| 1 | //===- RaiseMemrefDialect.cpp - raise memref.store and load to affine ops -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements functionality to convert memref load and store ops to |
| 10 | // the corresponding affine ops, inferring the affine map as needed. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
| 15 | #include "mlir/Dialect/Affine/Passes.h" |
| 16 | #include "mlir/Dialect/Affine/Transforms/Transforms.h" |
| 17 | #include "mlir/Dialect/Affine/Utils.h" |
| 18 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 19 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 20 | #include "mlir/IR/AffineExpr.h" |
| 21 | #include "mlir/IR/Matchers.h" |
| 22 | #include "mlir/IR/Operation.h" |
| 23 | #include "mlir/Pass/Pass.h" |
| 24 | #include "llvm/Support/Casting.h" |
| 25 | #include "llvm/Support/Debug.h" |
| 26 | |
| 27 | namespace mlir { |
| 28 | namespace affine { |
| 29 | #define GEN_PASS_DEF_RAISEMEMREFDIALECT |
| 30 | #include "mlir/Dialect/Affine/Passes.h.inc" |
| 31 | } // namespace affine |
| 32 | } // namespace mlir |
| 33 | |
| 34 | #define DEBUG_TYPE "raise-memref-to-affine" |
| 35 | |
| 36 | using namespace mlir; |
| 37 | using namespace mlir::affine; |
| 38 | |
| 39 | namespace { |
| 40 | |
| 41 | /// Find the index of the given value in the `dims` list, |
| 42 | /// and append it if it was not already in the list. The |
| 43 | /// dims list is a list of symbols or dimensions of the |
| 44 | /// affine map. Within the results of an affine map, they |
| 45 | /// are identified by their index, which is why we need |
| 46 | /// this function. |
| 47 | static std::optional<size_t> |
| 48 | findInListOrAdd(Value value, llvm::SmallVectorImpl<Value> &dims, |
| 49 | function_ref<bool(Value)> isValidElement) { |
| 50 | |
| 51 | Value *loopIV = llvm::find(dims, value); |
| 52 | if (loopIV != dims.end()) { |
| 53 | // We found an IV that already has an index, return that index. |
| 54 | return {std::distance(dims.begin(), loopIV)}; |
| 55 | } |
| 56 | if (isValidElement(value)) { |
| 57 | // This is a valid element for the dim/symbol list, push this as a |
| 58 | // parameter. |
| 59 | size_t idx = dims.size(); |
| 60 | dims.push_back(Elt: value); |
| 61 | return idx; |
| 62 | } |
| 63 | return std::nullopt; |
| 64 | } |
| 65 | |
| 66 | /// Convert a value to an affine expr if possible. Adds dims and symbols |
| 67 | /// if needed. |
| 68 | static AffineExpr toAffineExpr(Value value, |
| 69 | llvm::SmallVectorImpl<Value> &affineDims, |
| 70 | llvm::SmallVectorImpl<Value> &affineSymbols) { |
| 71 | using namespace matchers; |
| 72 | IntegerAttr::ValueType cst; |
| 73 | if (matchPattern(value, m_ConstantInt(&cst))) { |
| 74 | return getAffineConstantExpr(cst.getSExtValue(), value.getContext()); |
| 75 | } |
| 76 | |
| 77 | Operation *definingOp = value.getDefiningOp(); |
| 78 | if (llvm::isa_and_nonnull<arith::AddIOp>(definingOp) || |
| 79 | llvm::isa_and_nonnull<arith::MulIOp>(definingOp)) { |
| 80 | // TODO: replace recursion with explicit stack. |
| 81 | // For the moment this can be tolerated as we only recurse on |
| 82 | // arith.addi and arith.muli, so there cannot be any infinite |
| 83 | // recursion. The depth of these expressions should be in most |
| 84 | // cases very manageable, as affine expressions should be as |
| 85 | // simple as `a + b * c`. |
| 86 | AffineExpr lhsE = |
| 87 | toAffineExpr(value: definingOp->getOperand(idx: 0), affineDims, affineSymbols); |
| 88 | AffineExpr rhsE = |
| 89 | toAffineExpr(value: definingOp->getOperand(idx: 1), affineDims, affineSymbols); |
| 90 | |
| 91 | if (lhsE && rhsE) { |
| 92 | AffineExprKind kind; |
| 93 | if (isa<arith::AddIOp>(definingOp)) { |
| 94 | kind = mlir::AffineExprKind::Add; |
| 95 | } else { |
| 96 | kind = mlir::AffineExprKind::Mul; |
| 97 | |
| 98 | if (!lhsE.isSymbolicOrConstant() && !rhsE.isSymbolicOrConstant()) { |
| 99 | // This is not an affine expression, give up. |
| 100 | return {}; |
| 101 | } |
| 102 | } |
| 103 | return getAffineBinaryOpExpr(kind, lhs: lhsE, rhs: rhsE); |
| 104 | } |
| 105 | return {}; |
| 106 | } |
| 107 | |
| 108 | if (auto dimIx = findInListOrAdd(value, affineSymbols, [](Value v) { |
| 109 | return affine::isValidSymbol(v); |
| 110 | })) { |
| 111 | return getAffineSymbolExpr(*dimIx, value.getContext()); |
| 112 | } |
| 113 | |
| 114 | if (auto dimIx = findInListOrAdd( |
| 115 | value, affineDims, [](Value v) { return affine::isValidDim(v); })) { |
| 116 | |
| 117 | return getAffineDimExpr(*dimIx, value.getContext()); |
| 118 | } |
| 119 | |
| 120 | return {}; |
| 121 | } |
| 122 | |
| 123 | static LogicalResult |
| 124 | computeAffineMapAndArgs(MLIRContext *ctx, ValueRange indices, AffineMap &map, |
| 125 | llvm::SmallVectorImpl<Value> &mapArgs) { |
| 126 | SmallVector<AffineExpr> results; |
| 127 | SmallVector<Value> symbols; |
| 128 | SmallVector<Value> dims; |
| 129 | |
| 130 | for (Value indexExpr : indices) { |
| 131 | AffineExpr res = toAffineExpr(indexExpr, dims, symbols); |
| 132 | if (!res) { |
| 133 | return failure(); |
| 134 | } |
| 135 | results.push_back(res); |
| 136 | } |
| 137 | |
| 138 | map = AffineMap::get(dims.size(), symbols.size(), results, ctx); |
| 139 | |
| 140 | dims.append(symbols); |
| 141 | mapArgs.swap(RHS&: dims); |
| 142 | return success(); |
| 143 | } |
| 144 | |
| 145 | struct RaiseMemrefDialect |
| 146 | : public affine::impl::RaiseMemrefDialectBase<RaiseMemrefDialect> { |
| 147 | |
| 148 | void runOnOperation() override { |
| 149 | auto *ctx = &getContext(); |
| 150 | Operation *op = getOperation(); |
| 151 | IRRewriter rewriter(ctx); |
| 152 | AffineMap map; |
| 153 | SmallVector<Value> mapArgs; |
| 154 | op->walk([&](Operation *op) { |
| 155 | rewriter.setInsertionPoint(op); |
| 156 | if (auto store = llvm::dyn_cast_or_null<memref::StoreOp>(op)) { |
| 157 | |
| 158 | if (succeeded(computeAffineMapAndArgs(ctx, store.getIndices(), map, |
| 159 | mapArgs))) { |
| 160 | rewriter.replaceOpWithNewOp<AffineStoreOp>( |
| 161 | op, store.getValueToStore(), store.getMemRef(), map, mapArgs); |
| 162 | return; |
| 163 | } |
| 164 | |
| 165 | LLVM_DEBUG(llvm::dbgs() |
| 166 | << "[affine] Cannot raise memref op: " << op << "\n" ); |
| 167 | |
| 168 | } else if (auto load = llvm::dyn_cast_or_null<memref::LoadOp>(op)) { |
| 169 | if (succeeded(computeAffineMapAndArgs(ctx, load.getIndices(), map, |
| 170 | mapArgs))) { |
| 171 | rewriter.replaceOpWithNewOp<AffineLoadOp>(op, load.getMemRef(), map, |
| 172 | mapArgs); |
| 173 | return; |
| 174 | } |
| 175 | LLVM_DEBUG(llvm::dbgs() |
| 176 | << "[affine] Cannot raise memref op: " << op << "\n" ); |
| 177 | } |
| 178 | }); |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | } // namespace |
| 183 | |
| 184 | std::unique_ptr<OperationPass<func::FuncOp>> |
| 185 | mlir::affine::createRaiseMemrefToAffine() { |
| 186 | return std::make_unique<RaiseMemrefDialect>(); |
| 187 | } |
| 188 | |