |
| 1029 | case CombiningKind::MINIMUMF: |
| 1030 | result = lowerMaskedReductionWithRegular<LLVM::vector_reduce_fminimum, |
| 1031 | MaskNeutralFMinimum>( |
| 1032 | rewriter, loc, llvmType, operand, acc, maskOp.getMask(), fmf); |
| 1033 | break; |
| 1034 | } |
| 1035 | |
| 1036 | // Replace `vector.mask` operation altogether. |
| 1037 | rewriter.replaceOp(maskOp, result); |
| 1038 | return success(); |
| 1039 | } |
| 1040 | }; |
| 1041 | |
| 1042 | class VectorShuffleOpConversion |
| 1043 | : public ConvertOpToLLVMPattern<vector::ShuffleOp> { |
| 1044 | public: |
| 1045 | using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern; |
| 1046 | |
| 1047 | LogicalResult |
| 1048 | matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor, |
| 1049 | ConversionPatternRewriter &rewriter) const override { |
| 1050 | auto loc = shuffleOp->getLoc(); |
| 1051 | auto v1Type = shuffleOp.getV1VectorType(); |
| 1052 | auto v2Type = shuffleOp.getV2VectorType(); |
| 1053 | auto vectorType = shuffleOp.getResultVectorType(); |
| 1054 | Type llvmType = typeConverter->convertType(vectorType); |
| 1055 | ArrayRef<int64_t> mask = shuffleOp.getMask(); |
| 1056 | |
| 1057 | // Bail if result type cannot be lowered. |
| 1058 | if (!llvmType) |
| 1059 | return failure(); |
| 1060 | |
| 1061 | // Get rank and dimension sizes. |
| 1062 | int64_t rank = vectorType.getRank(); |
| 1063 | #ifndef NDEBUG |
| 1064 | bool wellFormed0DCase = |
| 1065 | v1Type.getRank() == 0 && v2Type.getRank() == 0 && rank == 1; |
| 1066 | bool wellFormedNDCase = |
| 1067 | v1Type.getRank() == rank && v2Type.getRank() == rank; |
| 1068 | assert((wellFormed0DCase || wellFormedNDCase) && "op is not well-formed" ); |
| 1069 | #endif |
| 1070 | |
| 1071 | // For rank 0 and 1, where both operands have *exactly* the same vector |
| 1072 | // type, there is direct shuffle support in LLVM. Use it! |
| 1073 | if (rank <= 1 && v1Type == v2Type) { |
| 1074 | Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>( |
| 1075 | loc, adaptor.getV1(), adaptor.getV2(), |
| 1076 | llvm::to_vector_of<int32_t>(mask)); |
| 1077 | rewriter.replaceOp(shuffleOp, llvmShuffleOp); |
| 1078 | return success(); |
| 1079 | } |
| 1080 | |
| 1081 | // For all other cases, insert the individual values individually. |
| 1082 | int64_t v1Dim = v1Type.getDimSize(0); |
| 1083 | Type eltType; |
| 1084 | if (auto arrayType = dyn_cast<LLVM::LLVMArrayType>(llvmType)) |
| 1085 | eltType = arrayType.getElementType(); |
| 1086 | else |
| 1087 | eltType = cast<VectorType>(llvmType).getElementType(); |
| 1088 | Value insert = rewriter.create<LLVM::PoisonOp>(loc, llvmType); |
| 1089 | int64_t insPos = 0; |
| 1090 | for (int64_t extPos : mask) { |
| 1091 | Value value = adaptor.getV1(); |
| 1092 | if (extPos >= v1Dim) { |
| 1093 | extPos -= v1Dim; |
| 1094 | value = adaptor.getV2(); |
| 1095 | } |
| 1096 | Value extract = extractOne(rewriter, *getTypeConverter(), loc, value, |
| 1097 | eltType, rank, extPos); |
| 1098 | insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract, |
| 1099 | llvmType, rank, insPos++); |
| 1100 | } |
| 1101 | rewriter.replaceOp(shuffleOp, insert); |
| 1102 | return success(); |
| 1103 | } |
| 1104 | }; |
| 1105 | |
| 1106 | class |
| 1107 | : public ConvertOpToLLVMPattern<vector::ExtractElementOp> { |
| 1108 | public: |
| 1109 | using ConvertOpToLLVMPattern< |
| 1110 | vector::ExtractElementOp>::ConvertOpToLLVMPattern; |
| 1111 | |
| 1112 | LogicalResult |
| 1113 | matchAndRewrite(vector::ExtractElementOp , OpAdaptor adaptor, |
| 1114 | ConversionPatternRewriter &rewriter) const override { |
| 1115 | auto vectorType = extractEltOp.getSourceVectorType(); |
| 1116 | auto llvmType = typeConverter->convertType(vectorType.getElementType()); |
| 1117 | |
| 1118 | // Bail if result type cannot be lowered. |
| 1119 | if (!llvmType) |
| 1120 | return failure(); |
| 1121 | |
| 1122 | if (vectorType.getRank() == 0) { |
| 1123 | Location loc = extractEltOp.getLoc(); |
| 1124 | auto idxType = rewriter.getIndexType(); |
| 1125 | auto zero = rewriter.create<LLVM::ConstantOp>( |
| 1126 | loc, typeConverter->convertType(idxType), |
| 1127 | rewriter.getIntegerAttr(idxType, 0)); |
| 1128 | rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( |
| 1129 | extractEltOp, llvmType, adaptor.getVector(), zero); |
| 1130 | return success(); |
| 1131 | } |
| 1132 | |
| 1133 | rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( |
| 1134 | extractEltOp, llvmType, adaptor.getVector(), adaptor.getPosition()); |
| 1135 | return success(); |
| 1136 | } |
| 1137 | }; |
| 1138 | |
| 1139 | class |
| 1140 | : public ConvertOpToLLVMPattern<vector::ExtractOp> { |
| 1141 | public: |
| 1142 | using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern; |
| 1143 | |
| 1144 | LogicalResult |
| 1145 | matchAndRewrite(vector::ExtractOp , OpAdaptor adaptor, |
| 1146 | ConversionPatternRewriter &rewriter) const override { |
| 1147 | auto loc = extractOp->getLoc(); |
| 1148 | auto resultType = extractOp.getResult().getType(); |
| 1149 | auto llvmResultType = typeConverter->convertType(resultType); |
| 1150 | // Bail if result type cannot be lowered. |
| 1151 | if (!llvmResultType) |
| 1152 | return failure(); |
| 1153 | |
| 1154 | SmallVector<OpFoldResult> positionVec = getMixedValues( |
| 1155 | adaptor.getStaticPosition(), adaptor.getDynamicPosition(), rewriter); |
| 1156 | |
| 1157 | // The Vector -> LLVM lowering models N-D vectors as nested aggregates of |
| 1158 | // 1-d vectors. This nesting is modeled using arrays. We do this conversion |
| 1159 | // from a N-d vector extract to a nested aggregate vector extract in two |
| 1160 | // steps: |
| 1161 | // - Extract a member from the nested aggregate. The result can be |
| 1162 | // a lower rank nested aggregate or a vector (1-D). This is done using |
| 1163 | // `llvm.extractvalue`. |
| 1164 | // - Extract a scalar out of the vector if needed. This is done using |
| 1165 | // `llvm.extractelement`. |
| 1166 | |
| 1167 | // Determine if we need to extract a member out of the aggregate. We |
| 1168 | // always need to extract a member if the input rank >= 2. |
| 1169 | bool = extractOp.getSourceVectorType().getRank() >= 2; |
| 1170 | // Determine if we need to extract a scalar as the result. We extract |
| 1171 | // a scalar if the extract is full rank, i.e., the number of indices is |
| 1172 | // equal to source vector rank. |
| 1173 | bool = static_cast<int64_t>(positionVec.size()) == |
| 1174 | extractOp.getSourceVectorType().getRank(); |
| 1175 | |
| 1176 | // Since the LLVM type converter converts 0-d vectors to 1-d vectors, we |
| 1177 | // need to add a position for this change. |
| 1178 | if (extractOp.getSourceVectorType().getRank() == 0) { |
| 1179 | Type idxType = typeConverter->convertType(rewriter.getIndexType()); |
| 1180 | positionVec.push_back(rewriter.getZeroAttr(idxType)); |
| 1181 | } |
| 1182 | |
| 1183 | Value = adaptor.getVector(); |
| 1184 | if (extractsAggregate) { |
| 1185 | ArrayRef<OpFoldResult> position(positionVec); |
| 1186 | if (extractsScalar) { |
| 1187 | // If we are extracting a scalar from the extracted member, we drop |
| 1188 | // the last index, which will be used to extract the scalar out of the |
| 1189 | // vector. |
| 1190 | position = position.drop_back(); |
| 1191 | } |
| 1192 | // llvm.extractvalue does not support dynamic dimensions. |
| 1193 | if (!llvm::all_of(Range&: position, P: llvm::IsaPred<Attribute>)) { |
| 1194 | return failure(); |
| 1195 | } |
| 1196 | extracted = rewriter.create<LLVM::ExtractValueOp>( |
| 1197 | loc, extracted, getAsIntegers(position)); |
| 1198 | } |
| 1199 | |
| 1200 | if (extractsScalar) { |
| 1201 | extracted = rewriter.create<LLVM::ExtractElementOp>( |
| 1202 | loc, extracted, getAsLLVMValue(rewriter, loc, positionVec.back())); |
| 1203 | } |
| 1204 | |
| 1205 | rewriter.replaceOp(extractOp, extracted); |
| 1206 | return success(); |
| 1207 | } |
| 1208 | }; |
| 1209 | |
| 1210 | /// Conversion pattern that turns a vector.fma on a 1-D vector |
| 1211 | /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. |
| 1212 | /// This does not match vectors of n >= 2 rank. |
| 1213 | /// |
| 1214 | /// Example: |
| 1215 | /// ``` |
| 1216 | /// vector.fma %a, %a, %a : vector<8xf32> |
| 1217 | /// ``` |
| 1218 | /// is converted to: |
| 1219 | /// ``` |
| 1220 | /// llvm.intr.fmuladd %va, %va, %va: |
| 1221 | /// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">) |
| 1222 | /// -> !llvm."<8 x f32>"> |
| 1223 | /// ``` |
| 1224 | class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> { |
| 1225 | public: |
| 1226 | using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern; |
| 1227 | |
| 1228 | LogicalResult |
| 1229 | matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor, |
| 1230 | ConversionPatternRewriter &rewriter) const override { |
| 1231 | VectorType vType = fmaOp.getVectorType(); |
| 1232 | if (vType.getRank() > 1) |
| 1233 | return failure(); |
| 1234 | |
| 1235 | rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>( |
| 1236 | fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc()); |
| 1237 | return success(); |
| 1238 | } |
| 1239 | }; |
| 1240 | |
| 1241 | class VectorInsertElementOpConversion |
| 1242 | : public ConvertOpToLLVMPattern<vector::InsertElementOp> { |
| 1243 | public: |
| 1244 | using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern; |
| 1245 | |
| 1246 | LogicalResult |
| 1247 | matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor, |
| 1248 | ConversionPatternRewriter &rewriter) const override { |
| 1249 | auto vectorType = insertEltOp.getDestVectorType(); |
| 1250 | auto llvmType = typeConverter->convertType(vectorType); |
| 1251 | |
| 1252 | // Bail if result type cannot be lowered. |
| 1253 | if (!llvmType) |
| 1254 | return failure(); |
| 1255 | |
| 1256 | if (vectorType.getRank() == 0) { |
| 1257 | Location loc = insertEltOp.getLoc(); |
| 1258 | auto idxType = rewriter.getIndexType(); |
| 1259 | auto zero = rewriter.create<LLVM::ConstantOp>( |
| 1260 | loc, typeConverter->convertType(idxType), |
| 1261 | rewriter.getIntegerAttr(idxType, 0)); |
| 1262 | rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( |
| 1263 | insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), zero); |
| 1264 | return success(); |
| 1265 | } |
| 1266 | |
| 1267 | rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( |
| 1268 | insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), |
| 1269 | adaptor.getPosition()); |
| 1270 | return success(); |
| 1271 | } |
| 1272 | }; |
| 1273 | |
| 1274 | class VectorInsertOpConversion |
| 1275 | : public ConvertOpToLLVMPattern<vector::InsertOp> { |
| 1276 | public: |
| 1277 | using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern; |
| 1278 | |
| 1279 | LogicalResult |
| 1280 | matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor, |
| 1281 | ConversionPatternRewriter &rewriter) const override { |
| 1282 | auto loc = insertOp->getLoc(); |
| 1283 | auto destVectorType = insertOp.getDestVectorType(); |
| 1284 | auto llvmResultType = typeConverter->convertType(destVectorType); |
| 1285 | // Bail if result type cannot be lowered. |
| 1286 | if (!llvmResultType) |
| 1287 | return failure(); |
| 1288 | |
| 1289 | SmallVector<OpFoldResult> positionVec = getMixedValues( |
| 1290 | adaptor.getStaticPosition(), adaptor.getDynamicPosition(), rewriter); |
| 1291 | |
| 1292 | // The logic in this pattern mirrors VectorExtractOpConversion. Refer to |
| 1293 | // its explanatory comment about how N-D vectors are converted as nested |
| 1294 | // aggregates (llvm.array's) of 1D vectors. |
| 1295 | // |
| 1296 | // The innermost dimension of the destination vector, when converted to a |
| 1297 | // nested aggregate form, will always be a 1D vector. |
| 1298 | // |
| 1299 | // * If the insertion is happening into the innermost dimension of the |
| 1300 | // destination vector: |
| 1301 | // - If the destination is a nested aggregate, extract a 1D vector out of |
| 1302 | // the aggregate. This can be done using llvm.extractvalue. The |
| 1303 | // destination is now guaranteed to be a 1D vector, to which we are |
| 1304 | // inserting. |
| 1305 | // - Do the insertion into the 1D destination vector, and make the result |
| 1306 | // the new source nested aggregate. This can be done using |
| 1307 | // llvm.insertelement. |
| 1308 | // * Insert the source nested aggregate into the destination nested |
| 1309 | // aggregate. |
| 1310 | |
| 1311 | // Determine if we need to extract/insert a 1D vector out of the aggregate. |
| 1312 | bool isNestedAggregate = isa<LLVM::LLVMArrayType>(llvmResultType); |
| 1313 | // Determine if we need to insert a scalar into the 1D vector. |
| 1314 | bool insertIntoInnermostDim = |
| 1315 | static_cast<int64_t>(positionVec.size()) == destVectorType.getRank(); |
| 1316 | |
| 1317 | ArrayRef<OpFoldResult> positionOf1DVectorWithinAggregate( |
| 1318 | positionVec.begin(), |
| 1319 | insertIntoInnermostDim ? positionVec.size() - 1 : positionVec.size()); |
| 1320 | OpFoldResult positionOfScalarWithin1DVector; |
| 1321 | if (destVectorType.getRank() == 0) { |
| 1322 | // Since the LLVM type converter converts 0D vectors to 1D vectors, we |
| 1323 | // need to create a 0 here as the position into the 1D vector. |
| 1324 | Type idxType = typeConverter->convertType(rewriter.getIndexType()); |
| 1325 | positionOfScalarWithin1DVector = rewriter.getZeroAttr(idxType); |
| 1326 | } else if (insertIntoInnermostDim) { |
| 1327 | positionOfScalarWithin1DVector = positionVec.back(); |
| 1328 | } |
| 1329 | |
| 1330 | // We are going to mutate this 1D vector until it is either the final |
| 1331 | // result (in the non-aggregate case) or the value that needs to be |
| 1332 | // inserted into the aggregate result. |
| 1333 | Value sourceAggregate = adaptor.getValueToStore(); |
| 1334 | if (insertIntoInnermostDim) { |
| 1335 | // Scalar-into-1D-vector case, so we know we will have to create a |
| 1336 | // InsertElementOp. The question is into what destination. |
| 1337 | if (isNestedAggregate) { |
| 1338 | // Aggregate case: the destination for the InsertElementOp needs to be |
| 1339 | // extracted from the aggregate. |
| 1340 | if (!llvm::all_of(Range&: positionOf1DVectorWithinAggregate, |
| 1341 | P: llvm::IsaPred<Attribute>)) { |
| 1342 | // llvm.extractvalue does not support dynamic dimensions. |
| 1343 | return failure(); |
| 1344 | } |
| 1345 | sourceAggregate = rewriter.create<LLVM::ExtractValueOp>( |
| 1346 | loc, adaptor.getDest(), |
| 1347 | getAsIntegers(positionOf1DVectorWithinAggregate)); |
| 1348 | } else { |
| 1349 | // No-aggregate case. The destination for the InsertElementOp is just |
| 1350 | // the insertOp's destination. |
| 1351 | sourceAggregate = adaptor.getDest(); |
| 1352 | } |
| 1353 | // Insert the scalar into the 1D vector. |
| 1354 | sourceAggregate = rewriter.create<LLVM::InsertElementOp>( |
| 1355 | loc, sourceAggregate.getType(), sourceAggregate, |
| 1356 | adaptor.getValueToStore(), |
| 1357 | getAsLLVMValue(rewriter, loc, positionOfScalarWithin1DVector)); |
| 1358 | } |
| 1359 | |
| 1360 | Value result = sourceAggregate; |
| 1361 | if (isNestedAggregate) { |
| 1362 | result = rewriter.create<LLVM::InsertValueOp>( |
| 1363 | loc, adaptor.getDest(), sourceAggregate, |
| 1364 | getAsIntegers(positionOf1DVectorWithinAggregate)); |
| 1365 | } |
| 1366 | |
| 1367 | rewriter.replaceOp(insertOp, result); |
| 1368 | return success(); |
| 1369 | } |
| 1370 | }; |
| 1371 | |
| 1372 | /// Lower vector.scalable.insert ops to LLVM vector.insert |
| 1373 | struct VectorScalableInsertOpLowering |
| 1374 | : public ConvertOpToLLVMPattern<vector::ScalableInsertOp> { |
| 1375 | using ConvertOpToLLVMPattern< |
| 1376 | vector::ScalableInsertOp>::ConvertOpToLLVMPattern; |
| 1377 | |
| 1378 | LogicalResult |
| 1379 | matchAndRewrite(vector::ScalableInsertOp insOp, OpAdaptor adaptor, |
| 1380 | ConversionPatternRewriter &rewriter) const override { |
| 1381 | rewriter.replaceOpWithNewOp<LLVM::vector_insert>( |
| 1382 | insOp, adaptor.getDest(), adaptor.getValueToStore(), adaptor.getPos()); |
| 1383 | return success(); |
| 1384 | } |
| 1385 | }; |
| 1386 | |
| 1387 | /// Lower vector.scalable.extract ops to LLVM vector.extract |
| 1388 | struct |
| 1389 | : public ConvertOpToLLVMPattern<vector::ScalableExtractOp> { |
| 1390 | using ConvertOpToLLVMPattern< |
| 1391 | vector::ScalableExtractOp>::ConvertOpToLLVMPattern; |
| 1392 | |
| 1393 | LogicalResult |
| 1394 | matchAndRewrite(vector::ScalableExtractOp extOp, OpAdaptor adaptor, |
| 1395 | ConversionPatternRewriter &rewriter) const override { |
| 1396 | rewriter.replaceOpWithNewOp<LLVM::vector_extract>( |
| 1397 | extOp, typeConverter->convertType(extOp.getResultVectorType()), |
| 1398 | adaptor.getSource(), adaptor.getPos()); |
| 1399 | return success(); |
| 1400 | } |
| 1401 | }; |
| 1402 | |
| 1403 | /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. |
| 1404 | /// |
| 1405 | /// Example: |
| 1406 | /// ``` |
| 1407 | /// %d = vector.fma %a, %b, %c : vector<2x4xf32> |
| 1408 | /// ``` |
| 1409 | /// is rewritten into: |
| 1410 | /// ``` |
| 1411 | /// %r = splat %f0: vector<2x4xf32> |
| 1412 | /// %va = vector.extractvalue %a[0] : vector<2x4xf32> |
| 1413 | /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> |
| 1414 | /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> |
| 1415 | /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> |
| 1416 | /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> |
| 1417 | /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> |
| 1418 | /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> |
| 1419 | /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> |
| 1420 | /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> |
| 1421 | /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> |
| 1422 | /// // %r3 holds the final value. |
| 1423 | /// ``` |
| 1424 | class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { |
| 1425 | public: |
| 1426 | using OpRewritePattern<FMAOp>::OpRewritePattern; |
| 1427 | |
| 1428 | void initialize() { |
| 1429 | // This pattern recursively unpacks one dimension at a time. The recursion |
| 1430 | // bounded as the rank is strictly decreasing. |
| 1431 | setHasBoundedRewriteRecursion(); |
| 1432 | } |
| 1433 | |
| 1434 | LogicalResult matchAndRewrite(FMAOp op, |
| 1435 | PatternRewriter &rewriter) const override { |
| 1436 | auto vType = op.getVectorType(); |
| 1437 | if (vType.getRank() < 2) |
| 1438 | return failure(); |
| 1439 | |
| 1440 | auto loc = op.getLoc(); |
| 1441 | auto elemType = vType.getElementType(); |
| 1442 | Value zero = rewriter.create<arith::ConstantOp>( |
| 1443 | loc, elemType, rewriter.getZeroAttr(elemType)); |
| 1444 | Value desc = rewriter.create<vector::SplatOp>(loc, vType, zero); |
| 1445 | for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { |
| 1446 | Value extrLHS = rewriter.create<ExtractOp>(loc, op.getLhs(), i); |
| 1447 | Value extrRHS = rewriter.create<ExtractOp>(loc, op.getRhs(), i); |
| 1448 | Value = rewriter.create<ExtractOp>(loc, op.getAcc(), i); |
| 1449 | Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); |
| 1450 | desc = rewriter.create<InsertOp>(loc, fma, desc, i); |
| 1451 | } |
| 1452 | rewriter.replaceOp(op, desc); |
| 1453 | return success(); |
| 1454 | } |
| 1455 | }; |
| 1456 | |
| 1457 | /// Returns the strides if the memory underlying `memRefType` has a contiguous |
| 1458 | /// static layout. |
| 1459 | static std::optional<SmallVector<int64_t, 4>> |
| 1460 | computeContiguousStrides(MemRefType memRefType) { |
| 1461 | int64_t offset; |
| 1462 | SmallVector<int64_t, 4> strides; |
| 1463 | if (failed(memRefType.getStridesAndOffset(strides, offset))) |
| 1464 | return std::nullopt; |
| 1465 | if (!strides.empty() && strides.back() != 1) |
| 1466 | return std::nullopt; |
| 1467 | // If no layout or identity layout, this is contiguous by definition. |
| 1468 | if (memRefType.getLayout().isIdentity()) |
| 1469 | return strides; |
| 1470 | |
| 1471 | // Otherwise, we must determine contiguity form shapes. This can only ever |
| 1472 | // work in static cases because MemRefType is underspecified to represent |
| 1473 | // contiguous dynamic shapes in other ways than with just empty/identity |
| 1474 | // layout. |
| 1475 | auto sizes = memRefType.getShape(); |
| 1476 | for (int index = 0, e = strides.size() - 1; index < e; ++index) { |
| 1477 | if (ShapedType::isDynamic(sizes[index + 1]) || |
| 1478 | ShapedType::isDynamic(strides[index]) || |
| 1479 | ShapedType::isDynamic(strides[index + 1])) |
| 1480 | return std::nullopt; |
| 1481 | if (strides[index] != strides[index + 1] * sizes[index + 1]) |
| 1482 | return std::nullopt; |
| 1483 | } |
| 1484 | return strides; |
| 1485 | } |
| 1486 | |
| 1487 | class VectorTypeCastOpConversion |
| 1488 | : public ConvertOpToLLVMPattern<vector::TypeCastOp> { |
| 1489 | public: |
| 1490 | using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern; |
| 1491 | |
| 1492 | LogicalResult |
| 1493 | matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor, |
| 1494 | ConversionPatternRewriter &rewriter) const override { |
| 1495 | auto loc = castOp->getLoc(); |
| 1496 | MemRefType sourceMemRefType = |
| 1497 | cast<MemRefType>(castOp.getOperand().getType()); |
| 1498 | MemRefType targetMemRefType = castOp.getType(); |
| 1499 | |
| 1500 | // Only static shape casts supported atm. |
| 1501 | if (!sourceMemRefType.hasStaticShape() || |
| 1502 | !targetMemRefType.hasStaticShape()) |
| 1503 | return failure(); |
| 1504 | |
| 1505 | auto llvmSourceDescriptorTy = |
| 1506 | dyn_cast<LLVM::LLVMStructType>(adaptor.getOperands()[0].getType()); |
| 1507 | if (!llvmSourceDescriptorTy) |
| 1508 | return failure(); |
| 1509 | MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]); |
| 1510 | |
| 1511 | auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>( |
| 1512 | typeConverter->convertType(targetMemRefType)); |
| 1513 | if (!llvmTargetDescriptorTy) |
| 1514 | return failure(); |
| 1515 | |
| 1516 | // Only contiguous source buffers supported atm. |
| 1517 | auto sourceStrides = computeContiguousStrides(sourceMemRefType); |
| 1518 | if (!sourceStrides) |
| 1519 | return failure(); |
| 1520 | auto targetStrides = computeContiguousStrides(targetMemRefType); |
| 1521 | if (!targetStrides) |
| 1522 | return failure(); |
| 1523 | // Only support static strides for now, regardless of contiguity. |
| 1524 | if (llvm::any_of(*targetStrides, ShapedType::isDynamic)) |
| 1525 | return failure(); |
| 1526 | |
| 1527 | auto int64Ty = IntegerType::get(rewriter.getContext(), 64); |
| 1528 | |
| 1529 | // Create descriptor. |
| 1530 | auto desc = MemRefDescriptor::poison(builder&: rewriter, loc: loc, descriptorType: llvmTargetDescriptorTy); |
| 1531 | // Set allocated ptr. |
| 1532 | Value allocated = sourceMemRef.allocatedPtr(builder&: rewriter, loc: loc); |
| 1533 | desc.setAllocatedPtr(rewriter, loc, allocated); |
| 1534 | |
| 1535 | // Set aligned ptr. |
| 1536 | Value ptr = sourceMemRef.alignedPtr(builder&: rewriter, loc: loc); |
| 1537 | desc.setAlignedPtr(rewriter, loc, ptr); |
| 1538 | // Fill offset 0. |
| 1539 | auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); |
| 1540 | auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); |
| 1541 | desc.setOffset(rewriter, loc, zero); |
| 1542 | |
| 1543 | // Fill size and stride descriptors in memref. |
| 1544 | for (const auto &indexedSize : |
| 1545 | llvm::enumerate(targetMemRefType.getShape())) { |
| 1546 | int64_t index = indexedSize.index(); |
| 1547 | auto sizeAttr = |
| 1548 | rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); |
| 1549 | auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); |
| 1550 | desc.setSize(rewriter, loc, index, size); |
| 1551 | auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), |
| 1552 | (*targetStrides)[index]); |
| 1553 | auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); |
| 1554 | desc.setStride(rewriter, loc, index, stride); |
| 1555 | } |
| 1556 | |
| 1557 | rewriter.replaceOp(castOp, {desc}); |
| 1558 | return success(); |
| 1559 | } |
| 1560 | }; |
| 1561 | |
| 1562 | /// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only). |
| 1563 | /// Non-scalable versions of this operation are handled in Vector Transforms. |
| 1564 | class VectorCreateMaskOpConversion |
| 1565 | : public OpConversionPattern<vector::CreateMaskOp> { |
| 1566 | public: |
| 1567 | explicit VectorCreateMaskOpConversion(MLIRContext *context, |
| 1568 | bool enableIndexOpt) |
| 1569 | : OpConversionPattern<vector::CreateMaskOp>(context), |
| 1570 | force32BitVectorIndices(enableIndexOpt) {} |
| 1571 | |
| 1572 | LogicalResult |
| 1573 | matchAndRewrite(vector::CreateMaskOp op, OpAdaptor adaptor, |
| 1574 | ConversionPatternRewriter &rewriter) const override { |
| 1575 | auto dstType = op.getType(); |
| 1576 | if (dstType.getRank() != 1 || !cast<VectorType>(dstType).isScalable()) |
| 1577 | return failure(); |
| 1578 | IntegerType idxType = |
| 1579 | force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); |
| 1580 | auto loc = op->getLoc(); |
| 1581 | Value indices = rewriter.create<LLVM::StepVectorOp>( |
| 1582 | loc, LLVM::getVectorType(idxType, dstType.getShape()[0], |
| 1583 | /*isScalable=*/true)); |
| 1584 | auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, |
| 1585 | adaptor.getOperands()[0]); |
| 1586 | Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); |
| 1587 | Value comp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, |
| 1588 | indices, bounds); |
| 1589 | rewriter.replaceOp(op, comp); |
| 1590 | return success(); |
| 1591 | } |
| 1592 | |
| 1593 | private: |
| 1594 | const bool force32BitVectorIndices; |
| 1595 | }; |
| 1596 | |
| 1597 | class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> { |
| 1598 | public: |
| 1599 | using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern; |
| 1600 | |
| 1601 | // Lowering implementation that relies on a small runtime support library, |
| 1602 | // which only needs to provide a few printing methods (single value for all |
| 1603 | // data types, opening/closing bracket, comma, newline). The lowering splits |
| 1604 | // the vector into elementary printing operations. The advantage of this |
| 1605 | // approach is that the library can remain unaware of all low-level |
| 1606 | // implementation details of vectors while still supporting output of any |
| 1607 | // shaped and dimensioned vector. |
| 1608 | // |
| 1609 | // Note: This lowering only handles scalars, n-D vectors are broken into |
| 1610 | // printing scalars in loops in VectorToSCF. |
| 1611 | // |
| 1612 | // TODO: rely solely on libc in future? something else? |
| 1613 | // |
| 1614 | LogicalResult |
| 1615 | matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor, |
| 1616 | ConversionPatternRewriter &rewriter) const override { |
| 1617 | auto parent = printOp->getParentOfType<ModuleOp>(); |
| 1618 | if (!parent) |
| 1619 | return failure(); |
| 1620 | |
| 1621 | auto loc = printOp->getLoc(); |
| 1622 | |
| 1623 | if (auto value = adaptor.getSource()) { |
| 1624 | Type printType = printOp.getPrintType(); |
| 1625 | if (isa<VectorType>(Val: printType)) { |
| 1626 | // Vectors should be broken into elementary print ops in VectorToSCF. |
| 1627 | return failure(); |
| 1628 | } |
| 1629 | if (failed(emitScalarPrint(rewriter, parent: parent, loc: loc, printType, value: value))) |
| 1630 | return failure(); |
| 1631 | } |
| 1632 | |
| 1633 | auto punct = printOp.getPunctuation(); |
| 1634 | if (auto stringLiteral = printOp.getStringLiteral()) { |
| 1635 | auto createResult = |
| 1636 | LLVM::createPrintStrCall(builder&: rewriter, loc: loc, moduleOp: parent, symbolName: "vector_print_str" , |
| 1637 | string: *stringLiteral, typeConverter: *getTypeConverter(), |
| 1638 | /*addNewline=*/false); |
| 1639 | if (createResult.failed()) |
| 1640 | return failure(); |
| 1641 | |
| 1642 | } else if (punct != PrintPunctuation::NoPunctuation) { |
| 1643 | FailureOr<LLVM::LLVMFuncOp> op = [&]() { |
| 1644 | switch (punct) { |
| 1645 | case PrintPunctuation::Close: |
| 1646 | return LLVM::lookupOrCreatePrintCloseFn(rewriter, parent); |
| 1647 | case PrintPunctuation::Open: |
| 1648 | return LLVM::lookupOrCreatePrintOpenFn(rewriter, parent); |
| 1649 | case PrintPunctuation::Comma: |
| 1650 | return LLVM::lookupOrCreatePrintCommaFn(rewriter, parent); |
| 1651 | case PrintPunctuation::NewLine: |
| 1652 | return LLVM::lookupOrCreatePrintNewlineFn(rewriter, parent); |
| 1653 | default: |
| 1654 | llvm_unreachable("unexpected punctuation" ); |
| 1655 | } |
| 1656 | }(); |
| 1657 | if (failed(op)) |
| 1658 | return failure(); |
| 1659 | emitCall(rewriter, loc: printOp->getLoc(), ref: op.value()); |
| 1660 | } |
| 1661 | |
| 1662 | rewriter.eraseOp(op: printOp); |
| 1663 | return success(); |
| 1664 | } |
| 1665 | |
| 1666 | private: |
| 1667 | enum class PrintConversion { |
| 1668 | // clang-format off |
| 1669 | None, |
| 1670 | ZeroExt64, |
| 1671 | SignExt64, |
| 1672 | Bitcast16 |
| 1673 | // clang-format on |
| 1674 | }; |
| 1675 | |
| 1676 | LogicalResult emitScalarPrint(ConversionPatternRewriter &rewriter, |
| 1677 | ModuleOp parent, Location loc, Type printType, |
| 1678 | Value value) const { |
| 1679 | if (typeConverter->convertType(printType) == nullptr) |
| 1680 | return failure(); |
| 1681 | |
| 1682 | // Make sure element type has runtime support. |
| 1683 | PrintConversion conversion = PrintConversion::None; |
| 1684 | FailureOr<Operation *> printer; |
| 1685 | if (printType.isF32()) { |
| 1686 | printer = LLVM::lookupOrCreatePrintF32Fn(b&: rewriter, moduleOp: parent); |
| 1687 | } else if (printType.isF64()) { |
| 1688 | printer = LLVM::lookupOrCreatePrintF64Fn(b&: rewriter, moduleOp: parent); |
| 1689 | } else if (printType.isF16()) { |
| 1690 | conversion = PrintConversion::Bitcast16; // bits! |
| 1691 | printer = LLVM::lookupOrCreatePrintF16Fn(b&: rewriter, moduleOp: parent); |
| 1692 | } else if (printType.isBF16()) { |
| 1693 | conversion = PrintConversion::Bitcast16; // bits! |
| 1694 | printer = LLVM::lookupOrCreatePrintBF16Fn(b&: rewriter, moduleOp: parent); |
| 1695 | } else if (printType.isIndex()) { |
| 1696 | printer = LLVM::lookupOrCreatePrintU64Fn(b&: rewriter, moduleOp: parent); |
| 1697 | } else if (auto intTy = dyn_cast<IntegerType>(printType)) { |
| 1698 | // Integers need a zero or sign extension on the operand |
| 1699 | // (depending on the source type) as well as a signed or |
| 1700 | // unsigned print method. Up to 64-bit is supported. |
| 1701 | unsigned width = intTy.getWidth(); |
| 1702 | if (intTy.isUnsigned()) { |
| 1703 | if (width <= 64) { |
| 1704 | if (width < 64) |
| 1705 | conversion = PrintConversion::ZeroExt64; |
| 1706 | printer = LLVM::lookupOrCreatePrintU64Fn(b&: rewriter, moduleOp: parent); |
| 1707 | } else { |
| 1708 | return failure(); |
| 1709 | } |
| 1710 | } else { |
| 1711 | assert(intTy.isSignless() || intTy.isSigned()); |
| 1712 | if (width <= 64) { |
| 1713 | // Note that we *always* zero extend booleans (1-bit integers), |
| 1714 | // so that true/false is printed as 1/0 rather than -1/0. |
| 1715 | if (width == 1) |
| 1716 | conversion = PrintConversion::ZeroExt64; |
| 1717 | else if (width < 64) |
| 1718 | conversion = PrintConversion::SignExt64; |
| 1719 | printer = LLVM::lookupOrCreatePrintI64Fn(b&: rewriter, moduleOp: parent); |
| 1720 | } else { |
| 1721 | return failure(); |
| 1722 | } |
| 1723 | } |
| 1724 | } else { |
| 1725 | return failure(); |
| 1726 | } |
| 1727 | if (failed(Result: printer)) |
| 1728 | return failure(); |
| 1729 | |
| 1730 | switch (conversion) { |
| 1731 | case PrintConversion::ZeroExt64: |
| 1732 | value = rewriter.create<arith::ExtUIOp>( |
| 1733 | loc, IntegerType::get(rewriter.getContext(), 64), value); |
| 1734 | break; |
| 1735 | case PrintConversion::SignExt64: |
| 1736 | value = rewriter.create<arith::ExtSIOp>( |
| 1737 | loc, IntegerType::get(rewriter.getContext(), 64), value); |
| 1738 | break; |
| 1739 | case PrintConversion::Bitcast16: |
| 1740 | value = rewriter.create<LLVM::BitcastOp>( |
| 1741 | loc, IntegerType::get(rewriter.getContext(), 16), value); |
| 1742 | break; |
| 1743 | case PrintConversion::None: |
| 1744 | break; |
| 1745 | } |
| 1746 | emitCall(rewriter, loc, ref: printer.value(), params: value); |
| 1747 | return success(); |
| 1748 | } |
| 1749 | |
| 1750 | // Helper to emit a call. |
| 1751 | static void emitCall(ConversionPatternRewriter &rewriter, Location loc, |
| 1752 | Operation *ref, ValueRange params = ValueRange()) { |
| 1753 | rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref), |
| 1754 | params); |
| 1755 | } |
| 1756 | }; |
| 1757 | |
| 1758 | /// The Splat operation is lowered to an insertelement + a shufflevector |
| 1759 | /// operation. Splat to only 0-d and 1-d vector result types are lowered. |
| 1760 | struct VectorSplatOpLowering : public ConvertOpToLLVMPattern<vector::SplatOp> { |
| 1761 | using ConvertOpToLLVMPattern<vector::SplatOp>::ConvertOpToLLVMPattern; |
| 1762 | |
| 1763 | LogicalResult |
| 1764 | matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor, |
| 1765 | ConversionPatternRewriter &rewriter) const override { |
| 1766 | VectorType resultType = cast<VectorType>(splatOp.getType()); |
| 1767 | if (resultType.getRank() > 1) |
| 1768 | return failure(); |
| 1769 | |
| 1770 | // First insert it into a poison vector so we can shuffle it. |
| 1771 | auto vectorType = typeConverter->convertType(splatOp.getType()); |
| 1772 | Value poison = |
| 1773 | rewriter.create<LLVM::PoisonOp>(splatOp.getLoc(), vectorType); |
| 1774 | auto zero = rewriter.create<LLVM::ConstantOp>( |
| 1775 | splatOp.getLoc(), |
| 1776 | typeConverter->convertType(rewriter.getIntegerType(32)), |
| 1777 | rewriter.getZeroAttr(rewriter.getIntegerType(32))); |
| 1778 | |
| 1779 | // For 0-d vector, we simply do `insertelement`. |
| 1780 | if (resultType.getRank() == 0) { |
| 1781 | rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( |
| 1782 | splatOp, vectorType, poison, adaptor.getInput(), zero); |
| 1783 | return success(); |
| 1784 | } |
| 1785 | |
| 1786 | // For 1-d vector, we additionally do a `vectorshuffle`. |
| 1787 | auto v = rewriter.create<LLVM::InsertElementOp>( |
| 1788 | splatOp.getLoc(), vectorType, poison, adaptor.getInput(), zero); |
| 1789 | |
| 1790 | int64_t width = cast<VectorType>(splatOp.getType()).getDimSize(0); |
| 1791 | SmallVector<int32_t> zeroValues(width, 0); |
| 1792 | |
| 1793 | // Shuffle the value across the desired number of elements. |
| 1794 | rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(splatOp, v, poison, |
| 1795 | zeroValues); |
| 1796 | return success(); |
| 1797 | } |
| 1798 | }; |
| 1799 | |
| 1800 | /// The Splat operation is lowered to an insertelement + a shufflevector |
| 1801 | /// operation. Splat to only 2+-d vector result types are lowered by the |
| 1802 | /// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering. |
| 1803 | struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> { |
| 1804 | using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern; |
| 1805 | |
| 1806 | LogicalResult |
| 1807 | matchAndRewrite(SplatOp splatOp, OpAdaptor adaptor, |
| 1808 | ConversionPatternRewriter &rewriter) const override { |
| 1809 | VectorType resultType = splatOp.getType(); |
| 1810 | if (resultType.getRank() <= 1) |
| 1811 | return failure(); |
| 1812 | |
| 1813 | // First insert it into an undef vector so we can shuffle it. |
| 1814 | auto loc = splatOp.getLoc(); |
| 1815 | auto vectorTypeInfo = |
| 1816 | LLVM::detail::extractNDVectorTypeInfo(vectorType: resultType, converter: *getTypeConverter()); |
| 1817 | auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy; |
| 1818 | auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy; |
| 1819 | if (!llvmNDVectorTy || !llvm1DVectorTy) |
| 1820 | return failure(); |
| 1821 | |
| 1822 | // Construct returned value. |
| 1823 | Value desc = rewriter.create<LLVM::PoisonOp>(loc, llvmNDVectorTy); |
| 1824 | |
| 1825 | // Construct a 1-D vector with the splatted value that we insert in all the |
| 1826 | // places within the returned descriptor. |
| 1827 | Value vdesc = rewriter.create<LLVM::PoisonOp>(loc, llvm1DVectorTy); |
| 1828 | auto zero = rewriter.create<LLVM::ConstantOp>( |
| 1829 | loc, typeConverter->convertType(rewriter.getIntegerType(32)), |
| 1830 | rewriter.getZeroAttr(rewriter.getIntegerType(32))); |
| 1831 | Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvm1DVectorTy, vdesc, |
| 1832 | adaptor.getInput(), zero); |
| 1833 | |
| 1834 | // Shuffle the value across the desired number of elements. |
| 1835 | int64_t width = resultType.getDimSize(resultType.getRank() - 1); |
| 1836 | SmallVector<int32_t> zeroValues(width, 0); |
| 1837 | v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroValues); |
| 1838 | |
| 1839 | // Iterate of linear index, convert to coords space and insert splatted 1-D |
| 1840 | // vector in each position. |
| 1841 | nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) { |
| 1842 | desc = rewriter.create<LLVM::InsertValueOp>(loc, desc, v, position); |
| 1843 | }); |
| 1844 | rewriter.replaceOp(splatOp, desc); |
| 1845 | return success(); |
| 1846 | } |
| 1847 | }; |
| 1848 | |
| 1849 | /// Conversion pattern for a `vector.interleave`. |
| 1850 | /// This supports fixed-sized vectors and scalable vectors. |
| 1851 | struct VectorInterleaveOpLowering |
| 1852 | : public ConvertOpToLLVMPattern<vector::InterleaveOp> { |
| 1853 | using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; |
| 1854 | |
| 1855 | LogicalResult |
| 1856 | matchAndRewrite(vector::InterleaveOp interleaveOp, OpAdaptor adaptor, |
| 1857 | ConversionPatternRewriter &rewriter) const override { |
| 1858 | VectorType resultType = interleaveOp.getResultVectorType(); |
| 1859 | // n-D interleaves should have been lowered already. |
| 1860 | if (resultType.getRank() != 1) |
| 1861 | return rewriter.notifyMatchFailure(interleaveOp, |
| 1862 | "InterleaveOp not rank 1" ); |
| 1863 | // If the result is rank 1, then this directly maps to LLVM. |
| 1864 | if (resultType.isScalable()) { |
| 1865 | rewriter.replaceOpWithNewOp<LLVM::vector_interleave2>( |
| 1866 | interleaveOp, typeConverter->convertType(resultType), |
| 1867 | adaptor.getLhs(), adaptor.getRhs()); |
| 1868 | return success(); |
| 1869 | } |
| 1870 | // Lower fixed-size interleaves to a shufflevector. While the |
| 1871 | // vector.interleave2 intrinsic supports fixed and scalable vectors, the |
| 1872 | // langref still recommends fixed-vectors use shufflevector, see: |
| 1873 | // https://llvm.org/docs/LangRef.html#id876. |
| 1874 | int64_t resultVectorSize = resultType.getNumElements(); |
| 1875 | SmallVector<int32_t> interleaveShuffleMask; |
| 1876 | interleaveShuffleMask.reserve(N: resultVectorSize); |
| 1877 | for (int i = 0, end = resultVectorSize / 2; i < end; ++i) { |
| 1878 | interleaveShuffleMask.push_back(Elt: i); |
| 1879 | interleaveShuffleMask.push_back(Elt: (resultVectorSize / 2) + i); |
| 1880 | } |
| 1881 | rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>( |
| 1882 | interleaveOp, adaptor.getLhs(), adaptor.getRhs(), |
| 1883 | interleaveShuffleMask); |
| 1884 | return success(); |
| 1885 | } |
| 1886 | }; |
| 1887 | |
| 1888 | /// Conversion pattern for a `vector.deinterleave`. |
| 1889 | /// This supports fixed-sized vectors and scalable vectors. |
| 1890 | struct VectorDeinterleaveOpLowering |
| 1891 | : public ConvertOpToLLVMPattern<vector::DeinterleaveOp> { |
| 1892 | using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; |
| 1893 | |
| 1894 | LogicalResult |
| 1895 | matchAndRewrite(vector::DeinterleaveOp deinterleaveOp, OpAdaptor adaptor, |
| 1896 | ConversionPatternRewriter &rewriter) const override { |
| 1897 | VectorType resultType = deinterleaveOp.getResultVectorType(); |
| 1898 | VectorType sourceType = deinterleaveOp.getSourceVectorType(); |
| 1899 | auto loc = deinterleaveOp.getLoc(); |
| 1900 | |
| 1901 | // Note: n-D deinterleave operations should be lowered to the 1-D before |
| 1902 | // converting to LLVM. |
| 1903 | if (resultType.getRank() != 1) |
| 1904 | return rewriter.notifyMatchFailure(deinterleaveOp, |
| 1905 | "DeinterleaveOp not rank 1" ); |
| 1906 | |
| 1907 | if (resultType.isScalable()) { |
| 1908 | auto llvmTypeConverter = this->getTypeConverter(); |
| 1909 | auto deinterleaveResults = deinterleaveOp.getResultTypes(); |
| 1910 | auto packedOpResults = |
| 1911 | llvmTypeConverter->packOperationResults(deinterleaveResults); |
| 1912 | auto intrinsic = rewriter.create<LLVM::vector_deinterleave2>( |
| 1913 | loc, packedOpResults, adaptor.getSource()); |
| 1914 | |
| 1915 | auto evenResult = rewriter.create<LLVM::ExtractValueOp>( |
| 1916 | loc, intrinsic->getResult(0), 0); |
| 1917 | auto oddResult = rewriter.create<LLVM::ExtractValueOp>( |
| 1918 | loc, intrinsic->getResult(0), 1); |
| 1919 | |
| 1920 | rewriter.replaceOp(deinterleaveOp, ValueRange{evenResult, oddResult}); |
| 1921 | return success(); |
| 1922 | } |
| 1923 | // Lower fixed-size deinterleave to two shufflevectors. While the |
| 1924 | // vector.deinterleave2 intrinsic supports fixed and scalable vectors, the |
| 1925 | // langref still recommends fixed-vectors use shufflevector, see: |
| 1926 | // https://llvm.org/docs/LangRef.html#id889. |
| 1927 | int64_t resultVectorSize = resultType.getNumElements(); |
| 1928 | SmallVector<int32_t> evenShuffleMask; |
| 1929 | SmallVector<int32_t> oddShuffleMask; |
| 1930 | |
| 1931 | evenShuffleMask.reserve(N: resultVectorSize); |
| 1932 | oddShuffleMask.reserve(N: resultVectorSize); |
| 1933 | |
| 1934 | for (int i = 0; i < sourceType.getNumElements(); ++i) { |
| 1935 | if (i % 2 == 0) |
| 1936 | evenShuffleMask.push_back(Elt: i); |
| 1937 | else |
| 1938 | oddShuffleMask.push_back(Elt: i); |
| 1939 | } |
| 1940 | |
| 1941 | auto poison = rewriter.create<LLVM::PoisonOp>(loc, sourceType); |
| 1942 | auto evenShuffle = rewriter.create<LLVM::ShuffleVectorOp>( |
| 1943 | loc, adaptor.getSource(), poison, evenShuffleMask); |
| 1944 | auto oddShuffle = rewriter.create<LLVM::ShuffleVectorOp>( |
| 1945 | loc, adaptor.getSource(), poison, oddShuffleMask); |
| 1946 | |
| 1947 | rewriter.replaceOp(deinterleaveOp, ValueRange{evenShuffle, oddShuffle}); |
| 1948 | return success(); |
| 1949 | } |
| 1950 | }; |
| 1951 | |
| 1952 | /// Conversion pattern for a `vector.from_elements`. |
| 1953 | struct VectorFromElementsLowering |
| 1954 | : public ConvertOpToLLVMPattern<vector::FromElementsOp> { |
| 1955 | using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; |
| 1956 | |
| 1957 | LogicalResult |
| 1958 | matchAndRewrite(vector::FromElementsOp fromElementsOp, OpAdaptor adaptor, |
| 1959 | ConversionPatternRewriter &rewriter) const override { |
| 1960 | Location loc = fromElementsOp.getLoc(); |
| 1961 | VectorType vectorType = fromElementsOp.getType(); |
| 1962 | // TODO: Multi-dimensional vectors lower to !llvm.array<... x vector<>>. |
| 1963 | // Such ops should be handled in the same way as vector.insert. |
| 1964 | if (vectorType.getRank() > 1) |
| 1965 | return rewriter.notifyMatchFailure(fromElementsOp, |
| 1966 | "rank > 1 vectors are not supported" ); |
| 1967 | Type llvmType = typeConverter->convertType(vectorType); |
| 1968 | Value result = rewriter.create<LLVM::PoisonOp>(loc, llvmType); |
| 1969 | for (auto [idx, val] : llvm::enumerate(adaptor.getElements())) |
| 1970 | result = rewriter.create<vector::InsertOp>(loc, val, result, idx); |
| 1971 | rewriter.replaceOp(fromElementsOp, result); |
| 1972 | return success(); |
| 1973 | } |
| 1974 | }; |
| 1975 | |
| 1976 | /// Conversion pattern for vector.step. |
| 1977 | struct VectorScalableStepOpLowering |
| 1978 | : public ConvertOpToLLVMPattern<vector::StepOp> { |
| 1979 | using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; |
| 1980 | |
| 1981 | LogicalResult |
| 1982 | matchAndRewrite(vector::StepOp stepOp, OpAdaptor adaptor, |
| 1983 | ConversionPatternRewriter &rewriter) const override { |
| 1984 | auto resultType = cast<VectorType>(stepOp.getType()); |
| 1985 | if (!resultType.isScalable()) { |
| 1986 | return failure(); |
| 1987 | } |
| 1988 | Type llvmType = typeConverter->convertType(stepOp.getType()); |
| 1989 | rewriter.replaceOpWithNewOp<LLVM::StepVectorOp>(stepOp, llvmType); |
| 1990 | return success(); |
| 1991 | } |
| 1992 | }; |
| 1993 | |
| 1994 | } // namespace |
| 1995 | |
| 1996 | void mlir::vector::populateVectorRankReducingFMAPattern( |
| 1997 | RewritePatternSet &patterns) { |
| 1998 | patterns.add<VectorFMAOpNDRewritePattern>(arg: patterns.getContext()); |
| 1999 | } |
| 2000 | |
| 2001 | /// Populate the given list with patterns that convert from Vector to LLVM. |
| 2002 | void mlir::populateVectorToLLVMConversionPatterns( |
| 2003 | const LLVMTypeConverter &converter, RewritePatternSet &patterns, |
| 2004 | bool reassociateFPReductions, bool force32BitVectorIndices, |
| 2005 | bool useVectorAlignment) { |
| 2006 | // This function populates only ConversionPatterns, not RewritePatterns. |
| 2007 | MLIRContext *ctx = converter.getDialect()->getContext(); |
| 2008 | patterns.add<VectorReductionOpConversion>(arg: converter, args&: reassociateFPReductions); |
| 2009 | patterns.add<VectorCreateMaskOpConversion>(arg&: ctx, args&: force32BitVectorIndices); |
| 2010 | patterns.add<VectorLoadStoreConversion<vector::LoadOp>, |
| 2011 | VectorLoadStoreConversion<vector::MaskedLoadOp>, |
| 2012 | VectorLoadStoreConversion<vector::StoreOp>, |
| 2013 | VectorLoadStoreConversion<vector::MaskedStoreOp>, |
| 2014 | VectorGatherOpConversion, VectorScatterOpConversion>( |
| 2015 | converter, useVectorAlignment); |
| 2016 | patterns.add<VectorBitCastOpConversion, VectorShuffleOpConversion, |
| 2017 | VectorExtractElementOpConversion, VectorExtractOpConversion, |
| 2018 | VectorFMAOp1DConversion, VectorInsertElementOpConversion, |
| 2019 | VectorInsertOpConversion, VectorPrintOpConversion, |
| 2020 | VectorTypeCastOpConversion, VectorScaleOpConversion, |
| 2021 | VectorExpandLoadOpConversion, VectorCompressStoreOpConversion, |
| 2022 | VectorSplatOpLowering, VectorSplatNdOpLowering, |
| 2023 | VectorScalableInsertOpLowering, VectorScalableExtractOpLowering, |
| 2024 | MaskedReductionOpConversion, VectorInterleaveOpLowering, |
| 2025 | VectorDeinterleaveOpLowering, VectorFromElementsLowering, |
| 2026 | VectorScalableStepOpLowering>(converter); |
| 2027 | } |
| 2028 | |
| 2029 | void mlir::populateVectorToLLVMMatrixConversionPatterns( |
| 2030 | const LLVMTypeConverter &converter, RewritePatternSet &patterns) { |
| 2031 | patterns.add<VectorMatmulOpConversion>(arg: converter); |
| 2032 | patterns.add<VectorFlatTransposeOpConversion>(arg: converter); |
| 2033 | } |
| 2034 | |
| 2035 | namespace { |
| 2036 | struct VectorToLLVMDialectInterface : public ConvertToLLVMPatternInterface { |
| 2037 | using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface; |
| 2038 | void loadDependentDialects(MLIRContext *context) const final { |
| 2039 | context->loadDialect<LLVM::LLVMDialect>(); |
| 2040 | } |
| 2041 | |
| 2042 | /// Hook for derived dialect interface to provide conversion patterns |
| 2043 | /// and mark dialect legal for the conversion target. |
| 2044 | void populateConvertToLLVMConversionPatterns( |
| 2045 | ConversionTarget &target, LLVMTypeConverter &typeConverter, |
| 2046 | RewritePatternSet &patterns) const final { |
| 2047 | populateVectorToLLVMConversionPatterns(converter: typeConverter, patterns); |
| 2048 | } |
| 2049 | }; |
| 2050 | } // namespace |
| 2051 | |
| 2052 | void mlir::vector::registerConvertVectorToLLVMInterface( |
| 2053 | DialectRegistry ®istry) { |
| 2054 | registry.addExtension(extensionFn: +[](MLIRContext *ctx, vector::VectorDialect *dialect) { |
| 2055 | dialect->addInterfaces<VectorToLLVMDialectInterface>(); |
| 2056 | }); |
| 2057 | } |
| 2058 | |