| 1 | //===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements miscellaneous loop transformation routines. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/Affine/LoopUtils.h" |
| 14 | #include "mlir/Analysis/SliceAnalysis.h" |
| 15 | #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" |
| 16 | #include "mlir/Dialect/Affine/Analysis/Utils.h" |
| 17 | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" |
| 18 | #include "mlir/Dialect/Affine/Utils.h" |
| 19 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 20 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 21 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 22 | #include "mlir/IR/IRMapping.h" |
| 23 | #include "mlir/IR/IntegerSet.h" |
| 24 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 25 | #include "llvm/ADT/MapVector.h" |
| 26 | #include "llvm/ADT/SmallPtrSet.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | #include "llvm/Support/raw_ostream.h" |
| 29 | #include <optional> |
| 30 | |
| 31 | #define DEBUG_TYPE "loop-utils" |
| 32 | |
| 33 | using namespace mlir; |
| 34 | using namespace affine; |
| 35 | using namespace presburger; |
| 36 | using llvm::SmallMapVector; |
| 37 | |
| 38 | /// Computes the cleanup loop lower bound of the loop being unrolled with |
| 39 | /// the specified unroll factor; this bound will also be upper bound of the main |
| 40 | /// part of the unrolled loop. Computes the bound as an AffineMap with its |
| 41 | /// operands or a null map when the trip count can't be expressed as an affine |
| 42 | /// expression. |
| 43 | static void |
| 44 | getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor, |
| 45 | AffineMap &cleanupLbMap, |
| 46 | SmallVectorImpl<Value> &cleanupLbOperands) { |
| 47 | AffineMap tripCountMap; |
| 48 | SmallVector<Value, 4> tripCountOperands; |
| 49 | getTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands); |
| 50 | // Trip count can't be computed. |
| 51 | if (!tripCountMap) { |
| 52 | cleanupLbMap = AffineMap(); |
| 53 | return; |
| 54 | } |
| 55 | |
| 56 | OpBuilder b(forOp); |
| 57 | auto lbMap = forOp.getLowerBoundMap(); |
| 58 | auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap, |
| 59 | forOp.getLowerBoundOperands()); |
| 60 | |
| 61 | // For each upper bound expr, get the range. |
| 62 | // Eg: affine.for %i = lb to min (ub1, ub2), |
| 63 | // where tripCountExprs yield (tr1, tr2), we create affine.apply's: |
| 64 | // lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all |
| 65 | // these affine.apply's make up the cleanup loop lower bound. |
| 66 | SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults()); |
| 67 | SmallVector<Value, 4> bumpValues(tripCountMap.getNumResults()); |
| 68 | int64_t step = forOp.getStepAsInt(); |
| 69 | for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) { |
| 70 | auto tripCountExpr = tripCountMap.getResult(idx: i); |
| 71 | bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step; |
| 72 | auto bumpMap = AffineMap::get(dimCount: tripCountMap.getNumDims(), |
| 73 | symbolCount: tripCountMap.getNumSymbols(), result: bumpExprs[i]); |
| 74 | bumpValues[i] = |
| 75 | b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands); |
| 76 | } |
| 77 | |
| 78 | SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults()); |
| 79 | for (unsigned i = 0, e = bumpExprs.size(); i < e; i++) |
| 80 | newUbExprs[i] = b.getAffineDimExpr(position: 0) + b.getAffineDimExpr(position: i + 1); |
| 81 | |
| 82 | cleanupLbOperands.clear(); |
| 83 | cleanupLbOperands.push_back(Elt: lb); |
| 84 | cleanupLbOperands.append(in_start: bumpValues.begin(), in_end: bumpValues.end()); |
| 85 | cleanupLbMap = AffineMap::get(dimCount: 1 + tripCountMap.getNumResults(), symbolCount: 0, results: newUbExprs, |
| 86 | context: b.getContext()); |
| 87 | // Simplify the cleanupLbMap + cleanupLbOperands. |
| 88 | fullyComposeAffineMapAndOperands(map: &cleanupLbMap, operands: &cleanupLbOperands); |
| 89 | cleanupLbMap = simplifyAffineMap(map: cleanupLbMap); |
| 90 | canonicalizeMapAndOperands(map: &cleanupLbMap, operands: &cleanupLbOperands); |
| 91 | // Remove any affine.apply's that became dead from the simplification above. |
| 92 | for (auto v : bumpValues) |
| 93 | if (v.use_empty()) |
| 94 | v.getDefiningOp()->erase(); |
| 95 | |
| 96 | if (lb.use_empty()) |
| 97 | lb.erase(); |
| 98 | } |
| 99 | |
| 100 | /// Helper to replace uses of loop carried values (iter_args) and loop |
| 101 | /// yield values while promoting single iteration affine.for ops. |
| 102 | static void replaceIterArgsAndYieldResults(AffineForOp forOp) { |
| 103 | // Replace uses of iter arguments with iter operands (initial values). |
| 104 | auto iterOperands = forOp.getInits(); |
| 105 | auto iterArgs = forOp.getRegionIterArgs(); |
| 106 | for (auto e : llvm::zip(iterOperands, iterArgs)) |
| 107 | std::get<1>(e).replaceAllUsesWith(std::get<0>(e)); |
| 108 | |
| 109 | // Replace uses of loop results with the values yielded by the loop. |
| 110 | auto outerResults = forOp.getResults(); |
| 111 | auto innerResults = forOp.getBody()->getTerminator()->getOperands(); |
| 112 | for (auto e : llvm::zip(outerResults, innerResults)) |
| 113 | std::get<0>(e).replaceAllUsesWith(std::get<1>(e)); |
| 114 | } |
| 115 | |
| 116 | /// Promotes the loop body of a forOp to its containing block if the forOp |
| 117 | /// was known to have a single iteration. |
| 118 | LogicalResult mlir::affine::promoteIfSingleIteration(AffineForOp forOp) { |
| 119 | std::optional<uint64_t> tripCount = getConstantTripCount(forOp); |
| 120 | if (!tripCount || *tripCount != 1) |
| 121 | return failure(); |
| 122 | |
| 123 | // TODO: extend this for arbitrary affine bounds. |
| 124 | if (forOp.getLowerBoundMap().getNumResults() != 1) |
| 125 | return failure(); |
| 126 | |
| 127 | // Replaces all IV uses to its single iteration value. |
| 128 | auto iv = forOp.getInductionVar(); |
| 129 | auto *parentBlock = forOp->getBlock(); |
| 130 | if (!iv.use_empty()) { |
| 131 | if (forOp.hasConstantLowerBound()) { |
| 132 | auto func = forOp->getParentOfType<FunctionOpInterface>(); |
| 133 | OpBuilder builder(forOp->getContext()); |
| 134 | if (func) |
| 135 | builder.setInsertionPointToStart(&func.getFunctionBody().front()); |
| 136 | else |
| 137 | builder.setInsertionPoint(forOp); |
| 138 | auto constOp = builder.create<arith::ConstantIndexOp>( |
| 139 | forOp.getLoc(), forOp.getConstantLowerBound()); |
| 140 | iv.replaceAllUsesWith(constOp); |
| 141 | } else { |
| 142 | auto lbOperands = forOp.getLowerBoundOperands(); |
| 143 | auto lbMap = forOp.getLowerBoundMap(); |
| 144 | OpBuilder builder(forOp); |
| 145 | if (lbMap == builder.getDimIdentityMap()) { |
| 146 | // No need of generating an affine.apply. |
| 147 | iv.replaceAllUsesWith(lbOperands[0]); |
| 148 | } else { |
| 149 | auto affineApplyOp = |
| 150 | builder.create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands); |
| 151 | iv.replaceAllUsesWith(affineApplyOp); |
| 152 | } |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | replaceIterArgsAndYieldResults(forOp); |
| 157 | |
| 158 | // Move the loop body operations, except for its terminator, to the loop's |
| 159 | // containing block. |
| 160 | forOp.getBody()->back().erase(); |
| 161 | parentBlock->getOperations().splice(Block::iterator(forOp), |
| 162 | forOp.getBody()->getOperations()); |
| 163 | forOp.erase(); |
| 164 | return success(); |
| 165 | } |
| 166 | |
| 167 | /// Generates an affine.for op with the specified lower and upper bounds |
| 168 | /// while generating the right IV remappings to realize shifts for operations in |
| 169 | /// its body. The operations that go into the loop body are specified in |
| 170 | /// opGroupQueue starting from the specified offset, and in that order. The |
| 171 | /// first element of the pair specifies the shift applied to that group of |
| 172 | /// operations; the shift is multiplied by the loop step before being applied. |
| 173 | /// Returns nullptr if the generated loop simplifies to a single iteration one. |
| 174 | static AffineForOp generateShiftedLoop( |
| 175 | AffineMap lbMap, AffineMap ubMap, |
| 176 | const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> &opGroupQueue, |
| 177 | unsigned offset, AffineForOp srcForOp, OpBuilder b) { |
| 178 | auto lbOperands = srcForOp.getLowerBoundOperands(); |
| 179 | auto ubOperands = srcForOp.getUpperBoundOperands(); |
| 180 | |
| 181 | assert(lbMap.getNumInputs() == lbOperands.size()); |
| 182 | assert(ubMap.getNumInputs() == ubOperands.size()); |
| 183 | |
| 184 | auto loopChunk = |
| 185 | b.create<AffineForOp>(srcForOp.getLoc(), lbOperands, lbMap, ubOperands, |
| 186 | ubMap, srcForOp.getStepAsInt()); |
| 187 | auto loopChunkIV = loopChunk.getInductionVar(); |
| 188 | auto srcIV = srcForOp.getInductionVar(); |
| 189 | |
| 190 | IRMapping operandMap; |
| 191 | |
| 192 | auto bodyBuilder = OpBuilder::atBlockTerminator(block: loopChunk.getBody()); |
| 193 | for (const auto &it : llvm::drop_begin(RangeOrContainer: opGroupQueue, N: offset)) { |
| 194 | uint64_t shift = it.first; |
| 195 | auto ops = it.second; |
| 196 | // All 'same shift' operations get added with their operands being |
| 197 | // remapped to results of cloned operations, and their IV used remapped. |
| 198 | // Generate the remapping if the shift is not zero: remappedIV = newIV - |
| 199 | // shift. |
| 200 | if (!srcIV.use_empty() && shift != 0) { |
| 201 | auto ivRemap = bodyBuilder.create<AffineApplyOp>( |
| 202 | srcForOp.getLoc(), |
| 203 | bodyBuilder.getSingleDimShiftAffineMap( |
| 204 | -static_cast<int64_t>(srcForOp.getStepAsInt() * shift)), |
| 205 | loopChunkIV); |
| 206 | operandMap.map(srcIV, ivRemap); |
| 207 | } else { |
| 208 | operandMap.map(srcIV, loopChunkIV); |
| 209 | } |
| 210 | for (auto *op : ops) |
| 211 | bodyBuilder.clone(*op, operandMap); |
| 212 | }; |
| 213 | if (succeeded(promoteIfSingleIteration(loopChunk))) |
| 214 | return AffineForOp(); |
| 215 | return loopChunk; |
| 216 | } |
| 217 | |
| 218 | // The skewing of operations with respect to one another can be used for |
| 219 | // example to allow overlap of asynchronous operations (such as DMA |
| 220 | // communication) with computation, or just relative shifting of operations |
| 221 | // for better register reuse, locality or parallelism. As such, the shifts are |
| 222 | // typically expected to be at most of the order of the number of operations. |
| 223 | // This method should not be used as a substitute for loop distribution/fission. |
| 224 | // This method uses an algorithm// in time linear in the number of operations |
| 225 | // in the body of the for loop - (using the 'sweep line' paradigm). This method |
| 226 | // asserts preservation of SSA dominance. A check for that as well as that for |
| 227 | // memory-based dependence preservation check rests with the users of this |
| 228 | // method. |
| 229 | LogicalResult mlir::affine::affineForOpBodySkew(AffineForOp forOp, |
| 230 | ArrayRef<uint64_t> shifts, |
| 231 | bool unrollPrologueEpilogue) { |
| 232 | assert(forOp.getBody()->getOperations().size() == shifts.size() && |
| 233 | "too few/many shifts" ); |
| 234 | if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end())) |
| 235 | return success(); |
| 236 | |
| 237 | // If the trip counts aren't constant, we would need versioning and |
| 238 | // conditional guards (or context information to prevent such versioning). The |
| 239 | // better way to pipeline for such loops is to first tile them and extract |
| 240 | // constant trip count "full tiles" before applying this. |
| 241 | auto mayBeConstTripCount = getConstantTripCount(forOp); |
| 242 | if (!mayBeConstTripCount) { |
| 243 | LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled" )); |
| 244 | return success(); |
| 245 | } |
| 246 | uint64_t tripCount = *mayBeConstTripCount; |
| 247 | |
| 248 | assert(isOpwiseShiftValid(forOp, shifts) && |
| 249 | "shifts will lead to an invalid transformation\n" ); |
| 250 | |
| 251 | int64_t step = forOp.getStepAsInt(); |
| 252 | |
| 253 | unsigned numChildOps = shifts.size(); |
| 254 | |
| 255 | // Do a linear time (counting) sort for the shifts. |
| 256 | uint64_t maxShift = *llvm::max_element(Range&: shifts); |
| 257 | if (maxShift >= numChildOps) { |
| 258 | // Large shifts are not the typical use case. |
| 259 | forOp.emitWarning("not shifting because shifts are unrealistically large" ); |
| 260 | return success(); |
| 261 | } |
| 262 | |
| 263 | // An array of operation groups sorted by shift amount; each group has all |
| 264 | // operations with the same shift in the order in which they appear in the |
| 265 | // body of the 'affine.for' op. |
| 266 | std::vector<std::vector<Operation *>> sortedOpGroups(maxShift + 1); |
| 267 | unsigned pos = 0; |
| 268 | for (auto &op : forOp.getBody()->without_terminator()) { |
| 269 | auto shift = shifts[pos++]; |
| 270 | sortedOpGroups[shift].push_back(&op); |
| 271 | } |
| 272 | |
| 273 | // Unless the shifts have a specific pattern (which actually would be the |
| 274 | // common use case), prologue and epilogue are not meaningfully defined. |
| 275 | // Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first |
| 276 | // loop generated as the prologue and the last as epilogue and unroll these |
| 277 | // fully. |
| 278 | AffineForOp prologue, epilogue; |
| 279 | |
| 280 | // Do a sweep over the sorted shifts while storing open groups in a |
| 281 | // vector, and generating loop portions as necessary during the sweep. A block |
| 282 | // of operations is paired with its shift. |
| 283 | std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> opGroupQueue; |
| 284 | |
| 285 | auto origLbMap = forOp.getLowerBoundMap(); |
| 286 | uint64_t lbShift = 0; |
| 287 | OpBuilder b(forOp); |
| 288 | for (uint64_t d = 0, e = sortedOpGroups.size(); d < e; ++d) { |
| 289 | // If nothing is shifted by d, continue. |
| 290 | if (sortedOpGroups[d].empty()) |
| 291 | continue; |
| 292 | if (!opGroupQueue.empty()) { |
| 293 | assert(d > 0 && |
| 294 | "Queue expected to be empty when the first block is found" ); |
| 295 | // The interval for which the loop needs to be generated here is: |
| 296 | // [lbShift, min(lbShift + tripCount, d)) and the body of the |
| 297 | // loop needs to have all operations in opQueue in that order. |
| 298 | AffineForOp res; |
| 299 | if (lbShift + tripCount * step < d * step) { |
| 300 | res = generateShiftedLoop( |
| 301 | b.getShiftedAffineMap(origLbMap, lbShift), |
| 302 | b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step), |
| 303 | opGroupQueue, /*offset=*/0, forOp, b); |
| 304 | // Entire loop for the queued op groups generated, empty it. |
| 305 | opGroupQueue.clear(); |
| 306 | lbShift += tripCount * step; |
| 307 | } else { |
| 308 | res = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift), |
| 309 | b.getShiftedAffineMap(origLbMap, d), |
| 310 | opGroupQueue, /*offset=*/0, forOp, b); |
| 311 | lbShift = d * step; |
| 312 | } |
| 313 | |
| 314 | if (res) { |
| 315 | // Simplify/canonicalize the affine.for. |
| 316 | RewritePatternSet patterns(res.getContext()); |
| 317 | AffineForOp::getCanonicalizationPatterns(patterns, res.getContext()); |
| 318 | bool erased; |
| 319 | (void)applyOpPatternsGreedily( |
| 320 | res.getOperation(), std::move(patterns), |
| 321 | GreedyRewriteConfig().setStrictness( |
| 322 | GreedyRewriteStrictness::ExistingAndNewOps), |
| 323 | /*changed=*/nullptr, &erased); |
| 324 | if (!erased && !prologue) |
| 325 | prologue = res; |
| 326 | if (!erased) |
| 327 | epilogue = res; |
| 328 | } |
| 329 | } else { |
| 330 | // Start of first interval. |
| 331 | lbShift = d * step; |
| 332 | } |
| 333 | // Augment the list of operations that get into the current open interval. |
| 334 | opGroupQueue.emplace_back(args&: d, args&: sortedOpGroups[d]); |
| 335 | } |
| 336 | |
| 337 | // Those operations groups left in the queue now need to be processed (FIFO) |
| 338 | // and their loops completed. |
| 339 | for (unsigned i = 0, e = opGroupQueue.size(); i < e; ++i) { |
| 340 | uint64_t ubShift = (opGroupQueue[i].first + tripCount) * step; |
| 341 | epilogue = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift), |
| 342 | b.getShiftedAffineMap(origLbMap, ubShift), |
| 343 | opGroupQueue, /*offset=*/i, forOp, b); |
| 344 | lbShift = ubShift; |
| 345 | if (!prologue) |
| 346 | prologue = epilogue; |
| 347 | } |
| 348 | |
| 349 | // Erase the original for op. |
| 350 | forOp.erase(); |
| 351 | |
| 352 | if (unrollPrologueEpilogue && prologue) |
| 353 | (void)loopUnrollFull(prologue); |
| 354 | if (unrollPrologueEpilogue && !epilogue && epilogue != prologue) |
| 355 | (void)loopUnrollFull(epilogue); |
| 356 | |
| 357 | return success(); |
| 358 | } |
| 359 | |
| 360 | /// Checks whether a loop nest is hyper-rectangular or not. |
| 361 | static LogicalResult |
| 362 | checkIfHyperRectangular(MutableArrayRef<AffineForOp> input) { |
| 363 | FlatAffineValueConstraints cst; |
| 364 | SmallVector<Operation *, 8> ops(input.begin(), input.end()); |
| 365 | // 0-d or 1-d is trivially hyper-rectangular. |
| 366 | if (input.size() <= 1) |
| 367 | return success(); |
| 368 | if (failed(Result: getIndexSet(ops, domain: &cst))) { |
| 369 | LLVM_DEBUG(llvm::dbgs() << "Index set computation failed!\n" ); |
| 370 | return failure(); |
| 371 | } |
| 372 | if (!cst.isHyperRectangular(pos: 0, num: input.size())) { |
| 373 | LLVM_DEBUG(llvm::dbgs() |
| 374 | << "Non-hyperrectangular nests not supported for tiling!\n" ); |
| 375 | return failure(); |
| 376 | } |
| 377 | return success(); |
| 378 | } |
| 379 | |
| 380 | /// Check if the input nest is supported for tiling and whether tiling would be |
| 381 | /// legal or not. |
| 382 | template <typename t> |
| 383 | static LogicalResult performPreTilingChecks(MutableArrayRef<AffineForOp> input, |
| 384 | ArrayRef<t> tileSizes) { |
| 385 | assert(input.size() == tileSizes.size() && "Too few/many tile sizes" ); |
| 386 | |
| 387 | if (llvm::any_of(input, |
| 388 | [](AffineForOp op) { return op.getNumResults() > 0; })) { |
| 389 | LLVM_DEBUG(llvm::dbgs() |
| 390 | << "Cannot tile nest where a loop has yield values\n" ); |
| 391 | return failure(); |
| 392 | } |
| 393 | |
| 394 | // Check if the supplied `for` ops are all successively nested. |
| 395 | if (!isPerfectlyNested(loops: input)) { |
| 396 | LLVM_DEBUG(llvm::dbgs() << "input loops not perfectly nested" ); |
| 397 | return failure(); |
| 398 | } |
| 399 | |
| 400 | // TODO: handle non hyper-rectangular spaces. |
| 401 | if (failed(Result: checkIfHyperRectangular(input))) |
| 402 | return failure(); |
| 403 | |
| 404 | return success(); |
| 405 | } |
| 406 | |
| 407 | /// Move the loop body of AffineForOp 'src' from 'src' into the specified |
| 408 | /// location in destination's body, ignoring the terminator. |
| 409 | static void moveLoopBodyImpl(AffineForOp src, AffineForOp dest, |
| 410 | Block::iterator loc) { |
| 411 | auto &ops = src.getBody()->getOperations(); |
| 412 | dest.getBody()->getOperations().splice(loc, ops, ops.begin(), |
| 413 | std::prev(ops.end())); |
| 414 | } |
| 415 | |
| 416 | /// Move the loop body of AffineForOp 'src' from 'src' to the start of dest |
| 417 | /// body. |
| 418 | static void moveLoopBody(AffineForOp src, AffineForOp dest) { |
| 419 | moveLoopBodyImpl(src, dest, dest.getBody()->begin()); |
| 420 | } |
| 421 | |
| 422 | /// Constructs tiled loop nest, without setting the loop bounds and move the |
| 423 | /// body of the original loop nest to the tiled loop nest. |
| 424 | static void constructTiledLoopNest(MutableArrayRef<AffineForOp> origLoops, |
| 425 | AffineForOp rootAffineForOp, unsigned width, |
| 426 | MutableArrayRef<AffineForOp> tiledLoops) { |
| 427 | Location loc = rootAffineForOp.getLoc(); |
| 428 | |
| 429 | // The outermost among the loops as we add more.. |
| 430 | Operation *topLoop = rootAffineForOp.getOperation(); |
| 431 | AffineForOp innermostPointLoop; |
| 432 | |
| 433 | // Add intra-tile (or point) loops. |
| 434 | for (unsigned i = 0; i < width; i++) { |
| 435 | OpBuilder b(topLoop); |
| 436 | // Loop bounds will be set later. |
| 437 | AffineForOp pointLoop = b.create<AffineForOp>(loc, 0, 0); |
| 438 | pointLoop.getBody()->getOperations().splice( |
| 439 | pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), |
| 440 | topLoop); |
| 441 | tiledLoops[2 * width - 1 - i] = pointLoop; |
| 442 | topLoop = pointLoop.getOperation(); |
| 443 | if (i == 0) |
| 444 | innermostPointLoop = pointLoop; |
| 445 | } |
| 446 | |
| 447 | // Add tile space loops; |
| 448 | for (unsigned i = width; i < 2 * width; i++) { |
| 449 | OpBuilder b(topLoop); |
| 450 | // Loop bounds will be set later. |
| 451 | AffineForOp tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0); |
| 452 | tileSpaceLoop.getBody()->getOperations().splice( |
| 453 | tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), |
| 454 | topLoop); |
| 455 | tiledLoops[2 * width - i - 1] = tileSpaceLoop; |
| 456 | topLoop = tileSpaceLoop.getOperation(); |
| 457 | } |
| 458 | |
| 459 | // Move the loop body of the original nest to the new one. |
| 460 | moveLoopBody(origLoops.back(), innermostPointLoop); |
| 461 | } |
| 462 | |
| 463 | /// Set lower and upper bounds of intra-tile loops for parametric tiling. |
| 464 | // TODO: Handle non-constant lower bounds. |
| 465 | static void setIntraTileBoundsParametric(OpBuilder &b, AffineForOp origLoop, |
| 466 | AffineForOp newInterTileLoop, |
| 467 | AffineForOp newIntraTileLoop, |
| 468 | Value tileSize) { |
| 469 | // The lower bound for the intra-tile loop is represented by an affine map |
| 470 | // as (%i, %t0)->((%i - %origlb) * %t0 + %origlb). Similarly, the upper bound |
| 471 | // for the intra-tile loop is represented by an affine map as (%i, %t0)->((%i |
| 472 | // - %origlb) * %t0) + (%t0 * %origLoopStep) + %origlb), where %i is loop IV |
| 473 | // of the corresponding inter-tile loop, %t0 is the corresponding tiling |
| 474 | // parameter, %origlb is lower bound and %origLoopStep is the loop step of the |
| 475 | // corresponding inter-tile loop. |
| 476 | |
| 477 | assert(origLoop.hasConstantLowerBound() && |
| 478 | "expected input loops to have constant lower bound." ); |
| 479 | |
| 480 | // Get lower bound of original loop as an affine expression. |
| 481 | AffineExpr origLowerBoundExpr; |
| 482 | origLowerBoundExpr = |
| 483 | b.getAffineConstantExpr(constant: origLoop.getConstantLowerBound()); |
| 484 | |
| 485 | // Add dim operands from original lower/upper bound. |
| 486 | SmallVector<Value, 4> lbOperands, ubOperands; |
| 487 | AffineBound lb = origLoop.getLowerBound(); |
| 488 | AffineBound ub = origLoop.getUpperBound(); |
| 489 | lbOperands.reserve(N: lb.getNumOperands() + 2); |
| 490 | ubOperands.reserve(N: ub.getNumOperands() + 2); |
| 491 | AffineMap origLbMap = lb.getMap(); |
| 492 | AffineMap origUbMap = ub.getMap(); |
| 493 | for (unsigned j = 0, e = origLbMap.getNumDims(); j < e; ++j) |
| 494 | lbOperands.push_back(Elt: lb.getOperand(idx: j)); |
| 495 | for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) |
| 496 | ubOperands.push_back(Elt: ub.getOperand(idx: j)); |
| 497 | |
| 498 | // Add a new dim operand in lb/ubOperands corresponding to the origLoop |
| 499 | // IV. |
| 500 | lbOperands.push_back(Elt: newInterTileLoop.getInductionVar()); |
| 501 | ubOperands.push_back(Elt: newInterTileLoop.getInductionVar()); |
| 502 | |
| 503 | // Get loop IV as an affine expression for lower/upper bound. Size of |
| 504 | // lb/ubOperands is guaranteed to be atleast one. |
| 505 | AffineExpr lbLoopIvExpr = b.getAffineDimExpr(position: lbOperands.size() - 1); |
| 506 | AffineExpr ubLoopIvExpr = b.getAffineDimExpr(position: ubOperands.size() - 1); |
| 507 | |
| 508 | // Add symbol operands from original lower/upper bound. |
| 509 | for (unsigned j = 0, e = origLbMap.getNumSymbols(); j < e; ++j) |
| 510 | lbOperands.push_back(Elt: lb.getOperand(idx: origLbMap.getNumDims() + j)); |
| 511 | for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) |
| 512 | ubOperands.push_back(Elt: ub.getOperand(idx: origUbMap.getNumDims() + j)); |
| 513 | |
| 514 | // Add a new symbol operand which is the tile size for this loop. |
| 515 | lbOperands.push_back(Elt: tileSize); |
| 516 | ubOperands.push_back(Elt: tileSize); |
| 517 | |
| 518 | SmallVector<AffineExpr, 4> lbBoundExprs; |
| 519 | SmallVector<AffineExpr, 4> ubBoundExprs; |
| 520 | lbBoundExprs.reserve(N: origLbMap.getNumResults()); |
| 521 | ubBoundExprs.reserve(N: origUbMap.getNumResults()); |
| 522 | |
| 523 | // Get tiling parameter as an affine expression for lb/ub. |
| 524 | AffineExpr lbTileParameter = b.getAffineSymbolExpr(position: origLbMap.getNumSymbols()); |
| 525 | AffineExpr ubTileParameter = b.getAffineSymbolExpr(position: origUbMap.getNumSymbols()); |
| 526 | |
| 527 | // Insert lb as inter-tile ((loop IV - origlb) * tilingParameter) + origlb. |
| 528 | lbBoundExprs.push_back( |
| 529 | Elt: ((lbLoopIvExpr - origLowerBoundExpr) * lbTileParameter) + |
| 530 | origLowerBoundExpr); |
| 531 | |
| 532 | // Get the origLoopStep as an affine expression. |
| 533 | AffineExpr origLoopStep = b.getAffineConstantExpr(constant: origLoop.getStepAsInt()); |
| 534 | |
| 535 | // Insert ub as inter-tile ((loop IV - origlb) * tilingParameter) + |
| 536 | // (tilingParameter * origLoopStep) + origlb. |
| 537 | ubBoundExprs.push_back( |
| 538 | Elt: ((ubLoopIvExpr - origLowerBoundExpr) * ubTileParameter) + |
| 539 | (ubTileParameter * origLoopStep) + origLowerBoundExpr); |
| 540 | |
| 541 | ubBoundExprs.append(in_start: origUbMap.getResults().begin(), |
| 542 | in_end: origUbMap.getResults().end()); |
| 543 | |
| 544 | AffineMap lbMap = |
| 545 | AffineMap::get(dimCount: origLbMap.getNumDims() + 1, symbolCount: origLbMap.getNumSymbols() + 1, |
| 546 | results: lbBoundExprs, context: b.getContext()); |
| 547 | newIntraTileLoop.setLowerBound(lbOperands, lbMap); |
| 548 | |
| 549 | AffineMap ubMap = |
| 550 | AffineMap::get(dimCount: origUbMap.getNumDims() + 1, symbolCount: origUbMap.getNumSymbols() + 1, |
| 551 | results: ubBoundExprs, context: b.getContext()); |
| 552 | newIntraTileLoop.setUpperBound(ubOperands, ubMap); |
| 553 | |
| 554 | // Original loop step must be preserved. |
| 555 | newIntraTileLoop.setStep(origLoop.getStepAsInt()); |
| 556 | } |
| 557 | |
| 558 | /// Set lower and upper bounds of inter-tile loops for parametric tiling. |
| 559 | // TODO: Handle non-constant lower bounds. |
| 560 | static void setInterTileBoundsParametric(OpBuilder &b, AffineForOp origLoop, |
| 561 | AffineForOp newLoop, Value tileSize) { |
| 562 | OperandRange newLbOperands = origLoop.getLowerBoundOperands(); |
| 563 | |
| 564 | // The lower bounds for inter-tile loops are same as the corresponding lower |
| 565 | // bounds of original loops. |
| 566 | newLoop.setLowerBound(newLbOperands, origLoop.getLowerBoundMap()); |
| 567 | |
| 568 | // The new upper bound map for inter-tile loops, assuming constant lower |
| 569 | // bounds, are now originalLowerBound + ceildiv((originalUpperBound - |
| 570 | // originalLowerBound), tiling parameter); where tiling parameter is the |
| 571 | // respective tile size for that loop. For e.g. if the original ubmap was |
| 572 | // ()->(1024), the new map will be |
| 573 | // ()[s0]->(ceildiv((1024 -lb) % s0)), where s0 is the tiling parameter. |
| 574 | // Therefore a new symbol operand is inserted in the map and the result |
| 575 | // expression is overwritten. |
| 576 | |
| 577 | assert(origLoop.hasConstantLowerBound() && |
| 578 | "expected input loops to have constant lower bound." ); |
| 579 | |
| 580 | // Get lower bound of original loop as an affine expression. |
| 581 | AffineExpr origLowerBoundExpr; |
| 582 | origLowerBoundExpr = |
| 583 | b.getAffineConstantExpr(constant: origLoop.getConstantLowerBound()); |
| 584 | |
| 585 | // Add dim operands from original upper bound. |
| 586 | SmallVector<Value, 4> ubOperands; |
| 587 | AffineBound ub = origLoop.getUpperBound(); |
| 588 | ubOperands.reserve(N: ub.getNumOperands() + 1); |
| 589 | AffineMap origUbMap = ub.getMap(); |
| 590 | for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) |
| 591 | ubOperands.push_back(Elt: ub.getOperand(idx: j)); |
| 592 | |
| 593 | // Add symbol operands from original upper bound. |
| 594 | for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) |
| 595 | ubOperands.push_back(Elt: ub.getOperand(idx: origUbMap.getNumDims() + j)); |
| 596 | |
| 597 | // Add a new symbol operand which is the tile size for this loop. |
| 598 | ubOperands.push_back(Elt: tileSize); |
| 599 | |
| 600 | // Get tiling parameter as an affine expression. |
| 601 | AffineExpr tileParameter = b.getAffineSymbolExpr(position: origUbMap.getNumSymbols()); |
| 602 | |
| 603 | SmallVector<AffineExpr, 4> boundExprs; |
| 604 | boundExprs.reserve(N: origUbMap.getNumResults()); |
| 605 | int64_t origUpperBound; |
| 606 | AffineExpr origUpperBoundExpr; |
| 607 | |
| 608 | // If upper bound for the original loop is constant, then the constant can |
| 609 | // be obtained as an affine expression straight away. |
| 610 | if (origLoop.hasConstantUpperBound()) { |
| 611 | origUpperBound = origLoop.getConstantUpperBound(); |
| 612 | |
| 613 | // Get original constant upper bound as an affine expression. |
| 614 | origUpperBoundExpr = b.getAffineConstantExpr(constant: origUpperBound); |
| 615 | |
| 616 | // Insert the bound as originalLowerBoundceildiv((originalUpperBound - |
| 617 | // originalLowerBound), tilingParameter). |
| 618 | boundExprs.push_back( |
| 619 | Elt: origLowerBoundExpr + |
| 620 | (origUpperBoundExpr - origLowerBoundExpr).ceilDiv(other: tileParameter)); |
| 621 | } else { |
| 622 | // If upper bound for the original loop is not constant then two cases |
| 623 | // are possible, although there handeling is the same, 1.) The result of |
| 624 | // ubmap has only one result expression. For e.g. |
| 625 | // affine.for %i = 5 to %ub |
| 626 | // |
| 627 | // A symbol operand is added which represents the tiling parameter. The |
| 628 | // new loop bounds here will be like ()[s0, s1] -> ((s0 - 5) ceildiv s1 + 5) |
| 629 | // where 's0' is the original upper bound and 's1' is the tiling |
| 630 | // parameter. 2.) When ubMap has more than one result expression. For e.g. |
| 631 | // #map0 = affine_map<()[s0, s1] -> (s0, s1) |
| 632 | // affine.for %i = 5 to min #map0()[%s0, %s1] |
| 633 | // |
| 634 | // A symbol operand is added which represents the tiling parameter. The |
| 635 | // new loop bounds will be like ()[s0, s1, s2] -> ((s0 - 5) ceildiv s2 + 5, |
| 636 | // (s1 -5) ceildiv s2 + 5), where s2 is the tiling parameter. |
| 637 | |
| 638 | // Insert the bounds as originalLowerBound + ceildiv((originalUpperBound - |
| 639 | // originalLowerBound), tilingParameter). |
| 640 | for (AffineExpr origUpperBoundExpr : origUbMap.getResults()) |
| 641 | boundExprs.push_back( |
| 642 | origLowerBoundExpr + |
| 643 | (origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter)); |
| 644 | } |
| 645 | |
| 646 | AffineMap ubMap = |
| 647 | AffineMap::get(dimCount: origUbMap.getNumDims(), symbolCount: origUbMap.getNumSymbols() + 1, |
| 648 | results: boundExprs, context: b.getContext()); |
| 649 | newLoop.setUpperBound(ubOperands, ubMap); |
| 650 | |
| 651 | // Original loop step must be preserved. |
| 652 | newLoop.setStep(origLoop.getStepAsInt()); |
| 653 | } |
| 654 | |
| 655 | /// Constructs and sets new loop bounds after tiling for the case of |
| 656 | /// hyper-rectangular index sets, where the bounds of one dimension do not |
| 657 | /// depend on other dimensions and tiling parameters are captured from SSA |
| 658 | /// values. Bounds of each dimension can thus be treated independently, |
| 659 | /// and deriving the new bounds is much simpler and faster than for the case of |
| 660 | /// tiling arbitrary polyhedral shapes. |
| 661 | static void constructParametricallyTiledIndexSetHyperRect( |
| 662 | MutableArrayRef<AffineForOp> origLoops, |
| 663 | MutableArrayRef<AffineForOp> newLoops, ArrayRef<Value> tileSizes) { |
| 664 | assert(!origLoops.empty() && "expected atleast one loop in band" ); |
| 665 | assert(origLoops.size() == tileSizes.size() && |
| 666 | "expected tiling parameter for each loop in band." ); |
| 667 | |
| 668 | OpBuilder b(origLoops[0].getOperation()); |
| 669 | unsigned width = origLoops.size(); |
| 670 | |
| 671 | // Set bounds for tile space loops. |
| 672 | for (unsigned i = 0; i < width; ++i) { |
| 673 | setInterTileBoundsParametric(b, origLoops[i], newLoops[i], tileSizes[i]); |
| 674 | } |
| 675 | |
| 676 | // Set bounds for intra-tile loops. |
| 677 | for (unsigned i = 0; i < width; ++i) { |
| 678 | setIntraTileBoundsParametric(b, origLoops[i], newLoops[i], |
| 679 | newLoops[i + width], tileSizes[i]); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | /// Constructs and sets new loop bounds after tiling for the case of |
| 684 | /// hyper-rectangular index sets, where the bounds of one dimension do not |
| 685 | /// depend on other dimensions. Bounds of each dimension can thus be treated |
| 686 | /// independently, and deriving the new bounds is much simpler and faster |
| 687 | /// than for the case of tiling arbitrary polyhedral shapes. |
| 688 | static void |
| 689 | constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops, |
| 690 | MutableArrayRef<AffineForOp> newLoops, |
| 691 | ArrayRef<unsigned> tileSizes) { |
| 692 | assert(!origLoops.empty()); |
| 693 | assert(origLoops.size() == tileSizes.size()); |
| 694 | |
| 695 | OpBuilder b(origLoops[0].getOperation()); |
| 696 | unsigned width = origLoops.size(); |
| 697 | |
| 698 | // Bounds for tile space loops. |
| 699 | for (unsigned i = 0; i < width; i++) { |
| 700 | OperandRange newLbOperands = origLoops[i].getLowerBoundOperands(); |
| 701 | OperandRange newUbOperands = origLoops[i].getUpperBoundOperands(); |
| 702 | newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap()); |
| 703 | newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap()); |
| 704 | // If the step size of original loop is x and tileSize is y then after |
| 705 | // tiling the tile space loops' step size becomes x*y. |
| 706 | newLoops[i].setStep(tileSizes[i] * origLoops[i].getStepAsInt()); |
| 707 | } |
| 708 | // Bounds for intra-tile loops. |
| 709 | for (unsigned i = 0; i < width; i++) { |
| 710 | int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]); |
| 711 | std::optional<uint64_t> mayBeConstantCount = |
| 712 | getConstantTripCount(origLoops[i]); |
| 713 | // The lower bound is just the tile-space loop. |
| 714 | AffineMap lbMap = b.getDimIdentityMap(); |
| 715 | newLoops[width + i].setLowerBound( |
| 716 | /*operands=*/newLoops[i].getInductionVar(), lbMap); |
| 717 | // The step sizes of intra-tile loops is just the original loops' step size. |
| 718 | newLoops[width + i].setStep(origLoops[i].getStepAsInt()); |
| 719 | |
| 720 | // Set the upper bound. |
| 721 | if (mayBeConstantCount && *mayBeConstantCount < tileSizes[i]) { |
| 722 | // Trip count is less than the tile size: upper bound is lower bound + |
| 723 | // trip count * stepSize. |
| 724 | AffineMap ubMap = b.getSingleDimShiftAffineMap( |
| 725 | shift: *mayBeConstantCount * origLoops[i].getStepAsInt()); |
| 726 | newLoops[width + i].setUpperBound( |
| 727 | /*operands=*/newLoops[i].getInductionVar(), ubMap); |
| 728 | } else if (largestDiv % tileSizes[i] != 0) { |
| 729 | // Intra-tile loop ii goes from i to min(i + tileSize * stepSize, ub_i). |
| 730 | // Construct the upper bound map; the operands are the original operands |
| 731 | // with 'i' (tile-space loop) appended to it. The new upper bound map is |
| 732 | // the original one with an additional expression i + tileSize * stepSize |
| 733 | // appended. |
| 734 | |
| 735 | // Add dim operands from original upper bound. |
| 736 | SmallVector<Value, 4> ubOperands; |
| 737 | AffineBound ub = origLoops[i].getUpperBound(); |
| 738 | ubOperands.reserve(N: ub.getNumOperands() + 1); |
| 739 | AffineMap origUbMap = ub.getMap(); |
| 740 | for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) |
| 741 | ubOperands.push_back(Elt: ub.getOperand(idx: j)); |
| 742 | |
| 743 | // Add dim operand for new loop upper bound. |
| 744 | ubOperands.push_back(Elt: newLoops[i].getInductionVar()); |
| 745 | |
| 746 | // Add symbol operands from original upper bound. |
| 747 | for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) |
| 748 | ubOperands.push_back(Elt: ub.getOperand(idx: origUbMap.getNumDims() + j)); |
| 749 | |
| 750 | SmallVector<AffineExpr, 4> boundExprs; |
| 751 | boundExprs.reserve(N: 1 + origUbMap.getNumResults()); |
| 752 | AffineExpr dim = b.getAffineDimExpr(position: origUbMap.getNumDims()); |
| 753 | // The new upper bound map is the original one with an additional |
| 754 | // expression i + tileSize * stepSize (of original loop) appended. |
| 755 | boundExprs.push_back(Elt: dim + tileSizes[i] * origLoops[i].getStepAsInt()); |
| 756 | boundExprs.append(in_start: origUbMap.getResults().begin(), |
| 757 | in_end: origUbMap.getResults().end()); |
| 758 | AffineMap ubMap = |
| 759 | AffineMap::get(dimCount: origUbMap.getNumDims() + 1, symbolCount: origUbMap.getNumSymbols(), |
| 760 | results: boundExprs, context: b.getContext()); |
| 761 | newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap); |
| 762 | } else { |
| 763 | // No need of the min expression. |
| 764 | AffineExpr dim = b.getAffineDimExpr(position: 0); |
| 765 | AffineMap ubMap = AffineMap::get( |
| 766 | 1, 0, dim + tileSizes[i] * origLoops[i].getStepAsInt()); |
| 767 | newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap); |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | LogicalResult |
| 773 | mlir::affine::tilePerfectlyNested(MutableArrayRef<AffineForOp> input, |
| 774 | ArrayRef<unsigned> tileSizes, |
| 775 | SmallVectorImpl<AffineForOp> *tiledNest) { |
| 776 | if (input.empty()) |
| 777 | return success(); |
| 778 | |
| 779 | if (failed(Result: performPreTilingChecks(input, tileSizes))) |
| 780 | return failure(); |
| 781 | |
| 782 | MutableArrayRef<AffineForOp> origLoops = input; |
| 783 | AffineForOp rootAffineForOp = origLoops[0]; |
| 784 | |
| 785 | // Note that width is at least one since the band isn't empty. |
| 786 | unsigned width = input.size(); |
| 787 | SmallVector<AffineForOp, 6> tiledLoops(2 * width); |
| 788 | |
| 789 | // Construct a tiled loop nest without setting their bounds. Bounds are |
| 790 | // set later. |
| 791 | constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops); |
| 792 | |
| 793 | SmallVector<Value, 8> origLoopIVs; |
| 794 | extractForInductionVars(forInsts: input, ivs: &origLoopIVs); |
| 795 | |
| 796 | // Set loop bounds for the tiled loop nest. |
| 797 | constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes); |
| 798 | |
| 799 | // Replace original IVs with intra-tile loop IVs. |
| 800 | for (unsigned i = 0; i < width; i++) |
| 801 | origLoopIVs[i].replaceAllUsesWith(newValue: tiledLoops[i + width].getInductionVar()); |
| 802 | |
| 803 | // Erase the old loop nest. |
| 804 | rootAffineForOp.erase(); |
| 805 | |
| 806 | if (tiledNest) |
| 807 | *tiledNest = std::move(tiledLoops); |
| 808 | |
| 809 | return success(); |
| 810 | } |
| 811 | |
| 812 | /// Tiles the specified band of perfectly nested loops creating tile-space |
| 813 | /// loops and intra-tile loops, using SSA values as tiling parameters. A band |
| 814 | /// is a contiguous set of loops. |
| 815 | LogicalResult mlir::affine::tilePerfectlyNestedParametric( |
| 816 | MutableArrayRef<AffineForOp> input, ArrayRef<Value> tileSizes, |
| 817 | SmallVectorImpl<AffineForOp> *tiledNest) { |
| 818 | if (input.empty()) |
| 819 | return success(); |
| 820 | |
| 821 | if (failed(Result: performPreTilingChecks(input, tileSizes))) |
| 822 | return failure(); |
| 823 | |
| 824 | MutableArrayRef<AffineForOp> origLoops = input; |
| 825 | AffineForOp rootAffineForOp = origLoops[0]; |
| 826 | unsigned width = input.size(); |
| 827 | SmallVector<AffineForOp, 6> tiledLoops(2 * width); |
| 828 | |
| 829 | // Construct a tiled loop nest without setting their bounds. Bounds are |
| 830 | // set later. |
| 831 | constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops); |
| 832 | |
| 833 | SmallVector<Value, 8> origLoopIVs; |
| 834 | extractForInductionVars(forInsts: input, ivs: &origLoopIVs); |
| 835 | |
| 836 | // Set loop bounds for the tiled loop nest. |
| 837 | constructParametricallyTiledIndexSetHyperRect(origLoops, tiledLoops, |
| 838 | tileSizes); |
| 839 | |
| 840 | // Replace original IVs with intra-tile loop IVs. |
| 841 | for (unsigned i = 0; i < width; i++) |
| 842 | origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar()); |
| 843 | |
| 844 | // Erase the old loop nest. |
| 845 | rootAffineForOp.erase(); |
| 846 | |
| 847 | if (tiledNest) |
| 848 | *tiledNest = std::move(tiledLoops); |
| 849 | |
| 850 | return success(); |
| 851 | } |
| 852 | |
| 853 | /// Get perfectly nested sequence of loops starting at root of loop nest |
| 854 | /// (the first op being another AffineFor, and the second op - a terminator). |
| 855 | /// A loop is perfectly nested iff: the first op in the loop's body is another |
| 856 | /// AffineForOp, and the second op is a terminator). |
| 857 | void mlir::affine::getPerfectlyNestedLoops( |
| 858 | SmallVectorImpl<AffineForOp> &nestedLoops, AffineForOp root) { |
| 859 | for (unsigned i = 0; i < std::numeric_limits<unsigned>::max(); ++i) { |
| 860 | nestedLoops.push_back(root); |
| 861 | Block &body = root.getRegion().front(); |
| 862 | if (body.begin() != std::prev(x: body.end(), n: 2)) |
| 863 | return; |
| 864 | |
| 865 | root = dyn_cast<AffineForOp>(&body.front()); |
| 866 | if (!root) |
| 867 | return; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /// Identify valid and profitable bands of loops to tile. This is currently just |
| 872 | /// a temporary placeholder to test the mechanics of tiled code generation. |
| 873 | /// Returns all maximal outermost perfect loop nests to tile. |
| 874 | void mlir::affine::getTileableBands( |
| 875 | func::FuncOp f, std::vector<SmallVector<AffineForOp, 6>> *bands) { |
| 876 | // Get maximal perfect nest of 'affine.for' insts starting from root |
| 877 | // (inclusive). |
| 878 | for (AffineForOp forOp : f.getOps<AffineForOp>()) { |
| 879 | SmallVector<AffineForOp, 6> band; |
| 880 | getPerfectlyNestedLoops(band, forOp); |
| 881 | bands->push_back(band); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | /// Unrolls this loop completely. |
| 886 | LogicalResult mlir::affine::loopUnrollFull(AffineForOp forOp) { |
| 887 | std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp); |
| 888 | if (mayBeConstantTripCount.has_value()) { |
| 889 | uint64_t tripCount = *mayBeConstantTripCount; |
| 890 | if (tripCount == 0) |
| 891 | return success(); |
| 892 | if (tripCount == 1) |
| 893 | return promoteIfSingleIteration(forOp); |
| 894 | return loopUnrollByFactor(forOp, tripCount); |
| 895 | } |
| 896 | return failure(); |
| 897 | } |
| 898 | |
| 899 | /// Unrolls this loop by the specified factor or by the trip count (if constant) |
| 900 | /// whichever is lower. |
| 901 | LogicalResult mlir::affine::loopUnrollUpToFactor(AffineForOp forOp, |
| 902 | uint64_t unrollFactor) { |
| 903 | std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp); |
| 904 | if (mayBeConstantTripCount.has_value() && |
| 905 | *mayBeConstantTripCount < unrollFactor) |
| 906 | return loopUnrollByFactor(forOp, *mayBeConstantTripCount); |
| 907 | return loopUnrollByFactor(forOp, unrollFactor); |
| 908 | } |
| 909 | |
| 910 | /// Generates unrolled copies of AffineForOp 'loopBodyBlock', with associated |
| 911 | /// 'forOpIV' by 'unrollFactor', calling 'ivRemapFn' to remap 'forOpIV' for each |
| 912 | /// unrolled body. If specified, annotates the Ops in each unrolled iteration |
| 913 | /// using annotateFn. |
| 914 | static void generateUnrolledLoop( |
| 915 | Block *loopBodyBlock, Value forOpIV, uint64_t unrollFactor, |
| 916 | function_ref<Value(unsigned, Value, OpBuilder)> ivRemapFn, |
| 917 | function_ref<void(unsigned, Operation *, OpBuilder)> annotateFn, |
| 918 | ValueRange iterArgs, ValueRange yieldedValues) { |
| 919 | // Builder to insert unrolled bodies just before the terminator of the body of |
| 920 | // 'forOp'. |
| 921 | auto builder = OpBuilder::atBlockTerminator(block: loopBodyBlock); |
| 922 | |
| 923 | constexpr auto defaultAnnotateFn = [](unsigned, Operation *, OpBuilder) {}; |
| 924 | if (!annotateFn) |
| 925 | annotateFn = defaultAnnotateFn; |
| 926 | |
| 927 | // Keep a pointer to the last non-terminator operation in the original block |
| 928 | // so that we know what to clone (since we are doing this in-place). |
| 929 | Block::iterator srcBlockEnd = std::prev(x: loopBodyBlock->end(), n: 2); |
| 930 | |
| 931 | // Unroll the contents of 'forOp' (append unrollFactor - 1 additional copies). |
| 932 | SmallVector<Value, 4> lastYielded(yieldedValues); |
| 933 | |
| 934 | for (unsigned i = 1; i < unrollFactor; i++) { |
| 935 | IRMapping operandMap; |
| 936 | |
| 937 | // Prepare operand map. |
| 938 | operandMap.map(from&: iterArgs, to&: lastYielded); |
| 939 | |
| 940 | // If the induction variable is used, create a remapping to the value for |
| 941 | // this unrolled instance. |
| 942 | if (!forOpIV.use_empty()) { |
| 943 | Value ivUnroll = ivRemapFn(i, forOpIV, builder); |
| 944 | operandMap.map(from: forOpIV, to: ivUnroll); |
| 945 | } |
| 946 | |
| 947 | // Clone the original body of 'forOp'. |
| 948 | for (auto it = loopBodyBlock->begin(); it != std::next(x: srcBlockEnd); it++) { |
| 949 | Operation *clonedOp = builder.clone(op&: *it, mapper&: operandMap); |
| 950 | annotateFn(i, clonedOp, builder); |
| 951 | } |
| 952 | |
| 953 | // Update yielded values. If the yielded value is defined outside the |
| 954 | // `loopBodyBlock` or if it is a BlockArgument then it won't be cloned, thus |
| 955 | // the `lastYielded` value remains unchanged. Else, update the `lastYielded` |
| 956 | // value with the clone corresponding to the yielded value. |
| 957 | for (unsigned i = 0, e = lastYielded.size(); i < e; i++) { |
| 958 | Operation *defOp = yieldedValues[i].getDefiningOp(); |
| 959 | if (defOp && defOp->getBlock() == loopBodyBlock) |
| 960 | lastYielded[i] = operandMap.lookup(from: yieldedValues[i]); |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | // Make sure we annotate the Ops in the original body. We do this last so that |
| 965 | // any annotations are not copied into the cloned Ops above. |
| 966 | for (auto it = loopBodyBlock->begin(); it != std::next(x: srcBlockEnd); it++) |
| 967 | annotateFn(0, &*it, builder); |
| 968 | |
| 969 | // Update operands of the yield statement. |
| 970 | loopBodyBlock->getTerminator()->setOperands(lastYielded); |
| 971 | } |
| 972 | |
| 973 | /// Helper to generate cleanup loop for unroll or unroll-and-jam when the trip |
| 974 | /// count is not a multiple of `unrollFactor`. |
| 975 | static LogicalResult generateCleanupLoopForUnroll(AffineForOp forOp, |
| 976 | uint64_t unrollFactor) { |
| 977 | // Insert the cleanup loop right after 'forOp'. |
| 978 | OpBuilder builder(forOp->getBlock(), std::next(x: Block::iterator(forOp))); |
| 979 | auto cleanupForOp = cast<AffineForOp>(builder.clone(*forOp)); |
| 980 | |
| 981 | // Update uses of `forOp` results. `cleanupForOp` should use `forOp` result |
| 982 | // and produce results for the original users of `forOp` results. |
| 983 | auto results = forOp.getResults(); |
| 984 | auto cleanupResults = cleanupForOp.getResults(); |
| 985 | auto cleanupIterOperands = cleanupForOp.getInits(); |
| 986 | |
| 987 | for (auto e : llvm::zip(results, cleanupResults, cleanupIterOperands)) { |
| 988 | std::get<0>(e).replaceAllUsesWith(std::get<1>(e)); |
| 989 | cleanupForOp->replaceUsesOfWith(std::get<2>(e), std::get<0>(e)); |
| 990 | } |
| 991 | |
| 992 | AffineMap cleanupMap; |
| 993 | SmallVector<Value, 4> cleanupOperands; |
| 994 | getCleanupLoopLowerBound(forOp, unrollFactor, cleanupMap, cleanupOperands); |
| 995 | if (!cleanupMap) |
| 996 | return failure(); |
| 997 | |
| 998 | cleanupForOp.setLowerBound(cleanupOperands, cleanupMap); |
| 999 | // Promote the loop body up if this has turned into a single iteration loop. |
| 1000 | (void)promoteIfSingleIteration(cleanupForOp); |
| 1001 | |
| 1002 | // Adjust upper bound of the original loop; this is the same as the lower |
| 1003 | // bound of the cleanup loop. |
| 1004 | forOp.setUpperBound(cleanupOperands, cleanupMap); |
| 1005 | return success(); |
| 1006 | } |
| 1007 | |
| 1008 | /// Unrolls this loop by the specified factor. Returns success if the loop |
| 1009 | /// is successfully unrolled. |
| 1010 | LogicalResult mlir::affine::loopUnrollByFactor( |
| 1011 | AffineForOp forOp, uint64_t unrollFactor, |
| 1012 | function_ref<void(unsigned, Operation *, OpBuilder)> annotateFn, |
| 1013 | bool cleanUpUnroll) { |
| 1014 | assert(unrollFactor > 0 && "unroll factor should be positive" ); |
| 1015 | |
| 1016 | std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp); |
| 1017 | if (unrollFactor == 1) { |
| 1018 | if (mayBeConstantTripCount && *mayBeConstantTripCount == 1 && |
| 1019 | failed(promoteIfSingleIteration(forOp))) |
| 1020 | return failure(); |
| 1021 | return success(); |
| 1022 | } |
| 1023 | |
| 1024 | // Nothing in the loop body other than the terminator. |
| 1025 | if (llvm::hasSingleElement(forOp.getBody()->getOperations())) |
| 1026 | return success(); |
| 1027 | |
| 1028 | // If the trip count is lower than the unroll factor, no unrolled body. |
| 1029 | if (mayBeConstantTripCount && *mayBeConstantTripCount < unrollFactor) { |
| 1030 | if (cleanUpUnroll) { |
| 1031 | // Unroll the cleanup loop if cleanUpUnroll is specified. |
| 1032 | return loopUnrollFull(forOp); |
| 1033 | } |
| 1034 | |
| 1035 | return failure(); |
| 1036 | } |
| 1037 | |
| 1038 | // Generate the cleanup loop if trip count isn't a multiple of unrollFactor. |
| 1039 | if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) { |
| 1040 | // Loops where the lower bound is a max expression or the upper bound is |
| 1041 | // a min expression and the trip count doesn't divide the unroll factor |
| 1042 | // can't be unrolled since the lower bound of the cleanup loop in such cases |
| 1043 | // cannot be expressed as an affine function or a max over affine functions. |
| 1044 | if (forOp.getLowerBoundMap().getNumResults() != 1 || |
| 1045 | forOp.getUpperBoundMap().getNumResults() != 1) |
| 1046 | return failure(); |
| 1047 | if (cleanUpUnroll) |
| 1048 | // Force unroll including cleanup loop |
| 1049 | return loopUnrollFull(forOp); |
| 1050 | if (failed(generateCleanupLoopForUnroll(forOp, unrollFactor))) |
| 1051 | assert(false && "cleanup loop lower bound map for single result lower " |
| 1052 | "and upper bound maps can always be determined" ); |
| 1053 | } |
| 1054 | |
| 1055 | ValueRange iterArgs(forOp.getRegionIterArgs()); |
| 1056 | auto yieldedValues = forOp.getBody()->getTerminator()->getOperands(); |
| 1057 | |
| 1058 | // Scale the step of loop being unrolled by unroll factor. |
| 1059 | int64_t step = forOp.getStepAsInt(); |
| 1060 | forOp.setStep(step * unrollFactor); |
| 1061 | generateUnrolledLoop( |
| 1062 | forOp.getBody(), forOp.getInductionVar(), unrollFactor, |
| 1063 | [&](unsigned i, Value iv, OpBuilder b) { |
| 1064 | // iv' = iv + i * step |
| 1065 | auto d0 = b.getAffineDimExpr(position: 0); |
| 1066 | auto bumpMap = AffineMap::get(dimCount: 1, symbolCount: 0, result: d0 + i * step); |
| 1067 | return b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, iv); |
| 1068 | }, |
| 1069 | /*annotateFn=*/annotateFn, |
| 1070 | /*iterArgs=*/iterArgs, /*yieldedValues=*/yieldedValues); |
| 1071 | |
| 1072 | // Promote the loop body up if this has turned into a single iteration loop. |
| 1073 | (void)promoteIfSingleIteration(forOp); |
| 1074 | return success(); |
| 1075 | } |
| 1076 | |
| 1077 | LogicalResult mlir::affine::loopUnrollJamUpToFactor(AffineForOp forOp, |
| 1078 | uint64_t unrollJamFactor) { |
| 1079 | std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp); |
| 1080 | if (mayBeConstantTripCount.has_value() && |
| 1081 | *mayBeConstantTripCount < unrollJamFactor) |
| 1082 | return loopUnrollJamByFactor(forOp, *mayBeConstantTripCount); |
| 1083 | return loopUnrollJamByFactor(forOp, unrollJamFactor); |
| 1084 | } |
| 1085 | |
| 1086 | /// Check if all control operands of all loops are defined outside of `forOp` |
| 1087 | /// and return false if not. |
| 1088 | static bool areInnerBoundsInvariant(AffineForOp forOp) { |
| 1089 | auto walkResult = forOp.walk([&](AffineForOp aForOp) { |
| 1090 | for (auto controlOperand : aForOp.getControlOperands()) { |
| 1091 | if (!forOp.isDefinedOutsideOfLoop(controlOperand)) |
| 1092 | return WalkResult::interrupt(); |
| 1093 | } |
| 1094 | return WalkResult::advance(); |
| 1095 | }); |
| 1096 | return !walkResult.wasInterrupted(); |
| 1097 | } |
| 1098 | |
| 1099 | /// Unrolls and jams this loop by the specified factor. |
| 1100 | LogicalResult mlir::affine::loopUnrollJamByFactor(AffineForOp forOp, |
| 1101 | uint64_t unrollJamFactor) { |
| 1102 | assert(unrollJamFactor > 0 && "unroll jam factor should be positive" ); |
| 1103 | |
| 1104 | std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp); |
| 1105 | if (unrollJamFactor == 1) { |
| 1106 | if (mayBeConstantTripCount && *mayBeConstantTripCount == 1 && |
| 1107 | failed(promoteIfSingleIteration(forOp))) |
| 1108 | return failure(); |
| 1109 | return success(); |
| 1110 | } |
| 1111 | |
| 1112 | // Nothing in the loop body other than the terminator. |
| 1113 | if (llvm::hasSingleElement(forOp.getBody()->getOperations())) |
| 1114 | return success(); |
| 1115 | |
| 1116 | // If the trip count is lower than the unroll jam factor, no unroll jam. |
| 1117 | if (mayBeConstantTripCount && *mayBeConstantTripCount < unrollJamFactor) { |
| 1118 | LLVM_DEBUG(llvm::dbgs() << "[failed] trip count < unroll-jam factor\n" ); |
| 1119 | return failure(); |
| 1120 | } |
| 1121 | |
| 1122 | // If any control operand of any inner loop of `forOp` is defined within |
| 1123 | // `forOp`, no unroll jam. |
| 1124 | if (!areInnerBoundsInvariant(forOp)) |
| 1125 | return failure(); |
| 1126 | |
| 1127 | // Gather all sub-blocks to jam upon the loop being unrolled. |
| 1128 | JamBlockGatherer<AffineForOp> jbg; |
| 1129 | jbg.walk(forOp); |
| 1130 | auto &subBlocks = jbg.subBlocks; |
| 1131 | |
| 1132 | // Collect loops with iter_args. |
| 1133 | SmallVector<AffineForOp, 4> loopsWithIterArgs; |
| 1134 | forOp.walk([&](AffineForOp aForOp) { |
| 1135 | if (aForOp.getNumIterOperands() > 0) |
| 1136 | loopsWithIterArgs.push_back(aForOp); |
| 1137 | }); |
| 1138 | |
| 1139 | // Get supported reductions to be used for creating reduction ops at the end. |
| 1140 | SmallVector<LoopReduction> reductions; |
| 1141 | if (forOp.getNumIterOperands() > 0) |
| 1142 | getSupportedReductions(forOp, reductions); |
| 1143 | |
| 1144 | // Generate the cleanup loop if trip count isn't a multiple of |
| 1145 | // unrollJamFactor. |
| 1146 | if (getLargestDivisorOfTripCount(forOp) % unrollJamFactor != 0) { |
| 1147 | // Loops where the lower bound is a max expression or the upper bound is |
| 1148 | // a min expression and the trip count doesn't divide the unroll factor |
| 1149 | // can't be unrolled since the lower bound of the cleanup loop in such cases |
| 1150 | // cannot be expressed as an affine function or a max over affine functions. |
| 1151 | if (forOp.getLowerBoundMap().getNumResults() != 1 || |
| 1152 | forOp.getUpperBoundMap().getNumResults() != 1) |
| 1153 | return failure(); |
| 1154 | if (failed(generateCleanupLoopForUnroll(forOp, unrollJamFactor))) |
| 1155 | assert(false && "cleanup loop lower bound map for single result lower " |
| 1156 | "and upper bound maps can always be determined" ); |
| 1157 | } |
| 1158 | |
| 1159 | // `operandMaps[i - 1]` carries old->new operand mapping for the ith unrolled |
| 1160 | // iteration. There are (`unrollJamFactor` - 1) iterations. |
| 1161 | SmallVector<IRMapping, 4> operandMaps(unrollJamFactor - 1); |
| 1162 | |
| 1163 | // For any loop with iter_args, replace it with a new loop that has |
| 1164 | // `unrollJamFactor` copies of its iterOperands, iter_args and yield |
| 1165 | // operands. |
| 1166 | SmallVector<AffineForOp, 4> newLoopsWithIterArgs; |
| 1167 | IRRewriter rewriter(forOp.getContext()); |
| 1168 | for (AffineForOp oldForOp : loopsWithIterArgs) { |
| 1169 | SmallVector<Value> dupIterOperands, dupYieldOperands; |
| 1170 | ValueRange oldIterOperands = oldForOp.getInits(); |
| 1171 | ValueRange oldIterArgs = oldForOp.getRegionIterArgs(); |
| 1172 | ValueRange oldYieldOperands = |
| 1173 | cast<AffineYieldOp>(oldForOp.getBody()->getTerminator()).getOperands(); |
| 1174 | // Get additional iterOperands, iterArgs, and yield operands. We will |
| 1175 | // fix iterOperands and yield operands after cloning of sub-blocks. |
| 1176 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 1177 | dupIterOperands.append(oldIterOperands.begin(), oldIterOperands.end()); |
| 1178 | dupYieldOperands.append(oldYieldOperands.begin(), oldYieldOperands.end()); |
| 1179 | } |
| 1180 | // Create a new loop with additional iterOperands, iter_args and yield |
| 1181 | // operands. This new loop will take the loop body of the original loop. |
| 1182 | bool forOpReplaced = oldForOp == forOp; |
| 1183 | AffineForOp newForOp = |
| 1184 | cast<AffineForOp>(*oldForOp.replaceWithAdditionalYields( |
| 1185 | rewriter, dupIterOperands, /*replaceInitOperandUsesInLoop=*/false, |
| 1186 | [&](OpBuilder &b, Location loc, ArrayRef<BlockArgument> newBbArgs) { |
| 1187 | return dupYieldOperands; |
| 1188 | })); |
| 1189 | newLoopsWithIterArgs.push_back(newForOp); |
| 1190 | // `forOp` has been replaced with a new loop. |
| 1191 | if (forOpReplaced) |
| 1192 | forOp = newForOp; |
| 1193 | // Update `operandMaps` for `newForOp` iterArgs and results. |
| 1194 | ValueRange newIterArgs = newForOp.getRegionIterArgs(); |
| 1195 | unsigned oldNumIterArgs = oldIterArgs.size(); |
| 1196 | ValueRange newResults = newForOp.getResults(); |
| 1197 | unsigned oldNumResults = newResults.size() / unrollJamFactor; |
| 1198 | assert(oldNumIterArgs == oldNumResults && |
| 1199 | "oldNumIterArgs must be the same as oldNumResults" ); |
| 1200 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 1201 | for (unsigned j = 0; j < oldNumIterArgs; ++j) { |
| 1202 | // `newForOp` has `unrollJamFactor` - 1 new sets of iterArgs and |
| 1203 | // results. Update `operandMaps[i - 1]` to map old iterArgs and results |
| 1204 | // to those in the `i`th new set. |
| 1205 | operandMaps[i - 1].map(newIterArgs[j], |
| 1206 | newIterArgs[i * oldNumIterArgs + j]); |
| 1207 | operandMaps[i - 1].map(newResults[j], |
| 1208 | newResults[i * oldNumResults + j]); |
| 1209 | } |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | // Scale the step of loop being unroll-jammed by the unroll-jam factor. |
| 1214 | int64_t step = forOp.getStepAsInt(); |
| 1215 | forOp.setStep(step * unrollJamFactor); |
| 1216 | |
| 1217 | auto forOpIV = forOp.getInductionVar(); |
| 1218 | // Unroll and jam (appends unrollJamFactor - 1 additional copies). |
| 1219 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 1220 | for (auto &subBlock : subBlocks) { |
| 1221 | // Builder to insert unroll-jammed bodies. Insert right at the end of |
| 1222 | // sub-block. |
| 1223 | OpBuilder builder(subBlock.first->getBlock(), std::next(x: subBlock.second)); |
| 1224 | |
| 1225 | // If the induction variable is used, create a remapping to the value for |
| 1226 | // this unrolled instance. |
| 1227 | if (!forOpIV.use_empty()) { |
| 1228 | // iv' = iv + i * step, i = 1 to unrollJamFactor-1. |
| 1229 | auto d0 = builder.getAffineDimExpr(position: 0); |
| 1230 | auto bumpMap = AffineMap::get(dimCount: 1, symbolCount: 0, result: d0 + i * step); |
| 1231 | auto ivUnroll = |
| 1232 | builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV); |
| 1233 | operandMaps[i - 1].map(forOpIV, ivUnroll); |
| 1234 | } |
| 1235 | // Clone the sub-block being unroll-jammed. |
| 1236 | for (auto it = subBlock.first; it != std::next(x: subBlock.second); ++it) |
| 1237 | builder.clone(op&: *it, mapper&: operandMaps[i - 1]); |
| 1238 | } |
| 1239 | // Fix iterOperands and yield op operands of newly created loops. |
| 1240 | for (auto newForOp : newLoopsWithIterArgs) { |
| 1241 | unsigned oldNumIterOperands = |
| 1242 | newForOp.getNumIterOperands() / unrollJamFactor; |
| 1243 | unsigned numControlOperands = newForOp.getNumControlOperands(); |
| 1244 | auto yieldOp = cast<AffineYieldOp>(newForOp.getBody()->getTerminator()); |
| 1245 | unsigned oldNumYieldOperands = yieldOp.getNumOperands() / unrollJamFactor; |
| 1246 | assert(oldNumIterOperands == oldNumYieldOperands && |
| 1247 | "oldNumIterOperands must be the same as oldNumYieldOperands" ); |
| 1248 | for (unsigned j = 0; j < oldNumIterOperands; ++j) { |
| 1249 | // The `i`th duplication of an old iterOperand or yield op operand |
| 1250 | // needs to be replaced with a mapped value from `operandMaps[i - 1]` |
| 1251 | // if such mapped value exists. |
| 1252 | newForOp.setOperand(numControlOperands + i * oldNumIterOperands + j, |
| 1253 | operandMaps[i - 1].lookupOrDefault( |
| 1254 | newForOp.getOperand(numControlOperands + j))); |
| 1255 | yieldOp.setOperand( |
| 1256 | i * oldNumYieldOperands + j, |
| 1257 | operandMaps[i - 1].lookupOrDefault(yieldOp.getOperand(j))); |
| 1258 | } |
| 1259 | } |
| 1260 | } |
| 1261 | if (forOp.getNumResults() > 0) { |
| 1262 | // Create reduction ops to combine every `unrollJamFactor` related results |
| 1263 | // into one value. For example, for %0:2 = affine.for ... and addf, we add |
| 1264 | // %1 = arith.addf %0#0, %0#1, and replace the following uses of %0#0 with |
| 1265 | // %1. |
| 1266 | rewriter.setInsertionPointAfter(forOp); |
| 1267 | auto loc = forOp.getLoc(); |
| 1268 | unsigned oldNumResults = forOp.getNumResults() / unrollJamFactor; |
| 1269 | for (LoopReduction &reduction : reductions) { |
| 1270 | unsigned pos = reduction.iterArgPosition; |
| 1271 | Value lhs = forOp.getResult(pos); |
| 1272 | Value rhs; |
| 1273 | SmallPtrSet<Operation *, 4> newOps; |
| 1274 | for (unsigned i = unrollJamFactor - 1; i >= 1; --i) { |
| 1275 | rhs = forOp.getResult(i * oldNumResults + pos); |
| 1276 | // Create ops based on reduction type. |
| 1277 | lhs = arith::getReductionOp(reduction.kind, rewriter, loc, lhs, rhs); |
| 1278 | if (!lhs) |
| 1279 | return failure(); |
| 1280 | Operation *op = lhs.getDefiningOp(); |
| 1281 | assert(op && "Reduction op should have been created" ); |
| 1282 | newOps.insert(Ptr: op); |
| 1283 | } |
| 1284 | // Replace all uses except those in newly created reduction ops. |
| 1285 | forOp.getResult(pos).replaceAllUsesExcept(lhs, newOps); |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | // Promote the loop body up if this has turned into a single iteration loop. |
| 1290 | (void)promoteIfSingleIteration(forOp); |
| 1291 | return success(); |
| 1292 | } |
| 1293 | |
| 1294 | /// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is |
| 1295 | /// nested within 'forOpA' as the only non-terminator operation in its block. |
| 1296 | void mlir::affine::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) { |
| 1297 | assert(&*forOpA.getBody()->begin() == forOpB.getOperation()); |
| 1298 | auto &forOpABody = forOpA.getBody()->getOperations(); |
| 1299 | auto &forOpBBody = forOpB.getBody()->getOperations(); |
| 1300 | |
| 1301 | // 1) Splice forOpA's non-terminator operations (which is just forOpB) just |
| 1302 | // before forOpA (in ForOpA's parent's block) this should leave 'forOpA's |
| 1303 | // body containing only the terminator. |
| 1304 | forOpA->getBlock()->getOperations().splice(Block::iterator(forOpA), |
| 1305 | forOpABody, forOpABody.begin(), |
| 1306 | std::prev(forOpABody.end())); |
| 1307 | // 2) Splice forOpB's non-terminator operations into the beginning of forOpA's |
| 1308 | // body (this leaves forOpB's body containing only the terminator). |
| 1309 | forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(), |
| 1310 | std::prev(forOpBBody.end())); |
| 1311 | // 3) Splice forOpA into the beginning of forOpB's body. |
| 1312 | forOpBBody.splice(forOpBBody.begin(), forOpA->getBlock()->getOperations(), |
| 1313 | Block::iterator(forOpA)); |
| 1314 | } |
| 1315 | |
| 1316 | // Checks each dependence component against the permutation to see if the |
| 1317 | // desired loop interchange would violate dependences by making the |
| 1318 | // dependence component lexicographically negative. |
| 1319 | static bool checkLoopInterchangeDependences( |
| 1320 | const std::vector<SmallVector<DependenceComponent, 2>> &depCompsVec, |
| 1321 | ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) { |
| 1322 | // Invert permutation map. |
| 1323 | unsigned maxLoopDepth = loops.size(); |
| 1324 | SmallVector<unsigned, 4> loopPermMapInv; |
| 1325 | loopPermMapInv.resize(N: maxLoopDepth); |
| 1326 | for (unsigned i = 0; i < maxLoopDepth; ++i) |
| 1327 | loopPermMapInv[loopPermMap[i]] = i; |
| 1328 | |
| 1329 | // Check each dependence component against the permutation to see if the |
| 1330 | // desired loop interchange permutation would make the dependence vectors |
| 1331 | // lexicographically negative. |
| 1332 | // Example 1: [-1, 1][0, 0] |
| 1333 | // Example 2: [0, 0][-1, 1] |
| 1334 | for (const auto &depComps : depCompsVec) { |
| 1335 | assert(depComps.size() >= maxLoopDepth); |
| 1336 | // Check if the first non-zero dependence component is positive. |
| 1337 | // This iterates through loops in the desired order. |
| 1338 | for (unsigned j = 0; j < maxLoopDepth; ++j) { |
| 1339 | unsigned permIndex = loopPermMapInv[j]; |
| 1340 | assert(depComps[permIndex].lb); |
| 1341 | int64_t depCompLb = *depComps[permIndex].lb; |
| 1342 | if (depCompLb > 0) |
| 1343 | break; |
| 1344 | if (depCompLb < 0) |
| 1345 | return false; |
| 1346 | } |
| 1347 | } |
| 1348 | return true; |
| 1349 | } |
| 1350 | |
| 1351 | /// Checks if the loop interchange permutation 'loopPermMap' of the perfectly |
| 1352 | /// nested sequence of loops in 'loops' would violate dependences. |
| 1353 | bool mlir::affine::isValidLoopInterchangePermutation( |
| 1354 | ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) { |
| 1355 | assert(loopPermMap.size() == loops.size() && "invalid loop perm map" ); |
| 1356 | unsigned maxLoopDepth = loops.size(); |
| 1357 | if (maxLoopDepth == 1) |
| 1358 | return true; |
| 1359 | // Gather dependence components for dependences between all ops in loop nest |
| 1360 | // rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth]. |
| 1361 | std::vector<SmallVector<DependenceComponent, 2>> depCompsVec; |
| 1362 | getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec); |
| 1363 | return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap); |
| 1364 | } |
| 1365 | |
| 1366 | /// Returns true if `loops` is a perfectly nested loop nest, where loops appear |
| 1367 | /// in it from outermost to innermost. |
| 1368 | bool LLVM_ATTRIBUTE_UNUSED |
| 1369 | mlir::affine::isPerfectlyNested(ArrayRef<AffineForOp> loops) { |
| 1370 | assert(!loops.empty() && "no loops provided" ); |
| 1371 | |
| 1372 | // We already know that the block can't be empty. |
| 1373 | auto hasTwoElements = [](Block *block) { |
| 1374 | auto secondOpIt = std::next(x: block->begin()); |
| 1375 | return secondOpIt != block->end() && &*secondOpIt == &block->back(); |
| 1376 | }; |
| 1377 | |
| 1378 | auto enclosingLoop = loops.front(); |
| 1379 | for (auto loop : loops.drop_front()) { |
| 1380 | auto parentForOp = dyn_cast<AffineForOp>(loop->getParentOp()); |
| 1381 | // parentForOp's body should be just this loop and the terminator. |
| 1382 | if (parentForOp != enclosingLoop || !hasTwoElements(parentForOp.getBody())) |
| 1383 | return false; |
| 1384 | enclosingLoop = loop; |
| 1385 | } |
| 1386 | return true; |
| 1387 | } |
| 1388 | |
| 1389 | // input[i] should move from position i -> permMap[i]. Returns the position in |
| 1390 | // `input` that becomes the new outermost loop. |
| 1391 | unsigned mlir::affine::permuteLoops(ArrayRef<AffineForOp> input, |
| 1392 | ArrayRef<unsigned> permMap) { |
| 1393 | assert(input.size() == permMap.size() && "invalid permutation map size" ); |
| 1394 | // Check whether the permutation spec is valid. This is a small vector - we'll |
| 1395 | // just sort and check if it's iota. |
| 1396 | SmallVector<unsigned, 4> checkPermMap(permMap); |
| 1397 | llvm::sort(C&: checkPermMap); |
| 1398 | if (llvm::any_of(Range: llvm::enumerate(First&: checkPermMap), |
| 1399 | P: [](const auto &en) { return en.value() != en.index(); })) |
| 1400 | assert(false && "invalid permutation map" ); |
| 1401 | |
| 1402 | // Nothing to do. |
| 1403 | if (input.size() < 2) |
| 1404 | return 0; |
| 1405 | |
| 1406 | assert(isPerfectlyNested(input) && "input not perfectly nested" ); |
| 1407 | |
| 1408 | // Compute the inverse mapping, invPermMap: since input[i] goes to position |
| 1409 | // permMap[i], position i of the permuted nest is at input[invPermMap[i]]. |
| 1410 | SmallVector<std::pair<unsigned, unsigned>, 4> invPermMap; |
| 1411 | for (unsigned i = 0, e = input.size(); i < e; ++i) |
| 1412 | invPermMap.push_back(Elt: {permMap[i], i}); |
| 1413 | llvm::sort(C&: invPermMap); |
| 1414 | |
| 1415 | // Move the innermost loop body to the loop that would be the innermost in the |
| 1416 | // permuted nest (only if the innermost loop is going to change). |
| 1417 | if (permMap.back() != input.size() - 1) { |
| 1418 | Block *destBody = ((AffineForOp)input[invPermMap.back().second]).getBody(); |
| 1419 | Block *srcBody = ((AffineForOp)input.back()).getBody(); |
| 1420 | destBody->getOperations().splice(where: destBody->begin(), |
| 1421 | L2&: srcBody->getOperations(), first: srcBody->begin(), |
| 1422 | last: std::prev(x: srcBody->end())); |
| 1423 | } |
| 1424 | |
| 1425 | // We'll move each loop in `input` in the reverse order so that its body is |
| 1426 | // empty when we are moving it; this incurs zero copies and no erasing. |
| 1427 | for (int i = input.size() - 1; i >= 0; --i) { |
| 1428 | // If this has to become the outermost loop after permutation, add it to the |
| 1429 | // parent block of the original root. |
| 1430 | if (permMap[i] == 0) { |
| 1431 | // If the root remains the same, nothing to do. |
| 1432 | if (i == 0) |
| 1433 | continue; |
| 1434 | // Make input[i] the new outermost loop moving it into parentBlock. |
| 1435 | auto *parentBlock = input[0]->getBlock(); |
| 1436 | parentBlock->getOperations().splice(Block::iterator(input[0]), |
| 1437 | input[i]->getBlock()->getOperations(), |
| 1438 | Block::iterator(input[i])); |
| 1439 | continue; |
| 1440 | } |
| 1441 | |
| 1442 | // If the parent in the permuted order is the same as in the original, |
| 1443 | // nothing to do. |
| 1444 | unsigned parentPosInInput = invPermMap[permMap[i] - 1].second; |
| 1445 | if (i > 0 && static_cast<unsigned>(i - 1) == parentPosInInput) |
| 1446 | continue; |
| 1447 | |
| 1448 | // Move input[i] to its surrounding loop in the transformed nest. |
| 1449 | auto *destBody = ((AffineForOp)input[parentPosInInput]).getBody(); |
| 1450 | destBody->getOperations().splice(destBody->begin(), |
| 1451 | input[i]->getBlock()->getOperations(), |
| 1452 | Block::iterator(input[i])); |
| 1453 | } |
| 1454 | |
| 1455 | return invPermMap[0].second; |
| 1456 | } |
| 1457 | |
| 1458 | // Sinks all sequential loops to the innermost levels (while preserving |
| 1459 | // relative order among them) and moves all parallel loops to the |
| 1460 | // outermost (while again preserving relative order among them). |
| 1461 | AffineForOp mlir::affine::sinkSequentialLoops(AffineForOp forOp) { |
| 1462 | SmallVector<AffineForOp, 4> loops; |
| 1463 | getPerfectlyNestedLoops(loops, forOp); |
| 1464 | if (loops.size() < 2) |
| 1465 | return forOp; |
| 1466 | |
| 1467 | // Gather dependence components for dependences between all ops in loop nest |
| 1468 | // rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth]. |
| 1469 | unsigned maxLoopDepth = loops.size(); |
| 1470 | std::vector<SmallVector<DependenceComponent, 2>> depCompsVec; |
| 1471 | getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec); |
| 1472 | |
| 1473 | // Mark loops as either parallel or sequential. |
| 1474 | SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true); |
| 1475 | for (auto &depComps : depCompsVec) { |
| 1476 | assert(depComps.size() >= maxLoopDepth); |
| 1477 | for (unsigned j = 0; j < maxLoopDepth; ++j) { |
| 1478 | DependenceComponent &depComp = depComps[j]; |
| 1479 | assert(depComp.lb.has_value() && depComp.ub.has_value()); |
| 1480 | if (*depComp.lb != 0 || *depComp.ub != 0) |
| 1481 | isParallelLoop[j] = false; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | unsigned numParallelLoops = llvm::count(Range&: isParallelLoop, Element: true); |
| 1486 | |
| 1487 | // Compute permutation of loops that sinks sequential loops (and thus raises |
| 1488 | // parallel loops) while preserving relative order. |
| 1489 | SmallVector<unsigned, 4> loopPermMap(maxLoopDepth); |
| 1490 | unsigned nextSequentialLoop = numParallelLoops; |
| 1491 | unsigned nextParallelLoop = 0; |
| 1492 | for (unsigned i = 0; i < maxLoopDepth; ++i) { |
| 1493 | if (isParallelLoop[i]) { |
| 1494 | loopPermMap[i] = nextParallelLoop++; |
| 1495 | } else { |
| 1496 | loopPermMap[i] = nextSequentialLoop++; |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | // Check if permutation 'loopPermMap' would violate dependences. |
| 1501 | if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap)) |
| 1502 | return forOp; |
| 1503 | // Perform loop interchange according to permutation 'loopPermMap'. |
| 1504 | unsigned loopNestRootIndex = permuteLoops(loops, loopPermMap); |
| 1505 | return loops[loopNestRootIndex]; |
| 1506 | } |
| 1507 | |
| 1508 | // Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the |
| 1509 | // lower (resp. upper) loop bound. When called for both the lower and upper |
| 1510 | // bounds, the resulting IR resembles: |
| 1511 | // |
| 1512 | // ```mlir |
| 1513 | // affine.for %i = max (`iv, ...) to min (`iv` + `offset`) { |
| 1514 | // ... |
| 1515 | // } |
| 1516 | // ``` |
| 1517 | static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map, |
| 1518 | SmallVector<Value, 4> *operands, |
| 1519 | int64_t offset = 0) { |
| 1520 | auto bounds = llvm::to_vector<4>(Range: map->getResults()); |
| 1521 | bounds.push_back(Elt: b.getAffineDimExpr(position: map->getNumDims()) + offset); |
| 1522 | operands->insert(I: operands->begin() + map->getNumDims(), Elt: iv); |
| 1523 | *map = AffineMap::get(dimCount: map->getNumDims() + 1, symbolCount: map->getNumSymbols(), results: bounds, |
| 1524 | context: b.getContext()); |
| 1525 | canonicalizeMapAndOperands(map, operands); |
| 1526 | } |
| 1527 | |
| 1528 | // Stripmines `forOp` by `factor` and sinks it under each of the `targets`. |
| 1529 | // Stripmine-sink is a primitive building block for generalized tiling of |
| 1530 | // imperfectly nested loops. |
| 1531 | // This transformation is purely mechanical and does not check legality, |
| 1532 | // profitability or even structural correctness. It is the user's |
| 1533 | // responsibility to specify `targets` that are dominated by `forOp`. |
| 1534 | // Returns the new AffineForOps, one per `targets`, nested immediately under |
| 1535 | // each of the `targets`. |
| 1536 | static SmallVector<AffineForOp, 8> |
| 1537 | stripmineSink(AffineForOp forOp, uint64_t factor, |
| 1538 | ArrayRef<AffineForOp> targets) { |
| 1539 | auto originalStep = forOp.getStepAsInt(); |
| 1540 | auto scaledStep = originalStep * factor; |
| 1541 | forOp.setStep(scaledStep); |
| 1542 | |
| 1543 | OpBuilder b(forOp->getBlock(), std::next(x: Block::iterator(forOp))); |
| 1544 | |
| 1545 | // Lower-bound map creation. |
| 1546 | auto lbMap = forOp.getLowerBoundMap(); |
| 1547 | SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands()); |
| 1548 | augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands); |
| 1549 | |
| 1550 | // Upper-bound map creation. |
| 1551 | auto ubMap = forOp.getUpperBoundMap(); |
| 1552 | SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands()); |
| 1553 | augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands, |
| 1554 | /*offset=*/scaledStep); |
| 1555 | |
| 1556 | auto iv = forOp.getInductionVar(); |
| 1557 | SmallVector<AffineForOp, 8> innerLoops; |
| 1558 | for (auto t : targets) { |
| 1559 | // Insert newForOp before the terminator of `t`. |
| 1560 | auto b = OpBuilder::atBlockTerminator(t.getBody()); |
| 1561 | auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap, |
| 1562 | ubOperands, ubMap, originalStep); |
| 1563 | auto begin = t.getBody()->begin(); |
| 1564 | // Skip terminator and `newForOp` which is just before the terminator. |
| 1565 | auto nOps = t.getBody()->getOperations().size() - 2; |
| 1566 | newForOp.getBody()->getOperations().splice( |
| 1567 | newForOp.getBody()->getOperations().begin(), |
| 1568 | t.getBody()->getOperations(), begin, std::next(begin, nOps)); |
| 1569 | replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(), |
| 1570 | newForOp.getRegion()); |
| 1571 | innerLoops.push_back(newForOp); |
| 1572 | } |
| 1573 | |
| 1574 | return innerLoops; |
| 1575 | } |
| 1576 | |
| 1577 | // Stripmines a `forOp` by `factor` and sinks it under a single `target`. |
| 1578 | // Returns the new AffineForOps, nested immediately under `target`. |
| 1579 | template <typename SizeType> |
| 1580 | static AffineForOp stripmineSink(AffineForOp forOp, SizeType factor, |
| 1581 | AffineForOp target) { |
| 1582 | // TODO: Use cheap structural assertions that targets are nested under |
| 1583 | // forOp and that targets are not nested under each other when DominanceInfo |
| 1584 | // exposes the capability. It seems overkill to construct a whole function |
| 1585 | // dominance tree at this point. |
| 1586 | auto res = stripmineSink(forOp, factor, ArrayRef<AffineForOp>(target)); |
| 1587 | assert(res.size() == 1 && "Expected 1 inner forOp" ); |
| 1588 | return res[0]; |
| 1589 | } |
| 1590 | |
| 1591 | SmallVector<SmallVector<AffineForOp, 8>, 8> |
| 1592 | mlir::affine::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes, |
| 1593 | ArrayRef<AffineForOp> targets) { |
| 1594 | SmallVector<SmallVector<AffineForOp, 8>, 8> res; |
| 1595 | SmallVector<AffineForOp, 8> currentTargets(targets); |
| 1596 | for (auto it : llvm::zip(t&: forOps, u&: sizes)) { |
| 1597 | auto step = stripmineSink(std::get<0>(t&: it), std::get<1>(t&: it), currentTargets); |
| 1598 | res.push_back(step); |
| 1599 | currentTargets = step; |
| 1600 | } |
| 1601 | return res; |
| 1602 | } |
| 1603 | |
| 1604 | SmallVector<AffineForOp, 8> mlir::affine::tile(ArrayRef<AffineForOp> forOps, |
| 1605 | ArrayRef<uint64_t> sizes, |
| 1606 | AffineForOp target) { |
| 1607 | SmallVector<AffineForOp, 8> res; |
| 1608 | for (auto loops : tile(forOps, sizes, ArrayRef<AffineForOp>(target))) |
| 1609 | res.push_back(llvm::getSingleElement(loops)); |
| 1610 | return res; |
| 1611 | } |
| 1612 | |
| 1613 | LogicalResult mlir::affine::coalesceLoops(MutableArrayRef<AffineForOp> loops) { |
| 1614 | if (loops.size() < 2) |
| 1615 | return success(); |
| 1616 | |
| 1617 | AffineForOp innermost = loops.back(); |
| 1618 | AffineForOp outermost = loops.front(); |
| 1619 | AffineBound ub = outermost.getUpperBound(); |
| 1620 | AffineMap origUbMap = ub.getMap(); |
| 1621 | Location loc = outermost.getLoc(); |
| 1622 | OpBuilder builder(outermost); |
| 1623 | for (AffineForOp loop : loops) { |
| 1624 | // We only work on normalized loops. |
| 1625 | if (loop.getStepAsInt() != 1 || !loop.hasConstantLowerBound() || |
| 1626 | loop.getConstantLowerBound() != 0) |
| 1627 | return failure(); |
| 1628 | } |
| 1629 | SmallVector<Value, 4> upperBoundSymbols; |
| 1630 | SmallVector<Value, 4> ubOperands(ub.getOperands().begin(), |
| 1631 | ub.getOperands().end()); |
| 1632 | |
| 1633 | // 1. Store the upper bound of the outermost loop in a variable. |
| 1634 | Value prev; |
| 1635 | if (!llvm::hasSingleElement(C: origUbMap.getResults())) |
| 1636 | prev = builder.create<AffineMinOp>(loc, origUbMap, ubOperands); |
| 1637 | else |
| 1638 | prev = builder.create<AffineApplyOp>(loc, origUbMap, ubOperands); |
| 1639 | upperBoundSymbols.push_back(Elt: prev); |
| 1640 | |
| 1641 | // 2. Emit code computing the upper bound of the coalesced loop as product of |
| 1642 | // the number of iterations of all loops. |
| 1643 | for (AffineForOp loop : loops.drop_front()) { |
| 1644 | ub = loop.getUpperBound(); |
| 1645 | origUbMap = ub.getMap(); |
| 1646 | ubOperands = ub.getOperands(); |
| 1647 | Value upperBound; |
| 1648 | // If upper bound map has more than one result, take their minimum. |
| 1649 | if (!llvm::hasSingleElement(origUbMap.getResults())) |
| 1650 | upperBound = builder.create<AffineMinOp>(loc, origUbMap, ubOperands); |
| 1651 | else |
| 1652 | upperBound = builder.create<AffineApplyOp>(loc, origUbMap, ubOperands); |
| 1653 | upperBoundSymbols.push_back(upperBound); |
| 1654 | SmallVector<Value, 4> operands; |
| 1655 | operands.push_back(prev); |
| 1656 | operands.push_back(upperBound); |
| 1657 | // Maintain running product of loop upper bounds. |
| 1658 | prev = builder.create<AffineApplyOp>( |
| 1659 | loc, |
| 1660 | AffineMap::get(/*dimCount=*/1, |
| 1661 | /*symbolCount=*/1, |
| 1662 | builder.getAffineDimExpr(0) * |
| 1663 | builder.getAffineSymbolExpr(0)), |
| 1664 | operands); |
| 1665 | } |
| 1666 | // Set upper bound of the coalesced loop. |
| 1667 | AffineMap newUbMap = AffineMap::get( |
| 1668 | /*dimCount=*/0, |
| 1669 | /*symbolCount=*/1, results: builder.getAffineSymbolExpr(position: 0), context: builder.getContext()); |
| 1670 | outermost.setUpperBound(prev, newUbMap); |
| 1671 | |
| 1672 | builder.setInsertionPointToStart(outermost.getBody()); |
| 1673 | |
| 1674 | // 3. Remap induction variables. For each original loop, the value of the |
| 1675 | // induction variable can be obtained by dividing the induction variable of |
| 1676 | // the linearized loop by the total number of iterations of the loops nested |
| 1677 | // in it modulo the number of iterations in this loop (remove the values |
| 1678 | // related to the outer loops): |
| 1679 | // iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i. |
| 1680 | // Compute these iteratively from the innermost loop by creating a "running |
| 1681 | // quotient" of division by the range. |
| 1682 | Value previous = outermost.getInductionVar(); |
| 1683 | for (unsigned idx = loops.size(); idx > 0; --idx) { |
| 1684 | if (idx != loops.size()) { |
| 1685 | SmallVector<Value, 4> operands; |
| 1686 | operands.push_back(Elt: previous); |
| 1687 | operands.push_back(Elt: upperBoundSymbols[idx]); |
| 1688 | previous = builder.create<AffineApplyOp>( |
| 1689 | loc, |
| 1690 | AffineMap::get( |
| 1691 | /*dimCount=*/1, /*symbolCount=*/1, |
| 1692 | result: builder.getAffineDimExpr(position: 0).floorDiv( |
| 1693 | other: builder.getAffineSymbolExpr(position: 0))), |
| 1694 | operands); |
| 1695 | } |
| 1696 | // Modified value of the induction variables of the nested loops after |
| 1697 | // coalescing. |
| 1698 | Value inductionVariable; |
| 1699 | if (idx == 1) { |
| 1700 | inductionVariable = previous; |
| 1701 | } else { |
| 1702 | SmallVector<Value, 4> applyOperands; |
| 1703 | applyOperands.push_back(Elt: previous); |
| 1704 | applyOperands.push_back(Elt: upperBoundSymbols[idx - 1]); |
| 1705 | inductionVariable = builder.create<AffineApplyOp>( |
| 1706 | loc, |
| 1707 | AffineMap::get( |
| 1708 | /*dimCount=*/1, /*symbolCount=*/1, |
| 1709 | result: builder.getAffineDimExpr(position: 0) % builder.getAffineSymbolExpr(position: 0)), |
| 1710 | applyOperands); |
| 1711 | } |
| 1712 | replaceAllUsesInRegionWith(loops[idx - 1].getInductionVar(), |
| 1713 | inductionVariable, loops.back().getRegion()); |
| 1714 | } |
| 1715 | |
| 1716 | // 4. Move the operations from the innermost just above the second-outermost |
| 1717 | // loop, delete the extra terminator and the second-outermost loop. |
| 1718 | AffineForOp secondOutermostLoop = loops[1]; |
| 1719 | innermost.getBody()->back().erase(); |
| 1720 | outermost.getBody()->getOperations().splice( |
| 1721 | Block::iterator(secondOutermostLoop.getOperation()), |
| 1722 | innermost.getBody()->getOperations()); |
| 1723 | secondOutermostLoop.erase(); |
| 1724 | return success(); |
| 1725 | } |
| 1726 | |
| 1727 | void mlir::affine::mapLoopToProcessorIds(scf::ForOp forOp, |
| 1728 | ArrayRef<Value> processorId, |
| 1729 | ArrayRef<Value> numProcessors) { |
| 1730 | assert(processorId.size() == numProcessors.size()); |
| 1731 | if (processorId.empty()) |
| 1732 | return; |
| 1733 | |
| 1734 | OpBuilder b(forOp); |
| 1735 | Location loc(forOp.getLoc()); |
| 1736 | AffineExpr lhs, rhs; |
| 1737 | bindSymbols(forOp.getContext(), lhs, rhs); |
| 1738 | auto mulMap = AffineMap::get(dimCount: 0, symbolCount: 2, result: lhs * rhs); |
| 1739 | auto addMap = AffineMap::get(dimCount: 0, symbolCount: 2, result: lhs + rhs); |
| 1740 | |
| 1741 | Value linearIndex = processorId.front(); |
| 1742 | for (unsigned i = 1, e = processorId.size(); i < e; ++i) { |
| 1743 | auto mulApplyOp = b.create<AffineApplyOp>( |
| 1744 | loc, mulMap, ValueRange{linearIndex, numProcessors[i]}); |
| 1745 | linearIndex = b.create<AffineApplyOp>( |
| 1746 | loc, addMap, ValueRange{mulApplyOp, processorId[i]}); |
| 1747 | } |
| 1748 | |
| 1749 | auto mulApplyOp = b.create<AffineApplyOp>( |
| 1750 | loc, mulMap, ValueRange{linearIndex, forOp.getStep()}); |
| 1751 | Value lb = b.create<AffineApplyOp>( |
| 1752 | loc, addMap, ValueRange{mulApplyOp, forOp.getLowerBound()}); |
| 1753 | forOp.setLowerBound(lb); |
| 1754 | |
| 1755 | Value step = forOp.getStep(); |
| 1756 | for (auto numProcs : numProcessors) |
| 1757 | step = b.create<AffineApplyOp>(loc, mulMap, ValueRange{numProcs, step}); |
| 1758 | forOp.setStep(step); |
| 1759 | } |
| 1760 | |
| 1761 | /// Given a memref region, determine the lowest depth at which transfers can be |
| 1762 | /// placed for it, and return the corresponding block, start and end positions |
| 1763 | /// in the block for placing incoming (read) and outgoing (write) copies |
| 1764 | /// respectively. The lowest depth depends on whether the region being accessed |
| 1765 | /// is hoistable with respect to one or more immediately surrounding loops. |
| 1766 | static void |
| 1767 | findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block, |
| 1768 | Block::iterator &begin, Block::iterator &end, |
| 1769 | Block **copyPlacementBlock, |
| 1770 | Block::iterator *copyInPlacementStart, |
| 1771 | Block::iterator *copyOutPlacementStart) { |
| 1772 | const auto *cst = region.getConstraints(); |
| 1773 | SmallVector<Value, 4> symbols; |
| 1774 | cst->getValues(start: cst->getNumDimVars(), end: cst->getNumDimAndSymbolVars(), values: &symbols); |
| 1775 | |
| 1776 | SmallVector<Operation *, 4> enclosingAffineOps; |
| 1777 | getEnclosingAffineOps(op&: *block.begin(), ops: &enclosingAffineOps); |
| 1778 | // Walk up loop parents till we find an IV on which this region is |
| 1779 | // symbolic/variant or we hit `hoistGuard`. |
| 1780 | auto it = enclosingAffineOps.rbegin(); |
| 1781 | AffineForOp lastInvariantFor; |
| 1782 | for (auto e = enclosingAffineOps.rend(); it != e; ++it) { |
| 1783 | Operation *enclosingOp = *it; |
| 1784 | // We can't hoist past the definition of the memref being copied. |
| 1785 | Value memref = region.memref; |
| 1786 | if (!memref.getParentRegion()->isAncestor(other: enclosingOp->getParentRegion())) { |
| 1787 | LLVM_DEBUG( |
| 1788 | llvm::dbgs() |
| 1789 | << "memref definition will end up not dominating hoist location\n" ); |
| 1790 | break; |
| 1791 | } |
| 1792 | |
| 1793 | auto affineFor = dyn_cast<AffineForOp>(enclosingOp); |
| 1794 | if (!affineFor) |
| 1795 | break; |
| 1796 | // TODO: also need to be checking this for regions symbols that |
| 1797 | // aren't loop IVs, whether we are within their resp. defs' dominance scope. |
| 1798 | if (llvm::is_contained(symbols, affineFor.getInductionVar())) |
| 1799 | break; |
| 1800 | lastInvariantFor = affineFor; |
| 1801 | } |
| 1802 | |
| 1803 | if (it != enclosingAffineOps.rbegin()) { |
| 1804 | *copyInPlacementStart = Block::iterator(lastInvariantFor); |
| 1805 | *copyOutPlacementStart = std::next(x: *copyInPlacementStart); |
| 1806 | *copyPlacementBlock = lastInvariantFor->getBlock(); |
| 1807 | } else { |
| 1808 | *copyInPlacementStart = begin; |
| 1809 | *copyOutPlacementStart = end; |
| 1810 | *copyPlacementBlock = █ |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | // Info comprising stride and number of elements transferred every stride. |
| 1815 | struct StrideInfo { |
| 1816 | int64_t stride; |
| 1817 | int64_t numEltPerStride; |
| 1818 | }; |
| 1819 | |
| 1820 | /// Returns striding information for a copy/transfer of this region with |
| 1821 | /// potentially multiple striding levels from outermost to innermost. For an |
| 1822 | /// n-dimensional region, there can be at most n-1 levels of striding |
| 1823 | /// successively nested. |
| 1824 | // TODO: make this work with non-identity layout maps. |
| 1825 | static void getMultiLevelStrides(const MemRefRegion ®ion, |
| 1826 | ArrayRef<int64_t> bufferShape, |
| 1827 | SmallVectorImpl<StrideInfo> *strideInfos) { |
| 1828 | if (bufferShape.size() <= 1) |
| 1829 | return; |
| 1830 | |
| 1831 | int64_t numEltPerStride = 1; |
| 1832 | int64_t stride = 1; |
| 1833 | for (int d = bufferShape.size() - 1; d >= 1; d--) { |
| 1834 | int64_t dimSize = cast<MemRefType>(region.memref.getType()).getDimSize(d); |
| 1835 | stride *= dimSize; |
| 1836 | numEltPerStride *= bufferShape[d]; |
| 1837 | // A stride is needed only if the region has a shorter extent than the |
| 1838 | // memref along the dimension *and* has an extent greater than one along the |
| 1839 | // next major dimension. |
| 1840 | if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) { |
| 1841 | strideInfos->push_back(Elt: {.stride: stride, .numEltPerStride: numEltPerStride}); |
| 1842 | } |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | /// Generates a point-wise copy from/to a non-zero ranked `memref' to/from |
| 1847 | /// `fastMemRef' and returns the outermost AffineForOp of the copy loop nest. |
| 1848 | /// `lbMaps` and `ubMaps` along with `lbOperands` and `ubOperands` hold the |
| 1849 | /// lower and upper bound information for the copy loop nest. `fastBufOffsets` |
| 1850 | /// contain the expressions to be subtracted out from the respective copy loop |
| 1851 | /// iterators in order to index the fast buffer. If `copyOut' is true, generates |
| 1852 | /// a copy-out; otherwise a copy-in. Builder `b` should be set to the point the |
| 1853 | /// copy nest is inserted. |
| 1854 | // |
| 1855 | /// The copy-in nest is generated as follows as an example for a 2-d region: |
| 1856 | /// for x = ... |
| 1857 | /// for y = ... |
| 1858 | /// fast_buf[x - offset_x][y - offset_y] = memref[x][y] |
| 1859 | /// |
| 1860 | static AffineForOp |
| 1861 | generatePointWiseCopy(Location loc, Value memref, Value fastMemRef, |
| 1862 | ArrayRef<AffineMap> lbMaps, ArrayRef<Value> lbOperands, |
| 1863 | ArrayRef<AffineMap> ubMaps, ArrayRef<Value> ubOperands, |
| 1864 | ArrayRef<AffineExpr> fastBufOffsets, bool isCopyOut, |
| 1865 | OpBuilder b) { |
| 1866 | assert(llvm::all_of(lbMaps, [&](AffineMap lbMap) { |
| 1867 | return lbMap.getNumInputs() == lbOperands.size(); |
| 1868 | })); |
| 1869 | assert(llvm::all_of(ubMaps, [&](AffineMap ubMap) { |
| 1870 | return ubMap.getNumInputs() == ubOperands.size(); |
| 1871 | })); |
| 1872 | |
| 1873 | unsigned rank = cast<MemRefType>(memref.getType()).getRank(); |
| 1874 | // A copy nest can't be generated for 0-ranked memrefs. |
| 1875 | assert(rank != 0 && "non-zero rank memref expected" ); |
| 1876 | assert(lbMaps.size() == rank && "wrong number of lb maps" ); |
| 1877 | assert(ubMaps.size() == rank && "wrong number of ub maps" ); |
| 1878 | |
| 1879 | SmallVector<Value, 4> memIndices; |
| 1880 | SmallVector<AffineExpr, 4> fastBufExprs; |
| 1881 | SmallVector<Value, 4> fastBufMapOperands; |
| 1882 | AffineForOp copyNestRoot; |
| 1883 | SmallVector<AffineApplyOp, 4> mayBeDeadApplys; |
| 1884 | for (unsigned d = 0; d < rank; ++d) { |
| 1885 | auto forOp = createCanonicalizedAffineForOp(b, loc, lbOperands, lbMaps[d], |
| 1886 | ubOperands, ubMaps[d]); |
| 1887 | if (d == 0) |
| 1888 | copyNestRoot = forOp; |
| 1889 | |
| 1890 | b = OpBuilder::atBlockTerminator(block: forOp.getBody()); |
| 1891 | |
| 1892 | auto fastBufOffsetMap = |
| 1893 | AffineMap::get(dimCount: lbOperands.size(), symbolCount: 0, result: fastBufOffsets[d]); |
| 1894 | auto offset = b.create<AffineApplyOp>(loc, fastBufOffsetMap, lbOperands); |
| 1895 | |
| 1896 | // Construct the subscript for the fast memref being copied into/from: |
| 1897 | // x - offset_x. |
| 1898 | fastBufExprs.push_back(Elt: b.getAffineDimExpr(position: 2 * d + 1) - |
| 1899 | b.getAffineDimExpr(position: 2 * d)); |
| 1900 | fastBufMapOperands.push_back(Elt: offset); |
| 1901 | fastBufMapOperands.push_back(Elt: forOp.getInductionVar()); |
| 1902 | mayBeDeadApplys.push_back(offset); |
| 1903 | |
| 1904 | // Subscript for the slow memref being copied. |
| 1905 | memIndices.push_back(Elt: forOp.getInductionVar()); |
| 1906 | } |
| 1907 | |
| 1908 | auto fastBufMap = |
| 1909 | AffineMap::get(dimCount: 2 * rank, /*symbolCount=*/0, results: fastBufExprs, context: b.getContext()); |
| 1910 | fullyComposeAffineMapAndOperands(&fastBufMap, &fastBufMapOperands); |
| 1911 | fastBufMap = simplifyAffineMap(fastBufMap); |
| 1912 | canonicalizeMapAndOperands(&fastBufMap, &fastBufMapOperands); |
| 1913 | |
| 1914 | // Drop any dead affine.applys. |
| 1915 | for (auto applyOp : mayBeDeadApplys) |
| 1916 | if (applyOp.use_empty()) |
| 1917 | applyOp.erase(); |
| 1918 | |
| 1919 | if (!isCopyOut) { |
| 1920 | // Copy in. |
| 1921 | auto load = b.create<AffineLoadOp>(loc, memref, memIndices); |
| 1922 | b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufMap, |
| 1923 | fastBufMapOperands); |
| 1924 | return copyNestRoot; |
| 1925 | } |
| 1926 | |
| 1927 | // Copy out. |
| 1928 | auto load = |
| 1929 | b.create<AffineLoadOp>(loc, fastMemRef, fastBufMap, fastBufMapOperands); |
| 1930 | b.create<AffineStoreOp>(loc, load, memref, memIndices); |
| 1931 | return copyNestRoot; |
| 1932 | } |
| 1933 | |
| 1934 | static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED |
| 1935 | (Block &block) { |
| 1936 | return block.getParentOp()->emitRemark(); |
| 1937 | } |
| 1938 | |
| 1939 | /// Creates a buffer in the faster memory space for the specified memref region |
| 1940 | /// (memref has to be non-zero ranked); generates a copy from the lower memory |
| 1941 | /// space to this one, and replaces all loads/stores in the block range |
| 1942 | /// [`begin', `end') of `block' to load/store from that buffer. Returns failure |
| 1943 | /// if copies could not be generated due to yet unimplemented cases. |
| 1944 | /// `copyInPlacementStart` and `copyOutPlacementStart` in copyPlacementBlock |
| 1945 | /// specify the insertion points where the incoming copies and outgoing copies, |
| 1946 | /// respectively, should be inserted (the insertion happens right before the |
| 1947 | /// insertion point). Since `begin` can itself be invalidated due to the memref |
| 1948 | /// rewriting done from this method, the output argument `nBegin` is set to its |
| 1949 | /// replacement (set to `begin` if no invalidation happens). Since outgoing |
| 1950 | /// copies could have been inserted at `end`, the output argument `nEnd` is set |
| 1951 | /// to the new end. `sizeInBytes` is set to the size of the fast buffer |
| 1952 | /// allocated. |
| 1953 | static LogicalResult generateCopy( |
| 1954 | const MemRefRegion ®ion, Block *block, Block::iterator begin, |
| 1955 | Block::iterator end, Block *copyPlacementBlock, |
| 1956 | Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart, |
| 1957 | const AffineCopyOptions ©Options, DenseMap<Value, Value> &fastBufferMap, |
| 1958 | DenseSet<Operation *> ©Nests, uint64_t *sizeInBytes, |
| 1959 | Block::iterator *nBegin, Block::iterator *nEnd) { |
| 1960 | *nBegin = begin; |
| 1961 | *nEnd = end; |
| 1962 | |
| 1963 | auto f = begin->getParentOfType<FunctionOpInterface>(); |
| 1964 | OpBuilder topBuilder(f.getFunctionBody()); |
| 1965 | Value zeroIndex = topBuilder.create<arith::ConstantIndexOp>(f.getLoc(), 0); |
| 1966 | |
| 1967 | *sizeInBytes = 0; |
| 1968 | |
| 1969 | if (begin == end) |
| 1970 | return success(); |
| 1971 | |
| 1972 | // Is the copy out point at the end of the block where we are doing |
| 1973 | // explicit copying. |
| 1974 | bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart); |
| 1975 | |
| 1976 | // Copies for read regions are going to be inserted at 'begin'. |
| 1977 | OpBuilder prologue(copyPlacementBlock, copyInPlacementStart); |
| 1978 | // Copies for write regions are going to be inserted at 'end'. |
| 1979 | OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart); |
| 1980 | OpBuilder &b = region.isWrite() ? epilogue : prologue; |
| 1981 | |
| 1982 | // Builder to create constants at the top level. |
| 1983 | auto func = |
| 1984 | copyPlacementBlock->getParent()->getParentOfType<FunctionOpInterface>(); |
| 1985 | OpBuilder top(func.getFunctionBody()); |
| 1986 | |
| 1987 | auto loc = region.loc; |
| 1988 | auto memref = region.memref; |
| 1989 | auto memRefType = cast<MemRefType>(memref.getType()); |
| 1990 | |
| 1991 | if (!memRefType.getLayout().isIdentity()) { |
| 1992 | LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n" ); |
| 1993 | return failure(); |
| 1994 | } |
| 1995 | |
| 1996 | // Indices to use for the copying. |
| 1997 | // Indices for the original memref being copied from/to. |
| 1998 | SmallVector<Value, 4> memIndices; |
| 1999 | // Indices for the faster buffer being copied into/from. |
| 2000 | SmallVector<Value, 4> bufIndices; |
| 2001 | |
| 2002 | unsigned rank = memRefType.getRank(); |
| 2003 | if (rank == 0) { |
| 2004 | LLVM_DEBUG(llvm::dbgs() << "Non-zero ranked memrefs supported\n" ); |
| 2005 | return failure(); |
| 2006 | } |
| 2007 | |
| 2008 | SmallVector<int64_t, 4> fastBufferShape; |
| 2009 | |
| 2010 | // Compute the extents of the buffer. |
| 2011 | SmallVector<AffineMap, 2> lbs; |
| 2012 | lbs.reserve(N: rank); |
| 2013 | std::optional<int64_t> numElements = |
| 2014 | region.getConstantBoundingSizeAndShape(shape: &fastBufferShape, lbs: &lbs); |
| 2015 | if (!numElements) { |
| 2016 | LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n" ); |
| 2017 | return failure(); |
| 2018 | } |
| 2019 | |
| 2020 | if (llvm::any_of(Range&: lbs, P: [](AffineMap lb) { return lb.getNumResults() > 1; })) { |
| 2021 | // This can be supported in the future if needed. |
| 2022 | LLVM_DEBUG(llvm::dbgs() |
| 2023 | << "Max lower bound for memref region start not supported\n" ); |
| 2024 | return failure(); |
| 2025 | } |
| 2026 | |
| 2027 | if (*numElements == 0) { |
| 2028 | LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n" ); |
| 2029 | return success(); |
| 2030 | } |
| 2031 | |
| 2032 | SmallVector<AffineMap, 4> lbMaps(rank), ubMaps(rank); |
| 2033 | for (unsigned i = 0; i < rank; ++i) { |
| 2034 | region.getLowerAndUpperBound(pos: i, lbMap&: lbMaps[i], ubMap&: ubMaps[i]); |
| 2035 | if (lbMaps[i].getNumResults() == 0 || ubMaps[i].getNumResults() == 0) { |
| 2036 | LLVM_DEBUG(llvm::dbgs() |
| 2037 | << "Missing lower or upper bound for region along dimension: " |
| 2038 | << i << '\n'); |
| 2039 | return failure(); |
| 2040 | } |
| 2041 | } |
| 2042 | |
| 2043 | const FlatAffineValueConstraints *cst = region.getConstraints(); |
| 2044 | // 'regionSymbols' hold values that this memory region is symbolic/parametric |
| 2045 | // on; these typically include loop IVs surrounding the level at which the |
| 2046 | // copy generation is being done or other valid symbols in MLIR. |
| 2047 | SmallVector<Value, 8> regionSymbols; |
| 2048 | cst->getValues(start: rank, end: cst->getNumVars(), values: ®ionSymbols); |
| 2049 | |
| 2050 | // Construct the access expression for the fast memory buffer. The access |
| 2051 | // expression for a particular dimension of the fast buffer is obtained by |
| 2052 | // subtracting out the lower bound on the original memref's data region |
| 2053 | // along the corresponding dimension. |
| 2054 | |
| 2055 | // Index start offsets for faster memory buffer relative to the original. |
| 2056 | SmallVector<AffineExpr, 4> fastBufOffsets; |
| 2057 | fastBufOffsets.reserve(N: rank); |
| 2058 | for (unsigned d = 0; d < rank; d++) { |
| 2059 | assert(lbs[d].getNumSymbols() == cst->getNumCols() - rank - 1 && |
| 2060 | "incorrect bound size" ); |
| 2061 | |
| 2062 | // Set copy start location for this dimension in the lower memory space |
| 2063 | // memref. |
| 2064 | if (lbs[d].isSingleConstant()) { |
| 2065 | auto indexVal = lbs[d].getSingleConstantResult(); |
| 2066 | if (indexVal == 0) { |
| 2067 | memIndices.push_back(Elt: zeroIndex); |
| 2068 | } else { |
| 2069 | memIndices.push_back( |
| 2070 | Elt: top.create<arith::ConstantIndexOp>(location: loc, args&: indexVal).getResult()); |
| 2071 | } |
| 2072 | } else { |
| 2073 | // The coordinate for the start location is just the lower bound along the |
| 2074 | // corresponding dimension on the memory region (stored in 'offset'). |
| 2075 | // Remap all inputs of the map to dimensions uniformly since in the |
| 2076 | // generate IR we need valid affine symbols as opposed to "symbols" for |
| 2077 | // the purpose of the memref region. |
| 2078 | SmallVector<AffineExpr> symReplacements(lbs[d].getNumSymbols()); |
| 2079 | for (unsigned i = 0, e = lbs[d].getNumSymbols(); i < e; ++i) |
| 2080 | symReplacements[i] = top.getAffineDimExpr(position: i); |
| 2081 | lbs[d] = lbs[d].replaceDimsAndSymbols( |
| 2082 | /*dimReplacements=*/{}, symReplacements, numResultDims: lbs[d].getNumSymbols(), |
| 2083 | /*numResultSyms=*/0); |
| 2084 | memIndices.push_back(b.create<AffineApplyOp>(loc, lbs[d], regionSymbols)); |
| 2085 | } |
| 2086 | // The fast buffer is copied into at location zero; addressing is relative. |
| 2087 | bufIndices.push_back(Elt: zeroIndex); |
| 2088 | |
| 2089 | // Record the offsets since they are needed to remap the memory accesses of |
| 2090 | // the original memref further below. |
| 2091 | fastBufOffsets.push_back(Elt: lbs[d].getResult(idx: 0)); |
| 2092 | } |
| 2093 | |
| 2094 | // The faster memory space buffer. |
| 2095 | Value fastMemRef; |
| 2096 | |
| 2097 | // Check if a buffer was already created. |
| 2098 | bool existingBuf = fastBufferMap.count(Val: memref) > 0; |
| 2099 | if (!existingBuf) { |
| 2100 | AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank); |
| 2101 | auto fastMemRefType = |
| 2102 | MemRefType::get(fastBufferShape, memRefType.getElementType(), |
| 2103 | fastBufferLayout, copyOptions.fastMemorySpace); |
| 2104 | |
| 2105 | // Create the fast memory space buffer just before the 'affine.for' |
| 2106 | // operation. |
| 2107 | fastMemRef = |
| 2108 | prologue.create<memref::AllocOp>(loc, fastMemRefType).getResult(); |
| 2109 | // Record it. |
| 2110 | fastBufferMap[memref] = fastMemRef; |
| 2111 | // fastMemRefType is a constant shaped memref. |
| 2112 | auto maySizeInBytes = getIntOrFloatMemRefSizeInBytes(fastMemRefType); |
| 2113 | // We don't account for things of unknown size. |
| 2114 | *sizeInBytes = maySizeInBytes.value_or(0); |
| 2115 | |
| 2116 | LLVM_DEBUG(emitRemarkForBlock(*block) |
| 2117 | << "Creating fast buffer of type " << fastMemRefType |
| 2118 | << " and size " << llvm::divideCeil(*sizeInBytes, 1024) |
| 2119 | << " KiB\n" ); |
| 2120 | } else { |
| 2121 | // Reuse the one already created. |
| 2122 | fastMemRef = fastBufferMap[memref]; |
| 2123 | } |
| 2124 | |
| 2125 | auto numElementsSSA = top.create<arith::ConstantIndexOp>(location: loc, args&: *numElements); |
| 2126 | |
| 2127 | Value dmaStride; |
| 2128 | Value numEltPerDmaStride; |
| 2129 | if (copyOptions.generateDma) { |
| 2130 | SmallVector<StrideInfo, 4> dmaStrideInfos; |
| 2131 | getMultiLevelStrides(region, bufferShape: fastBufferShape, strideInfos: &dmaStrideInfos); |
| 2132 | |
| 2133 | // TODO: use all stride levels once DmaStartOp is extended for |
| 2134 | // multi-level strides. |
| 2135 | if (dmaStrideInfos.size() > 1) { |
| 2136 | LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n" ); |
| 2137 | return failure(); |
| 2138 | } |
| 2139 | |
| 2140 | if (!dmaStrideInfos.empty()) { |
| 2141 | dmaStride = |
| 2142 | top.create<arith::ConstantIndexOp>(location: loc, args&: dmaStrideInfos[0].stride); |
| 2143 | numEltPerDmaStride = top.create<arith::ConstantIndexOp>( |
| 2144 | location: loc, args&: dmaStrideInfos[0].numEltPerStride); |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | // Record the last operation where we want the memref replacement to end. We |
| 2149 | // later do the memref replacement only in [begin, postDomFilter] so |
| 2150 | // that the original memref's used in the data movement code themselves don't |
| 2151 | // get replaced. |
| 2152 | auto postDomFilter = std::prev(x: end); |
| 2153 | |
| 2154 | // Create fully composed affine maps for each memref. |
| 2155 | auto memAffineMap = b.getMultiDimIdentityMap(rank: memIndices.size()); |
| 2156 | fullyComposeAffineMapAndOperands(map: &memAffineMap, operands: &memIndices); |
| 2157 | auto bufAffineMap = b.getMultiDimIdentityMap(rank: bufIndices.size()); |
| 2158 | fullyComposeAffineMapAndOperands(map: &bufAffineMap, operands: &bufIndices); |
| 2159 | |
| 2160 | if (!copyOptions.generateDma) { |
| 2161 | // Point-wise copy generation. |
| 2162 | auto copyNest = |
| 2163 | generatePointWiseCopy(loc, memref, fastMemRef, lbMaps, |
| 2164 | /*lbOperands=*/regionSymbols, ubMaps, |
| 2165 | /*ubOperands=*/regionSymbols, fastBufOffsets, |
| 2166 | /*isCopyOut=*/region.isWrite(), b); |
| 2167 | |
| 2168 | // Record this so that we can skip it from yet another copy. |
| 2169 | copyNests.insert(copyNest); |
| 2170 | |
| 2171 | // Since new ops are being appended (for copy out's), adjust the end to |
| 2172 | // mark end of block range being processed if necessary. |
| 2173 | if (region.isWrite() && isCopyOutAtEndOfBlock) |
| 2174 | *nEnd = Block::iterator(copyNest.getOperation()); |
| 2175 | } else { |
| 2176 | // DMA generation. |
| 2177 | // Create a tag (single element 1-d memref) for the DMA. |
| 2178 | auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {}, |
| 2179 | copyOptions.tagMemorySpace); |
| 2180 | auto tagMemRef = prologue.create<memref::AllocOp>(loc, tagMemRefType); |
| 2181 | |
| 2182 | SmallVector<Value, 4> tagIndices({zeroIndex}); |
| 2183 | auto tagAffineMap = b.getMultiDimIdentityMap(rank: tagIndices.size()); |
| 2184 | fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices); |
| 2185 | if (!region.isWrite()) { |
| 2186 | // DMA non-blocking read from original buffer to fast buffer. |
| 2187 | b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices, |
| 2188 | fastMemRef, bufAffineMap, bufIndices, |
| 2189 | tagMemRef, tagAffineMap, tagIndices, |
| 2190 | numElementsSSA, dmaStride, numEltPerDmaStride); |
| 2191 | } else { |
| 2192 | // DMA non-blocking write from fast buffer to the original memref. |
| 2193 | auto op = b.create<AffineDmaStartOp>( |
| 2194 | loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap, |
| 2195 | memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA, |
| 2196 | dmaStride, numEltPerDmaStride); |
| 2197 | // Since new ops may be appended at 'end' (for outgoing DMAs), adjust the |
| 2198 | // end to mark end of block range being processed. |
| 2199 | if (isCopyOutAtEndOfBlock) |
| 2200 | *nEnd = Block::iterator(op.getOperation()); |
| 2201 | } |
| 2202 | |
| 2203 | // Matching DMA wait to block on completion; tag always has a 0 index. |
| 2204 | b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex, |
| 2205 | numElementsSSA); |
| 2206 | |
| 2207 | // Generate dealloc for the tag. |
| 2208 | auto tagDeallocOp = epilogue.create<memref::DeallocOp>(loc, tagMemRef); |
| 2209 | if (*nEnd == end && isCopyOutAtEndOfBlock) |
| 2210 | // Since new ops are being appended (for outgoing DMAs), adjust the end to |
| 2211 | // mark end of range of the original. |
| 2212 | *nEnd = Block::iterator(tagDeallocOp.getOperation()); |
| 2213 | } |
| 2214 | |
| 2215 | // Generate dealloc for the buffer. |
| 2216 | if (!existingBuf) { |
| 2217 | auto bufDeallocOp = epilogue.create<memref::DeallocOp>(loc, fastMemRef); |
| 2218 | // When generating pointwise copies, `nEnd' has to be set to deallocOp on |
| 2219 | // the fast buffer (since it marks the new end insertion point). |
| 2220 | if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock) |
| 2221 | *nEnd = Block::iterator(bufDeallocOp.getOperation()); |
| 2222 | } |
| 2223 | |
| 2224 | // Replace all uses of the old memref with the faster one while remapping |
| 2225 | // access indices (subtracting out lower bound offsets for each dimension). |
| 2226 | // Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT], |
| 2227 | // index remap will be (%i, %j) -> (%i - %iT, %j - %jT), |
| 2228 | // i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j), |
| 2229 | // and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'. |
| 2230 | // d2, d3 correspond to the original indices (%i, %j). |
| 2231 | SmallVector<AffineExpr, 4> remapExprs; |
| 2232 | remapExprs.reserve(N: rank); |
| 2233 | for (unsigned i = 0; i < rank; i++) { |
| 2234 | // The starting operands of indexRemap will be regionSymbols (the symbols on |
| 2235 | // which the memref region is parametric); then those corresponding to |
| 2236 | // the memref's original indices follow. |
| 2237 | auto dimExpr = b.getAffineDimExpr(position: regionSymbols.size() + i); |
| 2238 | remapExprs.push_back(Elt: dimExpr - fastBufOffsets[i]); |
| 2239 | } |
| 2240 | auto indexRemap = AffineMap::get(dimCount: regionSymbols.size() + rank, symbolCount: 0, results: remapExprs, |
| 2241 | context: b.getContext()); |
| 2242 | |
| 2243 | // Record the begin since it may be invalidated by memref replacement. |
| 2244 | Block::iterator prevOfBegin; |
| 2245 | bool isBeginAtStartOfBlock = (begin == block->begin()); |
| 2246 | if (!isBeginAtStartOfBlock) |
| 2247 | prevOfBegin = std::prev(x: begin); |
| 2248 | |
| 2249 | // *Only* those uses within the range [begin, end) of 'block' are replaced. |
| 2250 | (void)replaceAllMemRefUsesWith(memref, fastMemRef, |
| 2251 | /*extraIndices=*/{}, indexRemap, |
| 2252 | /*extraOperands=*/regionSymbols, |
| 2253 | /*symbolOperands=*/{}, |
| 2254 | /*domOpFilter=*/&*begin, |
| 2255 | /*postDomOpFilter=*/&*postDomFilter); |
| 2256 | |
| 2257 | *nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(x: prevOfBegin); |
| 2258 | |
| 2259 | return success(); |
| 2260 | } |
| 2261 | |
| 2262 | /// Construct the memref region to just include the entire memref. Returns false |
| 2263 | /// dynamic shaped memref's for now. `numParamLoopIVs` is the number of |
| 2264 | /// enclosing loop IVs of `op` (starting from the outermost) that the region |
| 2265 | /// is parametric on. |
| 2266 | static bool getFullMemRefAsRegion(Operation *op, unsigned numParamLoopIVs, |
| 2267 | MemRefRegion *region) { |
| 2268 | unsigned rank; |
| 2269 | if (auto loadOp = dyn_cast<AffineLoadOp>(op)) { |
| 2270 | rank = loadOp.getMemRefType().getRank(); |
| 2271 | region->memref = loadOp.getMemRef(); |
| 2272 | region->setWrite(false); |
| 2273 | } else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) { |
| 2274 | rank = storeOp.getMemRefType().getRank(); |
| 2275 | region->memref = storeOp.getMemRef(); |
| 2276 | region->setWrite(true); |
| 2277 | } else { |
| 2278 | assert(false && "expected load or store op" ); |
| 2279 | return false; |
| 2280 | } |
| 2281 | auto memRefType = cast<MemRefType>(region->memref.getType()); |
| 2282 | if (!memRefType.hasStaticShape()) |
| 2283 | return false; |
| 2284 | |
| 2285 | auto *regionCst = region->getConstraints(); |
| 2286 | |
| 2287 | // Just get the first numSymbols IVs, which the memref region is parametric |
| 2288 | // on. |
| 2289 | SmallVector<AffineForOp, 4> ivs; |
| 2290 | getAffineForIVs(*op, &ivs); |
| 2291 | ivs.resize(numParamLoopIVs); |
| 2292 | SmallVector<Value, 4> symbols; |
| 2293 | extractForInductionVars(ivs, &symbols); |
| 2294 | *regionCst = FlatAffineValueConstraints(rank, numParamLoopIVs, 0); |
| 2295 | regionCst->setValues(start: rank, end: rank + numParamLoopIVs, values: symbols); |
| 2296 | |
| 2297 | // Memref dim sizes provide the bounds. |
| 2298 | for (unsigned d = 0; d < rank; d++) { |
| 2299 | auto dimSize = memRefType.getDimSize(d); |
| 2300 | assert(dimSize > 0 && "filtered dynamic shapes above" ); |
| 2301 | regionCst->addBound(type: BoundType::LB, pos: d, value: 0); |
| 2302 | regionCst->addBound(BoundType::UB, d, dimSize - 1); |
| 2303 | } |
| 2304 | return true; |
| 2305 | } |
| 2306 | |
| 2307 | LogicalResult |
| 2308 | mlir::affine::affineDataCopyGenerate(Block::iterator begin, Block::iterator end, |
| 2309 | const AffineCopyOptions ©Options, |
| 2310 | std::optional<Value> filterMemRef, |
| 2311 | DenseSet<Operation *> ©Nests) { |
| 2312 | if (begin == end) |
| 2313 | return success(); |
| 2314 | |
| 2315 | assert(begin->getBlock() == std::prev(end)->getBlock() && |
| 2316 | "Inconsistent block begin/end args" ); |
| 2317 | assert(end != end->getBlock()->end() && "end can't be the block terminator" ); |
| 2318 | |
| 2319 | Block *block = begin->getBlock(); |
| 2320 | |
| 2321 | // Copies will be generated for this depth, i.e., symbolic in all loops |
| 2322 | // surrounding the this block range. |
| 2323 | unsigned copyDepth = getNestingDepth(op: &*begin); |
| 2324 | |
| 2325 | LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth |
| 2326 | << "\n" ); |
| 2327 | LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n" ); |
| 2328 | LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n" ); |
| 2329 | |
| 2330 | // List of memory regions to copy for. We need a map vector to have a |
| 2331 | // guaranteed iteration order to write test cases. CHECK-DAG doesn't help here |
| 2332 | // since the alloc's for example are identical except for the SSA id. |
| 2333 | SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> readRegions; |
| 2334 | SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> writeRegions; |
| 2335 | |
| 2336 | // Map from original memref's to the fast buffers that their accesses are |
| 2337 | // replaced with. |
| 2338 | DenseMap<Value, Value> fastBufferMap; |
| 2339 | |
| 2340 | // To check for errors when walking the block. |
| 2341 | bool error = false; |
| 2342 | |
| 2343 | // Walk this range of operations to gather all memory regions. |
| 2344 | block->walk(begin, end, callback: [&](Operation *opInst) { |
| 2345 | Value memref; |
| 2346 | MemRefType memrefType; |
| 2347 | // Gather regions to allocate to buffers in faster memory space. |
| 2348 | if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) { |
| 2349 | memref = loadOp.getMemRef(); |
| 2350 | memrefType = loadOp.getMemRefType(); |
| 2351 | } else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) { |
| 2352 | memref = storeOp.getMemRef(); |
| 2353 | memrefType = storeOp.getMemRefType(); |
| 2354 | } |
| 2355 | // Not an affine.load/store op. |
| 2356 | if (!memref) |
| 2357 | return; |
| 2358 | |
| 2359 | if ((filterMemRef.has_value() && filterMemRef != memref) || |
| 2360 | (isa_and_nonnull<IntegerAttr>(memrefType.getMemorySpace()) && |
| 2361 | memrefType.getMemorySpaceAsInt() != copyOptions.slowMemorySpace)) |
| 2362 | return; |
| 2363 | |
| 2364 | if (!memref.getParentRegion()->isAncestor(other: block->getParent())) { |
| 2365 | LLVM_DEBUG(llvm::dbgs() << "memref definition is inside of the depth at " |
| 2366 | "which copy-in/copy-out would happen\n" ); |
| 2367 | return; |
| 2368 | } |
| 2369 | |
| 2370 | // Compute the MemRefRegion accessed. |
| 2371 | auto region = std::make_unique<MemRefRegion>(args: opInst->getLoc()); |
| 2372 | if (failed(Result: region->compute(op: opInst, loopDepth: copyDepth, /*sliceState=*/nullptr, |
| 2373 | /*addMemRefDimBounds=*/false))) { |
| 2374 | LLVM_DEBUG(llvm::dbgs() |
| 2375 | << "Error obtaining memory region: semi-affine maps?\n" ); |
| 2376 | LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n" ); |
| 2377 | if (!getFullMemRefAsRegion(op: opInst, numParamLoopIVs: copyDepth, region: region.get())) { |
| 2378 | LLVM_DEBUG( |
| 2379 | opInst->emitError("non-constant memref sizes not yet supported" )); |
| 2380 | error = true; |
| 2381 | return; |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | // Each memref has a single buffer associated with it irrespective of how |
| 2386 | // many load's and store's happen on it. |
| 2387 | // TODO: in the future, when regions don't intersect and satisfy |
| 2388 | // other properties (based on load/store regions), we could consider |
| 2389 | // multiple buffers per memref. |
| 2390 | |
| 2391 | // Add to the appropriate region if it's not already in it, or take a |
| 2392 | // bounding box union with the existing one if it's already in there. |
| 2393 | // Note that a memref may have both read and write regions - so update the |
| 2394 | // region in the other list if one exists (write in case of read and vice |
| 2395 | // versa) since there is a single bounding box for a memref across all reads |
| 2396 | // and writes that happen on it. |
| 2397 | |
| 2398 | // Attempts to update; returns true if 'region' exists in targetRegions. |
| 2399 | auto updateRegion = |
| 2400 | [&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> |
| 2401 | &targetRegions) { |
| 2402 | const auto *const it = targetRegions.find(Key: region->memref); |
| 2403 | if (it == targetRegions.end()) |
| 2404 | return false; |
| 2405 | |
| 2406 | // Perform a union with the existing region. |
| 2407 | if (failed(Result: it->second->unionBoundingBox(other: *region))) { |
| 2408 | LLVM_DEBUG(llvm::dbgs() |
| 2409 | << "Memory region bounding box failed; " |
| 2410 | "over-approximating to the entire memref\n" ); |
| 2411 | // If the union fails, we will overapproximate. |
| 2412 | if (!getFullMemRefAsRegion(op: opInst, numParamLoopIVs: copyDepth, region: region.get())) { |
| 2413 | LLVM_DEBUG(opInst->emitError( |
| 2414 | "non-constant memref sizes not yet supported" )); |
| 2415 | error = true; |
| 2416 | return true; |
| 2417 | } |
| 2418 | it->second->getConstraints()->clearAndCopyFrom( |
| 2419 | other: *region->getConstraints()); |
| 2420 | } else { |
| 2421 | // Union was computed and stored in 'it->second': copy to 'region'. |
| 2422 | region->getConstraints()->clearAndCopyFrom( |
| 2423 | other: *it->second->getConstraints()); |
| 2424 | } |
| 2425 | return true; |
| 2426 | }; |
| 2427 | |
| 2428 | bool existsInRead = updateRegion(readRegions); |
| 2429 | if (error) |
| 2430 | return; |
| 2431 | bool existsInWrite = updateRegion(writeRegions); |
| 2432 | if (error) |
| 2433 | return; |
| 2434 | |
| 2435 | // Finally add it to the region list. |
| 2436 | if (region->isWrite() && !existsInWrite) { |
| 2437 | writeRegions[region->memref] = std::move(region); |
| 2438 | } else if (!region->isWrite() && !existsInRead) { |
| 2439 | readRegions[region->memref] = std::move(region); |
| 2440 | } |
| 2441 | }); |
| 2442 | |
| 2443 | if (error) { |
| 2444 | LLVM_DEBUG(begin->emitError( |
| 2445 | "copy generation failed for one or more memref's in this block\n" )); |
| 2446 | return failure(); |
| 2447 | } |
| 2448 | |
| 2449 | uint64_t = 0; |
| 2450 | bool ret = true; |
| 2451 | auto processRegions = |
| 2452 | [&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> |
| 2453 | ®ions) { |
| 2454 | for (const auto ®ionEntry : regions) { |
| 2455 | // For each region, hoist copy in/out past all hoistable |
| 2456 | // 'affine.for's. |
| 2457 | Block::iterator copyInPlacementStart, copyOutPlacementStart; |
| 2458 | Block *copyPlacementBlock; |
| 2459 | findHighestBlockForPlacement( |
| 2460 | region: *regionEntry.second, block&: *block, begin, end, copyPlacementBlock: ©PlacementBlock, |
| 2461 | copyInPlacementStart: ©InPlacementStart, copyOutPlacementStart: ©OutPlacementStart); |
| 2462 | |
| 2463 | uint64_t sizeInBytes; |
| 2464 | Block::iterator nBegin, nEnd; |
| 2465 | LogicalResult iRet = generateCopy( |
| 2466 | region: *regionEntry.second, block, begin, end, copyPlacementBlock, |
| 2467 | copyInPlacementStart, copyOutPlacementStart, copyOptions, |
| 2468 | fastBufferMap, copyNests, sizeInBytes: &sizeInBytes, nBegin: &nBegin, nEnd: &nEnd); |
| 2469 | if (succeeded(Result: iRet)) { |
| 2470 | // begin/end could have been invalidated, and need update. |
| 2471 | begin = nBegin; |
| 2472 | end = nEnd; |
| 2473 | totalCopyBuffersSizeInBytes += sizeInBytes; |
| 2474 | } |
| 2475 | ret = ret & succeeded(Result: iRet); |
| 2476 | } |
| 2477 | }; |
| 2478 | processRegions(readRegions); |
| 2479 | processRegions(writeRegions); |
| 2480 | |
| 2481 | if (!ret) { |
| 2482 | LLVM_DEBUG(begin->emitError( |
| 2483 | "copy generation failed for one or more memref's in this block\n" )); |
| 2484 | return failure(); |
| 2485 | } |
| 2486 | |
| 2487 | // For a range of operations, a note will be emitted at the caller. |
| 2488 | AffineForOp forOp; |
| 2489 | if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) { |
| 2490 | LLVM_DEBUG(forOp.emitRemark() |
| 2491 | << llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024) |
| 2492 | << " KiB of copy buffers in fast memory space for this block" ); |
| 2493 | } |
| 2494 | |
| 2495 | if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) { |
| 2496 | block->getParentOp()->emitWarning( |
| 2497 | message: "total size of all copy buffers' for this block exceeds fast memory " |
| 2498 | "capacity" ); |
| 2499 | } |
| 2500 | |
| 2501 | return success(); |
| 2502 | } |
| 2503 | |
| 2504 | // A convenience version of affineDataCopyGenerate for all ops in the body of |
| 2505 | // an AffineForOp. |
| 2506 | LogicalResult mlir::affine::affineDataCopyGenerate( |
| 2507 | AffineForOp forOp, const AffineCopyOptions ©Options, |
| 2508 | std::optional<Value> filterMemRef, DenseSet<Operation *> ©Nests) { |
| 2509 | return affineDataCopyGenerate(forOp.getBody()->begin(), |
| 2510 | std::prev(forOp.getBody()->end()), copyOptions, |
| 2511 | filterMemRef, copyNests); |
| 2512 | } |
| 2513 | |
| 2514 | LogicalResult mlir::affine::generateCopyForMemRegion( |
| 2515 | const MemRefRegion &memrefRegion, Operation *analyzedOp, |
| 2516 | const AffineCopyOptions ©Options, CopyGenerateResult &result) { |
| 2517 | Block *block = analyzedOp->getBlock(); |
| 2518 | auto begin = analyzedOp->getIterator(); |
| 2519 | auto end = std::next(begin); |
| 2520 | DenseMap<Value, Value> fastBufferMap; |
| 2521 | DenseSet<Operation *> copyNests; |
| 2522 | |
| 2523 | auto err = generateCopy(memrefRegion, block, begin, end, block, begin, end, |
| 2524 | copyOptions, fastBufferMap, copyNests, |
| 2525 | &result.sizeInBytes, &begin, &end); |
| 2526 | if (failed(err)) |
| 2527 | return err; |
| 2528 | |
| 2529 | const auto &en = fastBufferMap.find(Val: memrefRegion.memref); |
| 2530 | // In some cases (empty loops), no copy generation would have happened. |
| 2531 | if (en == fastBufferMap.end()) |
| 2532 | return failure(); |
| 2533 | result.alloc = en->second.getDefiningOp(); |
| 2534 | assert(result.alloc && "fast buffer expected to be locally allocated" ); |
| 2535 | assert(copyNests.size() <= 1 && "At most one copy nest is expected." ); |
| 2536 | result.copyNest = copyNests.empty() ? nullptr : *copyNests.begin(); |
| 2537 | return success(); |
| 2538 | } |
| 2539 | |
| 2540 | /// Gathers all AffineForOps in 'block' at 'currLoopDepth' in 'depthToLoops'. |
| 2541 | static void |
| 2542 | gatherLoopsInBlock(Block *block, unsigned currLoopDepth, |
| 2543 | std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) { |
| 2544 | // Add a new empty level to output if it doesn't exist level already. |
| 2545 | assert(currLoopDepth <= depthToLoops.size() && "Unexpected currLoopDepth" ); |
| 2546 | if (currLoopDepth == depthToLoops.size()) |
| 2547 | depthToLoops.emplace_back(); |
| 2548 | |
| 2549 | for (auto &op : *block) { |
| 2550 | if (auto forOp = dyn_cast<AffineForOp>(op)) { |
| 2551 | depthToLoops[currLoopDepth].push_back(forOp); |
| 2552 | gatherLoopsInBlock(forOp.getBody(), currLoopDepth + 1, depthToLoops); |
| 2553 | } |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | /// Gathers all AffineForOps in 'func.func' grouped by loop depth. |
| 2558 | void mlir::affine::gatherLoops( |
| 2559 | func::FuncOp func, std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) { |
| 2560 | for (auto &block : func) |
| 2561 | gatherLoopsInBlock(&block, /*currLoopDepth=*/0, depthToLoops); |
| 2562 | |
| 2563 | // Remove last loop level from output since it's empty. |
| 2564 | if (!depthToLoops.empty()) { |
| 2565 | assert(depthToLoops.back().empty() && "Last loop level is not empty?" ); |
| 2566 | depthToLoops.pop_back(); |
| 2567 | } |
| 2568 | } |
| 2569 | |
| 2570 | AffineForOp mlir::affine::createCanonicalizedAffineForOp( |
| 2571 | OpBuilder b, Location loc, ValueRange lbOperands, AffineMap lbMap, |
| 2572 | ValueRange ubOperands, AffineMap ubMap, int64_t step) { |
| 2573 | SmallVector<Value, 4> lowerOperands(lbOperands); |
| 2574 | SmallVector<Value, 4> upperOperands(ubOperands); |
| 2575 | |
| 2576 | fullyComposeAffineMapAndOperands(map: &lbMap, operands: &lowerOperands); |
| 2577 | canonicalizeMapAndOperands(map: &lbMap, operands: &lowerOperands); |
| 2578 | lbMap = removeDuplicateExprs(map: lbMap); |
| 2579 | fullyComposeAffineMapAndOperands(map: &ubMap, operands: &upperOperands); |
| 2580 | canonicalizeMapAndOperands(map: &ubMap, operands: &upperOperands); |
| 2581 | ubMap = removeDuplicateExprs(map: ubMap); |
| 2582 | |
| 2583 | return b.create<AffineForOp>(loc, lowerOperands, lbMap, upperOperands, ubMap, |
| 2584 | step); |
| 2585 | } |
| 2586 | |
| 2587 | /// Creates an AffineIfOp that encodes the conditional to choose between |
| 2588 | /// the constant trip count version and an unknown trip count version of this |
| 2589 | /// nest of loops. This is used to separate partial and full tiles if `loops` |
| 2590 | /// has the intra-tile loops. The affine.if op is inserted at the builder |
| 2591 | /// insertion point of `b`. |
| 2592 | static AffineIfOp createSeparationCondition(MutableArrayRef<AffineForOp> loops, |
| 2593 | OpBuilder b) { |
| 2594 | if (loops.empty()) |
| 2595 | return nullptr; |
| 2596 | |
| 2597 | auto *context = loops[0].getContext(); |
| 2598 | |
| 2599 | FlatAffineValueConstraints cst; |
| 2600 | SmallVector<Operation *, 8> ops; |
| 2601 | llvm::append_range(C&: ops, R&: loops); |
| 2602 | (void)getIndexSet(ops, domain: &cst); |
| 2603 | |
| 2604 | // Remove constraints that are independent of these loop IVs. |
| 2605 | cst.removeIndependentConstraints(/*pos=*/0, /*num=*/loops.size()); |
| 2606 | |
| 2607 | // Construct the constraint set representing the guard for full tiles. The |
| 2608 | // lower bound (and upper bound) corresponding to the full tile should be |
| 2609 | // larger (and resp. smaller) than any other lower (or upper bound). |
| 2610 | SmallVector<int64_t, 8> fullTileLb, fullTileUb; |
| 2611 | for (auto loop : loops) { |
| 2612 | (void)loop; |
| 2613 | // TODO: Non-unit stride is not an issue to generalize to. |
| 2614 | assert(loop.getStepAsInt() == 1 && "point loop step expected to be one" ); |
| 2615 | // Mark everything symbols for the purpose of finding a constant diff pair. |
| 2616 | cst.setDimSymbolSeparation(/*newSymbolCount=*/cst.getNumDimAndSymbolVars() - |
| 2617 | 1); |
| 2618 | unsigned fullTileLbPos, fullTileUbPos; |
| 2619 | if (!((IntegerRelation)cst) |
| 2620 | .getConstantBoundOnDimSize(0, /*lb=*/nullptr, |
| 2621 | /*boundFloorDivisor=*/nullptr, |
| 2622 | /*ub=*/nullptr, &fullTileLbPos, |
| 2623 | &fullTileUbPos)) { |
| 2624 | LLVM_DEBUG(llvm::dbgs() << "Can't get constant diff pair for a loop\n" ); |
| 2625 | return nullptr; |
| 2626 | } |
| 2627 | |
| 2628 | SmallVector<unsigned, 4> lbIndices, ubIndices; |
| 2629 | cst.getLowerAndUpperBoundIndices(/*pos=*/0, &lbIndices, &ubIndices); |
| 2630 | |
| 2631 | auto fLb = cst.getInequality(fullTileLbPos); |
| 2632 | auto fUb = cst.getInequality(fullTileUbPos); |
| 2633 | fullTileLb.assign(fLb.begin(), fLb.end()); |
| 2634 | fullTileUb.assign(fUb.begin(), fUb.end()); |
| 2635 | |
| 2636 | // Full tile lower bound should be >= than any other lower bound. |
| 2637 | for (auto lbIndex : lbIndices) |
| 2638 | for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i) |
| 2639 | cst.atIneq(lbIndex, i) = fullTileLb[i] - cst.atIneq(lbIndex, i); |
| 2640 | |
| 2641 | // Full tile upper bound should be <= any other upper bound. |
| 2642 | for (auto ubIndex : ubIndices) |
| 2643 | for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i) |
| 2644 | cst.atIneq(ubIndex, i) -= fullTileUb[i]; |
| 2645 | |
| 2646 | cst.removeVar(0); |
| 2647 | } |
| 2648 | |
| 2649 | // The previous step leads to all zeros for the full tile lb and ub position |
| 2650 | // itself; remove those and any other duplicates / trivial redundancies. |
| 2651 | cst.removeTrivialRedundancy(); |
| 2652 | |
| 2653 | // Turn everything into dims conservatively since we earlier turned all |
| 2654 | // trailing ids past point loop IV into symbols. Some of these could be outer |
| 2655 | // loop IVs; we'll canonicalize anyway. |
| 2656 | cst.setDimSymbolSeparation(0); |
| 2657 | |
| 2658 | IntegerSet ifCondSet = cst.getAsIntegerSet(context: context); |
| 2659 | // ifCondSet can be null if cst was empty -- this can happen if all loops |
| 2660 | // in the nest have constant trip counts. |
| 2661 | if (!ifCondSet) |
| 2662 | return nullptr; |
| 2663 | |
| 2664 | SmallVector<Value, 4> setOperands; |
| 2665 | cst.getValues(start: 0, end: cst.getNumDimAndSymbolVars(), values: &setOperands); |
| 2666 | canonicalizeSetAndOperands(set: &ifCondSet, operands: &setOperands); |
| 2667 | return b.create<AffineIfOp>(loops[0].getLoc(), ifCondSet, setOperands, |
| 2668 | /*withElseRegion=*/true); |
| 2669 | } |
| 2670 | |
| 2671 | /// Create the full tile loop nest (along with its body). |
| 2672 | static LogicalResult |
| 2673 | createFullTiles(MutableArrayRef<AffineForOp> inputNest, |
| 2674 | SmallVectorImpl<AffineForOp> &fullTileLoops, OpBuilder b) { |
| 2675 | fullTileLoops.reserve(N: inputNest.size()); |
| 2676 | |
| 2677 | // For each loop in the original nest identify a lower/upper bound pair such |
| 2678 | // that their difference is a constant. |
| 2679 | FlatAffineValueConstraints cst; |
| 2680 | for (auto loop : inputNest) { |
| 2681 | // TODO: straightforward to generalize to a non-unit stride. |
| 2682 | if (loop.getStepAsInt() != 1) { |
| 2683 | LLVM_DEBUG(llvm::dbgs() |
| 2684 | << "[tile separation] non-unit stride not implemented\n" ); |
| 2685 | return failure(); |
| 2686 | } |
| 2687 | SmallVector<Operation *, 1> loopOp{loop.getOperation()}; |
| 2688 | (void)getIndexSet(loopOp, &cst); |
| 2689 | // We will mark everything other than this loop IV as symbol for getting a |
| 2690 | // pair of <lb, ub> with a constant difference. |
| 2691 | cst.setDimSymbolSeparation(cst.getNumDimAndSymbolVars() - 1); |
| 2692 | unsigned lbPos, ubPos; |
| 2693 | if (!((IntegerRelation)cst) |
| 2694 | .getConstantBoundOnDimSize(/*pos=*/0, /*lb=*/nullptr, |
| 2695 | /*boundFloorDivisor=*/nullptr, |
| 2696 | /*ub=*/nullptr, &lbPos, &ubPos) || |
| 2697 | lbPos == ubPos) { |
| 2698 | LLVM_DEBUG(llvm::dbgs() << "[tile separation] Can't get constant diff / " |
| 2699 | "equalities not yet handled\n" ); |
| 2700 | return failure(); |
| 2701 | } |
| 2702 | |
| 2703 | // Set all variables as dimensions uniformly since some of those marked as |
| 2704 | // symbols above could be outer loop IVs (corresponding tile space IVs). |
| 2705 | cst.setDimSymbolSeparation(/*newSymbolCount=*/0); |
| 2706 | |
| 2707 | AffineValueMap lbVmap, ubVmap; |
| 2708 | cst.getIneqAsAffineValueMap(/*pos=*/0, lbPos, lbVmap, b.getContext()); |
| 2709 | cst.getIneqAsAffineValueMap(/*pos=*/0, ubPos, ubVmap, b.getContext()); |
| 2710 | AffineForOp fullTileLoop = createCanonicalizedAffineForOp( |
| 2711 | b, loop.getLoc(), lbVmap.getOperands(), lbVmap.getAffineMap(), |
| 2712 | ubVmap.getOperands(), ubVmap.getAffineMap()); |
| 2713 | b = OpBuilder::atBlockTerminator(fullTileLoop.getBody()); |
| 2714 | fullTileLoops.push_back(fullTileLoop); |
| 2715 | } |
| 2716 | |
| 2717 | // Add the body for the full tile loop nest. |
| 2718 | IRMapping operandMap; |
| 2719 | for (const auto &loopEn : llvm::enumerate(inputNest)) |
| 2720 | operandMap.map(loopEn.value().getInductionVar(), |
| 2721 | fullTileLoops[loopEn.index()].getInductionVar()); |
| 2722 | b = OpBuilder::atBlockTerminator(block: fullTileLoops.back().getBody()); |
| 2723 | for (auto &op : inputNest.back().getBody()->without_terminator()) |
| 2724 | b.clone(op, operandMap); |
| 2725 | return success(); |
| 2726 | } |
| 2727 | |
| 2728 | LogicalResult |
| 2729 | mlir::affine::separateFullTiles(MutableArrayRef<AffineForOp> inputNest, |
| 2730 | SmallVectorImpl<AffineForOp> *fullTileNest) { |
| 2731 | if (inputNest.empty()) |
| 2732 | return success(); |
| 2733 | |
| 2734 | auto firstLoop = inputNest[0]; |
| 2735 | |
| 2736 | // Each successive for op has to be nested in the other. |
| 2737 | auto prevLoop = firstLoop; |
| 2738 | for (auto loop : inputNest.drop_front(1)) { |
| 2739 | assert(loop->getParentOp() == prevLoop && "input not contiguously nested" ); |
| 2740 | prevLoop = loop; |
| 2741 | } |
| 2742 | |
| 2743 | // Create the full tile loop nest. |
| 2744 | SmallVector<AffineForOp, 4> fullTileLoops; |
| 2745 | OpBuilder b(firstLoop); |
| 2746 | if (failed(Result: createFullTiles(inputNest, fullTileLoops, b))) { |
| 2747 | if (!fullTileLoops.empty()) |
| 2748 | fullTileLoops.front().erase(); |
| 2749 | return failure(); |
| 2750 | } |
| 2751 | |
| 2752 | // Create and insert the version select right before the root of the nest. |
| 2753 | b = OpBuilder(firstLoop); |
| 2754 | AffineIfOp ifOp = createSeparationCondition(inputNest, b); |
| 2755 | if (!ifOp) { |
| 2756 | fullTileLoops.front().erase(); |
| 2757 | LLVM_DEBUG(llvm::dbgs() << "All tiles are full tiles, or failure creating " |
| 2758 | "separation condition\n" ); |
| 2759 | return failure(); |
| 2760 | } |
| 2761 | |
| 2762 | // Move the full tile into the then block. |
| 2763 | Block *thenBlock = ifOp.getThenBlock(); |
| 2764 | AffineForOp outermostFullTileLoop = fullTileLoops[0]; |
| 2765 | thenBlock->getOperations().splice( |
| 2766 | std::prev(x: thenBlock->end()), |
| 2767 | outermostFullTileLoop->getBlock()->getOperations(), |
| 2768 | Block::iterator(outermostFullTileLoop)); |
| 2769 | |
| 2770 | // Move the partial tile into the else block. The partial tile is the same as |
| 2771 | // the original loop nest. |
| 2772 | Block *elseBlock = ifOp.getElseBlock(); |
| 2773 | elseBlock->getOperations().splice(std::prev(x: elseBlock->end()), |
| 2774 | firstLoop->getBlock()->getOperations(), |
| 2775 | Block::iterator(firstLoop)); |
| 2776 | |
| 2777 | if (fullTileNest) |
| 2778 | *fullTileNest = std::move(fullTileLoops); |
| 2779 | |
| 2780 | return success(); |
| 2781 | } |
| 2782 | |
| 2783 | LogicalResult affine::coalescePerfectlyNestedAffineLoops(AffineForOp op) { |
| 2784 | LogicalResult result(failure()); |
| 2785 | SmallVector<AffineForOp> loops; |
| 2786 | getPerfectlyNestedLoops(loops, op); |
| 2787 | if (loops.size() <= 1) |
| 2788 | return success(); |
| 2789 | |
| 2790 | // Look for a band of loops that can be coalesced, i.e. perfectly nested |
| 2791 | // loops with bounds defined above some loop. |
| 2792 | // 1. For each loop, find above which parent loop its operands are |
| 2793 | // defined. |
| 2794 | SmallVector<unsigned> operandsDefinedAbove(loops.size()); |
| 2795 | for (unsigned i = 0, e = loops.size(); i < e; ++i) { |
| 2796 | operandsDefinedAbove[i] = i; |
| 2797 | for (unsigned j = 0; j < i; ++j) { |
| 2798 | if (areValuesDefinedAbove(loops[i].getOperands(), loops[j].getRegion())) { |
| 2799 | operandsDefinedAbove[i] = j; |
| 2800 | break; |
| 2801 | } |
| 2802 | } |
| 2803 | } |
| 2804 | |
| 2805 | // 2. Identify bands of loops such that the operands of all of them are |
| 2806 | // defined above the first loop in the band. Traverse the nest bottom-up |
| 2807 | // so that modifications don't invalidate the inner loops. |
| 2808 | for (unsigned end = loops.size(); end > 0; --end) { |
| 2809 | unsigned start = 0; |
| 2810 | for (; start < end - 1; ++start) { |
| 2811 | auto maxPos = |
| 2812 | *std::max_element(first: std::next(x: operandsDefinedAbove.begin(), n: start), |
| 2813 | last: std::next(x: operandsDefinedAbove.begin(), n: end)); |
| 2814 | if (maxPos > start) |
| 2815 | continue; |
| 2816 | assert(maxPos == start && |
| 2817 | "expected loop bounds to be known at the start of the band" ); |
| 2818 | auto band = llvm::MutableArrayRef(loops.data() + start, end - start); |
| 2819 | if (succeeded(coalesceLoops(band))) |
| 2820 | result = success(); |
| 2821 | break; |
| 2822 | } |
| 2823 | // If a band was found and transformed, keep looking at the loops above |
| 2824 | // the outermost transformed loop. |
| 2825 | if (start != end - 1) |
| 2826 | end = start + 1; |
| 2827 | } |
| 2828 | return result; |
| 2829 | } |
| 2830 | |
| 2831 | int64_t mlir::affine::numEnclosingInvariantLoops(OpOperand &operand) { |
| 2832 | int64_t count = 0; |
| 2833 | Operation *currentOp = operand.getOwner(); |
| 2834 | while (auto loopOp = currentOp->getParentOfType<LoopLikeOpInterface>()) { |
| 2835 | if (!loopOp.isDefinedOutsideOfLoop(operand.get())) |
| 2836 | break; |
| 2837 | currentOp = loopOp; |
| 2838 | count++; |
| 2839 | } |
| 2840 | return count; |
| 2841 | } |
| 2842 | |