1 | //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements affine fusion. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Affine/Passes.h" |
14 | |
15 | #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" |
16 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
17 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
18 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
19 | #include "mlir/Dialect/Affine/LoopFusionUtils.h" |
20 | #include "mlir/Dialect/Affine/LoopUtils.h" |
21 | #include "mlir/Dialect/Affine/Utils.h" |
22 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
23 | #include "mlir/IR/AffineExpr.h" |
24 | #include "mlir/IR/AffineMap.h" |
25 | #include "mlir/IR/Builders.h" |
26 | #include "mlir/Transforms/Passes.h" |
27 | #include "llvm/ADT/DenseMap.h" |
28 | #include "llvm/ADT/DenseSet.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/Support/CommandLine.h" |
31 | #include "llvm/Support/Debug.h" |
32 | #include "llvm/Support/raw_ostream.h" |
33 | #include <iomanip> |
34 | #include <optional> |
35 | #include <sstream> |
36 | |
37 | namespace mlir { |
38 | namespace affine { |
39 | #define GEN_PASS_DEF_AFFINELOOPFUSION |
40 | #include "mlir/Dialect/Affine/Passes.h.inc" |
41 | } // namespace affine |
42 | } // namespace mlir |
43 | |
44 | #define DEBUG_TYPE "affine-loop-fusion" |
45 | |
46 | using namespace mlir; |
47 | using namespace mlir::affine; |
48 | |
49 | namespace { |
50 | /// Loop fusion pass. This pass currently supports a greedy fusion policy, |
51 | /// which fuses loop nests with single-writer/single-reader memref dependences |
52 | /// with the goal of improving locality. |
53 | // TODO: Support fusion of source loop nests which write to multiple |
54 | // memrefs, where each memref can have multiple users (if profitable). |
55 | struct LoopFusion : public affine::impl::AffineLoopFusionBase<LoopFusion> { |
56 | LoopFusion() = default; |
57 | LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, |
58 | bool maximalFusion, enum FusionMode affineFusionMode) { |
59 | this->fastMemorySpace = fastMemorySpace; |
60 | this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; |
61 | this->maximalFusion = maximalFusion; |
62 | this->affineFusionMode = affineFusionMode; |
63 | } |
64 | |
65 | void runOnBlock(Block *block); |
66 | void runOnOperation() override; |
67 | }; |
68 | |
69 | } // namespace |
70 | |
71 | /// Returns true if node 'srcId' can be removed after fusing it with node |
72 | /// 'dstId'. The node can be removed if any of the following conditions are met: |
73 | /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs. |
74 | /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs |
75 | /// and the fusion slice is maximal. |
76 | /// 3. 'srcId' has output dependences after fusion, the fusion slice is |
77 | /// maximal and the fusion insertion point dominates all the dependences. |
78 | static bool canRemoveSrcNodeAfterFusion( |
79 | unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice, |
80 | Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs, |
81 | MemRefDependenceGraph *mdg) { |
82 | |
83 | Operation *dstNodeOp = mdg->getNode(id: dstId)->op; |
84 | bool hasOutDepsAfterFusion = false; |
85 | |
86 | for (auto &outEdge : mdg->outEdges[srcId]) { |
87 | Operation *depNodeOp = mdg->getNode(id: outEdge.id)->op; |
88 | // Skip dependence with dstOp since it will be removed after fusion. |
89 | if (depNodeOp == dstNodeOp) |
90 | continue; |
91 | |
92 | // Only fusion within the same block is supported. Use domination analysis |
93 | // when needed. |
94 | if (depNodeOp->getBlock() != dstNodeOp->getBlock()) |
95 | return false; |
96 | |
97 | // Check if the insertion point of the fused loop dominates the dependence. |
98 | // Otherwise, the src loop can't be removed. |
99 | if (fusedLoopInsPoint != depNodeOp && |
100 | !fusedLoopInsPoint->isBeforeInBlock(other: depNodeOp)) { |
101 | LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't " |
102 | "dominate dependence\n" ); |
103 | return false; |
104 | } |
105 | |
106 | hasOutDepsAfterFusion = true; |
107 | } |
108 | |
109 | // If src loop has dependences after fusion or it writes to an live-out or |
110 | // escaping memref, we can only remove it if the fusion slice is maximal so |
111 | // that all the dependences are preserved. |
112 | if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) { |
113 | std::optional<bool> isMaximal = fusionSlice.isMaximal(); |
114 | if (!isMaximal) { |
115 | LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine " |
116 | "if fusion is maximal\n" ); |
117 | return false; |
118 | } |
119 | |
120 | if (!*isMaximal) { |
121 | LLVM_DEBUG(llvm::dbgs() |
122 | << "Src loop can't be removed: fusion is not maximal\n" ); |
123 | return false; |
124 | } |
125 | } |
126 | |
127 | return true; |
128 | } |
129 | |
130 | /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer |
131 | /// 'dstId'. Candidates are sorted by node id order. This order corresponds to |
132 | /// the program order when the 'mdg' is created. However, program order is not |
133 | /// guaranteed and must not be required by the client. Program order won't be |
134 | /// held if the 'mdg' is reused from a previous fusion step or if the node |
135 | /// creation order changes in the future to support more advance cases. |
136 | // TODO: Move this to a loop fusion utility once 'mdg' is also moved. |
137 | static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg, |
138 | SmallVectorImpl<unsigned> &srcIdCandidates) { |
139 | // Skip if no input edges along which to fuse. |
140 | if (mdg->inEdges.count(Val: dstId) == 0) |
141 | return; |
142 | |
143 | // Gather memrefs from loads in 'dstId'. |
144 | auto *dstNode = mdg->getNode(id: dstId); |
145 | DenseSet<Value> consumedMemrefs; |
146 | for (Operation *load : dstNode->loads) |
147 | consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef()); |
148 | |
149 | // Traverse 'dstId' incoming edges and gather the nodes that contain a store |
150 | // to one of the consumed memrefs. |
151 | for (auto &srcEdge : mdg->inEdges[dstId]) { |
152 | auto *srcNode = mdg->getNode(id: srcEdge.id); |
153 | // Skip if 'srcNode' is not a loop nest. |
154 | if (!isa<AffineForOp>(Val: srcNode->op)) |
155 | continue; |
156 | |
157 | if (any_of(Range&: srcNode->stores, P: [&](Operation *op) { |
158 | auto storeOp = cast<AffineWriteOpInterface>(op); |
159 | return consumedMemrefs.count(storeOp.getMemRef()) > 0; |
160 | })) |
161 | srcIdCandidates.push_back(Elt: srcNode->id); |
162 | } |
163 | |
164 | llvm::sort(C&: srcIdCandidates); |
165 | srcIdCandidates.erase( |
166 | CS: std::unique(first: srcIdCandidates.begin(), last: srcIdCandidates.end()), |
167 | CE: srcIdCandidates.end()); |
168 | } |
169 | |
170 | /// Returns in 'producerConsumerMemrefs' the memrefs involved in a |
171 | /// producer-consumer dependence between 'srcId' and 'dstId'. |
172 | static void |
173 | gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId, |
174 | MemRefDependenceGraph *mdg, |
175 | DenseSet<Value> &producerConsumerMemrefs) { |
176 | auto *dstNode = mdg->getNode(id: dstId); |
177 | auto *srcNode = mdg->getNode(id: srcId); |
178 | gatherProducerConsumerMemrefs(srcOps: srcNode->stores, dstOps: dstNode->loads, |
179 | producerConsumerMemrefs); |
180 | } |
181 | |
182 | /// A memref escapes in the context of the fusion pass if either: |
183 | /// 1. it (or its alias) is a block argument, or |
184 | /// 2. created by an op not known to guarantee alias freedom, |
185 | /// 3. it (or its alias) are used by ops other than affine dereferencing ops |
186 | /// (e.g., by call op, memref load/store ops, alias creating ops, unknown ops, |
187 | /// terminator ops, etc.); such ops do not deference the memref in an affine |
188 | /// way. |
189 | static bool isEscapingMemref(Value memref, Block *block) { |
190 | Operation *defOp = memref.getDefiningOp(); |
191 | // Check if 'memref' is a block argument. |
192 | if (!defOp) |
193 | return true; |
194 | |
195 | // Check if this is defined to be an alias of another memref. |
196 | if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp)) |
197 | if (isEscapingMemref(viewOp.getViewSource(), block)) |
198 | return true; |
199 | |
200 | // Any op besides allocating ops wouldn't guarantee alias freedom |
201 | if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(op: defOp, value: memref)) |
202 | return true; |
203 | |
204 | // Check if 'memref' is used by a non-deferencing op (including unknown ones) |
205 | // (e.g., call ops, alias creating ops, etc.). |
206 | return llvm::any_of(Range: memref.getUsers(), P: [&](Operation *user) { |
207 | // Ignore users outside of `block`. |
208 | Operation *ancestorOp = block->getParent()->findAncestorOpInRegion(op&: *user); |
209 | if (!ancestorOp) |
210 | return true; |
211 | if (ancestorOp->getBlock() != block) |
212 | return false; |
213 | return !isa<AffineMapAccessInterface>(*user); |
214 | }); |
215 | } |
216 | |
217 | /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id' |
218 | /// that escape the block or are accessed in a non-affine way. |
219 | static void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg, |
220 | DenseSet<Value> &escapingMemRefs) { |
221 | auto *node = mdg->getNode(id); |
222 | for (Operation *storeOp : node->stores) { |
223 | auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef(); |
224 | if (escapingMemRefs.count(V: memref)) |
225 | continue; |
226 | if (isEscapingMemref(memref, &mdg->block)) |
227 | escapingMemRefs.insert(memref); |
228 | } |
229 | } |
230 | |
231 | // Sinks all sequential loops to the innermost levels (while preserving |
232 | // relative order among them) and moves all parallel loops to the |
233 | // outermost (while again preserving relative order among them). |
234 | // This can increase the loop depth at which we can fuse a slice, since we are |
235 | // pushing loop carried dependence to a greater depth in the loop nest. |
236 | static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { |
237 | assert(isa<AffineForOp>(node->op)); |
238 | AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); |
239 | node->op = newRootForOp; |
240 | } |
241 | |
242 | // Creates and returns a private (single-user) memref for fused loop rooted |
243 | // at 'forOp', with (potentially reduced) memref size based on the |
244 | // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'. |
245 | // TODO: consider refactoring the common code from generateDma and |
246 | // this one. |
247 | static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst, |
248 | unsigned dstLoopDepth, |
249 | std::optional<unsigned> fastMemorySpace, |
250 | uint64_t localBufSizeThreshold) { |
251 | Operation *forInst = forOp.getOperation(); |
252 | |
253 | // Create builder to insert alloc op just before 'forOp'. |
254 | OpBuilder b(forInst); |
255 | // Builder to create constants at the top level. |
256 | OpBuilder top(forInst->getParentRegion()); |
257 | // Create new memref type based on slice bounds. |
258 | auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef(); |
259 | auto oldMemRefType = cast<MemRefType>(oldMemRef.getType()); |
260 | unsigned rank = oldMemRefType.getRank(); |
261 | |
262 | // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. |
263 | MemRefRegion region(srcStoreOpInst->getLoc()); |
264 | bool validRegion = succeeded(result: region.compute(op: srcStoreOpInst, loopDepth: dstLoopDepth)); |
265 | (void)validRegion; |
266 | assert(validRegion && "unexpected memref region failure" ); |
267 | SmallVector<int64_t, 4> newShape; |
268 | std::vector<SmallVector<int64_t, 4>> lbs; |
269 | SmallVector<int64_t, 8> lbDivisors; |
270 | lbs.reserve(n: rank); |
271 | // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed |
272 | // by 'srcStoreOpInst' at depth 'dstLoopDepth'. |
273 | std::optional<int64_t> numElements = |
274 | region.getConstantBoundingSizeAndShape(shape: &newShape, lbs: &lbs, lbDivisors: &lbDivisors); |
275 | assert(numElements && "non-constant number of elts in local buffer" ); |
276 | |
277 | const FlatAffineValueConstraints *cst = region.getConstraints(); |
278 | // 'outerIVs' holds the values that this memory region is symbolic/parametric |
279 | // on; this would correspond to loop IVs surrounding the level at which the |
280 | // slice is being materialized. |
281 | SmallVector<Value, 8> outerIVs; |
282 | cst->getValues(start: rank, end: cst->getNumVars(), values: &outerIVs); |
283 | |
284 | // Build 'rank' AffineExprs from MemRefRegion 'lbs' |
285 | SmallVector<AffineExpr, 4> offsets; |
286 | offsets.reserve(N: rank); |
287 | for (unsigned d = 0; d < rank; ++d) { |
288 | assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size" ); |
289 | |
290 | AffineExpr offset = top.getAffineConstantExpr(constant: 0); |
291 | for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) { |
292 | offset = offset + lbs[d][j] * top.getAffineDimExpr(position: j); |
293 | } |
294 | assert(lbDivisors[d] > 0); |
295 | offset = |
296 | (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(v: lbDivisors[d]); |
297 | offsets.push_back(Elt: offset); |
298 | } |
299 | |
300 | // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed |
301 | // by 'srcStoreOpInst'. |
302 | auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType); |
303 | assert(eltSize && "memrefs with size elt types expected" ); |
304 | uint64_t bufSize = *eltSize * *numElements; |
305 | unsigned newMemSpace; |
306 | if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) { |
307 | newMemSpace = *fastMemorySpace; |
308 | } else { |
309 | newMemSpace = oldMemRefType.getMemorySpaceAsInt(); |
310 | } |
311 | auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), |
312 | {}, newMemSpace); |
313 | |
314 | // Create new private memref for fused loop 'forOp'. 'newShape' is always |
315 | // a constant shape. |
316 | // TODO: Create/move alloc ops for private memrefs closer to their |
317 | // consumer loop nests to reduce their live range. Currently they are added |
318 | // at the beginning of the block, because loop nests can be reordered |
319 | // during the fusion pass. |
320 | Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType); |
321 | |
322 | // Build an AffineMap to remap access functions based on lower bound offsets. |
323 | SmallVector<AffineExpr, 4> remapExprs; |
324 | remapExprs.reserve(N: rank); |
325 | for (unsigned i = 0; i < rank; i++) { |
326 | auto dimExpr = b.getAffineDimExpr(position: outerIVs.size() + i); |
327 | |
328 | auto remapExpr = |
329 | simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); |
330 | remapExprs.push_back(Elt: remapExpr); |
331 | } |
332 | |
333 | auto indexRemap = |
334 | AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); |
335 | |
336 | // Replace all users of 'oldMemRef' with 'newMemRef'. |
337 | LogicalResult res = |
338 | replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap, |
339 | /*extraOperands=*/outerIVs, |
340 | /*symbolOperands=*/{}, |
341 | /*domOpFilter=*/&*forOp.getBody()->begin()); |
342 | assert(succeeded(res) && |
343 | "replaceAllMemrefUsesWith should always succeed here" ); |
344 | (void)res; |
345 | return newMemRef; |
346 | } |
347 | |
348 | /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and |
349 | /// 'dstId'), if there is any non-affine operation accessing 'memref', return |
350 | /// true. Otherwise, return false. |
351 | static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId, |
352 | Value memref, |
353 | MemRefDependenceGraph *mdg) { |
354 | auto *srcNode = mdg->getNode(id: srcId); |
355 | auto *dstNode = mdg->getNode(id: dstId); |
356 | Value::user_range users = memref.getUsers(); |
357 | // For each MemRefDependenceGraph's node that is between 'srcNode' and |
358 | // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any |
359 | // non-affine operation in the node accesses the 'memref'. |
360 | for (auto &idAndNode : mdg->nodes) { |
361 | Operation *op = idAndNode.second.op; |
362 | // Take care of operations between 'srcNode' and 'dstNode'. |
363 | if (srcNode->op->isBeforeInBlock(other: op) && op->isBeforeInBlock(other: dstNode->op)) { |
364 | // Walk inside the operation to find any use of the memref. |
365 | // Interrupt the walk if found. |
366 | auto walkResult = op->walk(callback: [&](Operation *user) { |
367 | // Skip affine ops. |
368 | if (isa<AffineMapAccessInterface>(*user)) |
369 | return WalkResult::advance(); |
370 | // Find a non-affine op that uses the memref. |
371 | if (llvm::is_contained(Range&: users, Element: user)) |
372 | return WalkResult::interrupt(); |
373 | return WalkResult::advance(); |
374 | }); |
375 | if (walkResult.wasInterrupted()) |
376 | return true; |
377 | } |
378 | } |
379 | return false; |
380 | } |
381 | |
382 | /// Check whether a memref value in node 'srcId' has a non-affine that |
383 | /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and |
384 | /// 'dstNode'). |
385 | static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId, |
386 | MemRefDependenceGraph *mdg) { |
387 | // Collect memref values in node 'srcId'. |
388 | auto *srcNode = mdg->getNode(id: srcId); |
389 | llvm::SmallDenseSet<Value, 2> memRefValues; |
390 | srcNode->op->walk(callback: [&](Operation *op) { |
391 | // Skip affine ops. |
392 | if (isa<AffineForOp>(Val: op)) |
393 | return WalkResult::advance(); |
394 | for (Value v : op->getOperands()) |
395 | // Collect memref values only. |
396 | if (isa<MemRefType>(Val: v.getType())) |
397 | memRefValues.insert(V: v); |
398 | return WalkResult::advance(); |
399 | }); |
400 | // Looking for users between node 'srcId' and node 'dstId'. |
401 | return llvm::any_of(Range&: memRefValues, P: [&](Value memref) { |
402 | return hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg); |
403 | }); |
404 | } |
405 | |
406 | // Checks the profitability of fusing a backwards slice of the loop nest |
407 | // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'. |
408 | // The argument 'srcStoreOpInst' is used to calculate the storage reduction on |
409 | // the memref being produced and consumed, which is an input to the cost model. |
410 | // For producer-consumer fusion, 'srcStoreOpInst' will be the same as |
411 | // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse |
412 | // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the |
413 | // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the |
414 | // unique store op in the src node, which will be used to check that the write |
415 | // region is the same after input-reuse fusion. Computation slices are provided |
416 | // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which |
417 | // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is |
418 | // profitable to fuse the candidate loop nests. Returns false otherwise. |
419 | // `dstLoopDepth` is set to the most profitable depth at which to materialize |
420 | // the source loop nest slice. |
421 | // The profitability model executes the following steps: |
422 | // *) Computes the backward computation slice at 'srcOpInst'. This |
423 | // computation slice of the loop nest surrounding 'srcOpInst' is |
424 | // represented by modified src loop bounds in 'sliceState', which are |
425 | // functions of loop IVs in the loop nest surrounding 'srcOpInst'. |
426 | // *) Computes the cost of unfused src/dst loop nests (currently the cost of a |
427 | // loop nest is the total number of dynamic operation instances in the loop |
428 | // nest). |
429 | // *) Computes the cost of fusing a slice of the src loop nest into the dst |
430 | // loop nest at various values of dst loop depth, attempting to fuse |
431 | // the largest computation slice at the maximal dst loop depth (closest to |
432 | // the load) to minimize reuse distance and potentially enable subsequent |
433 | // load/store forwarding. |
434 | // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop |
435 | // nest, at which the src computation slice is inserted/fused. |
436 | // NOTE: We attempt to maximize the dst loop depth, but there are cases |
437 | // where a particular setting for 'dstLoopNest' might fuse an unsliced |
438 | // loop (within the src computation slice) at a depth which results in |
439 | // excessive recomputation (see unit tests for examples). |
440 | // *) Compares the total cost of the unfused loop nests to the min cost fused |
441 | // loop nest computed in the previous step, and returns true if the latter |
442 | // is lower. |
443 | // TODO: Extend profitability analysis to support scenarios with multiple |
444 | // stores. |
445 | static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst, |
446 | AffineForOp dstForOp, |
447 | ArrayRef<ComputationSliceState> depthSliceUnions, |
448 | unsigned maxLegalFusionDepth, |
449 | unsigned *dstLoopDepth, |
450 | double computeToleranceThreshold) { |
451 | LLVM_DEBUG({ |
452 | llvm::dbgs() << "Checking whether fusion is profitable between src op:\n" ; |
453 | llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n" ; |
454 | llvm::dbgs() << dstForOp << "\n" ; |
455 | }); |
456 | |
457 | if (maxLegalFusionDepth == 0) { |
458 | LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth is 0\n" ); |
459 | return false; |
460 | } |
461 | |
462 | // Compute cost of sliced and unsliced src loop nest. |
463 | SmallVector<AffineForOp, 4> srcLoopIVs; |
464 | getAffineForIVs(*srcOpInst, &srcLoopIVs); |
465 | |
466 | // Walk src loop nest and collect stats. |
467 | LoopNestStats srcLoopNestStats; |
468 | if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats)) |
469 | return false; |
470 | |
471 | // Compute cost of dst loop nest. |
472 | LoopNestStats dstLoopNestStats; |
473 | if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) |
474 | return false; |
475 | |
476 | // Search for min cost value for 'dstLoopDepth'. At each value of |
477 | // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice |
478 | // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union |
479 | // of these bounds). Next the union slice bounds are used to calculate |
480 | // the cost of the slice and the cost of the slice inserted into the dst |
481 | // loop nest at 'dstLoopDepth'. |
482 | uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); |
483 | double maxStorageReduction = 0.0; |
484 | std::optional<uint64_t> sliceMemEstimate; |
485 | |
486 | // The best loop depth at which to materialize the slice. |
487 | std::optional<unsigned> bestDstLoopDepth; |
488 | |
489 | // Compute op instance count for the src loop nest without iteration slicing. |
490 | uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats); |
491 | |
492 | // Compute src loop nest write region size. |
493 | MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc()); |
494 | if (failed(result: srcWriteRegion.compute(op: srcStoreOpInst, /*loopDepth=*/0))) { |
495 | LLVM_DEBUG(llvm::dbgs() |
496 | << "Unable to compute MemRefRegion for source operation\n" ); |
497 | return false; |
498 | } |
499 | |
500 | std::optional<int64_t> maybeSrcWriteRegionSizeBytes = |
501 | srcWriteRegion.getRegionSize(); |
502 | if (!maybeSrcWriteRegionSizeBytes.has_value()) |
503 | return false; |
504 | int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes; |
505 | |
506 | // Compute op instance count for the src loop nest. |
507 | uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); |
508 | |
509 | // Evaluate all depth choices for materializing the slice in the destination |
510 | // loop nest. |
511 | for (unsigned i = maxLegalFusionDepth; i >= 1; --i) { |
512 | const ComputationSliceState &slice = depthSliceUnions[i - 1]; |
513 | // Skip slice union if it wasn't computed for this depth. |
514 | if (slice.isEmpty()) |
515 | continue; |
516 | |
517 | int64_t fusedLoopNestComputeCost; |
518 | if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp, |
519 | dstLoopNestStats, slice, |
520 | &fusedLoopNestComputeCost)) { |
521 | LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost\n" ); |
522 | continue; |
523 | } |
524 | |
525 | double additionalComputeFraction = |
526 | fusedLoopNestComputeCost / |
527 | (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
528 | 1; |
529 | |
530 | // Determine what the slice write MemRefRegion would be, if the src loop |
531 | // nest slice 'slice' were to be inserted into the dst loop nest at loop |
532 | // depth 'i'. |
533 | MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc()); |
534 | if (failed(result: sliceWriteRegion.compute(op: srcStoreOpInst, /*loopDepth=*/0, |
535 | sliceState: &slice))) { |
536 | LLVM_DEBUG(llvm::dbgs() |
537 | << "Failed to compute slice write region at loopDepth: " << i |
538 | << "\n" ); |
539 | continue; |
540 | } |
541 | |
542 | std::optional<int64_t> maybeSliceWriteRegionSizeBytes = |
543 | sliceWriteRegion.getRegionSize(); |
544 | if (!maybeSliceWriteRegionSizeBytes.has_value() || |
545 | *maybeSliceWriteRegionSizeBytes == 0) { |
546 | LLVM_DEBUG(llvm::dbgs() |
547 | << "Failed to get slice write region size at loopDepth: " << i |
548 | << "\n" ); |
549 | continue; |
550 | } |
551 | int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes; |
552 | |
553 | // If we are fusing for reuse, check that write regions remain the same. |
554 | // TODO: Write region check should check sizes and offsets in |
555 | // each dimension, so that we are sure they are covering the same memref |
556 | // region. Also, move this out to a isMemRefRegionSuperSet helper function. |
557 | if (srcOpInst != srcStoreOpInst && |
558 | sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes) |
559 | continue; |
560 | |
561 | double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / |
562 | static_cast<double>(sliceWriteRegionSizeBytes); |
563 | |
564 | LLVM_DEBUG({ |
565 | std::stringstream msg; |
566 | msg << " evaluating fusion profitability at depth : " << i << "\n" |
567 | << std::fixed << std::setprecision(2) |
568 | << " additional compute fraction: " |
569 | << 100.0 * additionalComputeFraction << "%\n" |
570 | << " storage reduction factor: " << storageReduction << "x\n" |
571 | << " fused nest cost: " << fusedLoopNestComputeCost << "\n" |
572 | << " src write region size: " << srcWriteRegionSizeBytes << "\n" |
573 | << " slice write region size: " << sliceWriteRegionSizeBytes |
574 | << "\n" ; |
575 | llvm::dbgs() << msg.str(); |
576 | }); |
577 | |
578 | // TODO: This is a placeholder cost model. |
579 | // Among all choices that add an acceptable amount of redundant computation |
580 | // (as per computeToleranceThreshold), we will simply pick the one that |
581 | // reduces the intermediary size the most. |
582 | if ((storageReduction > maxStorageReduction) && |
583 | (additionalComputeFraction < computeToleranceThreshold)) { |
584 | maxStorageReduction = storageReduction; |
585 | bestDstLoopDepth = i; |
586 | minFusedLoopNestComputeCost = fusedLoopNestComputeCost; |
587 | sliceMemEstimate = sliceWriteRegionSizeBytes; |
588 | } |
589 | } |
590 | |
591 | // A simple cost model: fuse if it reduces the memory footprint. |
592 | |
593 | if (!bestDstLoopDepth) { |
594 | LLVM_DEBUG( |
595 | llvm::dbgs() |
596 | << "All fusion choices involve more than the threshold amount of " |
597 | "redundant computation; NOT fusing.\n" ); |
598 | return false; |
599 | } |
600 | |
601 | if (!bestDstLoopDepth) { |
602 | LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n" ); |
603 | return false; |
604 | } |
605 | |
606 | // Set dstLoopDepth based on best values from search. |
607 | *dstLoopDepth = *bestDstLoopDepth; |
608 | |
609 | LLVM_DEBUG( |
610 | llvm::dbgs() << " LoopFusion fusion stats:" |
611 | << "\n best loop depth: " << bestDstLoopDepth |
612 | << "\n src loop nest compute cost: " << srcLoopNestCost |
613 | << "\n dst loop nest compute cost: " << dstLoopNestCost |
614 | << "\n fused loop nest compute cost: " |
615 | << minFusedLoopNestComputeCost << "\n" ); |
616 | |
617 | auto dstMemSize = getMemoryFootprintBytes(dstForOp); |
618 | auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]); |
619 | |
620 | std::optional<double> storageReduction; |
621 | |
622 | if (!dstMemSize || !srcMemSize) { |
623 | LLVM_DEBUG(llvm::dbgs() |
624 | << " fusion memory benefit cannot be evaluated; NOT fusing.\n" ); |
625 | return false; |
626 | } |
627 | |
628 | auto srcMemSizeVal = *srcMemSize; |
629 | auto dstMemSizeVal = *dstMemSize; |
630 | |
631 | assert(sliceMemEstimate && "expected value" ); |
632 | auto fusedMem = dstMemSizeVal + *sliceMemEstimate; |
633 | |
634 | LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n" |
635 | << " dst mem: " << dstMemSizeVal << "\n" |
636 | << " fused mem: " << fusedMem << "\n" |
637 | << " slice mem: " << sliceMemEstimate << "\n" ); |
638 | |
639 | if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { |
640 | LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n" ); |
641 | return false; |
642 | } |
643 | storageReduction = |
644 | 100.0 * |
645 | (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); |
646 | |
647 | double additionalComputeFraction = |
648 | 100.0 * (minFusedLoopNestComputeCost / |
649 | (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
650 | 1); |
651 | (void)additionalComputeFraction; |
652 | LLVM_DEBUG({ |
653 | std::stringstream msg; |
654 | msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " |
655 | << std::setprecision(2) << additionalComputeFraction |
656 | << "% redundant computation and a " ; |
657 | msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>" ); |
658 | msg << "% storage reduction.\n" ; |
659 | llvm::dbgs() << msg.str(); |
660 | }); |
661 | |
662 | return true; |
663 | } |
664 | |
665 | namespace { |
666 | |
667 | // GreedyFusion greedily fuses loop nests which have a producer/consumer or |
668 | // input-reuse relationship on a memref, with the goal of improving locality. |
669 | // |
670 | // The steps of the producer-consumer fusion algorithm are as follows: |
671 | // |
672 | // *) A worklist is initialized with node ids from the dependence graph. |
673 | // *) For each node id in the worklist: |
674 | // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a |
675 | // candidate destination AffineForOp into which fusion will be attempted. |
676 | // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. |
677 | // *) For each LoadOp in 'dstLoadOps' do: |
678 | // *) Look up dependent loop nests which have a single store op to the same |
679 | // memref. |
680 | // *) Check if dependences would be violated by the fusion. |
681 | // *) Get a computation slice of 'srcLoopNest', which adjusts its loop |
682 | // bounds to be functions of 'dstLoopNest' IVs and symbols. |
683 | // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', |
684 | // at a loop depth determined by the cost model in 'isFusionProfitable'. |
685 | // *) Add the newly fused load/store operations to the state, |
686 | // and also add newly fused load ops to 'dstLoopOps' to be considered |
687 | // as fusion dst load ops in another iteration. |
688 | // *) Remove old src loop nest and its associated state. |
689 | // |
690 | // The steps of the input-reuse fusion algorithm are as follows: |
691 | // |
692 | // *) Initialize 'worklist' with node ids from the dependence graph. |
693 | // *) For each 'dstNode' in the worklist: |
694 | // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which |
695 | // loads from the same memref, but which has no dependence paths to/from. |
696 | // *) Get a computation slice of 'sibLoopNest', which adjusts its loop |
697 | // bounds to be functions of 'dstLoopNest' IVs and symbols. |
698 | // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', |
699 | // at a loop depth determined by the cost model in 'isFusionProfitable'. |
700 | // This function also checks that the memref write region of 'sibLoopNest', |
701 | // is preserved in the fused loop nest. |
702 | // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. |
703 | // |
704 | // Given a graph where top-level operations are vertices in the set 'V' and |
705 | // edges in the set 'E' are dependences between vertices, this algorithm |
706 | // takes O(V) time for initialization, and has runtime O(V + E). |
707 | // |
708 | // This greedy algorithm is not 'maximal' due to the current restriction of |
709 | // fusing along single producer consumer edges, but there is a TODO: to fix |
710 | // this. |
711 | // |
712 | // TODO: Experiment with other fusion policies. |
713 | struct GreedyFusion { |
714 | public: |
715 | // The data dependence graph to traverse during fusion. |
716 | MemRefDependenceGraph *mdg; |
717 | // Worklist of graph nodes visited during the fusion pass. |
718 | SmallVector<unsigned, 8> worklist; |
719 | // Parameter for local buffer size threshold. |
720 | unsigned localBufSizeThreshold; |
721 | // Parameter for fast memory space. |
722 | std::optional<unsigned> fastMemorySpace; |
723 | // If true, ignore any additional (redundant) computation tolerance threshold |
724 | // that would have prevented fusion. |
725 | bool maximalFusion; |
726 | // The amount of additional computation that is tolerated while fusing |
727 | // pair-wise as a fraction of the total computation. |
728 | double computeToleranceThreshold; |
729 | |
730 | using Node = MemRefDependenceGraph::Node; |
731 | |
732 | GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, |
733 | std::optional<unsigned> fastMemorySpace, bool maximalFusion, |
734 | double computeToleranceThreshold) |
735 | : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), |
736 | fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), |
737 | computeToleranceThreshold(computeToleranceThreshold) {} |
738 | |
739 | /// Initializes 'worklist' with nodes from 'mdg'. |
740 | void init() { |
741 | // TODO: Add a priority queue for prioritizing nodes by different |
742 | // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). |
743 | worklist.clear(); |
744 | for (auto &idAndNode : mdg->nodes) { |
745 | const Node &node = idAndNode.second; |
746 | worklist.push_back(Elt: node.id); |
747 | } |
748 | } |
749 | /// Run only sibling fusion on the `mdg`. |
750 | void runSiblingFusionOnly() { |
751 | fuseSiblingNodes(); |
752 | eraseUnusedMemRefAllocations(); |
753 | } |
754 | |
755 | /// Run only producer/consumer fusion on the `mdg`. |
756 | void runProducerConsumerFusionOnly() { |
757 | fuseProducerConsumerNodes( |
758 | /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
759 | eraseUnusedMemRefAllocations(); |
760 | } |
761 | |
762 | // Run the GreedyFusion pass. |
763 | // *) First pass through the nodes fuses single-use producer nodes into their |
764 | // unique consumer. |
765 | // *) Second pass fuses sibling nodes which share no dependence edges. |
766 | // *) Third pass fuses any remaining producer nodes into their users. |
767 | void runGreedyFusion() { |
768 | // TODO: Run this repeatedly until a fixed-point is reached. |
769 | fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); |
770 | fuseSiblingNodes(); |
771 | fuseProducerConsumerNodes( |
772 | /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
773 | eraseUnusedMemRefAllocations(); |
774 | } |
775 | |
776 | /// Returns true if a private memref can be created for `memref` given |
777 | /// the fusion scenario reflected by the other arguments. |
778 | bool canCreatePrivateMemRef(Value memref, |
779 | const DenseSet<Value> &srcEscapingMemRefs, |
780 | unsigned producerId, unsigned consumerId, |
781 | bool removeSrcNode) { |
782 | const Node *consumerNode = mdg->getNode(id: consumerId); |
783 | // If `memref` is an escaping one, do not create a private memref |
784 | // for the below scenarios, since doing so will leave the escaping |
785 | // memref unmodified as all the writes originally meant for the |
786 | // escaping memref would be performed on the private memref: |
787 | // 1. The source is to be removed after fusion, |
788 | // OR |
789 | // 2. The destination writes to `memref`. |
790 | if (srcEscapingMemRefs.count(V: memref) > 0 && |
791 | (removeSrcNode || consumerNode->getStoreOpCount(memref) > 0)) |
792 | return false; |
793 | |
794 | // Don't create a private memref if 'srcNode' has in edges on |
795 | // 'memref' or 'dstNode' has out edges on 'memref'. |
796 | if (mdg->getIncomingMemRefAccesses(id: producerId, memref) > 0 || |
797 | mdg->getOutEdgeCount(id: consumerId, memref) > 0) |
798 | return false; |
799 | |
800 | // If 'srcNode' will be removed but it has out edges on 'memref' to |
801 | // nodes other than 'dstNode', we have to preserve dependences and |
802 | // cannot create a private memref. |
803 | if (removeSrcNode && |
804 | any_of(Range&: mdg->outEdges[producerId], P: [&](const auto &edge) { |
805 | return edge.value == memref && edge.id != consumerId; |
806 | })) |
807 | return false; |
808 | |
809 | return true; |
810 | } |
811 | |
812 | /// Perform fusions with node `dstId` as the destination of fusion, with |
813 | /// No fusion is performed when producers with a user count greater than |
814 | /// `maxSrcUserCount` for any of the memrefs involved. |
815 | void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) { |
816 | LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n" ); |
817 | // Skip if this node was removed (fused into another node). |
818 | if (mdg->nodes.count(Val: dstId) == 0) |
819 | return; |
820 | // Get 'dstNode' into which to attempt fusion. |
821 | auto *dstNode = mdg->getNode(id: dstId); |
822 | // Skip if 'dstNode' is not a loop nest. |
823 | if (!isa<AffineForOp>(Val: dstNode->op)) |
824 | return; |
825 | // Skip if 'dstNode' is a loop nest returning values. |
826 | // TODO: support loop nests that return values. |
827 | if (dstNode->op->getNumResults() > 0) |
828 | return; |
829 | |
830 | LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n" ); |
831 | |
832 | // Sink sequential loops in 'dstNode' (and thus raise parallel loops) |
833 | // while preserving relative order. This can increase the maximum loop |
834 | // depth at which we can fuse a slice of a producer loop nest into a |
835 | // consumer loop nest. |
836 | sinkSequentialLoops(node: dstNode); |
837 | auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
838 | |
839 | // Try to fuse 'dstNode' with candidate producer loops until a fixed point |
840 | // is reached. Fusing two loops may expose new fusion opportunities. |
841 | bool dstNodeChanged; |
842 | do { |
843 | // Gather src loop candidates for 'dstNode' and visit them in "quasi" |
844 | // reverse program order to minimize the number of iterations needed to |
845 | // reach the fixed point. Note that this is a best effort approach since |
846 | // 'getProducerCandidates' does not always guarantee that program order |
847 | // in 'srcIdCandidates'. |
848 | dstNodeChanged = false; |
849 | SmallVector<unsigned, 16> srcIdCandidates; |
850 | getProducerCandidates(dstId, mdg, srcIdCandidates); |
851 | |
852 | for (unsigned srcId : llvm::reverse(C&: srcIdCandidates)) { |
853 | // Get 'srcNode' from which to attempt fusion into 'dstNode'. |
854 | auto *srcNode = mdg->getNode(id: srcId); |
855 | auto srcAffineForOp = cast<AffineForOp>(srcNode->op); |
856 | LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId |
857 | << " for dst loop " << dstId << "\n" ); |
858 | |
859 | // Skip if 'srcNode' is a loop nest returning values. |
860 | // TODO: support loop nests that return values. |
861 | if (isa<AffineForOp>(Val: srcNode->op) && srcNode->op->getNumResults() > 0) |
862 | continue; |
863 | |
864 | DenseSet<Value> producerConsumerMemrefs; |
865 | gatherProducerConsumerMemrefs(srcId, dstId, mdg, |
866 | producerConsumerMemrefs); |
867 | |
868 | // Skip if 'srcNode' out edge count on any memref is greater than |
869 | // 'maxSrcUserCount'. |
870 | if (any_of(Range&: producerConsumerMemrefs, P: [&](Value memref) { |
871 | return mdg->getOutEdgeCount(id: srcNode->id, memref) > |
872 | maxSrcUserCount; |
873 | })) |
874 | continue; |
875 | |
876 | // Gather memrefs in 'srcNode' that are written and escape out of the |
877 | // block (e.g., memref block arguments, returned memrefs, |
878 | // memrefs passed to function calls, etc.). |
879 | DenseSet<Value> srcEscapingMemRefs; |
880 | gatherEscapingMemrefs(id: srcNode->id, mdg, escapingMemRefs&: srcEscapingMemRefs); |
881 | |
882 | // Skip if there are non-affine operations in between the 'srcNode' |
883 | // and 'dstNode' using their memrefs. If so, we wouldn't be able to |
884 | // compute a legal insertion point for now. 'srcNode' and 'dstNode' |
885 | // memrefs with non-affine operation users would be considered |
886 | // escaping memrefs so we can limit this check to only scenarios with |
887 | // escaping memrefs. |
888 | if (!srcEscapingMemRefs.empty() && |
889 | hasNonAffineUsersOnThePath(srcId, dstId, mdg)) { |
890 | LLVM_DEBUG(llvm::dbgs() |
891 | << "Can't fuse: non-affine users in between the loops\n" ); |
892 | continue; |
893 | } |
894 | |
895 | // Compute an operation list insertion point for the fused loop |
896 | // nest which preserves dependences. |
897 | Operation *fusedLoopInsPoint = |
898 | mdg->getFusedLoopNestInsertionPoint(srcId: srcNode->id, dstId: dstNode->id); |
899 | if (fusedLoopInsPoint == nullptr) |
900 | continue; |
901 | |
902 | // It's possible this fusion is at an inner depth (i.e., there are |
903 | // common surrounding affine loops for the source and destination for |
904 | // ops). We need to get this number because the call to canFuseLoops |
905 | // needs to be passed the absolute depth. The max legal depth and the |
906 | // depths we try below are however *relative* and as such don't include |
907 | // the common depth. |
908 | SmallVector<AffineForOp, 4> surroundingLoops; |
909 | getAffineForIVs(*dstAffineForOp, &surroundingLoops); |
910 | unsigned numSurroundingLoops = surroundingLoops.size(); |
911 | |
912 | // Compute the innermost common loop depth for dstNode |
913 | // producer-consumer loads/stores. |
914 | SmallVector<Operation *, 2> dstMemrefOps; |
915 | for (Operation *op : dstNode->loads) |
916 | if (producerConsumerMemrefs.count( |
917 | cast<AffineReadOpInterface>(op).getMemRef()) > 0) |
918 | dstMemrefOps.push_back(Elt: op); |
919 | for (Operation *op : dstNode->stores) |
920 | if (producerConsumerMemrefs.count( |
921 | cast<AffineWriteOpInterface>(op).getMemRef())) |
922 | dstMemrefOps.push_back(Elt: op); |
923 | unsigned dstLoopDepthTest = |
924 | getInnermostCommonLoopDepth(ops: dstMemrefOps) - numSurroundingLoops; |
925 | |
926 | // Check the feasibility of fusing src loop nest into dst loop nest |
927 | // at loop depths in range [1, dstLoopDepthTest]. |
928 | unsigned maxLegalFusionDepth = 0; |
929 | SmallVector<ComputationSliceState, 8> depthSliceUnions; |
930 | depthSliceUnions.resize(N: dstLoopDepthTest); |
931 | FusionStrategy strategy(FusionStrategy::ProducerConsumer); |
932 | for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
933 | FusionResult result = |
934 | affine::canFuseLoops(srcForOp: srcAffineForOp, dstForOp: dstAffineForOp, |
935 | /*dstLoopDepth=*/i + numSurroundingLoops, |
936 | srcSlice: &depthSliceUnions[i - 1], fusionStrategy: strategy); |
937 | |
938 | if (result.value == FusionResult::Success) |
939 | maxLegalFusionDepth = i; |
940 | } |
941 | |
942 | if (maxLegalFusionDepth == 0) { |
943 | LLVM_DEBUG(llvm::dbgs() |
944 | << "Can't fuse: fusion is not legal at any depth\n" ); |
945 | continue; |
946 | } |
947 | |
948 | // Check if fusion would be profitable. We skip profitability analysis |
949 | // for maximal fusion since we already know the maximal legal depth to |
950 | // fuse. |
951 | unsigned bestDstLoopDepth = maxLegalFusionDepth; |
952 | if (!maximalFusion) { |
953 | // Retrieve producer stores from the src loop. |
954 | SmallVector<Operation *, 2> producerStores; |
955 | for (Operation *op : srcNode->stores) |
956 | if (producerConsumerMemrefs.count( |
957 | cast<AffineWriteOpInterface>(op).getMemRef())) |
958 | producerStores.push_back(Elt: op); |
959 | |
960 | // TODO: Suppport multiple producer stores in profitability |
961 | // analysis. We limit profitability analysis to only scenarios with |
962 | // a single producer store for now. Note that some multi-store |
963 | // producer scenarios will still go through profitability analysis |
964 | // if only one of the stores is involved the producer-consumer |
965 | // relationship of the candidate loops. |
966 | assert(!producerStores.empty() && "Expected producer store" ); |
967 | if (producerStores.size() > 1) |
968 | LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not " |
969 | "supported for this case\n" ); |
970 | else if (!isFusionProfitable(producerStores[0], producerStores[0], |
971 | dstAffineForOp, depthSliceUnions, |
972 | maxLegalFusionDepth, &bestDstLoopDepth, |
973 | computeToleranceThreshold)) |
974 | continue; |
975 | } |
976 | |
977 | assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth" ); |
978 | ComputationSliceState &bestSlice = |
979 | depthSliceUnions[bestDstLoopDepth - 1]; |
980 | assert(!bestSlice.isEmpty() && "Missing slice union for depth" ); |
981 | |
982 | // Determine if 'srcId' can be removed after fusion, taking into |
983 | // account remaining dependences, escaping memrefs and the fusion |
984 | // insertion point. |
985 | bool removeSrcNode = canRemoveSrcNodeAfterFusion( |
986 | srcId, dstId, fusionSlice: bestSlice, fusedLoopInsPoint, escapingMemRefs: srcEscapingMemRefs, |
987 | mdg); |
988 | |
989 | DenseSet<Value> privateMemrefs; |
990 | for (Value memref : producerConsumerMemrefs) { |
991 | if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, producerId: srcId, consumerId: dstId, |
992 | removeSrcNode)) { |
993 | // Create a private version of this memref. |
994 | LLVM_DEBUG(llvm::dbgs() |
995 | << "Creating private memref for " << memref << '\n'); |
996 | // Create a private version of this memref. |
997 | privateMemrefs.insert(V: memref); |
998 | } |
999 | } |
1000 | |
1001 | // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. |
1002 | fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice); |
1003 | dstNodeChanged = true; |
1004 | |
1005 | LLVM_DEBUG(llvm::dbgs() |
1006 | << "Fused src loop " << srcId << " into dst loop " << dstId |
1007 | << " at depth " << bestDstLoopDepth << ":\n" |
1008 | << dstAffineForOp << "\n" ); |
1009 | |
1010 | // Move 'dstAffineForOp' before 'insertPointInst' if needed. |
1011 | if (fusedLoopInsPoint != dstAffineForOp) |
1012 | dstAffineForOp->moveBefore(fusedLoopInsPoint); |
1013 | |
1014 | // Update edges between 'srcNode' and 'dstNode'. |
1015 | mdg->updateEdges(srcId: srcNode->id, dstId: dstNode->id, privateMemRefs: privateMemrefs, |
1016 | removeSrcId: removeSrcNode); |
1017 | |
1018 | // Create private memrefs. |
1019 | if (!privateMemrefs.empty()) { |
1020 | // Gather stores for all the private-to-be memrefs. |
1021 | DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores; |
1022 | dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) { |
1023 | Value storeMemRef = storeOp.getMemRef(); |
1024 | if (privateMemrefs.count(V: storeMemRef) > 0) |
1025 | privateMemRefToStores[storeMemRef].push_back(Elt: storeOp); |
1026 | }); |
1027 | |
1028 | // Replace original memrefs with private memrefs. Note that all the |
1029 | // loads and stores on these memrefs will be replaced with a new |
1030 | // loads and stores. Any reference to the original ones becomes |
1031 | // invalid after this point. |
1032 | for (auto &memrefToStoresPair : privateMemRefToStores) { |
1033 | // TODO: Use union of memref write regions to compute |
1034 | // private memref footprint. |
1035 | SmallVector<Operation *, 4> &storesForMemref = |
1036 | memrefToStoresPair.second; |
1037 | Value newMemRef = createPrivateMemRef( |
1038 | dstAffineForOp, storesForMemref[0], bestDstLoopDepth, |
1039 | fastMemorySpace, localBufSizeThreshold); |
1040 | // Create new node in dependence graph for 'newMemRef' alloc op. |
1041 | unsigned newMemRefNodeId = mdg->addNode(op: newMemRef.getDefiningOp()); |
1042 | // Add edge from 'newMemRef' node to dstNode. |
1043 | mdg->addEdge(srcId: newMemRefNodeId, dstId, value: newMemRef); |
1044 | } |
1045 | // One or more entries for 'newMemRef' alloc op are inserted into |
1046 | // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to |
1047 | // reallocate, update dstNode. |
1048 | dstNode = mdg->getNode(id: dstId); |
1049 | } |
1050 | |
1051 | // Collect dst loop stats after memref privatization transformation. |
1052 | LoopNestStateCollector dstLoopCollector; |
1053 | dstLoopCollector.collect(opToWalk: dstAffineForOp); |
1054 | |
1055 | // Clear and add back loads and stores. |
1056 | mdg->clearNodeLoadAndStores(id: dstNode->id); |
1057 | mdg->addToNode(id: dstId, loads: dstLoopCollector.loadOpInsts, |
1058 | stores: dstLoopCollector.storeOpInsts); |
1059 | |
1060 | if (removeSrcNode) { |
1061 | LLVM_DEBUG(llvm::dbgs() |
1062 | << "Removing src loop " << srcId << " after fusion\n" ); |
1063 | // srcNode is no longer valid after it is removed from mdg. |
1064 | srcAffineForOp.erase(); |
1065 | mdg->removeNode(id: srcId); |
1066 | srcNode = nullptr; |
1067 | } |
1068 | } |
1069 | } while (dstNodeChanged); |
1070 | } |
1071 | |
1072 | /// Visit each node in the graph, and for each node, attempt to fuse it with |
1073 | /// producer-consumer candidates. No fusion is performed when producers with a |
1074 | /// user count greater than `maxSrcUserCount` for any of the memrefs involved |
1075 | /// are encountered. |
1076 | void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { |
1077 | LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n" ); |
1078 | init(); |
1079 | while (!worklist.empty()) { |
1080 | unsigned dstId = worklist.back(); |
1081 | worklist.pop_back(); |
1082 | performFusionsIntoDest(dstId, maxSrcUserCount); |
1083 | } |
1084 | } |
1085 | |
1086 | // Visits each node in the graph, and for each node, attempts to fuse it with |
1087 | // its sibling nodes (nodes which share a parent, but no dependence edges). |
1088 | void fuseSiblingNodes() { |
1089 | LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n" ); |
1090 | init(); |
1091 | while (!worklist.empty()) { |
1092 | unsigned dstId = worklist.back(); |
1093 | worklist.pop_back(); |
1094 | |
1095 | // Skip if this node was removed (fused into another node). |
1096 | if (mdg->nodes.count(Val: dstId) == 0) |
1097 | continue; |
1098 | // Get 'dstNode' into which to attempt fusion. |
1099 | auto *dstNode = mdg->getNode(id: dstId); |
1100 | // Skip if 'dstNode' is not a loop nest. |
1101 | if (!isa<AffineForOp>(Val: dstNode->op)) |
1102 | continue; |
1103 | // Attempt to fuse 'dstNode' with its sibling nodes in the graph. |
1104 | fuseWithSiblingNodes(dstNode); |
1105 | } |
1106 | } |
1107 | |
1108 | // Attempt to fuse 'dstNode' with sibling nodes in the graph. |
1109 | void fuseWithSiblingNodes(Node *dstNode) { |
1110 | DenseSet<unsigned> visitedSibNodeIds; |
1111 | std::pair<unsigned, Value> idAndMemref; |
1112 | auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
1113 | |
1114 | while (findSiblingNodeToFuse(dstNode, visitedSibNodeIds: &visitedSibNodeIds, idAndMemrefToFuse: &idAndMemref)) { |
1115 | unsigned sibId = idAndMemref.first; |
1116 | Value memref = idAndMemref.second; |
1117 | // TODO: Check that 'sibStoreOpInst' post-dominates all other |
1118 | // stores to the same memref in 'sibNode' loop nest. |
1119 | auto *sibNode = mdg->getNode(id: sibId); |
1120 | // Compute an operation list insertion point for the fused loop |
1121 | // nest which preserves dependences. |
1122 | assert(sibNode->op->getBlock() == dstNode->op->getBlock()); |
1123 | Operation *insertPointInst = |
1124 | sibNode->op->isBeforeInBlock(other: dstNode->op) |
1125 | ? mdg->getFusedLoopNestInsertionPoint(srcId: sibNode->id, dstId: dstNode->id) |
1126 | : mdg->getFusedLoopNestInsertionPoint(srcId: dstNode->id, dstId: sibNode->id); |
1127 | if (insertPointInst == nullptr) |
1128 | continue; |
1129 | |
1130 | // Check if fusion would be profitable and at what depth. |
1131 | |
1132 | // Get unique 'sibNode' load op to 'memref'. |
1133 | SmallVector<Operation *, 2> sibLoadOpInsts; |
1134 | sibNode->getLoadOpsForMemref(memref, loadOps: &sibLoadOpInsts); |
1135 | // Currently findSiblingNodeToFuse searches for siblings with one load. |
1136 | assert(sibLoadOpInsts.size() == 1); |
1137 | Operation *sibLoadOpInst = sibLoadOpInsts[0]; |
1138 | |
1139 | // Gather 'dstNode' load ops to 'memref'. |
1140 | SmallVector<Operation *, 2> dstLoadOpInsts; |
1141 | dstNode->getLoadOpsForMemref(memref, loadOps: &dstLoadOpInsts); |
1142 | |
1143 | // It's possible this fusion is at an inner depth (i.e., there are common |
1144 | // surrounding affine loops for the source and destination for ops). We |
1145 | // need to get this number because the call to canFuseLoops needs to be |
1146 | // passed the absolute depth. The max legal depth and the depths we try |
1147 | // below are however *relative* and as such don't include the common |
1148 | // depth. |
1149 | SmallVector<AffineForOp, 4> surroundingLoops; |
1150 | getAffineForIVs(*dstAffineForOp, &surroundingLoops); |
1151 | unsigned numSurroundingLoops = surroundingLoops.size(); |
1152 | SmallVector<AffineForOp, 4> dstLoopIVs; |
1153 | getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs); |
1154 | unsigned dstLoopDepthTest = dstLoopIVs.size() - numSurroundingLoops; |
1155 | auto sibAffineForOp = cast<AffineForOp>(sibNode->op); |
1156 | |
1157 | // Compute loop depth and slice union for fusion. |
1158 | SmallVector<ComputationSliceState, 8> depthSliceUnions; |
1159 | depthSliceUnions.resize(N: dstLoopDepthTest); |
1160 | unsigned maxLegalFusionDepth = 0; |
1161 | FusionStrategy strategy(memref); |
1162 | for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
1163 | FusionResult result = |
1164 | affine::canFuseLoops(srcForOp: sibAffineForOp, dstForOp: dstAffineForOp, |
1165 | /*dstLoopDepth=*/i + numSurroundingLoops, |
1166 | srcSlice: &depthSliceUnions[i - 1], fusionStrategy: strategy); |
1167 | |
1168 | if (result.value == FusionResult::Success) |
1169 | maxLegalFusionDepth = i; |
1170 | } |
1171 | |
1172 | LLVM_DEBUG(llvm::dbgs() << "Max legal depth for fusion: " |
1173 | << maxLegalFusionDepth << '\n'); |
1174 | |
1175 | // Skip if fusion is not feasible at any loop depths. |
1176 | if (maxLegalFusionDepth == 0) |
1177 | continue; |
1178 | |
1179 | unsigned bestDstLoopDepth = maxLegalFusionDepth; |
1180 | if (!maximalFusion) { |
1181 | // Check if fusion would be profitable. For sibling fusion, the sibling |
1182 | // load op is treated as the src "store" op for fusion profitability |
1183 | // purposes. The footprint of the load in the slice relative to the |
1184 | // unfused source's determines reuse. |
1185 | if (!isFusionProfitable(sibLoadOpInst, sibLoadOpInst, dstAffineForOp, |
1186 | depthSliceUnions, maxLegalFusionDepth, |
1187 | &bestDstLoopDepth, computeToleranceThreshold)) |
1188 | continue; |
1189 | } |
1190 | |
1191 | assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth" ); |
1192 | assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() && |
1193 | "Fusion depth has no computed slice union" ); |
1194 | // Check if source loop is being inserted in the innermost |
1195 | // destination loop. Based on this, the fused loop may be optimized |
1196 | // further inside `fuseLoops`. |
1197 | bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest); |
1198 | // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. |
1199 | affine::fuseLoops(srcForOp: sibAffineForOp, dstForOp: dstAffineForOp, |
1200 | srcSlice: depthSliceUnions[bestDstLoopDepth - 1], |
1201 | isInnermostSiblingInsertionFusion: isInnermostInsertion); |
1202 | |
1203 | auto dstForInst = cast<AffineForOp>(dstNode->op); |
1204 | // Update operation position of fused loop nest (if needed). |
1205 | if (insertPointInst != dstForInst) { |
1206 | dstForInst->moveBefore(insertPointInst); |
1207 | } |
1208 | // Update data dependence graph state post fusion. |
1209 | updateStateAfterSiblingFusion(sibNode, dstNode); |
1210 | } |
1211 | } |
1212 | |
1213 | // Searches block argument uses and the graph from 'dstNode' looking for a |
1214 | // fusion candidate sibling node which shares no dependences with 'dstNode' |
1215 | // but which loads from the same memref. Returns true and sets |
1216 | // 'idAndMemrefToFuse' on success. Returns false otherwise. |
1217 | bool findSiblingNodeToFuse(Node *dstNode, |
1218 | DenseSet<unsigned> *visitedSibNodeIds, |
1219 | std::pair<unsigned, Value> *idAndMemrefToFuse) { |
1220 | // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse |
1221 | // on 'memref'. |
1222 | auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { |
1223 | // Skip if 'outEdge' is not a read-after-write dependence. |
1224 | // TODO: Remove restrict to single load op restriction. |
1225 | if (sibNode->getLoadOpCount(memref) != 1) |
1226 | return false; |
1227 | // Skip if there exists a path of dependent edges between |
1228 | // 'sibNode' and 'dstNode'. |
1229 | if (mdg->hasDependencePath(srcId: sibNode->id, dstId: dstNode->id) || |
1230 | mdg->hasDependencePath(srcId: dstNode->id, dstId: sibNode->id)) |
1231 | return false; |
1232 | // Skip sib node if it loads to (and stores from) the same memref on |
1233 | // which it also has an input dependence edge. |
1234 | DenseSet<Value> loadAndStoreMemrefSet; |
1235 | sibNode->getLoadAndStoreMemrefSet(loadAndStoreMemrefSet: &loadAndStoreMemrefSet); |
1236 | if (llvm::any_of(Range&: loadAndStoreMemrefSet, P: [=](Value memref) { |
1237 | return mdg->getIncomingMemRefAccesses(id: sibNode->id, memref) > 0; |
1238 | })) |
1239 | return false; |
1240 | |
1241 | // Check that all stores are to the same memref if any. |
1242 | DenseSet<Value> storeMemrefs; |
1243 | for (auto *storeOpInst : sibNode->stores) { |
1244 | storeMemrefs.insert( |
1245 | cast<AffineWriteOpInterface>(storeOpInst).getMemRef()); |
1246 | } |
1247 | if (storeMemrefs.size() > 1) |
1248 | return false; |
1249 | |
1250 | // Skip if a memref value in one node is used by a non-affine memref |
1251 | // access that lies between 'dstNode' and 'sibNode'. |
1252 | if (hasNonAffineUsersOnThePath(srcId: dstNode->id, dstId: sibNode->id, mdg) || |
1253 | hasNonAffineUsersOnThePath(srcId: sibNode->id, dstId: dstNode->id, mdg)) |
1254 | return false; |
1255 | return true; |
1256 | }; |
1257 | |
1258 | // Search for siblings which load the same memref block argument. |
1259 | Block *block = dstNode->op->getBlock(); |
1260 | for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) { |
1261 | for (Operation *user : block->getArgument(i).getUsers()) { |
1262 | auto loadOp = dyn_cast<AffineReadOpInterface>(user); |
1263 | if (!loadOp) |
1264 | continue; |
1265 | // Gather loops surrounding 'use'. |
1266 | SmallVector<AffineForOp, 4> loops; |
1267 | getAffineForIVs(*user, &loops); |
1268 | // Skip 'use' if it is not within a loop nest. |
1269 | // Find the surrounding affine.for nested immediately within the |
1270 | // block. |
1271 | auto *it = llvm::find_if(loops, [&](AffineForOp loop) { |
1272 | return loop->getBlock() == &mdg->block; |
1273 | }); |
1274 | // Skip 'use' if it is not within a loop nest in `block`. |
1275 | if (it == loops.end()) |
1276 | continue; |
1277 | Node *sibNode = mdg->getForOpNode(forOp: *it); |
1278 | assert(sibNode != nullptr); |
1279 | // Skip 'use' if it not a sibling to 'dstNode'. |
1280 | if (sibNode->id == dstNode->id) |
1281 | continue; |
1282 | // Skip 'use' if it has been visited. |
1283 | if (visitedSibNodeIds->count(V: sibNode->id) > 0) |
1284 | continue; |
1285 | // Skip 'use' if it does not load from the same memref as 'dstNode'. |
1286 | auto memref = loadOp.getMemRef(); |
1287 | if (dstNode->getLoadOpCount(memref: memref) == 0) |
1288 | continue; |
1289 | // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
1290 | if (canFuseWithSibNode(sibNode, memref)) { |
1291 | visitedSibNodeIds->insert(V: sibNode->id); |
1292 | idAndMemrefToFuse->first = sibNode->id; |
1293 | idAndMemrefToFuse->second = memref; |
1294 | return true; |
1295 | } |
1296 | } |
1297 | } |
1298 | |
1299 | // Search for siblings by following edges through an intermediate src node. |
1300 | // Collect candidate 'dstNode' input edges in 'inEdges'. |
1301 | SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; |
1302 | mdg->forEachMemRefInputEdge( |
1303 | id: dstNode->id, callback: [&](MemRefDependenceGraph::Edge inEdge) { |
1304 | // Add 'inEdge' if it is a read-after-write dependence. |
1305 | if (dstNode->getLoadOpCount(memref: inEdge.value) > 0 && |
1306 | mdg->getNode(id: inEdge.id)->getStoreOpCount(memref: inEdge.value) > 0) |
1307 | inEdges.push_back(Elt: inEdge); |
1308 | }); |
1309 | |
1310 | // Search for sibling nodes to fuse by visiting output edges from each input |
1311 | // edge in 'inEdges'. |
1312 | for (auto &inEdge : inEdges) { |
1313 | // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. |
1314 | SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; |
1315 | mdg->forEachMemRefOutputEdge( |
1316 | id: inEdge.id, callback: [&](MemRefDependenceGraph::Edge outEdge) { |
1317 | unsigned sibNodeId = outEdge.id; |
1318 | if (visitedSibNodeIds->count(V: sibNodeId) > 0) |
1319 | return; |
1320 | // Skip output edge if not a sibling using the same memref. |
1321 | if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) |
1322 | return; |
1323 | auto *sibNode = mdg->getNode(id: sibNodeId); |
1324 | if (!isa<AffineForOp>(Val: sibNode->op)) |
1325 | return; |
1326 | // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
1327 | if (canFuseWithSibNode(sibNode, outEdge.value)) { |
1328 | // Add candidate 'outEdge' to sibling node. |
1329 | outEdges.push_back(Elt: outEdge); |
1330 | } |
1331 | }); |
1332 | |
1333 | // Add first candidate if any were returned. |
1334 | if (!outEdges.empty()) { |
1335 | visitedSibNodeIds->insert(V: outEdges[0].id); |
1336 | idAndMemrefToFuse->first = outEdges[0].id; |
1337 | idAndMemrefToFuse->second = outEdges[0].value; |
1338 | return true; |
1339 | } |
1340 | } |
1341 | return false; |
1342 | } |
1343 | |
1344 | /// Update data dependence graph state to reflect sibling fusion of 'sibNode' |
1345 | /// into 'dstNode'. |
1346 | void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) { |
1347 | // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. |
1348 | mdg->updateEdges(sibId: sibNode->id, dstId: dstNode->id); |
1349 | |
1350 | // Collect dst loop stats after memref privatization transformation. |
1351 | auto dstForInst = cast<AffineForOp>(dstNode->op); |
1352 | LoopNestStateCollector dstLoopCollector; |
1353 | dstLoopCollector.collect(opToWalk: dstForInst); |
1354 | // Clear and add back loads and stores |
1355 | mdg->clearNodeLoadAndStores(id: dstNode->id); |
1356 | mdg->addToNode(id: dstNode->id, loads: dstLoopCollector.loadOpInsts, |
1357 | stores: dstLoopCollector.storeOpInsts); |
1358 | // Remove old sibling loop nest if it no longer has outgoing dependence |
1359 | // edges, and it does not write to a memref which escapes the block. |
1360 | if (mdg->getOutEdgeCount(id: sibNode->id) == 0) { |
1361 | Operation *op = sibNode->op; |
1362 | mdg->removeNode(id: sibNode->id); |
1363 | op->erase(); |
1364 | } |
1365 | } |
1366 | |
1367 | // Clean up any allocs with no users. |
1368 | void eraseUnusedMemRefAllocations() { |
1369 | for (auto &pair : mdg->memrefEdgeCount) { |
1370 | if (pair.second > 0) |
1371 | continue; |
1372 | auto memref = pair.first; |
1373 | // Skip if there exist other uses (return operation or function calls). |
1374 | if (!memref.use_empty()) |
1375 | continue; |
1376 | // Use list expected to match the dep graph info. |
1377 | auto *op = memref.getDefiningOp(); |
1378 | if (isa_and_nonnull<memref::AllocOp>(Val: op)) |
1379 | op->erase(); |
1380 | } |
1381 | } |
1382 | }; |
1383 | |
1384 | } // namespace |
1385 | |
1386 | /// Run fusion on `block`. |
1387 | void LoopFusion::runOnBlock(Block *block) { |
1388 | MemRefDependenceGraph g(*block); |
1389 | if (!g.init()) { |
1390 | LLVM_DEBUG(llvm::dbgs() << "MDG init failed\n" ); |
1391 | return; |
1392 | } |
1393 | |
1394 | std::optional<unsigned> fastMemorySpaceOpt; |
1395 | if (fastMemorySpace.hasValue()) |
1396 | fastMemorySpaceOpt = fastMemorySpace; |
1397 | unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; |
1398 | GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, |
1399 | maximalFusion, computeToleranceThreshold); |
1400 | |
1401 | if (affineFusionMode == FusionMode::ProducerConsumer) |
1402 | fusion.runProducerConsumerFusionOnly(); |
1403 | else if (affineFusionMode == FusionMode::Sibling) |
1404 | fusion.runSiblingFusionOnly(); |
1405 | else |
1406 | fusion.runGreedyFusion(); |
1407 | } |
1408 | |
1409 | void LoopFusion::runOnOperation() { |
1410 | // Call fusion on every op that has at least two affine.for nests (in post |
1411 | // order). |
1412 | getOperation()->walk([&](Operation *op) { |
1413 | for (Region ®ion : op->getRegions()) { |
1414 | for (Block &block : region.getBlocks()) { |
1415 | auto affineFors = block.getOps<AffineForOp>(); |
1416 | if (!affineFors.empty() && !llvm::hasSingleElement(C&: affineFors)) |
1417 | runOnBlock(block: &block); |
1418 | } |
1419 | } |
1420 | }); |
1421 | } |
1422 | |
1423 | std::unique_ptr<Pass> mlir::affine::createLoopFusionPass( |
1424 | unsigned fastMemorySpace, uint64_t localBufSizeThreshold, |
1425 | bool maximalFusion, enum FusionMode affineFusionMode) { |
1426 | return std::make_unique<LoopFusion>(args&: fastMemorySpace, args&: localBufSizeThreshold, |
1427 | args&: maximalFusion, args&: affineFusionMode); |
1428 | } |
1429 | |