| 1 | //===- SuperVectorize.cpp - Vectorize Pass Impl ---------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements vectorization of loops, operations and data types to |
| 10 | // a target-independent, n-D super-vector abstraction. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Affine/Passes.h" |
| 15 | |
| 16 | #include "mlir/Analysis/SliceAnalysis.h" |
| 17 | #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h" |
| 18 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
| 19 | #include "mlir/Dialect/Affine/Analysis/NestedMatcher.h" |
| 20 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 21 | #include "mlir/Dialect/Affine/Utils.h" |
| 22 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 23 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 24 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 25 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 26 | #include "mlir/IR/IRMapping.h" |
| 27 | #include "mlir/Pass/Pass.h" |
| 28 | #include "mlir/Support/LLVM.h" |
| 29 | #include "llvm/ADT/STLExtras.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include <optional> |
| 32 | |
| 33 | namespace mlir { |
| 34 | namespace affine { |
| 35 | #define GEN_PASS_DEF_AFFINEVECTORIZE |
| 36 | #include "mlir/Dialect/Affine/Passes.h.inc" |
| 37 | } // namespace affine |
| 38 | } // namespace mlir |
| 39 | |
| 40 | using namespace mlir; |
| 41 | using namespace affine; |
| 42 | using namespace vector; |
| 43 | |
| 44 | /// |
| 45 | /// Implements a high-level vectorization strategy on a Function. |
| 46 | /// The abstraction used is that of super-vectors, which provide a single, |
| 47 | /// compact, representation in the vector types, information that is expected |
| 48 | /// to reduce the impact of the phase ordering problem |
| 49 | /// |
| 50 | /// Vector granularity: |
| 51 | /// =================== |
| 52 | /// This pass is designed to perform vectorization at a super-vector |
| 53 | /// granularity. A super-vector is loosely defined as a vector type that is a |
| 54 | /// multiple of a "good" vector size so the HW can efficiently implement a set |
| 55 | /// of high-level primitives. Multiple is understood along any dimension; e.g. |
| 56 | /// both vector<16xf32> and vector<2x8xf32> are valid super-vectors for a |
| 57 | /// vector<8xf32> HW vector. Note that a "good vector size so the HW can |
| 58 | /// efficiently implement a set of high-level primitives" is not necessarily an |
| 59 | /// integer multiple of actual hardware registers. We leave details of this |
| 60 | /// distinction unspecified for now. |
| 61 | /// |
| 62 | /// Some may prefer the terminology a "tile of HW vectors". In this case, one |
| 63 | /// should note that super-vectors implement an "always full tile" abstraction. |
| 64 | /// They guarantee no partial-tile separation is necessary by relying on a |
| 65 | /// high-level copy-reshape abstraction that we call vector.transfer. This |
| 66 | /// copy-reshape operations is also responsible for performing layout |
| 67 | /// transposition if necessary. In the general case this will require a scoped |
| 68 | /// allocation in some notional local memory. |
| 69 | /// |
| 70 | /// Whatever the mental model one prefers to use for this abstraction, the key |
| 71 | /// point is that we burn into a single, compact, representation in the vector |
| 72 | /// types, information that is expected to reduce the impact of the phase |
| 73 | /// ordering problem. Indeed, a vector type conveys information that: |
| 74 | /// 1. the associated loops have dependency semantics that do not prevent |
| 75 | /// vectorization; |
| 76 | /// 2. the associate loops have been sliced in chunks of static sizes that are |
| 77 | /// compatible with vector sizes (i.e. similar to unroll-and-jam); |
| 78 | /// 3. the inner loops, in the unroll-and-jam analogy of 2, are captured by |
| 79 | /// the |
| 80 | /// vector type and no vectorization hampering transformations can be |
| 81 | /// applied to them anymore; |
| 82 | /// 4. the underlying memrefs are accessed in some notional contiguous way |
| 83 | /// that allows loading into vectors with some amount of spatial locality; |
| 84 | /// In other words, super-vectorization provides a level of separation of |
| 85 | /// concern by way of opacity to subsequent passes. This has the effect of |
| 86 | /// encapsulating and propagating vectorization constraints down the list of |
| 87 | /// passes until we are ready to lower further. |
| 88 | /// |
| 89 | /// For a particular target, a notion of minimal n-d vector size will be |
| 90 | /// specified and vectorization targets a multiple of those. In the following |
| 91 | /// paragraph, let "k ." represent "a multiple of", to be understood as a |
| 92 | /// multiple in the same dimension (e.g. vector<16 x k . 128> summarizes |
| 93 | /// vector<16 x 128>, vector<16 x 256>, vector<16 x 1024>, etc). |
| 94 | /// |
| 95 | /// Some non-exhaustive notable super-vector sizes of interest include: |
| 96 | /// - CPU: vector<k . HW_vector_size>, |
| 97 | /// vector<k' . core_count x k . HW_vector_size>, |
| 98 | /// vector<socket_count x k' . core_count x k . HW_vector_size>; |
| 99 | /// - GPU: vector<k . warp_size>, |
| 100 | /// vector<k . warp_size x float2>, |
| 101 | /// vector<k . warp_size x float4>, |
| 102 | /// vector<k . warp_size x 4 x 4x 4> (for tensor_core sizes). |
| 103 | /// |
| 104 | /// Loops and operations are emitted that operate on those super-vector shapes. |
| 105 | /// Subsequent lowering passes will materialize to actual HW vector sizes. These |
| 106 | /// passes are expected to be (gradually) more target-specific. |
| 107 | /// |
| 108 | /// At a high level, a vectorized load in a loop will resemble: |
| 109 | /// ```mlir |
| 110 | /// affine.for %i = ? to ? step ? { |
| 111 | /// %v_a = vector.transfer_read A[%i] : memref<?xf32>, vector<128xf32> |
| 112 | /// } |
| 113 | /// ``` |
| 114 | /// It is the responsibility of the implementation of vector.transfer_read to |
| 115 | /// materialize vector registers from the original scalar memrefs. A later (more |
| 116 | /// target-dependent) lowering pass will materialize to actual HW vector sizes. |
| 117 | /// This lowering may be occur at different times: |
| 118 | /// 1. at the MLIR level into a combination of loops, unrolling, DmaStartOp + |
| 119 | /// DmaWaitOp + vectorized operations for data transformations and shuffle; |
| 120 | /// thus opening opportunities for unrolling and pipelining. This is an |
| 121 | /// instance of library call "whiteboxing"; or |
| 122 | /// 2. later in the a target-specific lowering pass or hand-written library |
| 123 | /// call; achieving full separation of concerns. This is an instance of |
| 124 | /// library call; or |
| 125 | /// 3. a mix of both, e.g. based on a model. |
| 126 | /// In the future, these operations will expose a contract to constrain the |
| 127 | /// search on vectorization patterns and sizes. |
| 128 | /// |
| 129 | /// Occurrence of super-vectorization in the compiler flow: |
| 130 | /// ======================================================= |
| 131 | /// This is an active area of investigation. We start with 2 remarks to position |
| 132 | /// super-vectorization in the context of existing ongoing work: LLVM VPLAN |
| 133 | /// and LLVM SLP Vectorizer. |
| 134 | /// |
| 135 | /// LLVM VPLAN: |
| 136 | /// ----------- |
| 137 | /// The astute reader may have noticed that in the limit, super-vectorization |
| 138 | /// can be applied at a similar time and with similar objectives than VPLAN. |
| 139 | /// For instance, in the case of a traditional, polyhedral compilation-flow (for |
| 140 | /// instance, the PPCG project uses ISL to provide dependence analysis, |
| 141 | /// multi-level(scheduling + tiling), lifting footprint to fast memory, |
| 142 | /// communication synthesis, mapping, register optimizations) and before |
| 143 | /// unrolling. When vectorization is applied at this *late* level in a typical |
| 144 | /// polyhedral flow, and is instantiated with actual hardware vector sizes, |
| 145 | /// super-vectorization is expected to match (or subsume) the type of patterns |
| 146 | /// that LLVM's VPLAN aims at targeting. The main difference here is that MLIR |
| 147 | /// is higher level and our implementation should be significantly simpler. Also |
| 148 | /// note that in this mode, recursive patterns are probably a bit of an overkill |
| 149 | /// although it is reasonable to expect that mixing a bit of outer loop and |
| 150 | /// inner loop vectorization + unrolling will provide interesting choices to |
| 151 | /// MLIR. |
| 152 | /// |
| 153 | /// LLVM SLP Vectorizer: |
| 154 | /// -------------------- |
| 155 | /// Super-vectorization however is not meant to be usable in a similar fashion |
| 156 | /// to the SLP vectorizer. The main difference lies in the information that |
| 157 | /// both vectorizers use: super-vectorization examines contiguity of memory |
| 158 | /// references along fastest varying dimensions and loops with recursive nested |
| 159 | /// patterns capturing imperfectly-nested loop nests; the SLP vectorizer, on |
| 160 | /// the other hand, performs flat pattern matching inside a single unrolled loop |
| 161 | /// body and stitches together pieces of load and store operations into full |
| 162 | /// 1-D vectors. We envision that the SLP vectorizer is a good way to capture |
| 163 | /// innermost loop, control-flow dependent patterns that super-vectorization may |
| 164 | /// not be able to capture easily. In other words, super-vectorization does not |
| 165 | /// aim at replacing the SLP vectorizer and the two solutions are complementary. |
| 166 | /// |
| 167 | /// Ongoing investigations: |
| 168 | /// ----------------------- |
| 169 | /// We discuss the following *early* places where super-vectorization is |
| 170 | /// applicable and touch on the expected benefits and risks . We list the |
| 171 | /// opportunities in the context of the traditional polyhedral compiler flow |
| 172 | /// described in PPCG. There are essentially 6 places in the MLIR pass pipeline |
| 173 | /// we expect to experiment with super-vectorization: |
| 174 | /// 1. Right after language lowering to MLIR: this is the earliest time where |
| 175 | /// super-vectorization is expected to be applied. At this level, all the |
| 176 | /// language/user/library-level annotations are available and can be fully |
| 177 | /// exploited. Examples include loop-type annotations (such as parallel, |
| 178 | /// reduction, scan, dependence distance vector, vectorizable) as well as |
| 179 | /// memory access annotations (such as non-aliasing writes guaranteed, |
| 180 | /// indirect accesses that are permutations by construction) accesses or |
| 181 | /// that a particular operation is prescribed atomic by the user. At this |
| 182 | /// level, anything that enriches what dependence analysis can do should be |
| 183 | /// aggressively exploited. At this level we are close to having explicit |
| 184 | /// vector types in the language, except we do not impose that burden on the |
| 185 | /// programmer/library: we derive information from scalar code + annotations. |
| 186 | /// 2. After dependence analysis and before polyhedral scheduling: the |
| 187 | /// information that supports vectorization does not need to be supplied by a |
| 188 | /// higher level of abstraction. Traditional dependence analysis is available |
| 189 | /// in MLIR and will be used to drive vectorization and cost models. |
| 190 | /// |
| 191 | /// Let's pause here and remark that applying super-vectorization as described |
| 192 | /// in 1. and 2. presents clear opportunities and risks: |
| 193 | /// - the opportunity is that vectorization is burned in the type system and |
| 194 | /// is protected from the adverse effect of loop scheduling, tiling, loop |
| 195 | /// interchange and all passes downstream. Provided that subsequent passes are |
| 196 | /// able to operate on vector types; the vector shapes, associated loop |
| 197 | /// iterator properties, alignment, and contiguity of fastest varying |
| 198 | /// dimensions are preserved until we lower the super-vector types. We expect |
| 199 | /// this to significantly rein in on the adverse effects of phase ordering. |
| 200 | /// - the risks are that a. all passes after super-vectorization have to work |
| 201 | /// on elemental vector types (not that this is always true, wherever |
| 202 | /// vectorization is applied) and b. that imposing vectorization constraints |
| 203 | /// too early may be overall detrimental to loop fusion, tiling and other |
| 204 | /// transformations because the dependence distances are coarsened when |
| 205 | /// operating on elemental vector types. For this reason, the pattern |
| 206 | /// profitability analysis should include a component that also captures the |
| 207 | /// maximal amount of fusion available under a particular pattern. This is |
| 208 | /// still at the stage of rough ideas but in this context, search is our |
| 209 | /// friend as the Tensor Comprehensions and auto-TVM contributions |
| 210 | /// demonstrated previously. |
| 211 | /// Bottom-line is we do not yet have good answers for the above but aim at |
| 212 | /// making it easy to answer such questions. |
| 213 | /// |
| 214 | /// Back to our listing, the last places where early super-vectorization makes |
| 215 | /// sense are: |
| 216 | /// 3. right after polyhedral-style scheduling: PLUTO-style algorithms are known |
| 217 | /// to improve locality, parallelism and be configurable (e.g. max-fuse, |
| 218 | /// smart-fuse etc). They can also have adverse effects on contiguity |
| 219 | /// properties that are required for vectorization but the vector.transfer |
| 220 | /// copy-reshape-pad-transpose abstraction is expected to help recapture |
| 221 | /// these properties. |
| 222 | /// 4. right after polyhedral-style scheduling+tiling; |
| 223 | /// 5. right after scheduling+tiling+rescheduling: points 4 and 5 represent |
| 224 | /// probably the most promising places because applying tiling achieves a |
| 225 | /// separation of concerns that allows rescheduling to worry less about |
| 226 | /// locality and more about parallelism and distribution (e.g. min-fuse). |
| 227 | /// |
| 228 | /// At these levels the risk-reward looks different: on one hand we probably |
| 229 | /// lost a good deal of language/user/library-level annotation; on the other |
| 230 | /// hand we gained parallelism and locality through scheduling and tiling. |
| 231 | /// However we probably want to ensure tiling is compatible with the |
| 232 | /// full-tile-only abstraction used in super-vectorization or suffer the |
| 233 | /// consequences. It is too early to place bets on what will win but we expect |
| 234 | /// super-vectorization to be the right abstraction to allow exploring at all |
| 235 | /// these levels. And again, search is our friend. |
| 236 | /// |
| 237 | /// Lastly, we mention it again here: |
| 238 | /// 6. as a MLIR-based alternative to VPLAN. |
| 239 | /// |
| 240 | /// Lowering, unrolling, pipelining: |
| 241 | /// ================================ |
| 242 | /// TODO: point to the proper places. |
| 243 | /// |
| 244 | /// Algorithm: |
| 245 | /// ========== |
| 246 | /// The algorithm proceeds in a few steps: |
| 247 | /// 1. defining super-vectorization patterns and matching them on the tree of |
| 248 | /// AffineForOp. A super-vectorization pattern is defined as a recursive |
| 249 | /// data structures that matches and captures nested, imperfectly-nested |
| 250 | /// loops that have a. conformable loop annotations attached (e.g. parallel, |
| 251 | /// reduction, vectorizable, ...) as well as b. all contiguous load/store |
| 252 | /// operations along a specified minor dimension (not necessarily the |
| 253 | /// fastest varying) ; |
| 254 | /// 2. analyzing those patterns for profitability (TODO: and |
| 255 | /// interference); |
| 256 | /// 3. then, for each pattern in order: |
| 257 | /// a. applying iterative rewriting of the loops and all their nested |
| 258 | /// operations in topological order. Rewriting is implemented by |
| 259 | /// coarsening the loops and converting operations and operands to their |
| 260 | /// vector forms. Processing operations in topological order is relatively |
| 261 | /// simple due to the structured nature of the control-flow |
| 262 | /// representation. This order ensures that all the operands of a given |
| 263 | /// operation have been vectorized before the operation itself in a single |
| 264 | /// traversal, except for operands defined outside of the loop nest. The |
| 265 | /// algorithm can convert the following operations to their vector form: |
| 266 | /// * Affine load and store operations are converted to opaque vector |
| 267 | /// transfer read and write operations. |
| 268 | /// * Scalar constant operations/operands are converted to vector |
| 269 | /// constant operations (splat). |
| 270 | /// * Uniform operands (only induction variables of loops not mapped to |
| 271 | /// a vector dimension, or operands defined outside of the loop nest |
| 272 | /// for now) are broadcasted to a vector. |
| 273 | /// TODO: Support more uniform cases. |
| 274 | /// * Affine for operations with 'iter_args' are vectorized by |
| 275 | /// vectorizing their 'iter_args' operands and results. |
| 276 | /// TODO: Support more complex loops with divergent lbs and/or ubs. |
| 277 | /// * The remaining operations in the loop nest are vectorized by |
| 278 | /// widening their scalar types to vector types. |
| 279 | /// b. if everything under the root AffineForOp in the current pattern |
| 280 | /// is vectorized properly, we commit that loop to the IR and remove the |
| 281 | /// scalar loop. Otherwise, we discard the vectorized loop and keep the |
| 282 | /// original scalar loop. |
| 283 | /// c. vectorization is applied on the next pattern in the list. Because |
| 284 | /// pattern interference avoidance is not yet implemented and that we do |
| 285 | /// not support further vectorizing an already vector load we need to |
| 286 | /// re-verify that the pattern is still vectorizable. This is expected to |
| 287 | /// make cost models more difficult to write and is subject to improvement |
| 288 | /// in the future. |
| 289 | /// |
| 290 | /// Choice of loop transformation to support the algorithm: |
| 291 | /// ======================================================= |
| 292 | /// The choice of loop transformation to apply for coarsening vectorized loops |
| 293 | /// is still subject to exploratory tradeoffs. In particular, say we want to |
| 294 | /// vectorize by a factor 128, we want to transform the following input: |
| 295 | /// ```mlir |
| 296 | /// affine.for %i = %M to %N { |
| 297 | /// %a = affine.load %A[%i] : memref<?xf32> |
| 298 | /// } |
| 299 | /// ``` |
| 300 | /// |
| 301 | /// Traditionally, one would vectorize late (after scheduling, tiling, |
| 302 | /// memory promotion etc) say after stripmining (and potentially unrolling in |
| 303 | /// the case of LLVM's SLP vectorizer): |
| 304 | /// ```mlir |
| 305 | /// affine.for %i = floor(%M, 128) to ceil(%N, 128) { |
| 306 | /// affine.for %ii = max(%M, 128 * %i) to min(%N, 128*%i + 127) { |
| 307 | /// %a = affine.load %A[%ii] : memref<?xf32> |
| 308 | /// } |
| 309 | /// } |
| 310 | /// ``` |
| 311 | /// |
| 312 | /// Instead, we seek to vectorize early and freeze vector types before |
| 313 | /// scheduling, so we want to generate a pattern that resembles: |
| 314 | /// ```mlir |
| 315 | /// affine.for %i = ? to ? step ? { |
| 316 | /// %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32> |
| 317 | /// } |
| 318 | /// ``` |
| 319 | /// |
| 320 | /// i. simply dividing the lower / upper bounds by 128 creates issues |
| 321 | /// when representing expressions such as ii + 1 because now we only |
| 322 | /// have access to original values that have been divided. Additional |
| 323 | /// information is needed to specify accesses at below-128 granularity; |
| 324 | /// ii. another alternative is to coarsen the loop step but this may have |
| 325 | /// consequences on dependence analysis and fusability of loops: fusable |
| 326 | /// loops probably need to have the same step (because we don't want to |
| 327 | /// stripmine/unroll to enable fusion). |
| 328 | /// As a consequence, we choose to represent the coarsening using the loop |
| 329 | /// step for now and reevaluate in the future. Note that we can renormalize |
| 330 | /// loop steps later if/when we have evidence that they are problematic. |
| 331 | /// |
| 332 | /// For the simple strawman example above, vectorizing for a 1-D vector |
| 333 | /// abstraction of size 128 returns code similar to: |
| 334 | /// ```mlir |
| 335 | /// affine.for %i = %M to %N step 128 { |
| 336 | /// %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32> |
| 337 | /// } |
| 338 | /// ``` |
| 339 | /// |
| 340 | /// Unsupported cases, extensions, and work in progress (help welcome :-) ): |
| 341 | /// ======================================================================== |
| 342 | /// 1. lowering to concrete vector types for various HW; |
| 343 | /// 2. reduction support for n-D vectorization and non-unit steps; |
| 344 | /// 3. non-effecting padding during vector.transfer_read and filter during |
| 345 | /// vector.transfer_write; |
| 346 | /// 4. misalignment support vector.transfer_read / vector.transfer_write |
| 347 | /// (hopefully without read-modify-writes); |
| 348 | /// 5. control-flow support; |
| 349 | /// 6. cost-models, heuristics and search; |
| 350 | /// 7. Op implementation, extensions and implication on memref views; |
| 351 | /// 8. many TODOs left around. |
| 352 | /// |
| 353 | /// Examples: |
| 354 | /// ========= |
| 355 | /// Consider the following Function: |
| 356 | /// ```mlir |
| 357 | /// func @vector_add_2d(%M : index, %N : index) -> f32 { |
| 358 | /// %A = alloc (%M, %N) : memref<?x?xf32, 0> |
| 359 | /// %B = alloc (%M, %N) : memref<?x?xf32, 0> |
| 360 | /// %C = alloc (%M, %N) : memref<?x?xf32, 0> |
| 361 | /// %f1 = arith.constant 1.0 : f32 |
| 362 | /// %f2 = arith.constant 2.0 : f32 |
| 363 | /// affine.for %i0 = 0 to %M { |
| 364 | /// affine.for %i1 = 0 to %N { |
| 365 | /// // non-scoped %f1 |
| 366 | /// affine.store %f1, %A[%i0, %i1] : memref<?x?xf32, 0> |
| 367 | /// } |
| 368 | /// } |
| 369 | /// affine.for %i2 = 0 to %M { |
| 370 | /// affine.for %i3 = 0 to %N { |
| 371 | /// // non-scoped %f2 |
| 372 | /// affine.store %f2, %B[%i2, %i3] : memref<?x?xf32, 0> |
| 373 | /// } |
| 374 | /// } |
| 375 | /// affine.for %i4 = 0 to %M { |
| 376 | /// affine.for %i5 = 0 to %N { |
| 377 | /// %a5 = affine.load %A[%i4, %i5] : memref<?x?xf32, 0> |
| 378 | /// %b5 = affine.load %B[%i4, %i5] : memref<?x?xf32, 0> |
| 379 | /// %s5 = arith.addf %a5, %b5 : f32 |
| 380 | /// // non-scoped %f1 |
| 381 | /// %s6 = arith.addf %s5, %f1 : f32 |
| 382 | /// // non-scoped %f2 |
| 383 | /// %s7 = arith.addf %s5, %f2 : f32 |
| 384 | /// // diamond dependency. |
| 385 | /// %s8 = arith.addf %s7, %s6 : f32 |
| 386 | /// affine.store %s8, %C[%i4, %i5] : memref<?x?xf32, 0> |
| 387 | /// } |
| 388 | /// } |
| 389 | /// %c7 = arith.constant 7 : index |
| 390 | /// %c42 = arith.constant 42 : index |
| 391 | /// %res = load %C[%c7, %c42] : memref<?x?xf32, 0> |
| 392 | /// return %res : f32 |
| 393 | /// } |
| 394 | /// ``` |
| 395 | /// |
| 396 | /// The -affine-super-vectorize pass with the following arguments: |
| 397 | /// ``` |
| 398 | /// -affine-super-vectorize="virtual-vector-size=256 test-fastest-varying=0" |
| 399 | /// ``` |
| 400 | /// |
| 401 | /// produces this standard innermost-loop vectorized code: |
| 402 | /// ```mlir |
| 403 | /// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 { |
| 404 | /// %0 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| 405 | /// %1 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| 406 | /// %2 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| 407 | /// %cst = arith.constant 1.0 : f32 |
| 408 | /// %cst_0 = arith.constant 2.0 : f32 |
| 409 | /// affine.for %i0 = 0 to %arg0 { |
| 410 | /// affine.for %i1 = 0 to %arg1 step 256 { |
| 411 | /// %cst_1 = arith.constant dense<vector<256xf32>, 1.0> : |
| 412 | /// vector<256xf32> |
| 413 | /// vector.transfer_write %cst_1, %0[%i0, %i1] : |
| 414 | /// vector<256xf32>, memref<?x?xf32> |
| 415 | /// } |
| 416 | /// } |
| 417 | /// affine.for %i2 = 0 to %arg0 { |
| 418 | /// affine.for %i3 = 0 to %arg1 step 256 { |
| 419 | /// %cst_2 = arith.constant dense<vector<256xf32>, 2.0> : |
| 420 | /// vector<256xf32> |
| 421 | /// vector.transfer_write %cst_2, %1[%i2, %i3] : |
| 422 | /// vector<256xf32>, memref<?x?xf32> |
| 423 | /// } |
| 424 | /// } |
| 425 | /// affine.for %i4 = 0 to %arg0 { |
| 426 | /// affine.for %i5 = 0 to %arg1 step 256 { |
| 427 | /// %3 = vector.transfer_read %0[%i4, %i5] : |
| 428 | /// memref<?x?xf32>, vector<256xf32> |
| 429 | /// %4 = vector.transfer_read %1[%i4, %i5] : |
| 430 | /// memref<?x?xf32>, vector<256xf32> |
| 431 | /// %5 = arith.addf %3, %4 : vector<256xf32> |
| 432 | /// %cst_3 = arith.constant dense<vector<256xf32>, 1.0> : |
| 433 | /// vector<256xf32> |
| 434 | /// %6 = arith.addf %5, %cst_3 : vector<256xf32> |
| 435 | /// %cst_4 = arith.constant dense<vector<256xf32>, 2.0> : |
| 436 | /// vector<256xf32> |
| 437 | /// %7 = arith.addf %5, %cst_4 : vector<256xf32> |
| 438 | /// %8 = arith.addf %7, %6 : vector<256xf32> |
| 439 | /// vector.transfer_write %8, %2[%i4, %i5] : |
| 440 | /// vector<256xf32>, memref<?x?xf32> |
| 441 | /// } |
| 442 | /// } |
| 443 | /// %c7 = arith.constant 7 : index |
| 444 | /// %c42 = arith.constant 42 : index |
| 445 | /// %9 = load %2[%c7, %c42] : memref<?x?xf32> |
| 446 | /// return %9 : f32 |
| 447 | /// } |
| 448 | /// ``` |
| 449 | /// |
| 450 | /// The -affine-super-vectorize pass with the following arguments: |
| 451 | /// ``` |
| 452 | /// -affine-super-vectorize="virtual-vector-size=32,256 \ |
| 453 | /// test-fastest-varying=1,0" |
| 454 | /// ``` |
| 455 | /// |
| 456 | /// produces this more interesting mixed outer-innermost-loop vectorized code: |
| 457 | /// ```mlir |
| 458 | /// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 { |
| 459 | /// %0 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| 460 | /// %1 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| 461 | /// %2 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> |
| 462 | /// %cst = arith.constant 1.0 : f32 |
| 463 | /// %cst_0 = arith.constant 2.0 : f32 |
| 464 | /// affine.for %i0 = 0 to %arg0 step 32 { |
| 465 | /// affine.for %i1 = 0 to %arg1 step 256 { |
| 466 | /// %cst_1 = arith.constant dense<vector<32x256xf32>, 1.0> : |
| 467 | /// vector<32x256xf32> |
| 468 | /// vector.transfer_write %cst_1, %0[%i0, %i1] : |
| 469 | /// vector<32x256xf32>, memref<?x?xf32> |
| 470 | /// } |
| 471 | /// } |
| 472 | /// affine.for %i2 = 0 to %arg0 step 32 { |
| 473 | /// affine.for %i3 = 0 to %arg1 step 256 { |
| 474 | /// %cst_2 = arith.constant dense<vector<32x256xf32>, 2.0> : |
| 475 | /// vector<32x256xf32> |
| 476 | /// vector.transfer_write %cst_2, %1[%i2, %i3] : |
| 477 | /// vector<32x256xf32>, memref<?x?xf32> |
| 478 | /// } |
| 479 | /// } |
| 480 | /// affine.for %i4 = 0 to %arg0 step 32 { |
| 481 | /// affine.for %i5 = 0 to %arg1 step 256 { |
| 482 | /// %3 = vector.transfer_read %0[%i4, %i5] : |
| 483 | /// memref<?x?xf32> vector<32x256xf32> |
| 484 | /// %4 = vector.transfer_read %1[%i4, %i5] : |
| 485 | /// memref<?x?xf32>, vector<32x256xf32> |
| 486 | /// %5 = arith.addf %3, %4 : vector<32x256xf32> |
| 487 | /// %cst_3 = arith.constant dense<vector<32x256xf32>, 1.0> : |
| 488 | /// vector<32x256xf32> |
| 489 | /// %6 = arith.addf %5, %cst_3 : vector<32x256xf32> |
| 490 | /// %cst_4 = arith.constant dense<vector<32x256xf32>, 2.0> : |
| 491 | /// vector<32x256xf32> |
| 492 | /// %7 = arith.addf %5, %cst_4 : vector<32x256xf32> |
| 493 | /// %8 = arith.addf %7, %6 : vector<32x256xf32> |
| 494 | /// vector.transfer_write %8, %2[%i4, %i5] : |
| 495 | /// vector<32x256xf32>, memref<?x?xf32> |
| 496 | /// } |
| 497 | /// } |
| 498 | /// %c7 = arith.constant 7 : index |
| 499 | /// %c42 = arith.constant 42 : index |
| 500 | /// %9 = load %2[%c7, %c42] : memref<?x?xf32> |
| 501 | /// return %9 : f32 |
| 502 | /// } |
| 503 | /// ``` |
| 504 | /// |
| 505 | /// Of course, much more intricate n-D imperfectly-nested patterns can be |
| 506 | /// vectorized too and specified in a fully declarative fashion. |
| 507 | /// |
| 508 | /// Reduction: |
| 509 | /// ========== |
| 510 | /// Vectorizing reduction loops along the reduction dimension is supported if: |
| 511 | /// - the reduction kind is supported, |
| 512 | /// - the vectorization is 1-D, and |
| 513 | /// - the step size of the loop equals to one. |
| 514 | /// |
| 515 | /// Comparing to the non-vector-dimension case, two additional things are done |
| 516 | /// during vectorization of such loops: |
| 517 | /// - The resulting vector returned from the loop is reduced to a scalar using |
| 518 | /// `vector.reduce`. |
| 519 | /// - In some cases a mask is applied to the vector yielded at the end of the |
| 520 | /// loop to prevent garbage values from being written to the accumulator. |
| 521 | /// |
| 522 | /// Reduction vectorization is switched off by default, it can be enabled by |
| 523 | /// passing a map from loops to reductions to utility functions, or by passing |
| 524 | /// `vectorize-reductions=true` to the vectorization pass. |
| 525 | /// |
| 526 | /// Consider the following example: |
| 527 | /// ```mlir |
| 528 | /// func @vecred(%in: memref<512xf32>) -> f32 { |
| 529 | /// %cst = arith.constant 0.000000e+00 : f32 |
| 530 | /// %sum = affine.for %i = 0 to 500 iter_args(%part_sum = %cst) -> (f32) { |
| 531 | /// %ld = affine.load %in[%i] : memref<512xf32> |
| 532 | /// %cos = math.cos %ld : f32 |
| 533 | /// %add = arith.addf %part_sum, %cos : f32 |
| 534 | /// affine.yield %add : f32 |
| 535 | /// } |
| 536 | /// return %sum : f32 |
| 537 | /// } |
| 538 | /// ``` |
| 539 | /// |
| 540 | /// The -affine-super-vectorize pass with the following arguments: |
| 541 | /// ``` |
| 542 | /// -affine-super-vectorize="virtual-vector-size=128 test-fastest-varying=0 \ |
| 543 | /// vectorize-reductions=true" |
| 544 | /// ``` |
| 545 | /// produces the following output: |
| 546 | /// ```mlir |
| 547 | /// #map = affine_map<(d0) -> (-d0 + 500)> |
| 548 | /// func @vecred(%arg0: memref<512xf32>) -> f32 { |
| 549 | /// %cst = arith.constant 0.000000e+00 : f32 |
| 550 | /// %cst_0 = arith.constant dense<0.000000e+00> : vector<128xf32> |
| 551 | /// %0 = affine.for %arg1 = 0 to 500 step 128 iter_args(%arg2 = %cst_0) |
| 552 | /// -> (vector<128xf32>) { |
| 553 | /// // %2 is the number of iterations left in the original loop. |
| 554 | /// %2 = affine.apply #map(%arg1) |
| 555 | /// %3 = vector.create_mask %2 : vector<128xi1> |
| 556 | /// %cst_1 = arith.constant 0.000000e+00 : f32 |
| 557 | /// %4 = vector.transfer_read %arg0[%arg1], %cst_1 : |
| 558 | /// memref<512xf32>, vector<128xf32> |
| 559 | /// %5 = math.cos %4 : vector<128xf32> |
| 560 | /// %6 = arith.addf %arg2, %5 : vector<128xf32> |
| 561 | /// // We filter out the effect of last 12 elements using the mask. |
| 562 | /// %7 = select %3, %6, %arg2 : vector<128xi1>, vector<128xf32> |
| 563 | /// affine.yield %7 : vector<128xf32> |
| 564 | /// } |
| 565 | /// %1 = vector.reduction <add>, %0 : vector<128xf32> into f32 |
| 566 | /// return %1 : f32 |
| 567 | /// } |
| 568 | /// ``` |
| 569 | /// |
| 570 | /// Note that because of loop misalignment we needed to apply a mask to prevent |
| 571 | /// last 12 elements from affecting the final result. The mask is full of ones |
| 572 | /// in every iteration except for the last one, in which it has the form |
| 573 | /// `11...100...0` with 116 ones and 12 zeros. |
| 574 | |
| 575 | #define DEBUG_TYPE "early-vect" |
| 576 | |
| 577 | using llvm::dbgs; |
| 578 | |
| 579 | /// Forward declaration. |
| 580 | static FilterFunctionType |
| 581 | isVectorizableLoopPtrFactory(const DenseSet<Operation *> ¶llelLoops, |
| 582 | int fastestVaryingMemRefDimension); |
| 583 | |
| 584 | /// Creates a vectorization pattern from the command line arguments. |
| 585 | /// Up to 3-D patterns are supported. |
| 586 | /// If the command line argument requests a pattern of higher order, returns an |
| 587 | /// empty pattern list which will conservatively result in no vectorization. |
| 588 | static std::optional<NestedPattern> |
| 589 | makePattern(const DenseSet<Operation *> ¶llelLoops, int vectorRank, |
| 590 | ArrayRef<int64_t> fastestVaryingPattern) { |
| 591 | using affine::matcher::For; |
| 592 | int64_t d0 = fastestVaryingPattern.empty() ? -1 : fastestVaryingPattern[0]; |
| 593 | int64_t d1 = fastestVaryingPattern.size() < 2 ? -1 : fastestVaryingPattern[1]; |
| 594 | int64_t d2 = fastestVaryingPattern.size() < 3 ? -1 : fastestVaryingPattern[2]; |
| 595 | switch (vectorRank) { |
| 596 | case 1: |
| 597 | return For(filter: isVectorizableLoopPtrFactory(parallelLoops, fastestVaryingMemRefDimension: d0)); |
| 598 | case 2: |
| 599 | return For(filter: isVectorizableLoopPtrFactory(parallelLoops, fastestVaryingMemRefDimension: d0), |
| 600 | child: For(filter: isVectorizableLoopPtrFactory(parallelLoops, fastestVaryingMemRefDimension: d1))); |
| 601 | case 3: |
| 602 | return For(filter: isVectorizableLoopPtrFactory(parallelLoops, fastestVaryingMemRefDimension: d0), |
| 603 | child: For(filter: isVectorizableLoopPtrFactory(parallelLoops, fastestVaryingMemRefDimension: d1), |
| 604 | child: For(filter: isVectorizableLoopPtrFactory(parallelLoops, fastestVaryingMemRefDimension: d2)))); |
| 605 | default: { |
| 606 | return std::nullopt; |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | static NestedPattern &vectorTransferPattern() { |
| 612 | static auto pattern = affine::matcher::Op( |
| 613 | filter: llvm::IsaPred<vector::TransferReadOp, vector::TransferWriteOp>); |
| 614 | return pattern; |
| 615 | } |
| 616 | |
| 617 | namespace { |
| 618 | |
| 619 | /// Base state for the vectorize pass. |
| 620 | /// Command line arguments are preempted by non-empty pass arguments. |
| 621 | struct Vectorize : public affine::impl::AffineVectorizeBase<Vectorize> { |
| 622 | using Base::Base; |
| 623 | |
| 624 | void runOnOperation() override; |
| 625 | }; |
| 626 | |
| 627 | } // namespace |
| 628 | |
| 629 | static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern, |
| 630 | unsigned patternDepth, |
| 631 | VectorizationStrategy *strategy) { |
| 632 | assert(patternDepth > depthInPattern && |
| 633 | "patternDepth is greater than depthInPattern" ); |
| 634 | if (patternDepth - depthInPattern > strategy->vectorSizes.size()) { |
| 635 | // Don't vectorize this loop |
| 636 | return; |
| 637 | } |
| 638 | strategy->loopToVectorDim[loop] = |
| 639 | strategy->vectorSizes.size() - (patternDepth - depthInPattern); |
| 640 | } |
| 641 | |
| 642 | /// Implements a simple strawman strategy for vectorization. |
| 643 | /// Given a matched pattern `matches` of depth `patternDepth`, this strategy |
| 644 | /// greedily assigns the fastest varying dimension ** of the vector ** to the |
| 645 | /// innermost loop in the pattern. |
| 646 | /// When coupled with a pattern that looks for the fastest varying dimension in |
| 647 | /// load/store MemRefs, this creates a generic vectorization strategy that works |
| 648 | /// for any loop in a hierarchy (outermost, innermost or intermediate). |
| 649 | /// |
| 650 | /// TODO: In the future we should additionally increase the power of the |
| 651 | /// profitability analysis along 3 directions: |
| 652 | /// 1. account for loop extents (both static and parametric + annotations); |
| 653 | /// 2. account for data layout permutations; |
| 654 | /// 3. account for impact of vectorization on maximal loop fusion. |
| 655 | /// Then we can quantify the above to build a cost model and search over |
| 656 | /// strategies. |
| 657 | static LogicalResult analyzeProfitability(ArrayRef<NestedMatch> matches, |
| 658 | unsigned depthInPattern, |
| 659 | unsigned patternDepth, |
| 660 | VectorizationStrategy *strategy) { |
| 661 | for (auto m : matches) { |
| 662 | if (failed(Result: analyzeProfitability(matches: m.getMatchedChildren(), depthInPattern: depthInPattern + 1, |
| 663 | patternDepth, strategy))) { |
| 664 | return failure(); |
| 665 | } |
| 666 | vectorizeLoopIfProfitable(loop: m.getMatchedOperation(), depthInPattern, |
| 667 | patternDepth, strategy); |
| 668 | } |
| 669 | return success(); |
| 670 | } |
| 671 | |
| 672 | ///// end TODO: Hoist to a VectorizationStrategy.cpp when appropriate ///// |
| 673 | |
| 674 | namespace { |
| 675 | |
| 676 | struct VectorizationState { |
| 677 | |
| 678 | VectorizationState(MLIRContext *context) : builder(context) {} |
| 679 | |
| 680 | /// Registers the vector replacement of a scalar operation and its result |
| 681 | /// values. Both operations must have the same number of results. |
| 682 | /// |
| 683 | /// This utility is used to register the replacement for the vast majority of |
| 684 | /// the vectorized operations. |
| 685 | /// |
| 686 | /// Example: |
| 687 | /// * 'replaced': %0 = arith.addf %1, %2 : f32 |
| 688 | /// * 'replacement': %0 = arith.addf %1, %2 : vector<128xf32> |
| 689 | void registerOpVectorReplacement(Operation *replaced, Operation *replacement); |
| 690 | |
| 691 | /// Registers the vector replacement of a scalar value. The replacement |
| 692 | /// operation should have a single result, which replaces the scalar value. |
| 693 | /// |
| 694 | /// This utility is used to register the vector replacement of block arguments |
| 695 | /// and operation results which are not directly vectorized (i.e., their |
| 696 | /// scalar version still exists after vectorization), like uniforms. |
| 697 | /// |
| 698 | /// Example: |
| 699 | /// * 'replaced': block argument or operation outside of the vectorized |
| 700 | /// loop. |
| 701 | /// * 'replacement': %0 = vector.broadcast %1 : f32 to vector<128xf32> |
| 702 | void registerValueVectorReplacement(Value replaced, Operation *replacement); |
| 703 | |
| 704 | /// Registers the vector replacement of a block argument (e.g., iter_args). |
| 705 | /// |
| 706 | /// Example: |
| 707 | /// * 'replaced': 'iter_arg' block argument. |
| 708 | /// * 'replacement': vectorized 'iter_arg' block argument. |
| 709 | void registerBlockArgVectorReplacement(BlockArgument replaced, |
| 710 | BlockArgument replacement); |
| 711 | |
| 712 | /// Registers the scalar replacement of a scalar value. 'replacement' must be |
| 713 | /// scalar. |
| 714 | /// |
| 715 | /// This utility is used to register the replacement of block arguments |
| 716 | /// or affine.apply results that are within the loop be vectorized and will |
| 717 | /// continue being scalar within the vector loop. |
| 718 | /// |
| 719 | /// Example: |
| 720 | /// * 'replaced': induction variable of a loop to be vectorized. |
| 721 | /// * 'replacement': new induction variable in the new vector loop. |
| 722 | void registerValueScalarReplacement(Value replaced, Value replacement); |
| 723 | |
| 724 | /// Registers the scalar replacement of a scalar result returned from a |
| 725 | /// reduction loop. 'replacement' must be scalar. |
| 726 | /// |
| 727 | /// This utility is used to register the replacement for scalar results of |
| 728 | /// vectorized reduction loops with iter_args. |
| 729 | /// |
| 730 | /// Example 2: |
| 731 | /// * 'replaced': %0 = affine.for %i = 0 to 512 iter_args(%x = ...) -> (f32) |
| 732 | /// * 'replacement': %1 = vector.reduction <add>, %0 : vector<4xf32> into |
| 733 | /// f32 |
| 734 | void registerLoopResultScalarReplacement(Value replaced, Value replacement); |
| 735 | |
| 736 | /// Returns in 'replacedVals' the scalar replacement for values in |
| 737 | /// 'inputVals'. |
| 738 | void getScalarValueReplacementsFor(ValueRange inputVals, |
| 739 | SmallVectorImpl<Value> &replacedVals); |
| 740 | |
| 741 | /// Erases the scalar loop nest after its successful vectorization. |
| 742 | void finishVectorizationPattern(AffineForOp rootLoop); |
| 743 | |
| 744 | // Used to build and insert all the new operations created. The insertion |
| 745 | // point is preserved and updated along the vectorization process. |
| 746 | OpBuilder builder; |
| 747 | |
| 748 | // Maps input scalar operations to their vector counterparts. |
| 749 | DenseMap<Operation *, Operation *> opVectorReplacement; |
| 750 | // Maps input scalar values to their vector counterparts. |
| 751 | IRMapping valueVectorReplacement; |
| 752 | // Maps input scalar values to their new scalar counterparts in the vector |
| 753 | // loop nest. |
| 754 | IRMapping valueScalarReplacement; |
| 755 | // Maps results of reduction loops to their new scalar counterparts. |
| 756 | DenseMap<Value, Value> loopResultScalarReplacement; |
| 757 | |
| 758 | // Maps the newly created vector loops to their vector dimension. |
| 759 | DenseMap<Operation *, unsigned> vecLoopToVecDim; |
| 760 | |
| 761 | // Maps the new vectorized loops to the corresponding vector masks if it is |
| 762 | // required. |
| 763 | DenseMap<Operation *, Value> vecLoopToMask; |
| 764 | |
| 765 | // The strategy drives which loop to vectorize by which amount. |
| 766 | const VectorizationStrategy *strategy = nullptr; |
| 767 | |
| 768 | private: |
| 769 | /// Internal implementation to map input scalar values to new vector or scalar |
| 770 | /// values. |
| 771 | void registerValueVectorReplacementImpl(Value replaced, Value replacement); |
| 772 | }; |
| 773 | |
| 774 | } // namespace |
| 775 | |
| 776 | /// Registers the vector replacement of a scalar operation and its result |
| 777 | /// values. Both operations must have the same number of results. |
| 778 | /// |
| 779 | /// This utility is used to register the replacement for the vast majority of |
| 780 | /// the vectorized operations. |
| 781 | /// |
| 782 | /// Example: |
| 783 | /// * 'replaced': %0 = arith.addf %1, %2 : f32 |
| 784 | /// * 'replacement': %0 = arith.addf %1, %2 : vector<128xf32> |
| 785 | void VectorizationState::registerOpVectorReplacement(Operation *replaced, |
| 786 | Operation *replacement) { |
| 787 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ commit vectorized op:\n" ); |
| 788 | LLVM_DEBUG(dbgs() << *replaced << "\n" ); |
| 789 | LLVM_DEBUG(dbgs() << "into\n" ); |
| 790 | LLVM_DEBUG(dbgs() << *replacement << "\n" ); |
| 791 | |
| 792 | assert(replaced->getNumResults() == replacement->getNumResults() && |
| 793 | "Unexpected replaced and replacement results" ); |
| 794 | assert(opVectorReplacement.count(replaced) == 0 && "already registered" ); |
| 795 | opVectorReplacement[replaced] = replacement; |
| 796 | |
| 797 | for (auto resultTuple : |
| 798 | llvm::zip(t: replaced->getResults(), u: replacement->getResults())) |
| 799 | registerValueVectorReplacementImpl(replaced: std::get<0>(t&: resultTuple), |
| 800 | replacement: std::get<1>(t&: resultTuple)); |
| 801 | } |
| 802 | |
| 803 | /// Registers the vector replacement of a scalar value. The replacement |
| 804 | /// operation should have a single result, which replaces the scalar value. |
| 805 | /// |
| 806 | /// This utility is used to register the vector replacement of block arguments |
| 807 | /// and operation results which are not directly vectorized (i.e., their |
| 808 | /// scalar version still exists after vectorization), like uniforms. |
| 809 | /// |
| 810 | /// Example: |
| 811 | /// * 'replaced': block argument or operation outside of the vectorized loop. |
| 812 | /// * 'replacement': %0 = vector.broadcast %1 : f32 to vector<128xf32> |
| 813 | void VectorizationState::registerValueVectorReplacement( |
| 814 | Value replaced, Operation *replacement) { |
| 815 | assert(replacement->getNumResults() == 1 && |
| 816 | "Expected single-result replacement" ); |
| 817 | if (Operation *defOp = replaced.getDefiningOp()) |
| 818 | registerOpVectorReplacement(replaced: defOp, replacement); |
| 819 | else |
| 820 | registerValueVectorReplacementImpl(replaced, replacement: replacement->getResult(idx: 0)); |
| 821 | } |
| 822 | |
| 823 | /// Registers the vector replacement of a block argument (e.g., iter_args). |
| 824 | /// |
| 825 | /// Example: |
| 826 | /// * 'replaced': 'iter_arg' block argument. |
| 827 | /// * 'replacement': vectorized 'iter_arg' block argument. |
| 828 | void VectorizationState::registerBlockArgVectorReplacement( |
| 829 | BlockArgument replaced, BlockArgument replacement) { |
| 830 | registerValueVectorReplacementImpl(replaced, replacement); |
| 831 | } |
| 832 | |
| 833 | void VectorizationState::registerValueVectorReplacementImpl(Value replaced, |
| 834 | Value replacement) { |
| 835 | assert(!valueVectorReplacement.contains(replaced) && |
| 836 | "Vector replacement already registered" ); |
| 837 | assert(isa<VectorType>(replacement.getType()) && |
| 838 | "Expected vector type in vector replacement" ); |
| 839 | valueVectorReplacement.map(from: replaced, to: replacement); |
| 840 | } |
| 841 | |
| 842 | /// Registers the scalar replacement of a scalar value. 'replacement' must be |
| 843 | /// scalar. |
| 844 | /// |
| 845 | /// This utility is used to register the replacement of block arguments |
| 846 | /// or affine.apply results that are within the loop be vectorized and will |
| 847 | /// continue being scalar within the vector loop. |
| 848 | /// |
| 849 | /// Example: |
| 850 | /// * 'replaced': induction variable of a loop to be vectorized. |
| 851 | /// * 'replacement': new induction variable in the new vector loop. |
| 852 | void VectorizationState::registerValueScalarReplacement(Value replaced, |
| 853 | Value replacement) { |
| 854 | assert(!valueScalarReplacement.contains(replaced) && |
| 855 | "Scalar value replacement already registered" ); |
| 856 | assert(!isa<VectorType>(replacement.getType()) && |
| 857 | "Expected scalar type in scalar replacement" ); |
| 858 | valueScalarReplacement.map(from: replaced, to: replacement); |
| 859 | } |
| 860 | |
| 861 | /// Registers the scalar replacement of a scalar result returned from a |
| 862 | /// reduction loop. 'replacement' must be scalar. |
| 863 | /// |
| 864 | /// This utility is used to register the replacement for scalar results of |
| 865 | /// vectorized reduction loops with iter_args. |
| 866 | /// |
| 867 | /// Example 2: |
| 868 | /// * 'replaced': %0 = affine.for %i = 0 to 512 iter_args(%x = ...) -> (f32) |
| 869 | /// * 'replacement': %1 = vector.reduction <add>, %0 : vector<4xf32> into f32 |
| 870 | void VectorizationState::registerLoopResultScalarReplacement( |
| 871 | Value replaced, Value replacement) { |
| 872 | assert(isa<AffineForOp>(replaced.getDefiningOp())); |
| 873 | assert(loopResultScalarReplacement.count(replaced) == 0 && |
| 874 | "already registered" ); |
| 875 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ will replace a result of the loop " |
| 876 | "with scalar: " |
| 877 | << replacement); |
| 878 | loopResultScalarReplacement[replaced] = replacement; |
| 879 | } |
| 880 | |
| 881 | /// Returns in 'replacedVals' the scalar replacement for values in 'inputVals'. |
| 882 | void VectorizationState::getScalarValueReplacementsFor( |
| 883 | ValueRange inputVals, SmallVectorImpl<Value> &replacedVals) { |
| 884 | for (Value inputVal : inputVals) |
| 885 | replacedVals.push_back(Elt: valueScalarReplacement.lookupOrDefault(from: inputVal)); |
| 886 | } |
| 887 | |
| 888 | /// Erases a loop nest, including all its nested operations. |
| 889 | static void eraseLoopNest(AffineForOp forOp) { |
| 890 | LLVM_DEBUG(dbgs() << "[early-vect]+++++ erasing:\n" << forOp << "\n" ); |
| 891 | forOp.erase(); |
| 892 | } |
| 893 | |
| 894 | /// Erases the scalar loop nest after its successful vectorization. |
| 895 | void VectorizationState::finishVectorizationPattern(AffineForOp rootLoop) { |
| 896 | LLVM_DEBUG(dbgs() << "\n[early-vect] Finalizing vectorization\n" ); |
| 897 | eraseLoopNest(rootLoop); |
| 898 | } |
| 899 | |
| 900 | // Apply 'map' with 'mapOperands' returning resulting values in 'results'. |
| 901 | static void computeMemoryOpIndices(Operation *op, AffineMap map, |
| 902 | ValueRange mapOperands, |
| 903 | VectorizationState &state, |
| 904 | SmallVectorImpl<Value> &results) { |
| 905 | for (auto resultExpr : map.getResults()) { |
| 906 | auto singleResMap = |
| 907 | AffineMap::get(dimCount: map.getNumDims(), symbolCount: map.getNumSymbols(), result: resultExpr); |
| 908 | auto afOp = state.builder.create<AffineApplyOp>(op->getLoc(), singleResMap, |
| 909 | mapOperands); |
| 910 | results.push_back(Elt: afOp); |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | /// Returns a FilterFunctionType that can be used in NestedPattern to match a |
| 915 | /// loop whose underlying load/store accesses are either invariant or all |
| 916 | // varying along the `fastestVaryingMemRefDimension`. |
| 917 | static FilterFunctionType |
| 918 | isVectorizableLoopPtrFactory(const DenseSet<Operation *> ¶llelLoops, |
| 919 | int fastestVaryingMemRefDimension) { |
| 920 | return [¶llelLoops, fastestVaryingMemRefDimension](Operation &forOp) { |
| 921 | auto loop = cast<AffineForOp>(forOp); |
| 922 | if (!parallelLoops.contains(V: loop)) |
| 923 | return false; |
| 924 | int memRefDim = -1; |
| 925 | auto vectorizableBody = |
| 926 | isVectorizableLoopBody(loop, &memRefDim, vectorTransferPattern()); |
| 927 | if (!vectorizableBody) |
| 928 | return false; |
| 929 | return memRefDim == -1 || fastestVaryingMemRefDimension == -1 || |
| 930 | memRefDim == fastestVaryingMemRefDimension; |
| 931 | }; |
| 932 | } |
| 933 | |
| 934 | /// Returns the vector type resulting from applying the provided vectorization |
| 935 | /// strategy on the scalar type. |
| 936 | static VectorType getVectorType(Type scalarTy, |
| 937 | const VectorizationStrategy *strategy) { |
| 938 | assert(!isa<VectorType>(scalarTy) && "Expected scalar type" ); |
| 939 | return VectorType::get(strategy->vectorSizes, scalarTy); |
| 940 | } |
| 941 | |
| 942 | /// Tries to transform a scalar constant into a vector constant. Returns the |
| 943 | /// vector constant if the scalar type is valid vector element type. Returns |
| 944 | /// nullptr, otherwise. |
| 945 | static arith::ConstantOp vectorizeConstant(arith::ConstantOp constOp, |
| 946 | VectorizationState &state) { |
| 947 | Type scalarTy = constOp.getType(); |
| 948 | if (!VectorType::isValidElementType(scalarTy)) |
| 949 | return nullptr; |
| 950 | |
| 951 | auto vecTy = getVectorType(scalarTy, state.strategy); |
| 952 | auto vecAttr = DenseElementsAttr::get(vecTy, constOp.getValue()); |
| 953 | |
| 954 | OpBuilder::InsertionGuard guard(state.builder); |
| 955 | Operation *parentOp = state.builder.getInsertionBlock()->getParentOp(); |
| 956 | // Find the innermost vectorized ancestor loop to insert the vector constant. |
| 957 | while (parentOp && !state.vecLoopToVecDim.count(Val: parentOp)) |
| 958 | parentOp = parentOp->getParentOp(); |
| 959 | assert(parentOp && state.vecLoopToVecDim.count(parentOp) && |
| 960 | isa<AffineForOp>(parentOp) && "Expected a vectorized for op" ); |
| 961 | auto vecForOp = cast<AffineForOp>(parentOp); |
| 962 | state.builder.setInsertionPointToStart(vecForOp.getBody()); |
| 963 | auto newConstOp = |
| 964 | state.builder.create<arith::ConstantOp>(constOp.getLoc(), vecAttr); |
| 965 | |
| 966 | // Register vector replacement for future uses in the scope. |
| 967 | state.registerOpVectorReplacement(replaced: constOp, replacement: newConstOp); |
| 968 | return newConstOp; |
| 969 | } |
| 970 | |
| 971 | /// We have no need to vectorize affine.apply. However, we still need to |
| 972 | /// generate it and replace the operands with values in valueScalarReplacement. |
| 973 | static Operation *vectorizeAffineApplyOp(AffineApplyOp applyOp, |
| 974 | VectorizationState &state) { |
| 975 | SmallVector<Value, 8> updatedOperands; |
| 976 | for (Value operand : applyOp.getOperands()) { |
| 977 | if (state.valueVectorReplacement.contains(operand)) { |
| 978 | LLVM_DEBUG( |
| 979 | dbgs() << "\n[early-vect]+++++ affine.apply on vector operand\n" ); |
| 980 | return nullptr; |
| 981 | } else { |
| 982 | Value updatedOperand = state.valueScalarReplacement.lookupOrNull(operand); |
| 983 | if (!updatedOperand) |
| 984 | updatedOperand = operand; |
| 985 | updatedOperands.push_back(updatedOperand); |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | auto newApplyOp = state.builder.create<AffineApplyOp>( |
| 990 | applyOp.getLoc(), applyOp.getAffineMap(), updatedOperands); |
| 991 | |
| 992 | // Register the new affine.apply result. |
| 993 | state.registerValueScalarReplacement(replaced: applyOp.getResult(), |
| 994 | replacement: newApplyOp.getResult()); |
| 995 | return newApplyOp; |
| 996 | } |
| 997 | |
| 998 | /// Creates a constant vector filled with the neutral elements of the given |
| 999 | /// reduction. The scalar type of vector elements will be taken from |
| 1000 | /// `oldOperand`. |
| 1001 | static arith::ConstantOp createInitialVector(arith::AtomicRMWKind reductionKind, |
| 1002 | Value oldOperand, |
| 1003 | VectorizationState &state) { |
| 1004 | Type scalarTy = oldOperand.getType(); |
| 1005 | if (!VectorType::isValidElementType(scalarTy)) |
| 1006 | return nullptr; |
| 1007 | |
| 1008 | Attribute valueAttr = getIdentityValueAttr( |
| 1009 | reductionKind, scalarTy, state.builder, oldOperand.getLoc()); |
| 1010 | auto vecTy = getVectorType(scalarTy, state.strategy); |
| 1011 | auto vecAttr = DenseElementsAttr::get(vecTy, valueAttr); |
| 1012 | auto newConstOp = |
| 1013 | state.builder.create<arith::ConstantOp>(oldOperand.getLoc(), vecAttr); |
| 1014 | |
| 1015 | return newConstOp; |
| 1016 | } |
| 1017 | |
| 1018 | /// Creates a mask used to filter out garbage elements in the last iteration |
| 1019 | /// of unaligned loops. If a mask is not required then `nullptr` is returned. |
| 1020 | /// The mask will be a vector of booleans representing meaningful vector |
| 1021 | /// elements in the current iteration. It is filled with ones for each iteration |
| 1022 | /// except for the last one, where it has the form `11...100...0` with the |
| 1023 | /// number of ones equal to the number of meaningful elements (i.e. the number |
| 1024 | /// of iterations that would be left in the original loop). |
| 1025 | static Value createMask(AffineForOp vecForOp, VectorizationState &state) { |
| 1026 | assert(state.strategy->vectorSizes.size() == 1 && |
| 1027 | "Creating a mask non-1-D vectors is not supported." ); |
| 1028 | assert(vecForOp.getStep() == state.strategy->vectorSizes[0] && |
| 1029 | "Creating a mask for loops with non-unit original step size is not " |
| 1030 | "supported." ); |
| 1031 | |
| 1032 | // Check if we have already created the mask. |
| 1033 | if (Value mask = state.vecLoopToMask.lookup(Val: vecForOp)) |
| 1034 | return mask; |
| 1035 | |
| 1036 | // If the loop has constant bounds and the original number of iterations is |
| 1037 | // divisable by the vector size then we don't need a mask. |
| 1038 | if (vecForOp.hasConstantBounds()) { |
| 1039 | int64_t originalTripCount = |
| 1040 | vecForOp.getConstantUpperBound() - vecForOp.getConstantLowerBound(); |
| 1041 | if (originalTripCount % vecForOp.getStepAsInt() == 0) |
| 1042 | return nullptr; |
| 1043 | } |
| 1044 | |
| 1045 | OpBuilder::InsertionGuard guard(state.builder); |
| 1046 | state.builder.setInsertionPointToStart(vecForOp.getBody()); |
| 1047 | |
| 1048 | // We generate the mask using the `vector.create_mask` operation which accepts |
| 1049 | // the number of meaningful elements (i.e. the length of the prefix of 1s). |
| 1050 | // To compute the number of meaningful elements we subtract the current value |
| 1051 | // of the iteration variable from the upper bound of the loop. Example: |
| 1052 | // |
| 1053 | // // 500 is the upper bound of the loop |
| 1054 | // #map = affine_map<(d0) -> (500 - d0)> |
| 1055 | // %elems_left = affine.apply #map(%iv) |
| 1056 | // %mask = vector.create_mask %elems_left : vector<128xi1> |
| 1057 | |
| 1058 | Location loc = vecForOp.getLoc(); |
| 1059 | |
| 1060 | // First we get the upper bound of the loop using `affine.apply` or |
| 1061 | // `affine.min`. |
| 1062 | AffineMap ubMap = vecForOp.getUpperBoundMap(); |
| 1063 | Value ub; |
| 1064 | if (ubMap.getNumResults() == 1) |
| 1065 | ub = state.builder.create<AffineApplyOp>(loc, vecForOp.getUpperBoundMap(), |
| 1066 | vecForOp.getUpperBoundOperands()); |
| 1067 | else |
| 1068 | ub = state.builder.create<AffineMinOp>(loc, vecForOp.getUpperBoundMap(), |
| 1069 | vecForOp.getUpperBoundOperands()); |
| 1070 | // Then we compute the number of (original) iterations left in the loop. |
| 1071 | AffineExpr subExpr = |
| 1072 | state.builder.getAffineDimExpr(position: 0) - state.builder.getAffineDimExpr(position: 1); |
| 1073 | Value itersLeft = |
| 1074 | makeComposedAffineApply(state.builder, loc, AffineMap::get(dimCount: 2, symbolCount: 0, result: subExpr), |
| 1075 | {ub, vecForOp.getInductionVar()}); |
| 1076 | // If the affine maps were successfully composed then `ub` is unneeded. |
| 1077 | if (ub.use_empty()) |
| 1078 | ub.getDefiningOp()->erase(); |
| 1079 | // Finally we create the mask. |
| 1080 | Type maskTy = VectorType::get(state.strategy->vectorSizes, |
| 1081 | state.builder.getIntegerType(1)); |
| 1082 | Value mask = |
| 1083 | state.builder.create<vector::CreateMaskOp>(loc, maskTy, itersLeft); |
| 1084 | |
| 1085 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ creating a mask:\n" |
| 1086 | << itersLeft << "\n" |
| 1087 | << mask << "\n" ); |
| 1088 | |
| 1089 | state.vecLoopToMask[vecForOp] = mask; |
| 1090 | return mask; |
| 1091 | } |
| 1092 | |
| 1093 | /// Returns true if the provided value is vector uniform given the vectorization |
| 1094 | /// strategy. |
| 1095 | // TODO: For now, only values that are induction variables of loops not in |
| 1096 | // `loopToVectorDim` or invariants to all the loops in the vectorization |
| 1097 | // strategy are considered vector uniforms. |
| 1098 | static bool isUniformDefinition(Value value, |
| 1099 | const VectorizationStrategy *strategy) { |
| 1100 | AffineForOp forOp = getForInductionVarOwner(value); |
| 1101 | if (forOp && strategy->loopToVectorDim.count(Val: forOp) == 0) |
| 1102 | return true; |
| 1103 | |
| 1104 | for (auto loopToDim : strategy->loopToVectorDim) { |
| 1105 | auto loop = cast<AffineForOp>(loopToDim.first); |
| 1106 | if (!loop.isDefinedOutsideOfLoop(value)) |
| 1107 | return false; |
| 1108 | } |
| 1109 | |
| 1110 | if (!value.getType().isIntOrIndexOrFloat()) |
| 1111 | return false; |
| 1112 | |
| 1113 | return true; |
| 1114 | } |
| 1115 | |
| 1116 | /// Generates a broadcast op for the provided uniform value using the |
| 1117 | /// vectorization strategy in 'state'. |
| 1118 | static Operation *vectorizeUniform(Value uniformVal, |
| 1119 | VectorizationState &state) { |
| 1120 | OpBuilder::InsertionGuard guard(state.builder); |
| 1121 | Value uniformScalarRepl = |
| 1122 | state.valueScalarReplacement.lookupOrDefault(from: uniformVal); |
| 1123 | state.builder.setInsertionPointAfterValue(uniformScalarRepl); |
| 1124 | |
| 1125 | auto vectorTy = getVectorType(uniformVal.getType(), state.strategy); |
| 1126 | auto bcastOp = state.builder.create<BroadcastOp>(uniformVal.getLoc(), |
| 1127 | vectorTy, uniformScalarRepl); |
| 1128 | state.registerValueVectorReplacement(replaced: uniformVal, replacement: bcastOp); |
| 1129 | return bcastOp; |
| 1130 | } |
| 1131 | |
| 1132 | /// Tries to vectorize a given `operand` by applying the following logic: |
| 1133 | /// 1. if the defining operation has been already vectorized, `operand` is |
| 1134 | /// already in the proper vector form; |
| 1135 | /// 2. if the `operand` is a constant, returns the vectorized form of the |
| 1136 | /// constant; |
| 1137 | /// 3. if the `operand` is uniform, returns a vector broadcast of the `op`; |
| 1138 | /// 4. otherwise, the vectorization of `operand` is not supported. |
| 1139 | /// Newly created vector operations are registered in `state` as replacement |
| 1140 | /// for their scalar counterparts. |
| 1141 | /// In particular this logic captures some of the use cases where definitions |
| 1142 | /// that are not scoped under the current pattern are needed to vectorize. |
| 1143 | /// One such example is top level function constants that need to be splatted. |
| 1144 | /// |
| 1145 | /// Returns an operand that has been vectorized to match `state`'s strategy if |
| 1146 | /// vectorization is possible with the above logic. Returns nullptr otherwise. |
| 1147 | /// |
| 1148 | /// TODO: handle more complex cases. |
| 1149 | static Value vectorizeOperand(Value operand, VectorizationState &state) { |
| 1150 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorize operand: " << operand); |
| 1151 | // If this value is already vectorized, we are done. |
| 1152 | if (Value vecRepl = state.valueVectorReplacement.lookupOrNull(from: operand)) { |
| 1153 | LLVM_DEBUG(dbgs() << " -> already vectorized: " << vecRepl); |
| 1154 | return vecRepl; |
| 1155 | } |
| 1156 | |
| 1157 | // An vector operand that is not in the replacement map should never reach |
| 1158 | // this point. Reaching this point could mean that the code was already |
| 1159 | // vectorized and we shouldn't try to vectorize already vectorized code. |
| 1160 | assert(!isa<VectorType>(operand.getType()) && |
| 1161 | "Vector op not found in replacement map" ); |
| 1162 | |
| 1163 | // Vectorize constant. |
| 1164 | if (auto constOp = operand.getDefiningOp<arith::ConstantOp>()) { |
| 1165 | auto vecConstant = vectorizeConstant(constOp, state); |
| 1166 | LLVM_DEBUG(dbgs() << "-> constant: " << vecConstant); |
| 1167 | return vecConstant.getResult(); |
| 1168 | } |
| 1169 | |
| 1170 | // Vectorize uniform values. |
| 1171 | if (isUniformDefinition(value: operand, strategy: state.strategy)) { |
| 1172 | Operation *vecUniform = vectorizeUniform(uniformVal: operand, state); |
| 1173 | LLVM_DEBUG(dbgs() << "-> uniform: " << *vecUniform); |
| 1174 | return vecUniform->getResult(idx: 0); |
| 1175 | } |
| 1176 | |
| 1177 | // Check for unsupported block argument scenarios. A supported block argument |
| 1178 | // should have been vectorized already. |
| 1179 | if (!operand.getDefiningOp()) |
| 1180 | LLVM_DEBUG(dbgs() << "-> unsupported block argument\n" ); |
| 1181 | else |
| 1182 | // Generic unsupported case. |
| 1183 | LLVM_DEBUG(dbgs() << "-> non-vectorizable\n" ); |
| 1184 | |
| 1185 | return nullptr; |
| 1186 | } |
| 1187 | |
| 1188 | /// Returns true if any vectorized loop IV drives more than one index. |
| 1189 | static bool isIVMappedToMultipleIndices( |
| 1190 | ArrayRef<Value> indices, |
| 1191 | const DenseMap<Operation *, unsigned> &loopToVectorDim) { |
| 1192 | for (auto &kvp : loopToVectorDim) { |
| 1193 | AffineForOp forOp = cast<AffineForOp>(kvp.first); |
| 1194 | // Find which indices are invariant w.r.t. this loop IV. |
| 1195 | llvm::DenseSet<Value> invariants = |
| 1196 | affine::getInvariantAccesses(iv: forOp.getInductionVar(), indices); |
| 1197 | // Count how many vary (i.e. are not invariant). |
| 1198 | unsigned nonInvariant = 0; |
| 1199 | for (Value idx : indices) { |
| 1200 | if (invariants.count(V: idx)) |
| 1201 | continue; |
| 1202 | |
| 1203 | if (++nonInvariant > 1) { |
| 1204 | LLVM_DEBUG(dbgs() << "[early‑vect] Bail out: IV " |
| 1205 | << forOp.getInductionVar() << " drives " |
| 1206 | << nonInvariant << " indices\n" ); |
| 1207 | return true; |
| 1208 | } |
| 1209 | } |
| 1210 | } |
| 1211 | return false; |
| 1212 | } |
| 1213 | |
| 1214 | /// Vectorizes an affine load with the vectorization strategy in 'state' by |
| 1215 | /// generating a 'vector.transfer_read' op with the proper permutation map |
| 1216 | /// inferred from the indices of the load. The new 'vector.transfer_read' is |
| 1217 | /// registered as replacement of the scalar load. Returns the newly created |
| 1218 | /// 'vector.transfer_read' if vectorization was successful. Returns nullptr, |
| 1219 | /// otherwise. |
| 1220 | static Operation *vectorizeAffineLoad(AffineLoadOp loadOp, |
| 1221 | VectorizationState &state) { |
| 1222 | MemRefType memRefType = loadOp.getMemRefType(); |
| 1223 | Type elementType = memRefType.getElementType(); |
| 1224 | auto vectorType = VectorType::get(state.strategy->vectorSizes, elementType); |
| 1225 | |
| 1226 | // Replace map operands with operands from the vector loop nest. |
| 1227 | SmallVector<Value, 8> mapOperands; |
| 1228 | state.getScalarValueReplacementsFor(inputVals: loadOp.getMapOperands(), replacedVals&: mapOperands); |
| 1229 | |
| 1230 | // Compute indices for the transfer op. AffineApplyOp's may be generated. |
| 1231 | SmallVector<Value, 8> indices; |
| 1232 | indices.reserve(N: memRefType.getRank()); |
| 1233 | if (loadOp.getAffineMap() != |
| 1234 | state.builder.getMultiDimIdentityMap(rank: memRefType.getRank())) { |
| 1235 | // Check the operand in loadOp affine map does not come from AffineApplyOp. |
| 1236 | for (auto op : mapOperands) { |
| 1237 | if (op.getDefiningOp<AffineApplyOp>()) |
| 1238 | return nullptr; |
| 1239 | } |
| 1240 | computeMemoryOpIndices(loadOp, loadOp.getAffineMap(), mapOperands, state, |
| 1241 | indices); |
| 1242 | } else { |
| 1243 | indices.append(in_start: mapOperands.begin(), in_end: mapOperands.end()); |
| 1244 | } |
| 1245 | |
| 1246 | if (isIVMappedToMultipleIndices(indices, loopToVectorDim: state.vecLoopToVecDim)) |
| 1247 | return nullptr; |
| 1248 | |
| 1249 | // Compute permutation map using the information of new vector loops. |
| 1250 | auto permutationMap = makePermutationMap(insertPoint: state.builder.getInsertionBlock(), |
| 1251 | indices, loopToVectorDim: state.vecLoopToVecDim); |
| 1252 | if (!permutationMap) { |
| 1253 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ can't compute permutationMap\n" ); |
| 1254 | return nullptr; |
| 1255 | } |
| 1256 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: " ); |
| 1257 | LLVM_DEBUG(permutationMap.print(dbgs())); |
| 1258 | |
| 1259 | auto transfer = state.builder.create<vector::TransferReadOp>( |
| 1260 | loadOp.getLoc(), vectorType, loadOp.getMemRef(), indices, permutationMap); |
| 1261 | |
| 1262 | // Register replacement for future uses in the scope. |
| 1263 | state.registerOpVectorReplacement(replaced: loadOp, replacement: transfer); |
| 1264 | return transfer; |
| 1265 | } |
| 1266 | |
| 1267 | /// Vectorizes an affine store with the vectorization strategy in 'state' by |
| 1268 | /// generating a 'vector.transfer_write' op with the proper permutation map |
| 1269 | /// inferred from the indices of the store. The new 'vector.transfer_store' is |
| 1270 | /// registered as replacement of the scalar load. Returns the newly created |
| 1271 | /// 'vector.transfer_write' if vectorization was successful. Returns nullptr, |
| 1272 | /// otherwise. |
| 1273 | static Operation *vectorizeAffineStore(AffineStoreOp storeOp, |
| 1274 | VectorizationState &state) { |
| 1275 | MemRefType memRefType = storeOp.getMemRefType(); |
| 1276 | Value vectorValue = vectorizeOperand(storeOp.getValueToStore(), state); |
| 1277 | if (!vectorValue) |
| 1278 | return nullptr; |
| 1279 | |
| 1280 | // Replace map operands with operands from the vector loop nest. |
| 1281 | SmallVector<Value, 8> mapOperands; |
| 1282 | state.getScalarValueReplacementsFor(inputVals: storeOp.getMapOperands(), replacedVals&: mapOperands); |
| 1283 | |
| 1284 | // Compute indices for the transfer op. AffineApplyOp's may be generated. |
| 1285 | SmallVector<Value, 8> indices; |
| 1286 | indices.reserve(N: memRefType.getRank()); |
| 1287 | if (storeOp.getAffineMap() != |
| 1288 | state.builder.getMultiDimIdentityMap(rank: memRefType.getRank())) |
| 1289 | computeMemoryOpIndices(storeOp, storeOp.getAffineMap(), mapOperands, state, |
| 1290 | indices); |
| 1291 | else |
| 1292 | indices.append(in_start: mapOperands.begin(), in_end: mapOperands.end()); |
| 1293 | |
| 1294 | if (isIVMappedToMultipleIndices(indices, loopToVectorDim: state.vecLoopToVecDim)) |
| 1295 | return nullptr; |
| 1296 | |
| 1297 | // Compute permutation map using the information of new vector loops. |
| 1298 | auto permutationMap = makePermutationMap(insertPoint: state.builder.getInsertionBlock(), |
| 1299 | indices, loopToVectorDim: state.vecLoopToVecDim); |
| 1300 | if (!permutationMap) |
| 1301 | return nullptr; |
| 1302 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: " ); |
| 1303 | LLVM_DEBUG(permutationMap.print(dbgs())); |
| 1304 | |
| 1305 | auto transfer = state.builder.create<vector::TransferWriteOp>( |
| 1306 | storeOp.getLoc(), vectorValue, storeOp.getMemRef(), indices, |
| 1307 | permutationMap); |
| 1308 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorized store: " << transfer); |
| 1309 | |
| 1310 | // Register replacement for future uses in the scope. |
| 1311 | state.registerOpVectorReplacement(replaced: storeOp, replacement: transfer); |
| 1312 | return transfer; |
| 1313 | } |
| 1314 | |
| 1315 | /// Returns true if `value` is a constant equal to the neutral element of the |
| 1316 | /// given vectorizable reduction. |
| 1317 | static bool isNeutralElementConst(arith::AtomicRMWKind reductionKind, |
| 1318 | Value value, VectorizationState &state) { |
| 1319 | Type scalarTy = value.getType(); |
| 1320 | if (!VectorType::isValidElementType(scalarTy)) |
| 1321 | return false; |
| 1322 | Attribute valueAttr = getIdentityValueAttr(reductionKind, scalarTy, |
| 1323 | state.builder, value.getLoc()); |
| 1324 | if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(value.getDefiningOp())) |
| 1325 | return constOp.getValue() == valueAttr; |
| 1326 | return false; |
| 1327 | } |
| 1328 | |
| 1329 | /// Vectorizes a loop with the vectorization strategy in 'state'. A new loop is |
| 1330 | /// created and registered as replacement for the scalar loop. The builder's |
| 1331 | /// insertion point is set to the new loop's body so that subsequent vectorized |
| 1332 | /// operations are inserted into the new loop. If the loop is a vector |
| 1333 | /// dimension, the step of the newly created loop will reflect the vectorization |
| 1334 | /// factor used to vectorized that dimension. |
| 1335 | static Operation *vectorizeAffineForOp(AffineForOp forOp, |
| 1336 | VectorizationState &state) { |
| 1337 | const VectorizationStrategy &strategy = *state.strategy; |
| 1338 | auto loopToVecDimIt = strategy.loopToVectorDim.find(forOp); |
| 1339 | bool isLoopVecDim = loopToVecDimIt != strategy.loopToVectorDim.end(); |
| 1340 | |
| 1341 | // TODO: Vectorization of reduction loops is not supported for non-unit steps. |
| 1342 | if (isLoopVecDim && forOp.getNumIterOperands() > 0 && forOp.getStep() != 1) { |
| 1343 | LLVM_DEBUG( |
| 1344 | dbgs() |
| 1345 | << "\n[early-vect]+++++ unsupported step size for reduction loop: " |
| 1346 | << forOp.getStep() << "\n" ); |
| 1347 | return nullptr; |
| 1348 | } |
| 1349 | |
| 1350 | // If we are vectorizing a vector dimension, compute a new step for the new |
| 1351 | // vectorized loop using the vectorization factor for the vector dimension. |
| 1352 | // Otherwise, propagate the step of the scalar loop. |
| 1353 | unsigned newStep; |
| 1354 | if (isLoopVecDim) { |
| 1355 | unsigned vectorDim = loopToVecDimIt->second; |
| 1356 | assert(vectorDim < strategy.vectorSizes.size() && "vector dim overflow" ); |
| 1357 | int64_t forOpVecFactor = strategy.vectorSizes[vectorDim]; |
| 1358 | newStep = forOp.getStepAsInt() * forOpVecFactor; |
| 1359 | } else { |
| 1360 | newStep = forOp.getStepAsInt(); |
| 1361 | } |
| 1362 | |
| 1363 | // Get information about reduction kinds. |
| 1364 | ArrayRef<LoopReduction> reductions; |
| 1365 | if (isLoopVecDim && forOp.getNumIterOperands() > 0) { |
| 1366 | auto it = strategy.reductionLoops.find(forOp); |
| 1367 | assert(it != strategy.reductionLoops.end() && |
| 1368 | "Reduction descriptors not found when vectorizing a reduction loop" ); |
| 1369 | reductions = it->second; |
| 1370 | assert(reductions.size() == forOp.getNumIterOperands() && |
| 1371 | "The size of reductions array must match the number of iter_args" ); |
| 1372 | } |
| 1373 | |
| 1374 | // Vectorize 'iter_args'. |
| 1375 | SmallVector<Value, 8> vecIterOperands; |
| 1376 | if (!isLoopVecDim) { |
| 1377 | for (auto operand : forOp.getInits()) |
| 1378 | vecIterOperands.push_back(vectorizeOperand(operand, state)); |
| 1379 | } else { |
| 1380 | // For reduction loops we need to pass a vector of neutral elements as an |
| 1381 | // initial value of the accumulator. We will add the original initial value |
| 1382 | // later. |
| 1383 | for (auto redAndOperand : llvm::zip(reductions, forOp.getInits())) { |
| 1384 | vecIterOperands.push_back(createInitialVector( |
| 1385 | std::get<0>(redAndOperand).kind, std::get<1>(redAndOperand), state)); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | auto vecForOp = state.builder.create<AffineForOp>( |
| 1390 | forOp.getLoc(), forOp.getLowerBoundOperands(), forOp.getLowerBoundMap(), |
| 1391 | forOp.getUpperBoundOperands(), forOp.getUpperBoundMap(), newStep, |
| 1392 | vecIterOperands, |
| 1393 | /*bodyBuilder=*/[](OpBuilder &, Location, Value, ValueRange) { |
| 1394 | // Make sure we don't create a default terminator in the loop body as |
| 1395 | // the proper terminator will be added during vectorization. |
| 1396 | }); |
| 1397 | |
| 1398 | // Register loop-related replacements: |
| 1399 | // 1) The new vectorized loop is registered as vector replacement of the |
| 1400 | // scalar loop. |
| 1401 | // 2) The new iv of the vectorized loop is registered as scalar replacement |
| 1402 | // since a scalar copy of the iv will prevail in the vectorized loop. |
| 1403 | // TODO: A vector replacement will also be added in the future when |
| 1404 | // vectorization of linear ops is supported. |
| 1405 | // 3) The new 'iter_args' region arguments are registered as vector |
| 1406 | // replacements since they have been vectorized. |
| 1407 | // 4) If the loop performs a reduction along the vector dimension, a |
| 1408 | // `vector.reduction` or similar op is inserted for each resulting value |
| 1409 | // of the loop and its scalar value replaces the corresponding scalar |
| 1410 | // result of the loop. |
| 1411 | state.registerOpVectorReplacement(replaced: forOp, replacement: vecForOp); |
| 1412 | state.registerValueScalarReplacement(replaced: forOp.getInductionVar(), |
| 1413 | replacement: vecForOp.getInductionVar()); |
| 1414 | for (auto iterTuple : |
| 1415 | llvm ::zip(forOp.getRegionIterArgs(), vecForOp.getRegionIterArgs())) |
| 1416 | state.registerBlockArgVectorReplacement(std::get<0>(iterTuple), |
| 1417 | std::get<1>(iterTuple)); |
| 1418 | |
| 1419 | if (isLoopVecDim) { |
| 1420 | for (unsigned i = 0; i < vecForOp.getNumIterOperands(); ++i) { |
| 1421 | // First, we reduce the vector returned from the loop into a scalar. |
| 1422 | Value reducedRes = |
| 1423 | getVectorReductionOp(reductions[i].kind, state.builder, |
| 1424 | vecForOp.getLoc(), vecForOp.getResult(i)); |
| 1425 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ creating a vector reduction: " |
| 1426 | << reducedRes); |
| 1427 | // Then we combine it with the original (scalar) initial value unless it |
| 1428 | // is equal to the neutral element of the reduction. |
| 1429 | Value origInit = forOp.getOperand(forOp.getNumControlOperands() + i); |
| 1430 | Value finalRes = reducedRes; |
| 1431 | if (!isNeutralElementConst(reductions[i].kind, origInit, state)) |
| 1432 | finalRes = |
| 1433 | arith::getReductionOp(reductions[i].kind, state.builder, |
| 1434 | reducedRes.getLoc(), reducedRes, origInit); |
| 1435 | state.registerLoopResultScalarReplacement(replaced: forOp.getResult(i), replacement: finalRes); |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | if (isLoopVecDim) |
| 1440 | state.vecLoopToVecDim[vecForOp] = loopToVecDimIt->second; |
| 1441 | |
| 1442 | // Change insertion point so that upcoming vectorized instructions are |
| 1443 | // inserted into the vectorized loop's body. |
| 1444 | state.builder.setInsertionPointToStart(vecForOp.getBody()); |
| 1445 | |
| 1446 | // If this is a reduction loop then we may need to create a mask to filter out |
| 1447 | // garbage in the last iteration. |
| 1448 | if (isLoopVecDim && forOp.getNumIterOperands() > 0) |
| 1449 | createMask(vecForOp, state); |
| 1450 | |
| 1451 | return vecForOp; |
| 1452 | } |
| 1453 | |
| 1454 | /// Vectorizes arbitrary operation by plain widening. We apply generic type |
| 1455 | /// widening of all its results and retrieve the vector counterparts for all its |
| 1456 | /// operands. |
| 1457 | static Operation *widenOp(Operation *op, VectorizationState &state) { |
| 1458 | SmallVector<Type, 8> vectorTypes; |
| 1459 | for (Value result : op->getResults()) |
| 1460 | vectorTypes.push_back( |
| 1461 | VectorType::get(state.strategy->vectorSizes, result.getType())); |
| 1462 | |
| 1463 | SmallVector<Value, 8> vectorOperands; |
| 1464 | for (Value operand : op->getOperands()) { |
| 1465 | Value vecOperand = vectorizeOperand(operand, state); |
| 1466 | if (!vecOperand) { |
| 1467 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ an operand failed vectorize\n" ); |
| 1468 | return nullptr; |
| 1469 | } |
| 1470 | vectorOperands.push_back(Elt: vecOperand); |
| 1471 | } |
| 1472 | |
| 1473 | // Create a clone of the op with the proper operands and return types. |
| 1474 | // TODO: The following assumes there is always an op with a fixed |
| 1475 | // name that works both in scalar mode and vector mode. |
| 1476 | // TODO: Is it worth considering an Operation.clone operation which |
| 1477 | // changes the type so we can promote an Operation with less boilerplate? |
| 1478 | Operation *vecOp = |
| 1479 | state.builder.create(op->getLoc(), op->getName().getIdentifier(), |
| 1480 | vectorOperands, vectorTypes, op->getAttrs()); |
| 1481 | state.registerOpVectorReplacement(replaced: op, replacement: vecOp); |
| 1482 | return vecOp; |
| 1483 | } |
| 1484 | |
| 1485 | /// Vectorizes a yield operation by widening its types. The builder's insertion |
| 1486 | /// point is set after the vectorized parent op to continue vectorizing the |
| 1487 | /// operations after the parent op. When vectorizing a reduction loop a mask may |
| 1488 | /// be used to prevent adding garbage values to the accumulator. |
| 1489 | static Operation *vectorizeAffineYieldOp(AffineYieldOp yieldOp, |
| 1490 | VectorizationState &state) { |
| 1491 | Operation *newYieldOp = widenOp(yieldOp, state); |
| 1492 | Operation *newParentOp = state.builder.getInsertionBlock()->getParentOp(); |
| 1493 | |
| 1494 | // If there is a mask for this loop then we must prevent garbage values from |
| 1495 | // being added to the accumulator by inserting `select` operations, for |
| 1496 | // example: |
| 1497 | // |
| 1498 | // %val_masked = select %mask, %val, %neutralCst : vector<128xi1>, |
| 1499 | // vector<128xf32> |
| 1500 | // %res = arith.addf %acc, %val_masked : vector<128xf32> |
| 1501 | // affine.yield %res : vector<128xf32> |
| 1502 | // |
| 1503 | if (Value mask = state.vecLoopToMask.lookup(Val: newParentOp)) { |
| 1504 | state.builder.setInsertionPoint(newYieldOp); |
| 1505 | for (unsigned i = 0; i < newYieldOp->getNumOperands(); ++i) { |
| 1506 | SmallVector<Operation *> combinerOps; |
| 1507 | Value reducedVal = matchReduction( |
| 1508 | cast<AffineForOp>(newParentOp).getRegionIterArgs(), i, combinerOps); |
| 1509 | assert(reducedVal && "expect non-null value for parallel reduction loop" ); |
| 1510 | assert(combinerOps.size() == 1 && "expect only one combiner op" ); |
| 1511 | // IterOperands are neutral element vectors. |
| 1512 | Value neutralVal = cast<AffineForOp>(newParentOp).getInits()[i]; |
| 1513 | state.builder.setInsertionPoint(combinerOps.back()); |
| 1514 | Value maskedReducedVal = state.builder.create<arith::SelectOp>( |
| 1515 | reducedVal.getLoc(), mask, reducedVal, neutralVal); |
| 1516 | LLVM_DEBUG( |
| 1517 | dbgs() << "\n[early-vect]+++++ masking an input to a binary op that" |
| 1518 | "produces value for a yield Op: " |
| 1519 | << maskedReducedVal); |
| 1520 | combinerOps.back()->replaceUsesOfWith(from: reducedVal, to: maskedReducedVal); |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | state.builder.setInsertionPointAfter(newParentOp); |
| 1525 | return newYieldOp; |
| 1526 | } |
| 1527 | |
| 1528 | /// Encodes Operation-specific behavior for vectorization. In general we |
| 1529 | /// assume that all operands of an op must be vectorized but this is not |
| 1530 | /// always true. In the future, it would be nice to have a trait that |
| 1531 | /// describes how a particular operation vectorizes. For now we implement the |
| 1532 | /// case distinction here. Returns a vectorized form of an operation or |
| 1533 | /// nullptr if vectorization fails. |
| 1534 | // TODO: consider adding a trait to Op to describe how it gets vectorized. |
| 1535 | // Maybe some Ops are not vectorizable or require some tricky logic, we cannot |
| 1536 | // do one-off logic here; ideally it would be TableGen'd. |
| 1537 | static Operation *vectorizeOneOperation(Operation *op, |
| 1538 | VectorizationState &state) { |
| 1539 | // Sanity checks. |
| 1540 | assert(!isa<vector::TransferReadOp>(op) && |
| 1541 | "vector.transfer_read cannot be further vectorized" ); |
| 1542 | assert(!isa<vector::TransferWriteOp>(op) && |
| 1543 | "vector.transfer_write cannot be further vectorized" ); |
| 1544 | |
| 1545 | if (auto loadOp = dyn_cast<AffineLoadOp>(op)) |
| 1546 | return vectorizeAffineLoad(loadOp, state); |
| 1547 | if (auto storeOp = dyn_cast<AffineStoreOp>(op)) |
| 1548 | return vectorizeAffineStore(storeOp, state); |
| 1549 | if (auto forOp = dyn_cast<AffineForOp>(op)) |
| 1550 | return vectorizeAffineForOp(forOp, state); |
| 1551 | if (auto yieldOp = dyn_cast<AffineYieldOp>(op)) |
| 1552 | return vectorizeAffineYieldOp(yieldOp, state); |
| 1553 | if (auto constant = dyn_cast<arith::ConstantOp>(op)) |
| 1554 | return vectorizeConstant(constant, state); |
| 1555 | if (auto applyOp = dyn_cast<AffineApplyOp>(op)) |
| 1556 | return vectorizeAffineApplyOp(applyOp, state); |
| 1557 | |
| 1558 | // Other ops with regions are not supported. |
| 1559 | if (op->getNumRegions() != 0) |
| 1560 | return nullptr; |
| 1561 | |
| 1562 | return widenOp(op, state); |
| 1563 | } |
| 1564 | |
| 1565 | /// Recursive implementation to convert all the nested loops in 'match' to a 2D |
| 1566 | /// vector container that preserves the relative nesting level of each loop with |
| 1567 | /// respect to the others in 'match'. 'currentLevel' is the nesting level that |
| 1568 | /// will be assigned to the loop in the current 'match'. |
| 1569 | static void |
| 1570 | getMatchedAffineLoopsRec(NestedMatch match, unsigned currentLevel, |
| 1571 | std::vector<SmallVector<AffineForOp, 2>> &loops) { |
| 1572 | // Add a new empty level to the output if it doesn't exist already. |
| 1573 | assert(currentLevel <= loops.size() && "Unexpected currentLevel" ); |
| 1574 | if (currentLevel == loops.size()) |
| 1575 | loops.emplace_back(); |
| 1576 | |
| 1577 | // Add current match and recursively visit its children. |
| 1578 | loops[currentLevel].push_back(cast<AffineForOp>(match.getMatchedOperation())); |
| 1579 | for (auto childMatch : match.getMatchedChildren()) { |
| 1580 | getMatchedAffineLoopsRec(match: childMatch, currentLevel: currentLevel + 1, loops); |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | /// Converts all the nested loops in 'match' to a 2D vector container that |
| 1585 | /// preserves the relative nesting level of each loop with respect to the others |
| 1586 | /// in 'match'. This means that every loop in 'loops[i]' will have a parent loop |
| 1587 | /// in 'loops[i-1]'. A loop in 'loops[i]' may or may not have a child loop in |
| 1588 | /// 'loops[i+1]'. |
| 1589 | static void |
| 1590 | getMatchedAffineLoops(NestedMatch match, |
| 1591 | std::vector<SmallVector<AffineForOp, 2>> &loops) { |
| 1592 | getMatchedAffineLoopsRec(match, /*currLoopDepth=*/currentLevel: 0, loops); |
| 1593 | } |
| 1594 | |
| 1595 | /// Internal implementation to vectorize affine loops from a single loop nest |
| 1596 | /// using an n-D vectorization strategy. |
| 1597 | static LogicalResult |
| 1598 | vectorizeLoopNest(std::vector<SmallVector<AffineForOp, 2>> &loops, |
| 1599 | const VectorizationStrategy &strategy) { |
| 1600 | assert(loops[0].size() == 1 && "Expected single root loop" ); |
| 1601 | AffineForOp rootLoop = loops[0][0]; |
| 1602 | VectorizationState state(rootLoop.getContext()); |
| 1603 | state.builder.setInsertionPointAfter(rootLoop); |
| 1604 | state.strategy = &strategy; |
| 1605 | |
| 1606 | // Since patterns are recursive, they can very well intersect. |
| 1607 | // Since we do not want a fully greedy strategy in general, we decouple |
| 1608 | // pattern matching, from profitability analysis, from application. |
| 1609 | // As a consequence we must check that each root pattern is still |
| 1610 | // vectorizable. If a pattern is not vectorizable anymore, we just skip it. |
| 1611 | // TODO: implement a non-greedy profitability analysis that keeps only |
| 1612 | // non-intersecting patterns. |
| 1613 | if (!isVectorizableLoopBody(rootLoop, vectorTransferPattern())) { |
| 1614 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ loop is not vectorizable" ); |
| 1615 | return failure(); |
| 1616 | } |
| 1617 | |
| 1618 | ////////////////////////////////////////////////////////////////////////////// |
| 1619 | // Vectorize the scalar loop nest following a topological order. A new vector |
| 1620 | // loop nest with the vectorized operations is created along the process. If |
| 1621 | // vectorization succeeds, the scalar loop nest is erased. If vectorization |
| 1622 | // fails, the vector loop nest is erased and the scalar loop nest is not |
| 1623 | // modified. |
| 1624 | ////////////////////////////////////////////////////////////////////////////// |
| 1625 | |
| 1626 | auto opVecResult = rootLoop.walk<WalkOrder::PreOrder>([&](Operation *op) { |
| 1627 | LLVM_DEBUG(dbgs() << "[early-vect]+++++ Vectorizing: " << *op); |
| 1628 | Operation *vectorOp = vectorizeOneOperation(op, state); |
| 1629 | if (!vectorOp) { |
| 1630 | LLVM_DEBUG( |
| 1631 | dbgs() << "[early-vect]+++++ failed vectorizing the operation: " |
| 1632 | << *op << "\n" ); |
| 1633 | return WalkResult::interrupt(); |
| 1634 | } |
| 1635 | |
| 1636 | return WalkResult::advance(); |
| 1637 | }); |
| 1638 | |
| 1639 | if (opVecResult.wasInterrupted()) { |
| 1640 | LLVM_DEBUG(dbgs() << "[early-vect]+++++ failed vectorization for: " |
| 1641 | << rootLoop << "\n" ); |
| 1642 | // Erase vector loop nest if it was created. |
| 1643 | auto vecRootLoopIt = state.opVectorReplacement.find(rootLoop); |
| 1644 | if (vecRootLoopIt != state.opVectorReplacement.end()) |
| 1645 | eraseLoopNest(cast<AffineForOp>(vecRootLoopIt->second)); |
| 1646 | |
| 1647 | return failure(); |
| 1648 | } |
| 1649 | |
| 1650 | // Replace results of reduction loops with the scalar values computed using |
| 1651 | // `vector.reduce` or similar ops. |
| 1652 | for (auto resPair : state.loopResultScalarReplacement) |
| 1653 | resPair.first.replaceAllUsesWith(resPair.second); |
| 1654 | |
| 1655 | assert(state.opVectorReplacement.count(rootLoop) == 1 && |
| 1656 | "Expected vector replacement for loop nest" ); |
| 1657 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ success vectorizing pattern" ); |
| 1658 | LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorization result:\n" |
| 1659 | << *state.opVectorReplacement[rootLoop]); |
| 1660 | |
| 1661 | // Finish this vectorization pattern. |
| 1662 | state.finishVectorizationPattern(rootLoop: rootLoop); |
| 1663 | return success(); |
| 1664 | } |
| 1665 | |
| 1666 | /// Extracts the matched loops and vectorizes them following a topological |
| 1667 | /// order. A new vector loop nest will be created if vectorization succeeds. The |
| 1668 | /// original loop nest won't be modified in any case. |
| 1669 | static LogicalResult vectorizeRootMatch(NestedMatch m, |
| 1670 | const VectorizationStrategy &strategy) { |
| 1671 | std::vector<SmallVector<AffineForOp, 2>> loopsToVectorize; |
| 1672 | getMatchedAffineLoops(match: m, loops&: loopsToVectorize); |
| 1673 | return vectorizeLoopNest(loops&: loopsToVectorize, strategy); |
| 1674 | } |
| 1675 | |
| 1676 | /// Traverses all the loop matches and classifies them into intersection |
| 1677 | /// buckets. Two matches intersect if any of them encloses the other one. A |
| 1678 | /// match intersects with a bucket if the match intersects with the root |
| 1679 | /// (outermost) loop in that bucket. |
| 1680 | static void computeIntersectionBuckets( |
| 1681 | ArrayRef<NestedMatch> matches, |
| 1682 | std::vector<SmallVector<NestedMatch, 8>> &intersectionBuckets) { |
| 1683 | assert(intersectionBuckets.empty() && "Expected empty output" ); |
| 1684 | // Keeps track of the root (outermost) loop of each bucket. |
| 1685 | SmallVector<AffineForOp, 8> bucketRoots; |
| 1686 | |
| 1687 | for (const NestedMatch &match : matches) { |
| 1688 | AffineForOp matchRoot = cast<AffineForOp>(match.getMatchedOperation()); |
| 1689 | bool intersects = false; |
| 1690 | for (int i = 0, end = intersectionBuckets.size(); i < end; ++i) { |
| 1691 | AffineForOp bucketRoot = bucketRoots[i]; |
| 1692 | // Add match to the bucket if the bucket root encloses the match root. |
| 1693 | if (bucketRoot->isAncestor(matchRoot)) { |
| 1694 | intersectionBuckets[i].push_back(Elt: match); |
| 1695 | intersects = true; |
| 1696 | break; |
| 1697 | } |
| 1698 | // Add match to the bucket if the match root encloses the bucket root. The |
| 1699 | // match root becomes the new bucket root. |
| 1700 | if (matchRoot->isAncestor(bucketRoot)) { |
| 1701 | bucketRoots[i] = matchRoot; |
| 1702 | intersectionBuckets[i].push_back(Elt: match); |
| 1703 | intersects = true; |
| 1704 | break; |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | // Match doesn't intersect with any existing bucket. Create a new bucket for |
| 1709 | // it. |
| 1710 | if (!intersects) { |
| 1711 | bucketRoots.push_back(matchRoot); |
| 1712 | intersectionBuckets.emplace_back(); |
| 1713 | intersectionBuckets.back().push_back(Elt: match); |
| 1714 | } |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | /// Internal implementation to vectorize affine loops in 'loops' using the n-D |
| 1719 | /// vectorization factors in 'vectorSizes'. By default, each vectorization |
| 1720 | /// factor is applied inner-to-outer to the loops of each loop nest. |
| 1721 | /// 'fastestVaryingPattern' can be optionally used to provide a different loop |
| 1722 | /// vectorization order. `reductionLoops` can be provided to specify loops which |
| 1723 | /// can be vectorized along the reduction dimension. |
| 1724 | static void vectorizeLoops(Operation *parentOp, DenseSet<Operation *> &loops, |
| 1725 | ArrayRef<int64_t> vectorSizes, |
| 1726 | ArrayRef<int64_t> fastestVaryingPattern, |
| 1727 | const ReductionLoopMap &reductionLoops) { |
| 1728 | assert((reductionLoops.empty() || vectorSizes.size() == 1) && |
| 1729 | "Vectorizing reductions is supported only for 1-D vectors" ); |
| 1730 | |
| 1731 | // Compute 1-D, 2-D or 3-D loop pattern to be matched on the target loops. |
| 1732 | std::optional<NestedPattern> pattern = |
| 1733 | makePattern(loops, vectorSizes.size(), fastestVaryingPattern); |
| 1734 | if (!pattern) { |
| 1735 | LLVM_DEBUG(dbgs() << "\n[early-vect] pattern couldn't be computed\n" ); |
| 1736 | return; |
| 1737 | } |
| 1738 | |
| 1739 | LLVM_DEBUG(dbgs() << "\n******************************************" ); |
| 1740 | LLVM_DEBUG(dbgs() << "\n******************************************" ); |
| 1741 | LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on parent op\n" ); |
| 1742 | LLVM_DEBUG(dbgs() << *parentOp << "\n" ); |
| 1743 | |
| 1744 | unsigned patternDepth = pattern->getDepth(); |
| 1745 | |
| 1746 | // Compute all the pattern matches and classify them into buckets of |
| 1747 | // intersecting matches. |
| 1748 | SmallVector<NestedMatch, 32> allMatches; |
| 1749 | pattern->match(parentOp, &allMatches); |
| 1750 | std::vector<SmallVector<NestedMatch, 8>> intersectionBuckets; |
| 1751 | computeIntersectionBuckets(matches: allMatches, intersectionBuckets); |
| 1752 | |
| 1753 | // Iterate over all buckets and vectorize the matches eagerly. We can only |
| 1754 | // vectorize one match from each bucket since all the matches within a bucket |
| 1755 | // intersect. |
| 1756 | for (auto &intersectingMatches : intersectionBuckets) { |
| 1757 | for (NestedMatch &match : intersectingMatches) { |
| 1758 | VectorizationStrategy strategy; |
| 1759 | // TODO: depending on profitability, elect to reduce the vector size. |
| 1760 | strategy.vectorSizes.assign(in_start: vectorSizes.begin(), in_end: vectorSizes.end()); |
| 1761 | strategy.reductionLoops = reductionLoops; |
| 1762 | if (failed(Result: analyzeProfitability(matches: match.getMatchedChildren(), depthInPattern: 1, |
| 1763 | patternDepth, strategy: &strategy))) { |
| 1764 | continue; |
| 1765 | } |
| 1766 | vectorizeLoopIfProfitable(loop: match.getMatchedOperation(), depthInPattern: 0, patternDepth, |
| 1767 | strategy: &strategy); |
| 1768 | // Vectorize match. Skip the rest of intersecting matches in the bucket if |
| 1769 | // vectorization succeeded. |
| 1770 | // TODO: if pattern does not apply, report it; alter the cost/benefit. |
| 1771 | // TODO: some diagnostics if failure to vectorize occurs. |
| 1772 | if (succeeded(Result: vectorizeRootMatch(m: match, strategy))) |
| 1773 | break; |
| 1774 | } |
| 1775 | } |
| 1776 | |
| 1777 | LLVM_DEBUG(dbgs() << "\n" ); |
| 1778 | } |
| 1779 | |
| 1780 | /// Applies vectorization to the current function by searching over a bunch of |
| 1781 | /// predetermined patterns. |
| 1782 | void Vectorize::runOnOperation() { |
| 1783 | func::FuncOp f = getOperation(); |
| 1784 | if (!fastestVaryingPattern.empty() && |
| 1785 | fastestVaryingPattern.size() != vectorSizes.size()) { |
| 1786 | f.emitRemark("Fastest varying pattern specified with different size than " |
| 1787 | "the vector size." ); |
| 1788 | return signalPassFailure(); |
| 1789 | } |
| 1790 | |
| 1791 | if (vectorizeReductions && vectorSizes.size() != 1) { |
| 1792 | f.emitError("Vectorizing reductions is supported only for 1-D vectors." ); |
| 1793 | return signalPassFailure(); |
| 1794 | } |
| 1795 | |
| 1796 | if (llvm::any_of(vectorSizes, [](int64_t size) { return size <= 0; })) { |
| 1797 | f.emitError("Vectorization factor must be greater than zero." ); |
| 1798 | return signalPassFailure(); |
| 1799 | } |
| 1800 | |
| 1801 | DenseSet<Operation *> parallelLoops; |
| 1802 | ReductionLoopMap reductionLoops; |
| 1803 | |
| 1804 | // If 'vectorize-reduction=true' is provided, we also populate the |
| 1805 | // `reductionLoops` map. |
| 1806 | if (vectorizeReductions) { |
| 1807 | f.walk([¶llelLoops, &reductionLoops](AffineForOp loop) { |
| 1808 | SmallVector<LoopReduction, 2> reductions; |
| 1809 | if (isLoopParallel(loop, &reductions)) { |
| 1810 | parallelLoops.insert(loop); |
| 1811 | // If it's not a reduction loop, adding it to the map is not necessary. |
| 1812 | if (!reductions.empty()) |
| 1813 | reductionLoops[loop] = reductions; |
| 1814 | } |
| 1815 | }); |
| 1816 | } else { |
| 1817 | f.walk([¶llelLoops](AffineForOp loop) { |
| 1818 | if (isLoopParallel(loop)) |
| 1819 | parallelLoops.insert(loop); |
| 1820 | }); |
| 1821 | } |
| 1822 | |
| 1823 | // Thread-safe RAII local context, BumpPtrAllocator freed on exit. |
| 1824 | NestedPatternContext mlContext; |
| 1825 | vectorizeLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern, |
| 1826 | reductionLoops); |
| 1827 | } |
| 1828 | |
| 1829 | /// Verify that affine loops in 'loops' meet the nesting criteria expected by |
| 1830 | /// SuperVectorizer: |
| 1831 | /// * There must be at least one loop. |
| 1832 | /// * There must be a single root loop (nesting level 0). |
| 1833 | /// * Each loop at a given nesting level must be nested in a loop from a |
| 1834 | /// previous nesting level. |
| 1835 | static LogicalResult |
| 1836 | verifyLoopNesting(const std::vector<SmallVector<AffineForOp, 2>> &loops) { |
| 1837 | // Expected at least one loop. |
| 1838 | if (loops.empty()) |
| 1839 | return failure(); |
| 1840 | |
| 1841 | // Expected only one root loop. |
| 1842 | if (loops[0].size() != 1) |
| 1843 | return failure(); |
| 1844 | |
| 1845 | // Traverse loops outer-to-inner to check some invariants. |
| 1846 | for (int i = 1, end = loops.size(); i < end; ++i) { |
| 1847 | for (AffineForOp loop : loops[i]) { |
| 1848 | // Check that each loop at this level is nested in one of the loops from |
| 1849 | // the previous level. |
| 1850 | if (none_of(loops[i - 1], [&](AffineForOp maybeParent) { |
| 1851 | return maybeParent->isProperAncestor(loop); |
| 1852 | })) |
| 1853 | return failure(); |
| 1854 | |
| 1855 | // Check that each loop at this level is not nested in another loop from |
| 1856 | // this level. |
| 1857 | for (AffineForOp sibling : loops[i]) { |
| 1858 | if (sibling->isProperAncestor(loop)) |
| 1859 | return failure(); |
| 1860 | } |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | return success(); |
| 1865 | } |
| 1866 | |
| 1867 | |
| 1868 | /// External utility to vectorize affine loops in 'loops' using the n-D |
| 1869 | /// vectorization factors in 'vectorSizes'. By default, each vectorization |
| 1870 | /// factor is applied inner-to-outer to the loops of each loop nest. |
| 1871 | /// 'fastestVaryingPattern' can be optionally used to provide a different loop |
| 1872 | /// vectorization order. |
| 1873 | /// If `reductionLoops` is not empty, the given reduction loops may be |
| 1874 | /// vectorized along the reduction dimension. |
| 1875 | /// TODO: Vectorizing reductions is supported only for 1-D vectorization. |
| 1876 | void mlir::affine::vectorizeAffineLoops( |
| 1877 | Operation *parentOp, DenseSet<Operation *> &loops, |
| 1878 | ArrayRef<int64_t> vectorSizes, ArrayRef<int64_t> fastestVaryingPattern, |
| 1879 | const ReductionLoopMap &reductionLoops) { |
| 1880 | // Thread-safe RAII local context, BumpPtrAllocator freed on exit. |
| 1881 | NestedPatternContext mlContext; |
| 1882 | vectorizeLoops(parentOp, loops, vectorSizes, fastestVaryingPattern, |
| 1883 | reductionLoops); |
| 1884 | } |
| 1885 | |
| 1886 | /// External utility to vectorize affine loops from a single loop nest using an |
| 1887 | /// n-D vectorization strategy (see doc in VectorizationStrategy definition). |
| 1888 | /// Loops are provided in a 2D vector container. The first dimension represents |
| 1889 | /// the nesting level relative to the loops to be vectorized. The second |
| 1890 | /// dimension contains the loops. This means that: |
| 1891 | /// a) every loop in 'loops[i]' must have a parent loop in 'loops[i-1]', |
| 1892 | /// b) a loop in 'loops[i]' may or may not have a child loop in 'loops[i+1]'. |
| 1893 | /// |
| 1894 | /// For example, for the following loop nest: |
| 1895 | /// |
| 1896 | /// func @vec2d(%in0: memref<64x128x512xf32>, %in1: memref<64x128x128xf32>, |
| 1897 | /// %out0: memref<64x128x512xf32>, |
| 1898 | /// %out1: memref<64x128x128xf32>) { |
| 1899 | /// affine.for %i0 = 0 to 64 { |
| 1900 | /// affine.for %i1 = 0 to 128 { |
| 1901 | /// affine.for %i2 = 0 to 512 { |
| 1902 | /// %ld = affine.load %in0[%i0, %i1, %i2] : memref<64x128x512xf32> |
| 1903 | /// affine.store %ld, %out0[%i0, %i1, %i2] : memref<64x128x512xf32> |
| 1904 | /// } |
| 1905 | /// affine.for %i3 = 0 to 128 { |
| 1906 | /// %ld = affine.load %in1[%i0, %i1, %i3] : memref<64x128x128xf32> |
| 1907 | /// affine.store %ld, %out1[%i0, %i1, %i3] : memref<64x128x128xf32> |
| 1908 | /// } |
| 1909 | /// } |
| 1910 | /// } |
| 1911 | /// return |
| 1912 | /// } |
| 1913 | /// |
| 1914 | /// loops = {{%i0}, {%i2, %i3}}, to vectorize the outermost and the two |
| 1915 | /// innermost loops; |
| 1916 | /// loops = {{%i1}, {%i2, %i3}}, to vectorize the middle and the two innermost |
| 1917 | /// loops; |
| 1918 | /// loops = {{%i2}}, to vectorize only the first innermost loop; |
| 1919 | /// loops = {{%i3}}, to vectorize only the second innermost loop; |
| 1920 | /// loops = {{%i1}}, to vectorize only the middle loop. |
| 1921 | LogicalResult mlir::affine::vectorizeAffineLoopNest( |
| 1922 | std::vector<SmallVector<AffineForOp, 2>> &loops, |
| 1923 | const VectorizationStrategy &strategy) { |
| 1924 | // Thread-safe RAII local context, BumpPtrAllocator freed on exit. |
| 1925 | NestedPatternContext mlContext; |
| 1926 | if (failed(Result: verifyLoopNesting(loops))) |
| 1927 | return failure(); |
| 1928 | return vectorizeLoopNest(loops, strategy); |
| 1929 | } |
| 1930 | |