1 | //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements affine fusion. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/Affine/Passes.h" |
14 | |
15 | #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" |
16 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
17 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
18 | #include "mlir/Dialect/Affine/LoopFusionUtils.h" |
19 | #include "mlir/Dialect/Affine/LoopUtils.h" |
20 | #include "mlir/Dialect/Affine/Utils.h" |
21 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
22 | #include "mlir/IR/AffineExpr.h" |
23 | #include "mlir/IR/AffineMap.h" |
24 | #include "mlir/IR/Builders.h" |
25 | #include "mlir/Transforms/Passes.h" |
26 | #include "llvm/ADT/DenseMap.h" |
27 | #include "llvm/ADT/DenseSet.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/Support/CommandLine.h" |
30 | #include "llvm/Support/Debug.h" |
31 | #include "llvm/Support/raw_ostream.h" |
32 | #include <iomanip> |
33 | #include <optional> |
34 | #include <sstream> |
35 | |
36 | namespace mlir { |
37 | namespace affine { |
38 | #define GEN_PASS_DEF_AFFINELOOPFUSION |
39 | #include "mlir/Dialect/Affine/Passes.h.inc" |
40 | } // namespace affine |
41 | } // namespace mlir |
42 | |
43 | #define DEBUG_TYPE "affine-fusion" |
44 | |
45 | using namespace mlir; |
46 | using namespace mlir::affine; |
47 | |
48 | namespace { |
49 | /// Loop fusion pass. This pass currently supports a greedy fusion policy, |
50 | /// which fuses loop nests with single-writer/single-reader memref dependences |
51 | /// with the goal of improving locality. |
52 | // TODO: Support fusion of source loop nests which write to multiple |
53 | // memrefs, where each memref can have multiple users (if profitable). |
54 | struct LoopFusion : public affine::impl::AffineLoopFusionBase<LoopFusion> { |
55 | LoopFusion() = default; |
56 | LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, |
57 | bool maximalFusion, enum FusionMode affineFusionMode) { |
58 | this->fastMemorySpace = fastMemorySpace; |
59 | this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; |
60 | this->maximalFusion = maximalFusion; |
61 | this->affineFusionMode = affineFusionMode; |
62 | } |
63 | |
64 | void runOnBlock(Block *block); |
65 | void runOnOperation() override; |
66 | }; |
67 | |
68 | } // namespace |
69 | |
70 | /// Returns true if node 'srcId' can be removed after fusing it with node |
71 | /// 'dstId'. The node can be removed if any of the following conditions are met: |
72 | /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs. |
73 | /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs |
74 | /// and the fusion slice is maximal. |
75 | /// 3. 'srcId' has output dependences after fusion, the fusion slice is |
76 | /// maximal and the fusion insertion point dominates all the dependences. |
77 | static bool canRemoveSrcNodeAfterFusion( |
78 | unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice, |
79 | Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs, |
80 | const MemRefDependenceGraph &mdg) { |
81 | |
82 | Operation *dstNodeOp = mdg.getNode(id: dstId)->op; |
83 | bool hasOutDepsAfterFusion = false; |
84 | |
85 | for (auto &outEdge : mdg.outEdges.lookup(Val: srcId)) { |
86 | Operation *depNodeOp = mdg.getNode(id: outEdge.id)->op; |
87 | // Skip dependence with dstOp since it will be removed after fusion. |
88 | if (depNodeOp == dstNodeOp) |
89 | continue; |
90 | |
91 | // Only fusion within the same block is supported. Use domination analysis |
92 | // when needed. |
93 | if (depNodeOp->getBlock() != dstNodeOp->getBlock()) |
94 | return false; |
95 | |
96 | // Check if the insertion point of the fused loop dominates the dependence. |
97 | // Otherwise, the src loop can't be removed. |
98 | if (fusedLoopInsPoint != depNodeOp && |
99 | !fusedLoopInsPoint->isBeforeInBlock(other: depNodeOp)) { |
100 | LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't " |
101 | "dominate dependence\n"); |
102 | return false; |
103 | } |
104 | |
105 | hasOutDepsAfterFusion = true; |
106 | } |
107 | |
108 | // If src loop has dependences after fusion or it writes to an live-out or |
109 | // escaping memref, we can only remove it if the fusion slice is maximal so |
110 | // that all the dependences are preserved. |
111 | if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) { |
112 | std::optional<bool> isMaximal = fusionSlice.isMaximal(); |
113 | if (!isMaximal) { |
114 | LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine " |
115 | "if fusion is maximal\n"); |
116 | return false; |
117 | } |
118 | |
119 | if (!*isMaximal) { |
120 | LLVM_DEBUG(llvm::dbgs() |
121 | << "Src loop can't be removed: fusion is not maximal\n"); |
122 | return false; |
123 | } |
124 | } |
125 | |
126 | return true; |
127 | } |
128 | |
129 | /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer |
130 | /// 'dstId'. Candidates are sorted by node id order. This order corresponds to |
131 | /// the program order when the 'mdg' is created. However, program order is not |
132 | /// guaranteed and must not be required by the client. Program order won't be |
133 | /// held if the 'mdg' is reused from a previous fusion step or if the node |
134 | /// creation order changes in the future to support more advance cases. |
135 | // TODO: Move this to a loop fusion utility once 'mdg' is also moved. |
136 | static void getProducerCandidates(unsigned dstId, |
137 | const MemRefDependenceGraph &mdg, |
138 | SmallVectorImpl<unsigned> &srcIdCandidates) { |
139 | // Skip if no input edges along which to fuse. |
140 | if (mdg.inEdges.count(Val: dstId) == 0) |
141 | return; |
142 | |
143 | // Gather memrefs from loads in 'dstId'. |
144 | auto *dstNode = mdg.getNode(id: dstId); |
145 | DenseSet<Value> consumedMemrefs; |
146 | for (Operation *load : dstNode->loads) |
147 | consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef()); |
148 | |
149 | // Traverse 'dstId' incoming edges and gather the nodes that contain a store |
150 | // to one of the consumed memrefs. |
151 | for (const auto &srcEdge : mdg.inEdges.lookup(Val: dstId)) { |
152 | const auto *srcNode = mdg.getNode(id: srcEdge.id); |
153 | // Skip if 'srcNode' is not a loop nest. |
154 | if (!isa<AffineForOp>(Val: srcNode->op)) |
155 | continue; |
156 | |
157 | if (any_of(Range: srcNode->stores, P: [&](Operation *op) { |
158 | auto storeOp = cast<AffineWriteOpInterface>(op); |
159 | return consumedMemrefs.count(storeOp.getMemRef()) > 0; |
160 | })) |
161 | srcIdCandidates.push_back(Elt: srcNode->id); |
162 | } |
163 | |
164 | llvm::sort(C&: srcIdCandidates); |
165 | srcIdCandidates.erase(CS: llvm::unique(R&: srcIdCandidates), CE: srcIdCandidates.end()); |
166 | } |
167 | |
168 | /// Returns in 'producerConsumerMemrefs' the memrefs involved in a |
169 | /// producer-consumer dependence between 'srcId' and 'dstId'. |
170 | static void |
171 | gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId, |
172 | const MemRefDependenceGraph &mdg, |
173 | DenseSet<Value> &producerConsumerMemrefs) { |
174 | auto *dstNode = mdg.getNode(id: dstId); |
175 | auto *srcNode = mdg.getNode(id: srcId); |
176 | gatherProducerConsumerMemrefs(srcOps: srcNode->stores, dstOps: dstNode->loads, |
177 | producerConsumerMemrefs); |
178 | } |
179 | |
180 | /// A memref escapes in the context of the fusion pass if either: |
181 | /// 1. it (or its alias) is a block argument, or |
182 | /// 2. created by an op not known to guarantee alias freedom, |
183 | /// 3. it (or its alias) are used by ops other than affine dereferencing ops |
184 | /// (e.g., by call op, memref load/store ops, alias creating ops, unknown ops, |
185 | /// terminator ops, etc.); such ops do not deference the memref in an affine |
186 | /// way. |
187 | static bool isEscapingMemref(Value memref, Block *block) { |
188 | Operation *defOp = memref.getDefiningOp(); |
189 | // Check if 'memref' is a block argument. |
190 | if (!defOp) |
191 | return true; |
192 | |
193 | // Check if this is defined to be an alias of another memref. |
194 | if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp)) |
195 | if (isEscapingMemref(viewOp.getViewSource(), block)) |
196 | return true; |
197 | |
198 | // Any op besides allocating ops wouldn't guarantee alias freedom |
199 | if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(op: defOp, value: memref)) |
200 | return true; |
201 | |
202 | // Check if 'memref' is used by a non-deferencing op (including unknown ones) |
203 | // (e.g., call ops, alias creating ops, etc.). |
204 | return llvm::any_of(Range: memref.getUsers(), P: [&](Operation *user) { |
205 | // Ignore users outside of `block`. |
206 | Operation *ancestorOp = block->getParent()->findAncestorOpInRegion(op&: *user); |
207 | if (!ancestorOp) |
208 | return true; |
209 | if (ancestorOp->getBlock() != block) |
210 | return false; |
211 | return !isa<AffineMapAccessInterface>(*user); |
212 | }); |
213 | } |
214 | |
215 | /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id' |
216 | /// that escape the block or are accessed in a non-affine way. |
217 | static void gatherEscapingMemrefs(unsigned id, const MemRefDependenceGraph &mdg, |
218 | DenseSet<Value> &escapingMemRefs) { |
219 | auto *node = mdg.getNode(id); |
220 | for (Operation *storeOp : node->stores) { |
221 | auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef(); |
222 | if (escapingMemRefs.count(V: memref)) |
223 | continue; |
224 | if (isEscapingMemref(memref, &mdg.block)) |
225 | escapingMemRefs.insert(memref); |
226 | } |
227 | } |
228 | |
229 | // Sinks all sequential loops to the innermost levels (while preserving |
230 | // relative order among them) and moves all parallel loops to the |
231 | // outermost (while again preserving relative order among them). |
232 | // This can increase the loop depth at which we can fuse a slice, since we are |
233 | // pushing loop carried dependence to a greater depth in the loop nest. |
234 | static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { |
235 | assert(isa<AffineForOp>(node->op)); |
236 | AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); |
237 | node->op = newRootForOp; |
238 | } |
239 | |
240 | /// Get the operation that should act as a dominance filter while replacing |
241 | /// memref uses with a private memref for which `producerStores` and |
242 | /// `sliceInsertionBlock` are provided. This effectively determines in what |
243 | /// part of the IR we should be performing the replacement. |
244 | static Operation * |
245 | getDominanceFilterForPrivateMemRefRepl(Block *sliceInsertionBlock, |
246 | ArrayRef<Operation *> producerStores) { |
247 | assert(!producerStores.empty() && "expected producer store"); |
248 | |
249 | // We first find the common block that contains the producer stores and |
250 | // the slice computation. The first ancestor among the ancestors of the |
251 | // producer stores in that common block is the dominance filter to use for |
252 | // replacement. |
253 | Block *commonBlock = nullptr; |
254 | // Find the common block of all relevant operations. |
255 | for (Operation *store : producerStores) { |
256 | Operation *otherOp = |
257 | !commonBlock ? &*sliceInsertionBlock->begin() : &*commonBlock->begin(); |
258 | commonBlock = findInnermostCommonBlockInScope(a: store, b: otherOp); |
259 | } |
260 | assert(commonBlock && |
261 | "common block of producer stores and slice should exist"); |
262 | |
263 | // Find the first ancestor among the ancestors of `producerStores` in |
264 | // `commonBlock`. |
265 | Operation *firstAncestor = nullptr; |
266 | for (Operation *store : producerStores) { |
267 | Operation *ancestor = commonBlock->findAncestorOpInBlock(op&: *store); |
268 | assert(ancestor && "producer store should be contained in common block"); |
269 | firstAncestor = !firstAncestor || ancestor->isBeforeInBlock(other: firstAncestor) |
270 | ? ancestor |
271 | : firstAncestor; |
272 | } |
273 | return firstAncestor; |
274 | } |
275 | |
276 | /// Returns the amount of additional (redundant) computation that will be done |
277 | /// as a fraction of the total computation if `srcForOp` is fused into |
278 | /// `dstForOp` at depth `depth`. The method returns the compute cost of the |
279 | /// slice and the fused nest's compute cost in the trailing output arguments. |
280 | static std::optional<double> getAdditionalComputeFraction( |
281 | AffineForOp srcForOp, AffineForOp dstForOp, unsigned depth, |
282 | ArrayRef<ComputationSliceState> depthSliceUnions, int64_t &sliceCost, |
283 | int64_t &fusedLoopNestComputeCost) { |
284 | LLVM_DEBUG(llvm::dbgs() << "Determining additional compute fraction...\n";); |
285 | // Compute cost of sliced and unsliced src loop nest. |
286 | // Walk src loop nest and collect stats. |
287 | LoopNestStats srcLoopNestStats; |
288 | if (!getLoopNestStats(srcForOp, &srcLoopNestStats)) { |
289 | LLVM_DEBUG(llvm::dbgs() << "Failed to get source loop nest stats.\n"); |
290 | return std::nullopt; |
291 | } |
292 | |
293 | // Compute cost of dst loop nest. |
294 | LoopNestStats dstLoopNestStats; |
295 | if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) { |
296 | LLVM_DEBUG(llvm::dbgs() << "Failed to get destination loop nest stats.\n"); |
297 | return std::nullopt; |
298 | } |
299 | |
300 | // Compute op instance count for the src loop nest without iteration slicing. |
301 | uint64_t srcLoopNestCost = getComputeCost(srcForOp, srcLoopNestStats); |
302 | |
303 | // Compute op cost for the dst loop nest. |
304 | uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); |
305 | |
306 | const ComputationSliceState &slice = depthSliceUnions[depth - 1]; |
307 | // Skip slice union if it wasn't computed for this depth. |
308 | if (slice.isEmpty()) { |
309 | LLVM_DEBUG(llvm::dbgs() << "Slice wasn't computed.\n"); |
310 | return std::nullopt; |
311 | } |
312 | |
313 | if (!getFusionComputeCost(srcForOp, srcLoopNestStats, dstForOp, |
314 | dstLoopNestStats, slice, |
315 | &fusedLoopNestComputeCost)) { |
316 | LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost\n"); |
317 | return std::nullopt; |
318 | } |
319 | |
320 | double additionalComputeFraction = |
321 | fusedLoopNestComputeCost / |
322 | (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
323 | 1; |
324 | |
325 | return additionalComputeFraction; |
326 | } |
327 | |
328 | // Creates and returns a private (single-user) memref for fused loop rooted at |
329 | // 'forOp', with (potentially reduced) memref size based on the memref region |
330 | // written to by `storeOps` at depth 'dstLoopDepth'. 'sliceInsertionBlock' |
331 | // specifies the block in which the slice was/will be inserted. The method |
332 | // expects that all stores ops to the memref have the same access function. |
333 | // Returns nullptr if the creation failed. |
334 | static Value createPrivateMemRef(AffineForOp forOp, |
335 | ArrayRef<Operation *> storeOps, |
336 | unsigned dstLoopDepth, |
337 | std::optional<unsigned> fastMemorySpace, |
338 | Block *sliceInsertionBlock, |
339 | uint64_t localBufSizeThreshold) { |
340 | assert(!storeOps.empty() && "no source stores supplied"); |
341 | |
342 | // Check if all stores have the same access function; we only support this |
343 | // case. |
344 | // TODO: Use union of memref write regions to compute private memref footprint |
345 | // for store ops with different access functions. |
346 | if (storeOps.size() > 1 && |
347 | !std::equal(first1: std::next(x: storeOps.begin()), last1: storeOps.end(), first2: storeOps.begin(), |
348 | binary_pred: [](Operation *a, Operation *b) { |
349 | MemRefAccess aM(cast<AffineWriteOpInterface>(a)); |
350 | MemRefAccess bM(cast<AffineWriteOpInterface>(b)); |
351 | return aM == bM; |
352 | })) { |
353 | LLVM_DEBUG(llvm::dbgs() |
354 | << "Private memref creation unsupported for multiple producer " |
355 | "stores with different access functions.\n"); |
356 | return nullptr; |
357 | } |
358 | |
359 | Operation *srcStoreOp = storeOps[0]; |
360 | |
361 | // Create builder to insert alloc op just before 'forOp'. |
362 | OpBuilder b(forOp); |
363 | // Builder to create constants at the top level. |
364 | OpBuilder top(forOp->getParentRegion()); |
365 | // Create new memref type based on slice bounds. |
366 | auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOp).getMemRef(); |
367 | auto oldMemRefType = cast<MemRefType>(oldMemRef.getType()); |
368 | unsigned rank = oldMemRefType.getRank(); |
369 | |
370 | // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. |
371 | MemRefRegion region(srcStoreOp->getLoc()); |
372 | bool validRegion = succeeded( |
373 | Result: region.compute(op: srcStoreOp, loopDepth: dstLoopDepth, /*sliceState=*/nullptr, |
374 | /*addMemRefDimBounds=*/true, /*dropLocalVars=*/false)); |
375 | |
376 | (void)validRegion; |
377 | assert(validRegion && "unexpected memref region failure"); |
378 | SmallVector<int64_t, 4> newShape; |
379 | SmallVector<AffineMap, 4> lbs; |
380 | lbs.reserve(N: rank); |
381 | // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed |
382 | // by 'srcStoreOpInst' at depth 'dstLoopDepth'. |
383 | std::optional<int64_t> numElements = |
384 | region.getConstantBoundingSizeAndShape(shape: &newShape, lbs: &lbs); |
385 | assert(numElements && "non-constant number of elts in local buffer"); |
386 | |
387 | const FlatAffineValueConstraints *cst = region.getConstraints(); |
388 | // 'outerIVs' holds the values that this memory region is symbolic/parametric |
389 | // on; this would correspond to loop IVs surrounding the level at which the |
390 | // slice is being materialized. |
391 | SmallVector<Value, 8> outerIVs; |
392 | cst->getValues(start: rank, end: cst->getNumDimAndSymbolVars(), values: &outerIVs); |
393 | |
394 | // Build 'rank' AffineExprs from MemRefRegion 'lbs' |
395 | SmallVector<AffineExpr, 4> offsets; |
396 | offsets.reserve(N: rank); |
397 | |
398 | // Outer IVs are considered symbols during memref region computation. Replace |
399 | // them uniformly with dims so that valid IR is guaranteed. |
400 | SmallVector<AffineExpr> replacements; |
401 | for (unsigned j = 0, e = lbs[0].getNumSymbols(); j < e; ++j) |
402 | replacements.push_back(Elt: mlir::getAffineDimExpr(position: j, context: forOp.getContext())); |
403 | for (unsigned d = 0; d < rank; ++d) { |
404 | assert(lbs[d].getNumResults() == 1 && |
405 | "invalid private memref bound calculation"); |
406 | offsets.push_back(Elt: lbs[d].getResult(idx: 0).replaceSymbols(symReplacements: replacements)); |
407 | } |
408 | |
409 | // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed |
410 | // by 'srcStoreOpInst'. |
411 | auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType); |
412 | assert(eltSize && "memrefs with size elt types expected"); |
413 | uint64_t bufSize = *eltSize * *numElements; |
414 | Attribute newMemSpace; |
415 | if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) { |
416 | newMemSpace = b.getI64IntegerAttr(*fastMemorySpace); |
417 | } else { |
418 | newMemSpace = oldMemRefType.getMemorySpace(); |
419 | } |
420 | auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), |
421 | /*map=*/AffineMap(), newMemSpace); |
422 | |
423 | // Create new private memref for fused loop 'forOp'. 'newShape' is always |
424 | // a constant shape. |
425 | // TODO: Create/move alloc ops for private memrefs closer to their |
426 | // consumer loop nests to reduce their live range. Currently they are added |
427 | // at the beginning of the block, because loop nests can be reordered |
428 | // during the fusion pass. |
429 | Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType); |
430 | |
431 | // Build an AffineMap to remap access functions based on lower bound offsets. |
432 | SmallVector<AffineExpr, 4> remapExprs; |
433 | remapExprs.reserve(N: rank); |
434 | for (unsigned i = 0; i < rank; i++) { |
435 | auto dimExpr = b.getAffineDimExpr(position: outerIVs.size() + i); |
436 | |
437 | auto remapExpr = |
438 | simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); |
439 | remapExprs.push_back(Elt: remapExpr); |
440 | } |
441 | |
442 | auto indexRemap = |
443 | AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); |
444 | |
445 | // Replace all users of 'oldMemRef' with 'newMemRef'. |
446 | Operation *domFilter = |
447 | getDominanceFilterForPrivateMemRefRepl(sliceInsertionBlock, producerStores: storeOps); |
448 | LogicalResult res = replaceAllMemRefUsesWith( |
449 | oldMemRef, newMemRef, /*extraIndices=*/{}, indexRemap, |
450 | /*extraOperands=*/outerIVs, |
451 | /*symbolOperands=*/{}, domFilter); |
452 | assert(succeeded(res) && |
453 | "replaceAllMemrefUsesWith should always succeed here"); |
454 | (void)res; |
455 | LLVM_DEBUG(llvm::dbgs() << "Created private memref of type: "<< newMemRefType |
456 | << '\n'); |
457 | return newMemRef; |
458 | } |
459 | |
460 | // Checks the profitability of fusing a backwards slice of the loop nest |
461 | // `srcForOp` into the loop nest surrounding 'dstLoadOpInsts'. The argument |
462 | // 'srcStoreOpInst' is used to calculate the storage reduction on the memref |
463 | // being produced and consumed, which is an input to the cost model. For |
464 | // producer-consumer fusion, 'srcStoreOpInst' will be the same as 'srcOpInst', |
465 | // as we are slicing w.r.t to that producer. For input-reuse fusion, 'srcOpInst' |
466 | // will be the src loop nest LoadOp which reads from the same memref as dst loop |
467 | // nest load ops, and 'srcStoreOpInst' will be the unique store op in the src |
468 | // node, which will be used to check that the write region is the same after |
469 | // input-reuse fusion. Computation slices are provided in 'depthSliceUnions' for |
470 | // each legal fusion depth. The maximal depth at which fusion is legal is |
471 | // provided in 'maxLegalFusionDepth'. Returns true if it is profitable to fuse |
472 | // the candidate loop nests. Returns false otherwise. `dstLoopDepth` is set to |
473 | // the most profitable depth at which to materialize the source loop nest slice. |
474 | // The profitability model executes the following steps: |
475 | // *) Computes the backward computation slice at 'srcOpInst'. This |
476 | // computation slice of the loop nest surrounding 'srcOpInst' is |
477 | // represented by modified src loop bounds in 'sliceState', which are |
478 | // functions of loop IVs in the loop nest surrounding 'srcOpInst'. |
479 | // *) Computes the cost of unfused src/dst loop nests (currently the cost of a |
480 | // loop nest is the total number of dynamic operation instances in the loop |
481 | // nest). |
482 | // *) Computes the cost of fusing a slice of the src loop nest into the dst |
483 | // loop nest at various values of dst loop depth, attempting to fuse |
484 | // the largest computation slice at the maximal dst loop depth (closest to |
485 | // the load) to minimize reuse distance and potentially enable subsequent |
486 | // load/store forwarding. |
487 | // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop |
488 | // nest, at which the src computation slice is inserted/fused. |
489 | // NOTE: We attempt to maximize the dst loop depth, but there are cases |
490 | // where a particular setting for 'dstLoopNest' might fuse an unsliced |
491 | // loop (within the src computation slice) at a depth which results in |
492 | // excessive recomputation (see unit tests for examples). |
493 | // *) Compares the total cost of the unfused loop nests to the min cost fused |
494 | // loop nest computed in the previous step, and returns true if the latter |
495 | // is lower. |
496 | // TODO: Extend profitability analysis to support scenarios with multiple |
497 | // stores. |
498 | static bool isFusionProfitable(AffineForOp srcForOp, |
499 | ArrayRef<Operation *> producerStores, |
500 | AffineForOp dstForOp, |
501 | ArrayRef<ComputationSliceState> depthSliceUnions, |
502 | unsigned maxLegalFusionDepth, |
503 | unsigned *dstLoopDepth, |
504 | double computeToleranceThreshold) { |
505 | LLVM_DEBUG({ |
506 | llvm::dbgs() |
507 | << "Checking whether fusion is profitable between source nest:\n"; |
508 | llvm::dbgs() << ' ' << srcForOp << " and destination nest:\n"; |
509 | llvm::dbgs() << dstForOp << "\n"; |
510 | }); |
511 | |
512 | if (maxLegalFusionDepth == 0) { |
513 | LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth is 0\n"); |
514 | return false; |
515 | } |
516 | |
517 | // Compute cost of sliced and unsliced src loop nest. |
518 | |
519 | // Walk src loop nest and collect stats. |
520 | LoopNestStats srcLoopNestStats; |
521 | if (!getLoopNestStats(srcForOp, &srcLoopNestStats)) |
522 | return false; |
523 | |
524 | // Compute cost of dst loop nest. |
525 | LoopNestStats dstLoopNestStats; |
526 | if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) |
527 | return false; |
528 | |
529 | // We limit profitability analysis to only scenarios with |
530 | // a single producer store for now. Note that some multi-store |
531 | // producer scenarios will still go through profitability analysis |
532 | // if only one of the stores is involved in the producer-consumer |
533 | // relationship of the candidate loops. |
534 | // TODO: Suppport multiple producer stores in profitability |
535 | // analysis. |
536 | if (producerStores.size() > 1) { |
537 | LLVM_DEBUG(llvm::dbgs() << "Limited profitability analysis. Not " |
538 | "supported for multiple producer store case.\n"); |
539 | int64_t sliceCost; |
540 | int64_t fusedLoopNestComputeCost; |
541 | // We will still fuse if fusion obeys the specified compute |
542 | // tolerance at the max legal depth. |
543 | auto fraction = getAdditionalComputeFraction( |
544 | srcForOp, dstForOp, maxLegalFusionDepth, depthSliceUnions, sliceCost, |
545 | fusedLoopNestComputeCost); |
546 | if (!fraction || fraction > computeToleranceThreshold) { |
547 | LLVM_DEBUG(llvm::dbgs() << "Additional computation exceeds " |
548 | "compute tolerance. Not fusing.\n"); |
549 | return false; |
550 | } |
551 | LLVM_DEBUG(llvm::dbgs() |
552 | << "Considering fusion profitable at max legal depth.\n"); |
553 | return true; |
554 | } |
555 | |
556 | Operation *srcStoreOp = producerStores.front(); |
557 | |
558 | // Search for min cost value for 'dstLoopDepth'. At each value of |
559 | // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice |
560 | // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union |
561 | // of these bounds). Next the union slice bounds are used to calculate |
562 | // the cost of the slice and the cost of the slice inserted into the dst |
563 | // loop nest at 'dstLoopDepth'. |
564 | uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); |
565 | double maxStorageReduction = 0.0; |
566 | std::optional<uint64_t> sliceMemEstimate; |
567 | |
568 | // The best loop depth at which to materialize the slice. |
569 | std::optional<unsigned> bestDstLoopDepth; |
570 | |
571 | // Compute src loop nest write region size. |
572 | MemRefRegion srcWriteRegion(srcStoreOp->getLoc()); |
573 | if (failed(Result: srcWriteRegion.compute(op: srcStoreOp, /*loopDepth=*/0))) { |
574 | LLVM_DEBUG(llvm::dbgs() |
575 | << "Unable to compute MemRefRegion for source operation\n"); |
576 | return false; |
577 | } |
578 | |
579 | std::optional<int64_t> maybeSrcWriteRegionSizeBytes = |
580 | srcWriteRegion.getRegionSize(); |
581 | if (!maybeSrcWriteRegionSizeBytes.has_value()) |
582 | return false; |
583 | int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes; |
584 | |
585 | // Compute op instance count for the src loop nest without iteration slicing. |
586 | uint64_t srcLoopNestCost = getComputeCost(srcForOp, srcLoopNestStats); |
587 | |
588 | // Compute op instance count for the destination loop nest. |
589 | uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); |
590 | |
591 | // Evaluate all depth choices for materializing the slice in the destination |
592 | // loop nest. |
593 | for (unsigned i = maxLegalFusionDepth; i >= 1; --i) { |
594 | const ComputationSliceState &slice = depthSliceUnions[i - 1]; |
595 | // Skip slice union if it wasn't computed for this depth. |
596 | if (slice.isEmpty()) |
597 | continue; |
598 | |
599 | // Compute cost of the slice separately, i.e, the compute cost of the slice |
600 | // if all outer trip counts are one. |
601 | int64_t sliceCost; |
602 | |
603 | int64_t fusedLoopNestComputeCost; |
604 | |
605 | auto mayAdditionalComputeFraction = |
606 | getAdditionalComputeFraction(srcForOp, dstForOp, i, depthSliceUnions, |
607 | sliceCost, fusedLoopNestComputeCost); |
608 | if (!mayAdditionalComputeFraction) { |
609 | LLVM_DEBUG(llvm::dbgs() |
610 | << "Can't determine additional compute fraction.\n"); |
611 | continue; |
612 | } |
613 | double additionalComputeFraction = *mayAdditionalComputeFraction; |
614 | |
615 | // Determine what the slice write MemRefRegion would be, if the src loop |
616 | // nest slice 'slice' were to be inserted into the dst loop nest at loop |
617 | // depth 'i'. |
618 | MemRefRegion sliceWriteRegion(srcStoreOp->getLoc()); |
619 | if (failed(Result: sliceWriteRegion.compute(op: srcStoreOp, /*loopDepth=*/0, sliceState: &slice))) { |
620 | LLVM_DEBUG(llvm::dbgs() |
621 | << "Failed to compute slice write region at loopDepth: "<< i |
622 | << "\n"); |
623 | continue; |
624 | } |
625 | |
626 | std::optional<int64_t> maybeSliceWriteRegionSizeBytes = |
627 | sliceWriteRegion.getRegionSize(); |
628 | if (!maybeSliceWriteRegionSizeBytes.has_value() || |
629 | *maybeSliceWriteRegionSizeBytes == 0) { |
630 | LLVM_DEBUG(llvm::dbgs() |
631 | << "Failed to get slice write region size at loopDepth: "<< i |
632 | << "\n"); |
633 | continue; |
634 | } |
635 | int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes; |
636 | |
637 | double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / |
638 | static_cast<double>(sliceWriteRegionSizeBytes); |
639 | |
640 | LLVM_DEBUG({ |
641 | std::stringstream msg; |
642 | msg << " evaluating fusion profitability at depth : "<< i << "\n" |
643 | << std::fixed << std::setprecision(2) |
644 | << " additional compute fraction: " |
645 | << 100.0 * additionalComputeFraction << "%\n" |
646 | << " storage reduction factor: "<< storageReduction << "x\n" |
647 | << " fused nest cost: "<< fusedLoopNestComputeCost << "\n" |
648 | << " src write region size: "<< srcWriteRegionSizeBytes << "\n" |
649 | << " slice write region size: "<< sliceWriteRegionSizeBytes |
650 | << "\n"; |
651 | llvm::dbgs() << msg.str(); |
652 | }); |
653 | |
654 | // TODO: This is a placeholder cost model. |
655 | // Among all choices that add an acceptable amount of redundant computation |
656 | // (as per computeToleranceThreshold), we will simply pick the one that |
657 | // reduces the intermediary size the most. |
658 | if ((storageReduction > maxStorageReduction) && |
659 | (additionalComputeFraction <= computeToleranceThreshold)) { |
660 | maxStorageReduction = storageReduction; |
661 | bestDstLoopDepth = i; |
662 | minFusedLoopNestComputeCost = fusedLoopNestComputeCost; |
663 | sliceMemEstimate = sliceWriteRegionSizeBytes; |
664 | } |
665 | } |
666 | |
667 | // A simple cost model: fuse if it reduces the memory footprint. |
668 | |
669 | if (!bestDstLoopDepth) { |
670 | LLVM_DEBUG( |
671 | llvm::dbgs() |
672 | << "All fusion choices involve more than the threshold amount of " |
673 | "redundant computation; NOT fusing.\n"); |
674 | return false; |
675 | } |
676 | |
677 | if (!bestDstLoopDepth) { |
678 | LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n"); |
679 | return false; |
680 | } |
681 | |
682 | // Set dstLoopDepth based on best values from search. |
683 | *dstLoopDepth = *bestDstLoopDepth; |
684 | |
685 | LLVM_DEBUG( |
686 | llvm::dbgs() << " LoopFusion fusion stats:" |
687 | << "\n best loop depth: "<< bestDstLoopDepth |
688 | << "\n src loop nest compute cost: "<< srcLoopNestCost |
689 | << "\n dst loop nest compute cost: "<< dstLoopNestCost |
690 | << "\n fused loop nest compute cost: " |
691 | << minFusedLoopNestComputeCost << "\n"); |
692 | |
693 | auto dstMemSize = getMemoryFootprintBytes(dstForOp); |
694 | auto srcMemSize = getMemoryFootprintBytes(srcForOp); |
695 | |
696 | std::optional<double> storageReduction; |
697 | |
698 | if (!dstMemSize || !srcMemSize) { |
699 | LLVM_DEBUG(llvm::dbgs() |
700 | << " fusion memory benefit cannot be evaluated; NOT fusing.\n"); |
701 | return false; |
702 | } |
703 | |
704 | auto srcMemSizeVal = *srcMemSize; |
705 | auto dstMemSizeVal = *dstMemSize; |
706 | |
707 | assert(sliceMemEstimate && "expected value"); |
708 | auto fusedMem = dstMemSizeVal + *sliceMemEstimate; |
709 | |
710 | LLVM_DEBUG(llvm::dbgs() << " src mem: "<< srcMemSizeVal << "\n" |
711 | << " dst mem: "<< dstMemSizeVal << "\n" |
712 | << " fused mem: "<< fusedMem << "\n" |
713 | << " slice mem: "<< sliceMemEstimate << "\n"); |
714 | |
715 | if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { |
716 | LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n"); |
717 | return false; |
718 | } |
719 | storageReduction = |
720 | 100.0 * |
721 | (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); |
722 | |
723 | double additionalComputeFraction = |
724 | 100.0 * (minFusedLoopNestComputeCost / |
725 | (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - |
726 | 1); |
727 | (void)additionalComputeFraction; |
728 | LLVM_DEBUG({ |
729 | std::stringstream msg; |
730 | msg << " fusion is most profitable at depth "<< *dstLoopDepth << " with " |
731 | << std::setprecision(2) << additionalComputeFraction |
732 | << "% redundant computation and a "; |
733 | msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>"); |
734 | msg << "% storage reduction.\n"; |
735 | llvm::dbgs() << msg.str(); |
736 | }); |
737 | |
738 | return true; |
739 | } |
740 | |
741 | namespace { |
742 | |
743 | // GreedyFusion greedily fuses loop nests which have a producer/consumer or |
744 | // input-reuse relationship on a memref, with the goal of improving locality. |
745 | // |
746 | // The steps of the producer-consumer fusion algorithm are as follows: |
747 | // |
748 | // *) A worklist is initialized with node ids from the dependence graph. |
749 | // *) For each node id in the worklist: |
750 | // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a |
751 | // candidate destination AffineForOp into which fusion will be attempted. |
752 | // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. |
753 | // *) For each LoadOp in 'dstLoadOps' do: |
754 | // *) Look up dependent loop nests which have a single store op to the same |
755 | // memref. |
756 | // *) Check if dependences would be violated by the fusion. |
757 | // *) Get a computation slice of 'srcLoopNest', which adjusts its loop |
758 | // bounds to be functions of 'dstLoopNest' IVs and symbols. |
759 | // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', |
760 | // at a loop depth determined by the cost model in 'isFusionProfitable'. |
761 | // *) Add the newly fused load/store operations to the state, |
762 | // and also add newly fused load ops to 'dstLoopOps' to be considered |
763 | // as fusion dst load ops in another iteration. |
764 | // *) Remove old src loop nest and its associated state. |
765 | // |
766 | // The steps of the input-reuse fusion algorithm are as follows: |
767 | // |
768 | // *) Initialize 'worklist' with node ids from the dependence graph. |
769 | // *) For each 'dstNode' in the worklist: |
770 | // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which |
771 | // loads from the same memref, but which has no dependence paths to/from. |
772 | // *) Get a computation slice of 'sibLoopNest', which adjusts its loop |
773 | // bounds to be functions of 'dstLoopNest' IVs and symbols. |
774 | // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', |
775 | // at a loop depth determined by the cost model in 'isFusionProfitable'. |
776 | // This function also checks that the memref write region of 'sibLoopNest', |
777 | // is preserved in the fused loop nest. |
778 | // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. |
779 | // |
780 | // Given a graph where top-level operations are vertices in the set 'V' and |
781 | // edges in the set 'E' are dependences between vertices, this algorithm |
782 | // takes O(V) time for initialization, and has runtime O(V + E). |
783 | // |
784 | // This greedy algorithm is not 'maximal' due to the current restriction of |
785 | // fusing along single producer consumer edges, but there is a TODO: to fix |
786 | // this. |
787 | // |
788 | // TODO: Experiment with other fusion policies. |
789 | struct GreedyFusion { |
790 | public: |
791 | // The data dependence graph to traverse during fusion. |
792 | MemRefDependenceGraph *mdg; |
793 | // Worklist of graph nodes visited during the fusion pass. |
794 | SmallVector<unsigned, 8> worklist; |
795 | // Parameter for local buffer size threshold. |
796 | unsigned localBufSizeThreshold; |
797 | // Parameter for fast memory space. |
798 | std::optional<unsigned> fastMemorySpace; |
799 | // If true, ignore any additional (redundant) computation tolerance threshold |
800 | // that would have prevented fusion. |
801 | bool maximalFusion; |
802 | // The amount of additional computation that is tolerated while fusing |
803 | // pair-wise as a fraction of the total computation. |
804 | double computeToleranceThreshold; |
805 | |
806 | using Node = MemRefDependenceGraph::Node; |
807 | |
808 | GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, |
809 | std::optional<unsigned> fastMemorySpace, bool maximalFusion, |
810 | double computeToleranceThreshold) |
811 | : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), |
812 | fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), |
813 | computeToleranceThreshold(computeToleranceThreshold) {} |
814 | |
815 | /// Initializes 'worklist' with nodes from 'mdg'. |
816 | void init() { |
817 | // TODO: Add a priority queue for prioritizing nodes by different |
818 | // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). |
819 | worklist.clear(); |
820 | for (auto &idAndNode : mdg->nodes) { |
821 | const Node &node = idAndNode.second; |
822 | worklist.push_back(Elt: node.id); |
823 | } |
824 | } |
825 | /// Run only sibling fusion on the `mdg`. |
826 | void runSiblingFusionOnly() { |
827 | fuseSiblingNodes(); |
828 | eraseUnusedMemRefAllocations(); |
829 | } |
830 | |
831 | /// Run only producer/consumer fusion on the `mdg`. |
832 | void runProducerConsumerFusionOnly() { |
833 | fuseProducerConsumerNodes( |
834 | /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
835 | eraseUnusedMemRefAllocations(); |
836 | } |
837 | |
838 | // Run the GreedyFusion pass. |
839 | // *) First pass through the nodes fuses single-use producer nodes into their |
840 | // unique consumer. |
841 | // *) Second pass fuses sibling nodes which share no dependence edges. |
842 | // *) Third pass fuses any remaining producer nodes into their users. |
843 | void runGreedyFusion() { |
844 | // TODO: Run this repeatedly until a fixed-point is reached. |
845 | fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); |
846 | fuseSiblingNodes(); |
847 | fuseProducerConsumerNodes( |
848 | /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); |
849 | eraseUnusedMemRefAllocations(); |
850 | } |
851 | |
852 | /// Returns true if a private memref can be created for `memref` given |
853 | /// the fusion scenario reflected by the other arguments. |
854 | bool canCreatePrivateMemRef(Value memref, |
855 | const DenseSet<Value> &srcEscapingMemRefs, |
856 | unsigned producerId, unsigned consumerId, |
857 | bool removeSrcNode) { |
858 | // We can't generate private memrefs if their size can't be computed. |
859 | if (!getMemRefIntOrFloatEltSizeInBytes(cast<MemRefType>(memref.getType()))) |
860 | return false; |
861 | const Node *consumerNode = mdg->getNode(id: consumerId); |
862 | // If `memref` is an escaping one, do not create a private memref |
863 | // for the below scenarios, since doing so will leave the escaping |
864 | // memref unmodified as all the writes originally meant for the |
865 | // escaping memref would be performed on the private memref: |
866 | // 1. The source is to be removed after fusion, |
867 | // OR |
868 | // 2. The destination writes to `memref`. |
869 | if (srcEscapingMemRefs.count(V: memref) > 0 && |
870 | (removeSrcNode || consumerNode->getStoreOpCount(memref) > 0)) |
871 | return false; |
872 | |
873 | // Don't create a private memref if 'srcNode' has in edges on |
874 | // 'memref' or 'dstNode' has out edges on 'memref'. |
875 | if (mdg->getIncomingMemRefAccesses(id: producerId, memref) > 0 || |
876 | mdg->getOutEdgeCount(id: consumerId, memref) > 0) |
877 | return false; |
878 | |
879 | // If 'srcNode' will be removed but it has out edges on 'memref' to |
880 | // nodes other than 'dstNode', we have to preserve dependences and |
881 | // cannot create a private memref. |
882 | if (removeSrcNode && |
883 | any_of(Range&: mdg->outEdges[producerId], P: [&](const auto &edge) { |
884 | return edge.value == memref && edge.id != consumerId; |
885 | })) |
886 | return false; |
887 | |
888 | return true; |
889 | } |
890 | |
891 | /// Perform fusions with node `dstId` as the destination of fusion, with |
892 | /// No fusion is performed when producers with a user count greater than |
893 | /// `maxSrcUserCount` for any of the memrefs involved. |
894 | void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) { |
895 | LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop "<< dstId << "\n"); |
896 | // Skip if this node was removed (fused into another node). |
897 | if (mdg->nodes.count(Val: dstId) == 0) |
898 | return; |
899 | // Get 'dstNode' into which to attempt fusion. |
900 | auto *dstNode = mdg->getNode(id: dstId); |
901 | // Skip if 'dstNode' is not a loop nest. |
902 | if (!isa<AffineForOp>(Val: dstNode->op)) |
903 | return; |
904 | // Skip if 'dstNode' is a loop nest returning values. |
905 | // TODO: support loop nests that return values. |
906 | if (dstNode->op->getNumResults() > 0) |
907 | return; |
908 | |
909 | LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop "<< dstId << "\n"); |
910 | |
911 | // Sink sequential loops in 'dstNode' (and thus raise parallel loops) |
912 | // while preserving relative order. This can increase the maximum loop |
913 | // depth at which we can fuse a slice of a producer loop nest into a |
914 | // consumer loop nest. |
915 | sinkSequentialLoops(node: dstNode); |
916 | auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
917 | |
918 | // Try to fuse 'dstNode' with candidate producer loops until a fixed point |
919 | // is reached. Fusing two loops may expose new fusion opportunities. |
920 | bool dstNodeChanged; |
921 | do { |
922 | // Gather src loop candidates for 'dstNode' and visit them in "quasi" |
923 | // reverse program order to minimize the number of iterations needed to |
924 | // reach the fixed point. Note that this is a best effort approach since |
925 | // 'getProducerCandidates' does not always guarantee that program order |
926 | // in 'srcIdCandidates'. |
927 | dstNodeChanged = false; |
928 | SmallVector<unsigned, 16> srcIdCandidates; |
929 | getProducerCandidates(dstId, mdg: *mdg, srcIdCandidates); |
930 | |
931 | for (unsigned srcId : llvm::reverse(C&: srcIdCandidates)) { |
932 | // Get 'srcNode' from which to attempt fusion into 'dstNode'. |
933 | auto *srcNode = mdg->getNode(id: srcId); |
934 | auto srcAffineForOp = cast<AffineForOp>(srcNode->op); |
935 | |
936 | LLVM_DEBUG(llvm::dbgs() |
937 | << "Trying to fuse producer loop nest "<< srcId |
938 | << " with consumer loop nest "<< dstId << "\n"); |
939 | LLVM_DEBUG(llvm::dbgs() << "Compute tolerance threshold: " |
940 | << computeToleranceThreshold << '\n'); |
941 | LLVM_DEBUG(llvm::dbgs() |
942 | << "Producer loop nest:\n" |
943 | << *srcNode->op << "\n and consumer loop nest:\n" |
944 | << *dstNode->op << '\n'); |
945 | |
946 | LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop "<< srcId |
947 | << " for dst loop "<< dstId << "\n"); |
948 | |
949 | // Skip if 'srcNode' is a loop nest returning values. |
950 | // TODO: support loop nests that return values. |
951 | if (isa<AffineForOp>(Val: srcNode->op) && srcNode->op->getNumResults() > 0) |
952 | continue; |
953 | |
954 | DenseSet<Value> producerConsumerMemrefs; |
955 | gatherProducerConsumerMemrefs(srcId, dstId, mdg: *mdg, |
956 | producerConsumerMemrefs); |
957 | |
958 | // Skip if 'srcNode' out edge count on any memref is greater than |
959 | // 'maxSrcUserCount'. |
960 | if (any_of(Range&: producerConsumerMemrefs, P: [&](Value memref) { |
961 | return mdg->getOutEdgeCount(id: srcNode->id, memref) > |
962 | maxSrcUserCount; |
963 | })) |
964 | continue; |
965 | |
966 | // Gather memrefs in 'srcNode' that are written and escape out of the |
967 | // block (e.g., memref block arguments, returned memrefs, |
968 | // memrefs passed to function calls, etc.). |
969 | DenseSet<Value> srcEscapingMemRefs; |
970 | gatherEscapingMemrefs(id: srcNode->id, mdg: *mdg, escapingMemRefs&: srcEscapingMemRefs); |
971 | |
972 | // Compute an operation list insertion point for the fused loop |
973 | // nest which preserves dependences. |
974 | Operation *fusedLoopInsPoint = |
975 | mdg->getFusedLoopNestInsertionPoint(srcId: srcNode->id, dstId: dstNode->id); |
976 | if (fusedLoopInsPoint == nullptr) |
977 | continue; |
978 | |
979 | // It's possible this fusion is at an inner depth (i.e., there are |
980 | // common surrounding affine loops for the source and destination for |
981 | // ops). We need to get this number because the call to canFuseLoops |
982 | // needs to be passed the absolute depth. The max legal depth and the |
983 | // depths we try below are however *relative* and as such don't include |
984 | // the common depth. |
985 | SmallVector<AffineForOp, 4> surroundingLoops; |
986 | getAffineForIVs(*dstAffineForOp, &surroundingLoops); |
987 | unsigned numSurroundingLoops = surroundingLoops.size(); |
988 | |
989 | // Compute the innermost common loop depth for dstNode |
990 | // producer-consumer loads/stores. |
991 | SmallVector<Operation *, 2> dstMemrefOps; |
992 | for (Operation *op : dstNode->loads) |
993 | if (producerConsumerMemrefs.count( |
994 | cast<AffineReadOpInterface>(op).getMemRef()) > 0) |
995 | dstMemrefOps.push_back(Elt: op); |
996 | for (Operation *op : dstNode->stores) |
997 | if (producerConsumerMemrefs.count( |
998 | cast<AffineWriteOpInterface>(op).getMemRef())) |
999 | dstMemrefOps.push_back(Elt: op); |
1000 | unsigned dstLoopDepthTest = |
1001 | getInnermostCommonLoopDepth(ops: dstMemrefOps) - numSurroundingLoops; |
1002 | |
1003 | // Check the feasibility of fusing src loop nest into dst loop nest |
1004 | // at loop depths in range [1, dstLoopDepthTest]. |
1005 | unsigned maxLegalFusionDepth = 0; |
1006 | SmallVector<ComputationSliceState, 8> depthSliceUnions; |
1007 | depthSliceUnions.resize(N: dstLoopDepthTest); |
1008 | FusionStrategy strategy(FusionStrategy::ProducerConsumer); |
1009 | for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
1010 | FusionResult result = |
1011 | affine::canFuseLoops(srcForOp: srcAffineForOp, dstForOp: dstAffineForOp, |
1012 | /*dstLoopDepth=*/i + numSurroundingLoops, |
1013 | srcSlice: &depthSliceUnions[i - 1], fusionStrategy: strategy); |
1014 | if (result.value == FusionResult::Success) { |
1015 | maxLegalFusionDepth = i; |
1016 | LLVM_DEBUG(llvm::dbgs() |
1017 | << "Found valid slice for depth: "<< i << '\n'); |
1018 | } |
1019 | } |
1020 | |
1021 | if (maxLegalFusionDepth == 0) { |
1022 | LLVM_DEBUG(llvm::dbgs() |
1023 | << "Can't fuse: fusion is not legal at any depth\n"); |
1024 | continue; |
1025 | } |
1026 | |
1027 | LLVM_DEBUG(llvm::dbgs() << "Max legal depth for fusion: " |
1028 | << maxLegalFusionDepth << '\n'); |
1029 | |
1030 | double computeToleranceThresholdToUse = computeToleranceThreshold; |
1031 | |
1032 | // Cyclic dependences in the source nest may be violated when performing |
1033 | // slicing-based fusion. They aren't actually violated in cases where no |
1034 | // redundant execution of the source happens (1:1 pointwise dep on the |
1035 | // producer-consumer memref access for example). Check this and allow |
1036 | // fusion accordingly. |
1037 | if (hasCyclicDependence(srcAffineForOp)) { |
1038 | LLVM_DEBUG(llvm::dbgs() << "Source nest has a cyclic dependence.\n"); |
1039 | // Maximal fusion does not check for compute tolerance threshold; so |
1040 | // perform the maximal fusion only when the redundanation computation |
1041 | // is zero. |
1042 | if (maximalFusion) { |
1043 | auto srcForOp = cast<AffineForOp>(srcNode->op); |
1044 | auto dstForOp = cast<AffineForOp>(dstNode->op); |
1045 | int64_t sliceCost; |
1046 | int64_t fusedLoopNestComputeCost; |
1047 | auto fraction = getAdditionalComputeFraction( |
1048 | srcForOp, dstForOp, maxLegalFusionDepth, depthSliceUnions, |
1049 | sliceCost, fusedLoopNestComputeCost); |
1050 | if (!fraction || fraction > 0) { |
1051 | LLVM_DEBUG( |
1052 | llvm::dbgs() |
1053 | << "Can't perform maximal fusion with a cyclic dependence " |
1054 | "and non-zero additional compute.\n"); |
1055 | return; |
1056 | } |
1057 | } else { |
1058 | // Set redundant computation tolerance to zero regardless of what |
1059 | // the user specified. Without this, fusion would be invalid. |
1060 | LLVM_DEBUG(llvm::dbgs() |
1061 | << "Setting compute tolerance to zero since " |
1062 | "source has a cylic dependence.\n"); |
1063 | computeToleranceThresholdToUse = 0; |
1064 | } |
1065 | } |
1066 | |
1067 | // Check if fusion would be profitable. We skip profitability analysis |
1068 | // for maximal fusion since we already know the maximal legal depth to |
1069 | // fuse. |
1070 | unsigned bestDstLoopDepth = maxLegalFusionDepth; |
1071 | if (!maximalFusion) { |
1072 | // Retrieve producer stores from the src loop. |
1073 | SmallVector<Operation *, 2> producerStores; |
1074 | for (Operation *op : srcNode->stores) |
1075 | if (producerConsumerMemrefs.count( |
1076 | cast<AffineWriteOpInterface>(op).getMemRef())) |
1077 | producerStores.push_back(Elt: op); |
1078 | |
1079 | assert(!producerStores.empty() && "Expected producer store"); |
1080 | if (!isFusionProfitable(srcAffineForOp, producerStores, |
1081 | dstAffineForOp, depthSliceUnions, |
1082 | maxLegalFusionDepth, &bestDstLoopDepth, |
1083 | computeToleranceThresholdToUse)) { |
1084 | continue; |
1085 | } |
1086 | } |
1087 | |
1088 | assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); |
1089 | ComputationSliceState &bestSlice = |
1090 | depthSliceUnions[bestDstLoopDepth - 1]; |
1091 | assert(!bestSlice.isEmpty() && "Missing slice union for depth"); |
1092 | |
1093 | // Determine if 'srcId' can be removed after fusion, taking into |
1094 | // account remaining dependences, escaping memrefs and the fusion |
1095 | // insertion point. |
1096 | bool removeSrcNode = canRemoveSrcNodeAfterFusion( |
1097 | srcId, dstId, fusionSlice: bestSlice, fusedLoopInsPoint, escapingMemRefs: srcEscapingMemRefs, |
1098 | mdg: *mdg); |
1099 | |
1100 | DenseSet<Value> privateMemrefs; |
1101 | for (Value memref : producerConsumerMemrefs) { |
1102 | if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, producerId: srcId, consumerId: dstId, |
1103 | removeSrcNode)) { |
1104 | // Create a private version of this memref. |
1105 | LLVM_DEBUG(llvm::dbgs() |
1106 | << "Creating private memref for "<< memref << '\n'); |
1107 | // Create a private version of this memref. |
1108 | privateMemrefs.insert(V: memref); |
1109 | } |
1110 | } |
1111 | |
1112 | // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. |
1113 | fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice); |
1114 | dstNodeChanged = true; |
1115 | |
1116 | LLVM_DEBUG(llvm::dbgs() |
1117 | << "Fused src loop "<< srcId << " into dst loop "<< dstId |
1118 | << " at depth "<< bestDstLoopDepth << ":\n" |
1119 | << dstAffineForOp << "\n"); |
1120 | |
1121 | // Move 'dstAffineForOp' before 'insertPointInst' if needed. |
1122 | if (fusedLoopInsPoint != dstAffineForOp) |
1123 | dstAffineForOp->moveBefore(fusedLoopInsPoint); |
1124 | |
1125 | // Update edges between 'srcNode' and 'dstNode'. |
1126 | mdg->updateEdges(srcId: srcNode->id, dstId: dstNode->id, privateMemRefs: privateMemrefs, |
1127 | removeSrcId: removeSrcNode); |
1128 | |
1129 | // Create private memrefs. |
1130 | if (!privateMemrefs.empty()) { |
1131 | // Note the block into which fusion was performed. This can be used to |
1132 | // place `alloc`s that create private memrefs. |
1133 | Block *sliceInsertionBlock = bestSlice.insertPoint->getBlock(); |
1134 | |
1135 | // Gather stores for all the private-to-be memrefs. |
1136 | DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores; |
1137 | dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) { |
1138 | Value storeMemRef = storeOp.getMemRef(); |
1139 | if (privateMemrefs.count(V: storeMemRef) > 0) |
1140 | privateMemRefToStores[storeMemRef].push_back(Elt: storeOp); |
1141 | }); |
1142 | |
1143 | // Replace original memrefs with private memrefs. Note that all the |
1144 | // loads and stores on these memrefs will be replaced with a new |
1145 | // loads and stores. Any reference to the original ones becomes |
1146 | // invalid after this point. |
1147 | for (auto &memrefToStoresPair : privateMemRefToStores) { |
1148 | ArrayRef<Operation *> storesForMemref = memrefToStoresPair.second; |
1149 | Value newMemRef = createPrivateMemRef( |
1150 | dstAffineForOp, storesForMemref, bestDstLoopDepth, |
1151 | fastMemorySpace, sliceInsertionBlock, localBufSizeThreshold); |
1152 | if (!newMemRef) |
1153 | continue; |
1154 | // Create new node in dependence graph for 'newMemRef' alloc op. |
1155 | unsigned newMemRefNodeId = mdg->addNode(op: newMemRef.getDefiningOp()); |
1156 | // Add edge from 'newMemRef' node to dstNode. |
1157 | mdg->addEdge(srcId: newMemRefNodeId, dstId, value: newMemRef); |
1158 | } |
1159 | // One or more entries for 'newMemRef' alloc op are inserted into |
1160 | // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to |
1161 | // reallocate, update dstNode. |
1162 | dstNode = mdg->getNode(id: dstId); |
1163 | } |
1164 | |
1165 | // Collect dst loop stats after memref privatization transformation. |
1166 | LoopNestStateCollector dstLoopCollector; |
1167 | dstLoopCollector.collect(opToWalk: dstAffineForOp); |
1168 | |
1169 | // Clear and add back loads and stores. |
1170 | mdg->clearNodeLoadAndStores(id: dstNode->id); |
1171 | mdg->addToNode( |
1172 | id: dstId, loads: dstLoopCollector.loadOpInsts, stores: dstLoopCollector.storeOpInsts, |
1173 | memrefLoads: dstLoopCollector.memrefLoads, memrefStores: dstLoopCollector.memrefStores, |
1174 | memrefFrees: dstLoopCollector.memrefFrees); |
1175 | |
1176 | if (removeSrcNode) { |
1177 | LLVM_DEBUG(llvm::dbgs() |
1178 | << "Removing src loop "<< srcId << " after fusion\n"); |
1179 | // srcNode is no longer valid after it is removed from mdg. |
1180 | srcAffineForOp.erase(); |
1181 | mdg->removeNode(id: srcId); |
1182 | srcNode = nullptr; |
1183 | } |
1184 | } |
1185 | } while (dstNodeChanged); |
1186 | } |
1187 | |
1188 | /// Visit each node in the graph, and for each node, attempt to fuse it with |
1189 | /// producer-consumer candidates. No fusion is performed when producers with a |
1190 | /// user count greater than `maxSrcUserCount` for any of the memrefs involved |
1191 | /// are encountered. |
1192 | void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { |
1193 | LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n"); |
1194 | init(); |
1195 | while (!worklist.empty()) { |
1196 | unsigned dstId = worklist.back(); |
1197 | worklist.pop_back(); |
1198 | performFusionsIntoDest(dstId, maxSrcUserCount); |
1199 | } |
1200 | } |
1201 | |
1202 | // Visits each node in the graph, and for each node, attempts to fuse it with |
1203 | // its sibling nodes (nodes which share a parent, but no dependence edges). |
1204 | void fuseSiblingNodes() { |
1205 | LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n"); |
1206 | init(); |
1207 | while (!worklist.empty()) { |
1208 | unsigned dstId = worklist.back(); |
1209 | worklist.pop_back(); |
1210 | |
1211 | // Skip if this node was removed (fused into another node). |
1212 | if (mdg->nodes.count(Val: dstId) == 0) |
1213 | continue; |
1214 | // Get 'dstNode' into which to attempt fusion. |
1215 | auto *dstNode = mdg->getNode(id: dstId); |
1216 | // Skip if 'dstNode' is not a loop nest. |
1217 | if (!isa<AffineForOp>(Val: dstNode->op)) |
1218 | continue; |
1219 | // Attempt to fuse 'dstNode' with its sibling nodes in the graph. |
1220 | fuseWithSiblingNodes(dstNode); |
1221 | } |
1222 | } |
1223 | |
1224 | // Attempt to fuse 'dstNode' with sibling nodes in the graph. |
1225 | void fuseWithSiblingNodes(Node *dstNode) { |
1226 | DenseSet<unsigned> visitedSibNodeIds; |
1227 | std::pair<unsigned, Value> idAndMemref; |
1228 | auto dstAffineForOp = cast<AffineForOp>(dstNode->op); |
1229 | |
1230 | while (findSiblingNodeToFuse(dstNode, visitedSibNodeIds: &visitedSibNodeIds, idAndMemrefToFuse: &idAndMemref)) { |
1231 | unsigned sibId = idAndMemref.first; |
1232 | Value memref = idAndMemref.second; |
1233 | // TODO: Check that 'sibStoreOpInst' post-dominates all other |
1234 | // stores to the same memref in 'sibNode' loop nest. |
1235 | auto *sibNode = mdg->getNode(id: sibId); |
1236 | // Compute an operation list insertion point for the fused loop |
1237 | // nest which preserves dependences. |
1238 | assert(sibNode->op->getBlock() == dstNode->op->getBlock()); |
1239 | Operation *insertPointInst = |
1240 | sibNode->op->isBeforeInBlock(other: dstNode->op) |
1241 | ? mdg->getFusedLoopNestInsertionPoint(srcId: sibNode->id, dstId: dstNode->id) |
1242 | : mdg->getFusedLoopNestInsertionPoint(srcId: dstNode->id, dstId: sibNode->id); |
1243 | if (insertPointInst == nullptr) |
1244 | continue; |
1245 | |
1246 | // Check if fusion would be profitable and at what depth. |
1247 | |
1248 | // Get unique 'sibNode' load op to 'memref'. |
1249 | SmallVector<Operation *, 2> sibLoadOpInsts; |
1250 | sibNode->getLoadOpsForMemref(memref, loadOps: &sibLoadOpInsts); |
1251 | // Currently findSiblingNodeToFuse searches for siblings with one load. |
1252 | Operation *sibLoadOpInst = llvm::getSingleElement(C&: sibLoadOpInsts); |
1253 | |
1254 | // Gather 'dstNode' load ops to 'memref'. |
1255 | SmallVector<Operation *, 2> dstLoadOpInsts; |
1256 | dstNode->getLoadOpsForMemref(memref, loadOps: &dstLoadOpInsts); |
1257 | |
1258 | // It's possible this fusion is at an inner depth (i.e., there are common |
1259 | // surrounding affine loops for the source and destination for ops). We |
1260 | // need to get this number because the call to canFuseLoops needs to be |
1261 | // passed the absolute depth. The max legal depth and the depths we try |
1262 | // below are however *relative* and as such don't include the common |
1263 | // depth. |
1264 | SmallVector<AffineForOp, 4> surroundingLoops; |
1265 | getAffineForIVs(*dstAffineForOp, &surroundingLoops); |
1266 | unsigned numSurroundingLoops = surroundingLoops.size(); |
1267 | SmallVector<AffineForOp, 4> dstLoopIVs; |
1268 | getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs); |
1269 | unsigned dstLoopDepthTest = dstLoopIVs.size() - numSurroundingLoops; |
1270 | auto sibAffineForOp = cast<AffineForOp>(sibNode->op); |
1271 | |
1272 | // Compute loop depth and slice union for fusion. |
1273 | SmallVector<ComputationSliceState, 8> depthSliceUnions; |
1274 | depthSliceUnions.resize(N: dstLoopDepthTest); |
1275 | unsigned maxLegalFusionDepth = 0; |
1276 | FusionStrategy strategy(memref); |
1277 | for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { |
1278 | FusionResult result = |
1279 | affine::canFuseLoops(srcForOp: sibAffineForOp, dstForOp: dstAffineForOp, |
1280 | /*dstLoopDepth=*/i + numSurroundingLoops, |
1281 | srcSlice: &depthSliceUnions[i - 1], fusionStrategy: strategy); |
1282 | |
1283 | if (result.value == FusionResult::Success) |
1284 | maxLegalFusionDepth = i; |
1285 | } |
1286 | |
1287 | LLVM_DEBUG(llvm::dbgs() << "Max legal depth for fusion: " |
1288 | << maxLegalFusionDepth << '\n'); |
1289 | |
1290 | // Skip if fusion is not feasible at any loop depths. |
1291 | if (maxLegalFusionDepth == 0) |
1292 | continue; |
1293 | |
1294 | double computeToleranceThresholdToUse = computeToleranceThreshold; |
1295 | |
1296 | // Cyclic dependences in the source nest may be violated when performing |
1297 | // slicing-based fusion. They aren't actually violated in cases where no |
1298 | // redundant execution of the source happens (1:1 pointwise dep on the |
1299 | // producer-consumer memref access for example). Check this and allow |
1300 | // fusion accordingly. |
1301 | if (hasCyclicDependence(sibAffineForOp)) { |
1302 | LLVM_DEBUG(llvm::dbgs() << "Source nest has a cyclic dependence.\n"); |
1303 | // Maximal fusion does not check for compute tolerance threshold; so |
1304 | // perform the maximal fusion only when the redundanation computation is |
1305 | // zero. |
1306 | if (maximalFusion) { |
1307 | auto dstForOp = cast<AffineForOp>(dstNode->op); |
1308 | int64_t sliceCost; |
1309 | int64_t fusedLoopNestComputeCost; |
1310 | auto fraction = getAdditionalComputeFraction( |
1311 | sibAffineForOp, dstForOp, maxLegalFusionDepth, depthSliceUnions, |
1312 | sliceCost, fusedLoopNestComputeCost); |
1313 | if (!fraction || fraction > 0) { |
1314 | LLVM_DEBUG( |
1315 | llvm::dbgs() |
1316 | << "Can't perform maximal fusion with a cyclic dependence " |
1317 | "and non-zero additional compute.\n"); |
1318 | return; |
1319 | } |
1320 | } else { |
1321 | // Set redundant computation tolerance to zero regardless of what the |
1322 | // user specified. Without this, fusion would be invalid. |
1323 | LLVM_DEBUG(llvm::dbgs() << "Setting compute tolerance to zero since " |
1324 | "source has a cyclic dependence.\n"); |
1325 | computeToleranceThresholdToUse = 0.0; |
1326 | } |
1327 | } |
1328 | |
1329 | unsigned bestDstLoopDepth = maxLegalFusionDepth; |
1330 | if (!maximalFusion) { |
1331 | // Check if fusion would be profitable. For sibling fusion, the sibling |
1332 | // load op is treated as the src "store" op for fusion profitability |
1333 | // purposes. The footprint of the load in the slice relative to the |
1334 | // unfused source's determines reuse. |
1335 | if (!isFusionProfitable(sibAffineForOp, sibLoadOpInst, dstAffineForOp, |
1336 | depthSliceUnions, maxLegalFusionDepth, |
1337 | &bestDstLoopDepth, |
1338 | computeToleranceThresholdToUse)) |
1339 | continue; |
1340 | } |
1341 | |
1342 | assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); |
1343 | |
1344 | const ComputationSliceState &bestSlice = |
1345 | depthSliceUnions[bestDstLoopDepth - 1]; |
1346 | assert(!bestSlice.isEmpty() && |
1347 | "Fusion depth has no computed slice union"); |
1348 | |
1349 | // Do not perform sibling fusion if it isn't maximal. We always remove the |
1350 | // sibling node and as such fusion shouldn't be performed if a part of the |
1351 | // slice is used in the destination. |
1352 | auto isMaximal = bestSlice.isMaximal(); |
1353 | if (!isMaximal.value_or(u: false)) { |
1354 | LLVM_DEBUG(llvm::dbgs() |
1355 | << "Slice isn't maximal; not performing sibling fusion.\n"); |
1356 | continue; |
1357 | } |
1358 | |
1359 | // Check if source loop is being inserted in the innermost |
1360 | // destination loop. Based on this, the fused loop may be optimized |
1361 | // further inside `fuseLoops`. |
1362 | bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest); |
1363 | // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. |
1364 | affine::fuseLoops(srcForOp: sibAffineForOp, dstForOp: dstAffineForOp, srcSlice: bestSlice, |
1365 | isInnermostSiblingInsertionFusion: isInnermostInsertion); |
1366 | |
1367 | auto dstForInst = cast<AffineForOp>(dstNode->op); |
1368 | // Update operation position of fused loop nest (if needed). |
1369 | if (insertPointInst != dstForInst) |
1370 | dstForInst->moveBefore(insertPointInst); |
1371 | |
1372 | LLVM_DEBUG(llvm::dbgs() |
1373 | << "Fused sibling nest "<< sibId << " into destination nest " |
1374 | << dstNode->id << " at depth "<< bestDstLoopDepth << ":\n" |
1375 | << dstAffineForOp << "\n"); |
1376 | |
1377 | // Update data dependence graph state post fusion. |
1378 | updateStateAfterSiblingFusion(sibNode, dstNode); |
1379 | |
1380 | // Remove old sibling loop nest. |
1381 | // Get op before we invalidate the MDG node. |
1382 | Operation *op = sibNode->op; |
1383 | mdg->removeNode(id: sibNode->id); |
1384 | op->erase(); |
1385 | } |
1386 | } |
1387 | |
1388 | // Searches block argument uses and the graph from 'dstNode' looking for a |
1389 | // fusion candidate sibling node which shares no dependences with 'dstNode' |
1390 | // but which loads from the same memref. Returns true and sets |
1391 | // 'idAndMemrefToFuse' on success. Returns false otherwise. |
1392 | bool findSiblingNodeToFuse(Node *dstNode, |
1393 | DenseSet<unsigned> *visitedSibNodeIds, |
1394 | std::pair<unsigned, Value> *idAndMemrefToFuse) { |
1395 | // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse |
1396 | // on 'memref'. |
1397 | auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { |
1398 | // Skip if 'outEdge' is not a read-after-write dependence. |
1399 | // TODO: Remove restrict to single load op restriction. |
1400 | if (sibNode->getLoadOpCount(memref) != 1) |
1401 | return false; |
1402 | // Skip if there exists a path of dependent edges between |
1403 | // 'sibNode' and 'dstNode'. |
1404 | if (mdg->hasDependencePath(srcId: sibNode->id, dstId: dstNode->id) || |
1405 | mdg->hasDependencePath(srcId: dstNode->id, dstId: sibNode->id)) |
1406 | return false; |
1407 | // Skip sib node if it loads to (and stores from) the same memref on |
1408 | // which it also has an input dependence edge. |
1409 | DenseSet<Value> loadAndStoreMemrefSet; |
1410 | sibNode->getLoadAndStoreMemrefSet(loadAndStoreMemrefSet: &loadAndStoreMemrefSet); |
1411 | if (llvm::any_of(Range&: loadAndStoreMemrefSet, P: [=](Value memref) { |
1412 | return mdg->getIncomingMemRefAccesses(id: sibNode->id, memref) > 0; |
1413 | })) |
1414 | return false; |
1415 | |
1416 | // Check that all stores are to the same memref if any. |
1417 | DenseSet<Value> storeMemrefs; |
1418 | for (auto *storeOpInst : sibNode->stores) { |
1419 | storeMemrefs.insert( |
1420 | cast<AffineWriteOpInterface>(storeOpInst).getMemRef()); |
1421 | } |
1422 | return storeMemrefs.size() <= 1; |
1423 | }; |
1424 | |
1425 | // Search for siblings which load the same memref block argument. |
1426 | Block *block = dstNode->op->getBlock(); |
1427 | for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) { |
1428 | for (Operation *user : block->getArgument(i).getUsers()) { |
1429 | auto loadOp = dyn_cast<AffineReadOpInterface>(user); |
1430 | if (!loadOp) |
1431 | continue; |
1432 | // Gather loops surrounding 'use'. |
1433 | SmallVector<AffineForOp, 4> loops; |
1434 | getAffineForIVs(*user, &loops); |
1435 | // Skip 'use' if it is not within a loop nest. |
1436 | // Find the surrounding affine.for nested immediately within the |
1437 | // block. |
1438 | auto *it = llvm::find_if(loops, [&](AffineForOp loop) { |
1439 | return loop->getBlock() == &mdg->block; |
1440 | }); |
1441 | // Skip 'use' if it is not within a loop nest in `block`. |
1442 | if (it == loops.end()) |
1443 | continue; |
1444 | Node *sibNode = mdg->getForOpNode(*it); |
1445 | assert(sibNode != nullptr); |
1446 | // Skip 'use' if it not a sibling to 'dstNode'. |
1447 | if (sibNode->id == dstNode->id) |
1448 | continue; |
1449 | // Skip 'use' if it has been visited. |
1450 | if (visitedSibNodeIds->count(V: sibNode->id) > 0) |
1451 | continue; |
1452 | // Skip 'use' if it does not load from the same memref as 'dstNode'. |
1453 | auto memref = loadOp.getMemRef(); |
1454 | if (dstNode->getLoadOpCount(memref: memref) == 0) |
1455 | continue; |
1456 | // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
1457 | if (canFuseWithSibNode(sibNode, memref)) { |
1458 | visitedSibNodeIds->insert(V: sibNode->id); |
1459 | idAndMemrefToFuse->first = sibNode->id; |
1460 | idAndMemrefToFuse->second = memref; |
1461 | return true; |
1462 | } |
1463 | } |
1464 | } |
1465 | |
1466 | // Search for siblings by following edges through an intermediate src node. |
1467 | // Collect candidate 'dstNode' input edges in 'inEdges'. |
1468 | SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; |
1469 | mdg->forEachMemRefInputEdge( |
1470 | id: dstNode->id, callback: [&](MemRefDependenceGraph::Edge inEdge) { |
1471 | // Add 'inEdge' if it is a read-after-write dependence. |
1472 | if (dstNode->getLoadOpCount(memref: inEdge.value) > 0 && |
1473 | mdg->getNode(id: inEdge.id)->getStoreOpCount(memref: inEdge.value) > 0) |
1474 | inEdges.push_back(Elt: inEdge); |
1475 | }); |
1476 | |
1477 | // Search for sibling nodes to fuse by visiting output edges from each input |
1478 | // edge in 'inEdges'. |
1479 | for (auto &inEdge : inEdges) { |
1480 | // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. |
1481 | SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; |
1482 | mdg->forEachMemRefOutputEdge( |
1483 | id: inEdge.id, callback: [&](MemRefDependenceGraph::Edge outEdge) { |
1484 | unsigned sibNodeId = outEdge.id; |
1485 | if (visitedSibNodeIds->count(V: sibNodeId) > 0) |
1486 | return; |
1487 | // Skip output edge if not a sibling using the same memref. |
1488 | if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) |
1489 | return; |
1490 | auto *sibNode = mdg->getNode(id: sibNodeId); |
1491 | if (!isa<AffineForOp>(Val: sibNode->op)) |
1492 | return; |
1493 | // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. |
1494 | if (canFuseWithSibNode(sibNode, outEdge.value)) { |
1495 | // Add candidate 'outEdge' to sibling node. |
1496 | outEdges.push_back(Elt: outEdge); |
1497 | } |
1498 | }); |
1499 | |
1500 | // Add first candidate if any were returned. |
1501 | if (!outEdges.empty()) { |
1502 | visitedSibNodeIds->insert(V: outEdges[0].id); |
1503 | idAndMemrefToFuse->first = outEdges[0].id; |
1504 | idAndMemrefToFuse->second = outEdges[0].value; |
1505 | return true; |
1506 | } |
1507 | } |
1508 | return false; |
1509 | } |
1510 | |
1511 | /// Update data dependence graph state to reflect sibling fusion of 'sibNode' |
1512 | /// into 'dstNode'. |
1513 | void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) { |
1514 | // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. |
1515 | mdg->updateEdges(sibId: sibNode->id, dstId: dstNode->id); |
1516 | |
1517 | // Collect dst loop stats after memref privatization transformation. |
1518 | auto dstForInst = cast<AffineForOp>(dstNode->op); |
1519 | LoopNestStateCollector dstLoopCollector; |
1520 | dstLoopCollector.collect(opToWalk: dstForInst); |
1521 | // Clear and add back loads and stores |
1522 | mdg->clearNodeLoadAndStores(id: dstNode->id); |
1523 | mdg->addToNode(id: dstNode->id, loads: dstLoopCollector.loadOpInsts, |
1524 | stores: dstLoopCollector.storeOpInsts, memrefLoads: dstLoopCollector.memrefLoads, |
1525 | memrefStores: dstLoopCollector.memrefStores, memrefFrees: dstLoopCollector.memrefFrees); |
1526 | } |
1527 | |
1528 | // Clean up any allocs with no users. |
1529 | void eraseUnusedMemRefAllocations() { |
1530 | for (auto &pair : mdg->memrefEdgeCount) { |
1531 | if (pair.second > 0) |
1532 | continue; |
1533 | auto memref = pair.first; |
1534 | // Skip if there exist other uses (return operation or function calls). |
1535 | if (!memref.use_empty()) |
1536 | continue; |
1537 | // Use list expected to match the dep graph info. |
1538 | auto *op = memref.getDefiningOp(); |
1539 | if (isa_and_nonnull<memref::AllocOp>(Val: op)) |
1540 | op->erase(); |
1541 | } |
1542 | } |
1543 | }; |
1544 | |
1545 | } // namespace |
1546 | |
1547 | /// Run fusion on `block`. |
1548 | void LoopFusion::runOnBlock(Block *block) { |
1549 | MemRefDependenceGraph g(*block); |
1550 | if (!g.init()) { |
1551 | LLVM_DEBUG(llvm::dbgs() << "MDG init failed\n"); |
1552 | return; |
1553 | } |
1554 | |
1555 | std::optional<unsigned> fastMemorySpaceOpt; |
1556 | if (fastMemorySpace.hasValue()) |
1557 | fastMemorySpaceOpt = fastMemorySpace; |
1558 | unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; |
1559 | GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, |
1560 | maximalFusion, computeToleranceThreshold); |
1561 | |
1562 | if (affineFusionMode == FusionMode::ProducerConsumer) |
1563 | fusion.runProducerConsumerFusionOnly(); |
1564 | else if (affineFusionMode == FusionMode::Sibling) |
1565 | fusion.runSiblingFusionOnly(); |
1566 | else |
1567 | fusion.runGreedyFusion(); |
1568 | } |
1569 | |
1570 | void LoopFusion::runOnOperation() { |
1571 | // Call fusion on every op that has at least two affine.for nests (in post |
1572 | // order). |
1573 | getOperation()->walk([&](Operation *op) { |
1574 | for (Region ®ion : op->getRegions()) { |
1575 | for (Block &block : region.getBlocks()) { |
1576 | auto affineFors = block.getOps<AffineForOp>(); |
1577 | if (!affineFors.empty() && !llvm::hasSingleElement(C&: affineFors)) |
1578 | runOnBlock(block: &block); |
1579 | } |
1580 | } |
1581 | }); |
1582 | } |
1583 | |
1584 | std::unique_ptr<Pass> mlir::affine::createLoopFusionPass( |
1585 | unsigned fastMemorySpace, uint64_t localBufSizeThreshold, |
1586 | bool maximalFusion, enum FusionMode affineFusionMode) { |
1587 | return std::make_unique<LoopFusion>(args&: fastMemorySpace, args&: localBufSizeThreshold, |
1588 | args&: maximalFusion, args&: affineFusionMode); |
1589 | } |
1590 |
Definitions
- LoopFusion
- LoopFusion
- LoopFusion
- canRemoveSrcNodeAfterFusion
- getProducerCandidates
- gatherProducerConsumerMemrefs
- isEscapingMemref
- gatherEscapingMemrefs
- sinkSequentialLoops
- getDominanceFilterForPrivateMemRefRepl
- getAdditionalComputeFraction
- createPrivateMemRef
- isFusionProfitable
- GreedyFusion
- GreedyFusion
- init
- runSiblingFusionOnly
- runProducerConsumerFusionOnly
- runGreedyFusion
- canCreatePrivateMemRef
- performFusionsIntoDest
- fuseProducerConsumerNodes
- fuseSiblingNodes
- fuseWithSiblingNodes
- findSiblingNodeToFuse
- updateStateAfterSiblingFusion
- eraseUnusedMemRefAllocations
- runOnBlock
- runOnOperation
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more