| 1 | //===- LLVMMemorySlot.cpp - MemorySlot interfaces ---------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements MemorySlot-related interfaces for LLVM dialect |
| 10 | // operations. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 15 | #include "mlir/Dialect/LLVMIR/LLVMTypes.h" |
| 16 | #include "mlir/IR/Matchers.h" |
| 17 | #include "mlir/IR/PatternMatch.h" |
| 18 | #include "mlir/Interfaces/DataLayoutInterfaces.h" |
| 19 | #include "mlir/Interfaces/MemorySlotInterfaces.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/TypeSwitch.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "sroa" |
| 24 | |
| 25 | using namespace mlir; |
| 26 | |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | // Interfaces for AllocaOp |
| 29 | //===----------------------------------------------------------------------===// |
| 30 | |
| 31 | llvm::SmallVector<MemorySlot> LLVM::AllocaOp::getPromotableSlots() { |
| 32 | if (!getOperation()->getBlock()->isEntryBlock()) |
| 33 | return {}; |
| 34 | |
| 35 | return {MemorySlot{getResult(), getElemType()}}; |
| 36 | } |
| 37 | |
| 38 | Value LLVM::AllocaOp::getDefaultValue(const MemorySlot &slot, |
| 39 | OpBuilder &builder) { |
| 40 | return builder.create<LLVM::UndefOp>(getLoc(), slot.elemType); |
| 41 | } |
| 42 | |
| 43 | void LLVM::AllocaOp::handleBlockArgument(const MemorySlot &slot, |
| 44 | BlockArgument argument, |
| 45 | OpBuilder &builder) { |
| 46 | for (Operation *user : getOperation()->getUsers()) |
| 47 | if (auto declareOp = llvm::dyn_cast<LLVM::DbgDeclareOp>(user)) |
| 48 | builder.create<LLVM::DbgValueOp>(declareOp.getLoc(), argument, |
| 49 | declareOp.getVarInfo(), |
| 50 | declareOp.getLocationExpr()); |
| 51 | } |
| 52 | |
| 53 | std::optional<PromotableAllocationOpInterface> |
| 54 | LLVM::AllocaOp::handlePromotionComplete(const MemorySlot &slot, |
| 55 | Value defaultValue, |
| 56 | OpBuilder &builder) { |
| 57 | if (defaultValue && defaultValue.use_empty()) |
| 58 | defaultValue.getDefiningOp()->erase(); |
| 59 | this->erase(); |
| 60 | return std::nullopt; |
| 61 | } |
| 62 | |
| 63 | SmallVector<DestructurableMemorySlot> LLVM::AllocaOp::getDestructurableSlots() { |
| 64 | if (!mlir::matchPattern(getArraySize(), m_One())) |
| 65 | return {}; |
| 66 | |
| 67 | auto destructurable = dyn_cast<DestructurableTypeInterface>(getElemType()); |
| 68 | if (!destructurable) |
| 69 | return {}; |
| 70 | |
| 71 | std::optional<DenseMap<Attribute, Type>> destructuredType = |
| 72 | destructurable.getSubelementIndexMap(); |
| 73 | if (!destructuredType) |
| 74 | return {}; |
| 75 | |
| 76 | return {DestructurableMemorySlot{{getResult(), getElemType()}, |
| 77 | *destructuredType}}; |
| 78 | } |
| 79 | |
| 80 | DenseMap<Attribute, MemorySlot> LLVM::AllocaOp::destructure( |
| 81 | const DestructurableMemorySlot &slot, |
| 82 | const SmallPtrSetImpl<Attribute> &usedIndices, OpBuilder &builder, |
| 83 | SmallVectorImpl<DestructurableAllocationOpInterface> &newAllocators) { |
| 84 | assert(slot.ptr == getResult()); |
| 85 | builder.setInsertionPointAfter(*this); |
| 86 | |
| 87 | auto destructurableType = cast<DestructurableTypeInterface>(getElemType()); |
| 88 | DenseMap<Attribute, MemorySlot> slotMap; |
| 89 | for (Attribute index : usedIndices) { |
| 90 | Type elemType = destructurableType.getTypeAtIndex(index); |
| 91 | assert(elemType && "used index must exist" ); |
| 92 | auto subAlloca = builder.create<LLVM::AllocaOp>( |
| 93 | getLoc(), LLVM::LLVMPointerType::get(getContext()), elemType, |
| 94 | getArraySize()); |
| 95 | newAllocators.push_back(subAlloca); |
| 96 | slotMap.try_emplace<MemorySlot>(index, {subAlloca.getResult(), elemType}); |
| 97 | } |
| 98 | |
| 99 | return slotMap; |
| 100 | } |
| 101 | |
| 102 | std::optional<DestructurableAllocationOpInterface> |
| 103 | LLVM::AllocaOp::handleDestructuringComplete( |
| 104 | const DestructurableMemorySlot &slot, OpBuilder &builder) { |
| 105 | assert(slot.ptr == getResult()); |
| 106 | this->erase(); |
| 107 | return std::nullopt; |
| 108 | } |
| 109 | |
| 110 | //===----------------------------------------------------------------------===// |
| 111 | // Interfaces for LoadOp/StoreOp |
| 112 | //===----------------------------------------------------------------------===// |
| 113 | |
| 114 | bool LLVM::LoadOp::loadsFrom(const MemorySlot &slot) { |
| 115 | return getAddr() == slot.ptr; |
| 116 | } |
| 117 | |
| 118 | bool LLVM::LoadOp::storesTo(const MemorySlot &slot) { return false; } |
| 119 | |
| 120 | Value LLVM::LoadOp::getStored(const MemorySlot &slot, OpBuilder &builder, |
| 121 | Value reachingDef, const DataLayout &dataLayout) { |
| 122 | llvm_unreachable("getStored should not be called on LoadOp" ); |
| 123 | } |
| 124 | |
| 125 | bool LLVM::StoreOp::loadsFrom(const MemorySlot &slot) { return false; } |
| 126 | |
| 127 | bool LLVM::StoreOp::storesTo(const MemorySlot &slot) { |
| 128 | return getAddr() == slot.ptr; |
| 129 | } |
| 130 | |
| 131 | /// Checks if `type` can be used in any kind of conversion sequences. |
| 132 | static bool isSupportedTypeForConversion(Type type) { |
| 133 | // Aggregate types are not bitcastable. |
| 134 | if (isa<LLVM::LLVMStructType, LLVM::LLVMArrayType>(type)) |
| 135 | return false; |
| 136 | |
| 137 | if (auto vectorType = dyn_cast<VectorType>(type)) { |
| 138 | // Vectors of pointers cannot be casted. |
| 139 | if (isa<LLVM::LLVMPointerType>(vectorType.getElementType())) |
| 140 | return false; |
| 141 | // Scalable types are not supported. |
| 142 | return !vectorType.isScalable(); |
| 143 | } |
| 144 | return true; |
| 145 | } |
| 146 | |
| 147 | /// Checks that `rhs` can be converted to `lhs` by a sequence of casts and |
| 148 | /// truncations. Checks for narrowing or widening conversion compatibility |
| 149 | /// depending on `narrowingConversion`. |
| 150 | static bool areConversionCompatible(const DataLayout &layout, Type targetType, |
| 151 | Type srcType, bool narrowingConversion) { |
| 152 | if (targetType == srcType) |
| 153 | return true; |
| 154 | |
| 155 | if (!isSupportedTypeForConversion(type: targetType) || |
| 156 | !isSupportedTypeForConversion(type: srcType)) |
| 157 | return false; |
| 158 | |
| 159 | uint64_t targetSize = layout.getTypeSize(t: targetType); |
| 160 | uint64_t srcSize = layout.getTypeSize(t: srcType); |
| 161 | |
| 162 | // Pointer casts will only be sane when the bitsize of both pointer types is |
| 163 | // the same. |
| 164 | if (isa<LLVM::LLVMPointerType>(targetType) && |
| 165 | isa<LLVM::LLVMPointerType>(srcType)) |
| 166 | return targetSize == srcSize; |
| 167 | |
| 168 | if (narrowingConversion) |
| 169 | return targetSize <= srcSize; |
| 170 | return targetSize >= srcSize; |
| 171 | } |
| 172 | |
| 173 | /// Checks if `dataLayout` describes a little endian layout. |
| 174 | static bool isBigEndian(const DataLayout &dataLayout) { |
| 175 | auto endiannessStr = dyn_cast_or_null<StringAttr>(dataLayout.getEndianness()); |
| 176 | return endiannessStr && endiannessStr == "big" ; |
| 177 | } |
| 178 | |
| 179 | /// Converts a value to an integer type of the same size. |
| 180 | /// Assumes that the type can be converted. |
| 181 | static Value castToSameSizedInt(OpBuilder &builder, Location loc, Value val, |
| 182 | const DataLayout &dataLayout) { |
| 183 | Type type = val.getType(); |
| 184 | assert(isSupportedTypeForConversion(type) && |
| 185 | "expected value to have a convertible type" ); |
| 186 | |
| 187 | if (isa<IntegerType>(Val: type)) |
| 188 | return val; |
| 189 | |
| 190 | uint64_t typeBitSize = dataLayout.getTypeSizeInBits(t: type); |
| 191 | IntegerType valueSizeInteger = builder.getIntegerType(typeBitSize); |
| 192 | |
| 193 | if (isa<LLVM::LLVMPointerType>(type)) |
| 194 | return builder.createOrFold<LLVM::PtrToIntOp>(loc, valueSizeInteger, val); |
| 195 | return builder.createOrFold<LLVM::BitcastOp>(loc, valueSizeInteger, val); |
| 196 | } |
| 197 | |
| 198 | /// Converts a value with an integer type to `targetType`. |
| 199 | static Value castIntValueToSameSizedType(OpBuilder &builder, Location loc, |
| 200 | Value val, Type targetType) { |
| 201 | assert(isa<IntegerType>(val.getType()) && |
| 202 | "expected value to have an integer type" ); |
| 203 | assert(isSupportedTypeForConversion(targetType) && |
| 204 | "expected the target type to be supported for conversions" ); |
| 205 | if (val.getType() == targetType) |
| 206 | return val; |
| 207 | if (isa<LLVM::LLVMPointerType>(targetType)) |
| 208 | return builder.createOrFold<LLVM::IntToPtrOp>(loc, targetType, val); |
| 209 | return builder.createOrFold<LLVM::BitcastOp>(loc, targetType, val); |
| 210 | } |
| 211 | |
| 212 | /// Constructs operations that convert `srcValue` into a new value of type |
| 213 | /// `targetType`. Assumes the types have the same bitsize. |
| 214 | static Value castSameSizedTypes(OpBuilder &builder, Location loc, |
| 215 | Value srcValue, Type targetType, |
| 216 | const DataLayout &dataLayout) { |
| 217 | Type srcType = srcValue.getType(); |
| 218 | assert(areConversionCompatible(dataLayout, targetType, srcType, |
| 219 | /*narrowingConversion=*/true) && |
| 220 | "expected that the compatibility was checked before" ); |
| 221 | |
| 222 | // Nothing has to be done if the types are already the same. |
| 223 | if (srcType == targetType) |
| 224 | return srcValue; |
| 225 | |
| 226 | // In the special case of casting one pointer to another, we want to generate |
| 227 | // an address space cast. Bitcasts of pointers are not allowed and using |
| 228 | // pointer to integer conversions are not equivalent due to the loss of |
| 229 | // provenance. |
| 230 | if (isa<LLVM::LLVMPointerType>(targetType) && |
| 231 | isa<LLVM::LLVMPointerType>(srcType)) |
| 232 | return builder.createOrFold<LLVM::AddrSpaceCastOp>(loc, targetType, |
| 233 | srcValue); |
| 234 | |
| 235 | // For all other castable types, casting through integers is necessary. |
| 236 | Value replacement = castToSameSizedInt(builder, loc, val: srcValue, dataLayout); |
| 237 | return castIntValueToSameSizedType(builder, loc, val: replacement, targetType); |
| 238 | } |
| 239 | |
| 240 | /// Constructs operations that convert `srcValue` into a new value of type |
| 241 | /// `targetType`. Performs bit-level extraction if the source type is larger |
| 242 | /// than the target type. Assumes that this conversion is possible. |
| 243 | static Value createExtractAndCast(OpBuilder &builder, Location loc, |
| 244 | Value srcValue, Type targetType, |
| 245 | const DataLayout &dataLayout) { |
| 246 | // Get the types of the source and target values. |
| 247 | Type srcType = srcValue.getType(); |
| 248 | assert(areConversionCompatible(dataLayout, targetType, srcType, |
| 249 | /*narrowingConversion=*/true) && |
| 250 | "expected that the compatibility was checked before" ); |
| 251 | |
| 252 | uint64_t srcTypeSize = dataLayout.getTypeSizeInBits(t: srcType); |
| 253 | uint64_t targetTypeSize = dataLayout.getTypeSizeInBits(t: targetType); |
| 254 | if (srcTypeSize == targetTypeSize) |
| 255 | return castSameSizedTypes(builder, loc, srcValue, targetType, dataLayout); |
| 256 | |
| 257 | // First, cast the value to a same-sized integer type. |
| 258 | Value replacement = castToSameSizedInt(builder, loc, val: srcValue, dataLayout); |
| 259 | |
| 260 | // Truncate the integer if the size of the target is less than the value. |
| 261 | if (isBigEndian(dataLayout)) { |
| 262 | uint64_t shiftAmount = srcTypeSize - targetTypeSize; |
| 263 | auto shiftConstant = builder.create<LLVM::ConstantOp>( |
| 264 | loc, builder.getIntegerAttr(srcType, shiftAmount)); |
| 265 | replacement = |
| 266 | builder.createOrFold<LLVM::LShrOp>(loc, srcValue, shiftConstant); |
| 267 | } |
| 268 | |
| 269 | replacement = builder.create<LLVM::TruncOp>( |
| 270 | loc, builder.getIntegerType(targetTypeSize), replacement); |
| 271 | |
| 272 | // Now cast the integer to the actual target type if required. |
| 273 | return castIntValueToSameSizedType(builder, loc, val: replacement, targetType); |
| 274 | } |
| 275 | |
| 276 | /// Constructs operations that insert the bits of `srcValue` into the |
| 277 | /// "beginning" of `reachingDef` (beginning is endianness dependent). |
| 278 | /// Assumes that this conversion is possible. |
| 279 | static Value createInsertAndCast(OpBuilder &builder, Location loc, |
| 280 | Value srcValue, Value reachingDef, |
| 281 | const DataLayout &dataLayout) { |
| 282 | |
| 283 | assert(areConversionCompatible(dataLayout, reachingDef.getType(), |
| 284 | srcValue.getType(), |
| 285 | /*narrowingConversion=*/false) && |
| 286 | "expected that the compatibility was checked before" ); |
| 287 | uint64_t valueTypeSize = dataLayout.getTypeSizeInBits(t: srcValue.getType()); |
| 288 | uint64_t slotTypeSize = dataLayout.getTypeSizeInBits(t: reachingDef.getType()); |
| 289 | if (slotTypeSize == valueTypeSize) |
| 290 | return castSameSizedTypes(builder, loc, srcValue, targetType: reachingDef.getType(), |
| 291 | dataLayout); |
| 292 | |
| 293 | // In the case where the store only overwrites parts of the memory, |
| 294 | // bit fiddling is required to construct the new value. |
| 295 | |
| 296 | // First convert both values to integers of the same size. |
| 297 | Value defAsInt = castToSameSizedInt(builder, loc, val: reachingDef, dataLayout); |
| 298 | Value valueAsInt = castToSameSizedInt(builder, loc, val: srcValue, dataLayout); |
| 299 | // Extend the value to the size of the reaching definition. |
| 300 | valueAsInt = |
| 301 | builder.createOrFold<LLVM::ZExtOp>(loc, defAsInt.getType(), valueAsInt); |
| 302 | uint64_t sizeDifference = slotTypeSize - valueTypeSize; |
| 303 | if (isBigEndian(dataLayout)) { |
| 304 | // On big endian systems, a store to the base pointer overwrites the most |
| 305 | // significant bits. To accomodate for this, the stored value needs to be |
| 306 | // shifted into the according position. |
| 307 | Value bigEndianShift = builder.create<LLVM::ConstantOp>( |
| 308 | loc, builder.getIntegerAttr(defAsInt.getType(), sizeDifference)); |
| 309 | valueAsInt = |
| 310 | builder.createOrFold<LLVM::ShlOp>(loc, valueAsInt, bigEndianShift); |
| 311 | } |
| 312 | |
| 313 | // Construct the mask that is used to erase the bits that are overwritten by |
| 314 | // the store. |
| 315 | APInt maskValue; |
| 316 | if (isBigEndian(dataLayout)) { |
| 317 | // Build a mask that has the most significant bits set to zero. |
| 318 | // Note: This is the same as 2^sizeDifference - 1 |
| 319 | maskValue = APInt::getAllOnes(numBits: sizeDifference).zext(width: slotTypeSize); |
| 320 | } else { |
| 321 | // Build a mask that has the least significant bits set to zero. |
| 322 | // Note: This is the same as -(2^valueTypeSize) |
| 323 | maskValue = APInt::getAllOnes(numBits: valueTypeSize).zext(width: slotTypeSize); |
| 324 | maskValue.flipAllBits(); |
| 325 | } |
| 326 | |
| 327 | // Mask out the affected bits ... |
| 328 | Value mask = builder.create<LLVM::ConstantOp>( |
| 329 | loc, builder.getIntegerAttr(defAsInt.getType(), maskValue)); |
| 330 | Value masked = builder.createOrFold<LLVM::AndOp>(loc, defAsInt, mask); |
| 331 | |
| 332 | // ... and combine the result with the new value. |
| 333 | Value combined = builder.createOrFold<LLVM::OrOp>(loc, masked, valueAsInt); |
| 334 | |
| 335 | return castIntValueToSameSizedType(builder, loc, val: combined, |
| 336 | targetType: reachingDef.getType()); |
| 337 | } |
| 338 | |
| 339 | Value LLVM::StoreOp::getStored(const MemorySlot &slot, OpBuilder &builder, |
| 340 | Value reachingDef, |
| 341 | const DataLayout &dataLayout) { |
| 342 | assert(reachingDef && reachingDef.getType() == slot.elemType && |
| 343 | "expected the reaching definition's type to match the slot's type" ); |
| 344 | return createInsertAndCast(builder, getLoc(), getValue(), reachingDef, |
| 345 | dataLayout); |
| 346 | } |
| 347 | |
| 348 | bool LLVM::LoadOp::canUsesBeRemoved( |
| 349 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 350 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 351 | const DataLayout &dataLayout) { |
| 352 | if (blockingUses.size() != 1) |
| 353 | return false; |
| 354 | Value blockingUse = (*blockingUses.begin())->get(); |
| 355 | // If the blocking use is the slot ptr itself, there will be enough |
| 356 | // context to reconstruct the result of the load at removal time, so it can |
| 357 | // be removed (provided it is not volatile). |
| 358 | return blockingUse == slot.ptr && getAddr() == slot.ptr && |
| 359 | areConversionCompatible(dataLayout, getResult().getType(), |
| 360 | slot.elemType, /*narrowingConversion=*/true) && |
| 361 | !getVolatile_(); |
| 362 | } |
| 363 | |
| 364 | DeletionKind LLVM::LoadOp::removeBlockingUses( |
| 365 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 366 | OpBuilder &builder, Value reachingDefinition, |
| 367 | const DataLayout &dataLayout) { |
| 368 | // `canUsesBeRemoved` checked this blocking use must be the loaded slot |
| 369 | // pointer. |
| 370 | Value newResult = createExtractAndCast(builder, getLoc(), reachingDefinition, |
| 371 | getResult().getType(), dataLayout); |
| 372 | getResult().replaceAllUsesWith(newResult); |
| 373 | return DeletionKind::Delete; |
| 374 | } |
| 375 | |
| 376 | bool LLVM::StoreOp::canUsesBeRemoved( |
| 377 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 378 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 379 | const DataLayout &dataLayout) { |
| 380 | if (blockingUses.size() != 1) |
| 381 | return false; |
| 382 | Value blockingUse = (*blockingUses.begin())->get(); |
| 383 | // If the blocking use is the slot ptr itself, dropping the store is |
| 384 | // fine, provided we are currently promoting its target value. Don't allow a |
| 385 | // store OF the slot pointer, only INTO the slot pointer. |
| 386 | return blockingUse == slot.ptr && getAddr() == slot.ptr && |
| 387 | getValue() != slot.ptr && |
| 388 | areConversionCompatible(dataLayout, slot.elemType, |
| 389 | getValue().getType(), |
| 390 | /*narrowingConversion=*/false) && |
| 391 | !getVolatile_(); |
| 392 | } |
| 393 | |
| 394 | DeletionKind LLVM::StoreOp::removeBlockingUses( |
| 395 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 396 | OpBuilder &builder, Value reachingDefinition, |
| 397 | const DataLayout &dataLayout) { |
| 398 | return DeletionKind::Delete; |
| 399 | } |
| 400 | |
| 401 | /// Checks if `slot` can be accessed through the provided access type. |
| 402 | static bool isValidAccessType(const MemorySlot &slot, Type accessType, |
| 403 | const DataLayout &dataLayout) { |
| 404 | return dataLayout.getTypeSize(t: accessType) <= |
| 405 | dataLayout.getTypeSize(t: slot.elemType); |
| 406 | } |
| 407 | |
| 408 | LogicalResult LLVM::LoadOp::ensureOnlySafeAccesses( |
| 409 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 410 | const DataLayout &dataLayout) { |
| 411 | return success(getAddr() != slot.ptr || |
| 412 | isValidAccessType(slot, getType(), dataLayout)); |
| 413 | } |
| 414 | |
| 415 | LogicalResult LLVM::StoreOp::ensureOnlySafeAccesses( |
| 416 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 417 | const DataLayout &dataLayout) { |
| 418 | return success(getAddr() != slot.ptr || |
| 419 | isValidAccessType(slot, getValue().getType(), dataLayout)); |
| 420 | } |
| 421 | |
| 422 | /// Returns the subslot's type at the requested index. |
| 423 | static Type getTypeAtIndex(const DestructurableMemorySlot &slot, |
| 424 | Attribute index) { |
| 425 | auto subelementIndexMap = |
| 426 | cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap(); |
| 427 | if (!subelementIndexMap) |
| 428 | return {}; |
| 429 | assert(!subelementIndexMap->empty()); |
| 430 | |
| 431 | // Note: Returns a null-type when no entry was found. |
| 432 | return subelementIndexMap->lookup(index); |
| 433 | } |
| 434 | |
| 435 | bool LLVM::LoadOp::canRewire(const DestructurableMemorySlot &slot, |
| 436 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 437 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 438 | const DataLayout &dataLayout) { |
| 439 | if (getVolatile_()) |
| 440 | return false; |
| 441 | |
| 442 | // A load always accesses the first element of the destructured slot. |
| 443 | auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0); |
| 444 | Type subslotType = getTypeAtIndex(slot, index); |
| 445 | if (!subslotType) |
| 446 | return false; |
| 447 | |
| 448 | // The access can only be replaced when the subslot is read within its bounds. |
| 449 | if (dataLayout.getTypeSize(getType()) > dataLayout.getTypeSize(subslotType)) |
| 450 | return false; |
| 451 | |
| 452 | usedIndices.insert(index); |
| 453 | return true; |
| 454 | } |
| 455 | |
| 456 | DeletionKind LLVM::LoadOp::rewire(const DestructurableMemorySlot &slot, |
| 457 | DenseMap<Attribute, MemorySlot> &subslots, |
| 458 | OpBuilder &builder, |
| 459 | const DataLayout &dataLayout) { |
| 460 | auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0); |
| 461 | auto it = subslots.find(index); |
| 462 | assert(it != subslots.end()); |
| 463 | |
| 464 | getAddrMutable().set(it->getSecond().ptr); |
| 465 | return DeletionKind::Keep; |
| 466 | } |
| 467 | |
| 468 | bool LLVM::StoreOp::canRewire(const DestructurableMemorySlot &slot, |
| 469 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 470 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 471 | const DataLayout &dataLayout) { |
| 472 | if (getVolatile_()) |
| 473 | return false; |
| 474 | |
| 475 | // Storing the pointer to memory cannot be dealt with. |
| 476 | if (getValue() == slot.ptr) |
| 477 | return false; |
| 478 | |
| 479 | // A store always accesses the first element of the destructured slot. |
| 480 | auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0); |
| 481 | Type subslotType = getTypeAtIndex(slot, index); |
| 482 | if (!subslotType) |
| 483 | return false; |
| 484 | |
| 485 | // The access can only be replaced when the subslot is read within its bounds. |
| 486 | if (dataLayout.getTypeSize(getValue().getType()) > |
| 487 | dataLayout.getTypeSize(subslotType)) |
| 488 | return false; |
| 489 | |
| 490 | usedIndices.insert(index); |
| 491 | return true; |
| 492 | } |
| 493 | |
| 494 | DeletionKind LLVM::StoreOp::rewire(const DestructurableMemorySlot &slot, |
| 495 | DenseMap<Attribute, MemorySlot> &subslots, |
| 496 | OpBuilder &builder, |
| 497 | const DataLayout &dataLayout) { |
| 498 | auto index = IntegerAttr::get(IntegerType::get(getContext(), 32), 0); |
| 499 | auto it = subslots.find(index); |
| 500 | assert(it != subslots.end()); |
| 501 | |
| 502 | getAddrMutable().set(it->getSecond().ptr); |
| 503 | return DeletionKind::Keep; |
| 504 | } |
| 505 | |
| 506 | //===----------------------------------------------------------------------===// |
| 507 | // Interfaces for discardable OPs |
| 508 | //===----------------------------------------------------------------------===// |
| 509 | |
| 510 | /// Conditions the deletion of the operation to the removal of all its uses. |
| 511 | static bool forwardToUsers(Operation *op, |
| 512 | SmallVectorImpl<OpOperand *> &newBlockingUses) { |
| 513 | for (Value result : op->getResults()) |
| 514 | for (OpOperand &use : result.getUses()) |
| 515 | newBlockingUses.push_back(Elt: &use); |
| 516 | return true; |
| 517 | } |
| 518 | |
| 519 | bool LLVM::BitcastOp::canUsesBeRemoved( |
| 520 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 521 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 522 | const DataLayout &dataLayout) { |
| 523 | return forwardToUsers(*this, newBlockingUses); |
| 524 | } |
| 525 | |
| 526 | DeletionKind LLVM::BitcastOp::removeBlockingUses( |
| 527 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 528 | return DeletionKind::Delete; |
| 529 | } |
| 530 | |
| 531 | bool LLVM::AddrSpaceCastOp::canUsesBeRemoved( |
| 532 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 533 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 534 | const DataLayout &dataLayout) { |
| 535 | return forwardToUsers(*this, newBlockingUses); |
| 536 | } |
| 537 | |
| 538 | DeletionKind LLVM::AddrSpaceCastOp::removeBlockingUses( |
| 539 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 540 | return DeletionKind::Delete; |
| 541 | } |
| 542 | |
| 543 | bool LLVM::LifetimeStartOp::canUsesBeRemoved( |
| 544 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 545 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 546 | const DataLayout &dataLayout) { |
| 547 | return true; |
| 548 | } |
| 549 | |
| 550 | DeletionKind LLVM::LifetimeStartOp::removeBlockingUses( |
| 551 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 552 | return DeletionKind::Delete; |
| 553 | } |
| 554 | |
| 555 | bool LLVM::LifetimeEndOp::canUsesBeRemoved( |
| 556 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 557 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 558 | const DataLayout &dataLayout) { |
| 559 | return true; |
| 560 | } |
| 561 | |
| 562 | DeletionKind LLVM::LifetimeEndOp::removeBlockingUses( |
| 563 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 564 | return DeletionKind::Delete; |
| 565 | } |
| 566 | |
| 567 | bool LLVM::InvariantStartOp::canUsesBeRemoved( |
| 568 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 569 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 570 | const DataLayout &dataLayout) { |
| 571 | return true; |
| 572 | } |
| 573 | |
| 574 | DeletionKind LLVM::InvariantStartOp::removeBlockingUses( |
| 575 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 576 | return DeletionKind::Delete; |
| 577 | } |
| 578 | |
| 579 | bool LLVM::InvariantEndOp::canUsesBeRemoved( |
| 580 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 581 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 582 | const DataLayout &dataLayout) { |
| 583 | return true; |
| 584 | } |
| 585 | |
| 586 | DeletionKind LLVM::InvariantEndOp::removeBlockingUses( |
| 587 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 588 | return DeletionKind::Delete; |
| 589 | } |
| 590 | |
| 591 | bool LLVM::LaunderInvariantGroupOp::canUsesBeRemoved( |
| 592 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 593 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 594 | const DataLayout &dataLayout) { |
| 595 | return forwardToUsers(*this, newBlockingUses); |
| 596 | } |
| 597 | |
| 598 | DeletionKind LLVM::LaunderInvariantGroupOp::removeBlockingUses( |
| 599 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 600 | return DeletionKind::Delete; |
| 601 | } |
| 602 | |
| 603 | bool LLVM::StripInvariantGroupOp::canUsesBeRemoved( |
| 604 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 605 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 606 | const DataLayout &dataLayout) { |
| 607 | return forwardToUsers(*this, newBlockingUses); |
| 608 | } |
| 609 | |
| 610 | DeletionKind LLVM::StripInvariantGroupOp::removeBlockingUses( |
| 611 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 612 | return DeletionKind::Delete; |
| 613 | } |
| 614 | |
| 615 | bool LLVM::DbgDeclareOp::canUsesBeRemoved( |
| 616 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 617 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 618 | const DataLayout &dataLayout) { |
| 619 | return true; |
| 620 | } |
| 621 | |
| 622 | DeletionKind LLVM::DbgDeclareOp::removeBlockingUses( |
| 623 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 624 | return DeletionKind::Delete; |
| 625 | } |
| 626 | |
| 627 | bool LLVM::DbgValueOp::canUsesBeRemoved( |
| 628 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 629 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 630 | const DataLayout &dataLayout) { |
| 631 | // There is only one operand that we can remove the use of. |
| 632 | if (blockingUses.size() != 1) |
| 633 | return false; |
| 634 | |
| 635 | return (*blockingUses.begin())->get() == getValue(); |
| 636 | } |
| 637 | |
| 638 | DeletionKind LLVM::DbgValueOp::removeBlockingUses( |
| 639 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 640 | // builder by default is after '*this', but we need it before '*this'. |
| 641 | builder.setInsertionPoint(*this); |
| 642 | |
| 643 | // Rather than dropping the debug value, replace it with undef to preserve the |
| 644 | // debug local variable info. This allows the debugger to inform the user that |
| 645 | // the variable has been optimized out. |
| 646 | auto undef = |
| 647 | builder.create<UndefOp>(getValue().getLoc(), getValue().getType()); |
| 648 | getValueMutable().assign(undef); |
| 649 | return DeletionKind::Keep; |
| 650 | } |
| 651 | |
| 652 | bool LLVM::DbgDeclareOp::requiresReplacedValues() { return true; } |
| 653 | |
| 654 | void LLVM::DbgDeclareOp::visitReplacedValues( |
| 655 | ArrayRef<std::pair<Operation *, Value>> definitions, OpBuilder &builder) { |
| 656 | for (auto [op, value] : definitions) { |
| 657 | builder.setInsertionPointAfter(op); |
| 658 | builder.create<LLVM::DbgValueOp>(getLoc(), value, getVarInfo(), |
| 659 | getLocationExpr()); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | //===----------------------------------------------------------------------===// |
| 664 | // Interfaces for GEPOp |
| 665 | //===----------------------------------------------------------------------===// |
| 666 | |
| 667 | static bool hasAllZeroIndices(LLVM::GEPOp gepOp) { |
| 668 | return llvm::all_of(gepOp.getIndices(), [](auto index) { |
| 669 | auto indexAttr = llvm::dyn_cast_if_present<IntegerAttr>(index); |
| 670 | return indexAttr && indexAttr.getValue() == 0; |
| 671 | }); |
| 672 | } |
| 673 | |
| 674 | bool LLVM::GEPOp::canUsesBeRemoved( |
| 675 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 676 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 677 | const DataLayout &dataLayout) { |
| 678 | // GEP can be removed as long as it is a no-op and its users can be removed. |
| 679 | if (!hasAllZeroIndices(*this)) |
| 680 | return false; |
| 681 | return forwardToUsers(*this, newBlockingUses); |
| 682 | } |
| 683 | |
| 684 | DeletionKind LLVM::GEPOp::removeBlockingUses( |
| 685 | const SmallPtrSetImpl<OpOperand *> &blockingUses, OpBuilder &builder) { |
| 686 | return DeletionKind::Delete; |
| 687 | } |
| 688 | |
| 689 | /// Returns the amount of bytes the provided GEP elements will offset the |
| 690 | /// pointer by. Returns nullopt if no constant offset could be computed. |
| 691 | static std::optional<uint64_t> gepToByteOffset(const DataLayout &dataLayout, |
| 692 | LLVM::GEPOp gep) { |
| 693 | // Collects all indices. |
| 694 | SmallVector<uint64_t> indices; |
| 695 | for (auto index : gep.getIndices()) { |
| 696 | auto constIndex = dyn_cast<IntegerAttr>(index); |
| 697 | if (!constIndex) |
| 698 | return {}; |
| 699 | int64_t gepIndex = constIndex.getInt(); |
| 700 | // Negative indices are not supported. |
| 701 | if (gepIndex < 0) |
| 702 | return {}; |
| 703 | indices.push_back(gepIndex); |
| 704 | } |
| 705 | |
| 706 | Type currentType = gep.getElemType(); |
| 707 | uint64_t offset = indices[0] * dataLayout.getTypeSize(t: currentType); |
| 708 | |
| 709 | for (uint64_t index : llvm::drop_begin(RangeOrContainer&: indices)) { |
| 710 | bool shouldCancel = |
| 711 | TypeSwitch<Type, bool>(currentType) |
| 712 | .Case(caseFn: [&](LLVM::LLVMArrayType arrayType) { |
| 713 | offset += |
| 714 | index * dataLayout.getTypeSize(t: arrayType.getElementType()); |
| 715 | currentType = arrayType.getElementType(); |
| 716 | return false; |
| 717 | }) |
| 718 | .Case(caseFn: [&](LLVM::LLVMStructType structType) { |
| 719 | ArrayRef<Type> body = structType.getBody(); |
| 720 | assert(index < body.size() && "expected valid struct indexing" ); |
| 721 | for (uint32_t i : llvm::seq(Size: index)) { |
| 722 | if (!structType.isPacked()) |
| 723 | offset = llvm::alignTo( |
| 724 | Value: offset, Align: dataLayout.getTypeABIAlignment(t: body[i])); |
| 725 | offset += dataLayout.getTypeSize(t: body[i]); |
| 726 | } |
| 727 | |
| 728 | // Align for the current type as well. |
| 729 | if (!structType.isPacked()) |
| 730 | offset = llvm::alignTo( |
| 731 | Value: offset, Align: dataLayout.getTypeABIAlignment(t: body[index])); |
| 732 | currentType = body[index]; |
| 733 | return false; |
| 734 | }) |
| 735 | .Default(defaultFn: [&](Type type) { |
| 736 | LLVM_DEBUG(llvm::dbgs() |
| 737 | << "[sroa] Unsupported type for offset computations" |
| 738 | << type << "\n" ); |
| 739 | return true; |
| 740 | }); |
| 741 | |
| 742 | if (shouldCancel) |
| 743 | return std::nullopt; |
| 744 | } |
| 745 | |
| 746 | return offset; |
| 747 | } |
| 748 | |
| 749 | namespace { |
| 750 | /// A struct that stores both the index into the aggregate type of the slot as |
| 751 | /// well as the corresponding byte offset in memory. |
| 752 | struct SubslotAccessInfo { |
| 753 | /// The parent slot's index that the access falls into. |
| 754 | uint32_t index; |
| 755 | /// The offset into the subslot of the access. |
| 756 | uint64_t subslotOffset; |
| 757 | }; |
| 758 | } // namespace |
| 759 | |
| 760 | /// Computes subslot access information for an access into `slot` with the given |
| 761 | /// offset. |
| 762 | /// Returns nullopt when the offset is out-of-bounds or when the access is into |
| 763 | /// the padding of `slot`. |
| 764 | static std::optional<SubslotAccessInfo> |
| 765 | getSubslotAccessInfo(const DestructurableMemorySlot &slot, |
| 766 | const DataLayout &dataLayout, LLVM::GEPOp gep) { |
| 767 | std::optional<uint64_t> offset = gepToByteOffset(dataLayout, gep); |
| 768 | if (!offset) |
| 769 | return {}; |
| 770 | |
| 771 | // Helper to check that a constant index is in the bounds of the GEP index |
| 772 | // representation. LLVM dialects's GEP arguments have a limited bitwidth, thus |
| 773 | // this additional check is necessary. |
| 774 | auto isOutOfBoundsGEPIndex = [](uint64_t index) { |
| 775 | return index >= (1 << LLVM::kGEPConstantBitWidth); |
| 776 | }; |
| 777 | |
| 778 | Type type = slot.elemType; |
| 779 | if (*offset >= dataLayout.getTypeSize(t: type)) |
| 780 | return {}; |
| 781 | return TypeSwitch<Type, std::optional<SubslotAccessInfo>>(type) |
| 782 | .Case(caseFn: [&](LLVM::LLVMArrayType arrayType) |
| 783 | -> std::optional<SubslotAccessInfo> { |
| 784 | // Find which element of the array contains the offset. |
| 785 | uint64_t elemSize = dataLayout.getTypeSize(t: arrayType.getElementType()); |
| 786 | uint64_t index = *offset / elemSize; |
| 787 | if (isOutOfBoundsGEPIndex(index)) |
| 788 | return {}; |
| 789 | return SubslotAccessInfo{.index: static_cast<uint32_t>(index), |
| 790 | .subslotOffset: *offset - (index * elemSize)}; |
| 791 | }) |
| 792 | .Case(caseFn: [&](LLVM::LLVMStructType structType) |
| 793 | -> std::optional<SubslotAccessInfo> { |
| 794 | uint64_t distanceToStart = 0; |
| 795 | // Walk over the elements of the struct to find in which of |
| 796 | // them the offset is. |
| 797 | for (auto [index, elem] : llvm::enumerate(structType.getBody())) { |
| 798 | uint64_t elemSize = dataLayout.getTypeSize(elem); |
| 799 | if (!structType.isPacked()) { |
| 800 | distanceToStart = llvm::alignTo( |
| 801 | distanceToStart, dataLayout.getTypeABIAlignment(elem)); |
| 802 | // If the offset is in padding, cancel the rewrite. |
| 803 | if (offset < distanceToStart) |
| 804 | return {}; |
| 805 | } |
| 806 | |
| 807 | if (offset < distanceToStart + elemSize) { |
| 808 | if (isOutOfBoundsGEPIndex(index)) |
| 809 | return {}; |
| 810 | // The offset is within this element, stop iterating the |
| 811 | // struct and return the index. |
| 812 | return SubslotAccessInfo{static_cast<uint32_t>(index), |
| 813 | *offset - distanceToStart}; |
| 814 | } |
| 815 | |
| 816 | // The offset is not within this element, continue walking |
| 817 | // over the struct. |
| 818 | distanceToStart += elemSize; |
| 819 | } |
| 820 | |
| 821 | return {}; |
| 822 | }); |
| 823 | } |
| 824 | |
| 825 | /// Constructs a byte array type of the given size. |
| 826 | static LLVM::LLVMArrayType getByteArrayType(MLIRContext *context, |
| 827 | unsigned size) { |
| 828 | auto byteType = IntegerType::get(context, 8); |
| 829 | return LLVM::LLVMArrayType::get(context, byteType, size); |
| 830 | } |
| 831 | |
| 832 | LogicalResult LLVM::GEPOp::ensureOnlySafeAccesses( |
| 833 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 834 | const DataLayout &dataLayout) { |
| 835 | if (getBase() != slot.ptr) |
| 836 | return success(); |
| 837 | std::optional<uint64_t> gepOffset = gepToByteOffset(dataLayout, *this); |
| 838 | if (!gepOffset) |
| 839 | return failure(); |
| 840 | uint64_t slotSize = dataLayout.getTypeSize(slot.elemType); |
| 841 | // Check that the access is strictly inside the slot. |
| 842 | if (*gepOffset >= slotSize) |
| 843 | return failure(); |
| 844 | // Every access that remains in bounds of the remaining slot is considered |
| 845 | // legal. |
| 846 | mustBeSafelyUsed.emplace_back<MemorySlot>( |
| 847 | {getRes(), getByteArrayType(getContext(), slotSize - *gepOffset)}); |
| 848 | return success(); |
| 849 | } |
| 850 | |
| 851 | bool LLVM::GEPOp::canRewire(const DestructurableMemorySlot &slot, |
| 852 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 853 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 854 | const DataLayout &dataLayout) { |
| 855 | if (!isa<LLVM::LLVMPointerType>(getBase().getType())) |
| 856 | return false; |
| 857 | |
| 858 | if (getBase() != slot.ptr) |
| 859 | return false; |
| 860 | std::optional<SubslotAccessInfo> accessInfo = |
| 861 | getSubslotAccessInfo(slot, dataLayout, *this); |
| 862 | if (!accessInfo) |
| 863 | return false; |
| 864 | auto indexAttr = |
| 865 | IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index); |
| 866 | assert(slot.subelementTypes.contains(indexAttr)); |
| 867 | usedIndices.insert(indexAttr); |
| 868 | |
| 869 | // The remainder of the subslot should be accesses in-bounds. Thus, we create |
| 870 | // a dummy slot with the size of the remainder. |
| 871 | Type subslotType = slot.subelementTypes.lookup(indexAttr); |
| 872 | uint64_t slotSize = dataLayout.getTypeSize(subslotType); |
| 873 | LLVM::LLVMArrayType remainingSlotType = |
| 874 | getByteArrayType(getContext(), slotSize - accessInfo->subslotOffset); |
| 875 | mustBeSafelyUsed.emplace_back<MemorySlot>({getRes(), remainingSlotType}); |
| 876 | |
| 877 | return true; |
| 878 | } |
| 879 | |
| 880 | DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot, |
| 881 | DenseMap<Attribute, MemorySlot> &subslots, |
| 882 | OpBuilder &builder, |
| 883 | const DataLayout &dataLayout) { |
| 884 | std::optional<SubslotAccessInfo> accessInfo = |
| 885 | getSubslotAccessInfo(slot, dataLayout, *this); |
| 886 | assert(accessInfo && "expected access info to be checked before" ); |
| 887 | auto indexAttr = |
| 888 | IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index); |
| 889 | const MemorySlot &newSlot = subslots.at(indexAttr); |
| 890 | |
| 891 | auto byteType = IntegerType::get(builder.getContext(), 8); |
| 892 | auto newPtr = builder.createOrFold<LLVM::GEPOp>( |
| 893 | getLoc(), getResult().getType(), byteType, newSlot.ptr, |
| 894 | ArrayRef<GEPArg>(accessInfo->subslotOffset), getNoWrapFlags()); |
| 895 | getResult().replaceAllUsesWith(newPtr); |
| 896 | return DeletionKind::Delete; |
| 897 | } |
| 898 | |
| 899 | //===----------------------------------------------------------------------===// |
| 900 | // Utilities for memory intrinsics |
| 901 | //===----------------------------------------------------------------------===// |
| 902 | |
| 903 | namespace { |
| 904 | |
| 905 | /// Returns the length of the given memory intrinsic in bytes if it can be known |
| 906 | /// at compile-time on a best-effort basis, nothing otherwise. |
| 907 | template <class MemIntr> |
| 908 | std::optional<uint64_t> getStaticMemIntrLen(MemIntr op) { |
| 909 | APInt memIntrLen; |
| 910 | if (!matchPattern(op.getLen(), m_ConstantInt(&memIntrLen))) |
| 911 | return {}; |
| 912 | if (memIntrLen.getBitWidth() > 64) |
| 913 | return {}; |
| 914 | return memIntrLen.getZExtValue(); |
| 915 | } |
| 916 | |
| 917 | /// Returns the length of the given memory intrinsic in bytes if it can be known |
| 918 | /// at compile-time on a best-effort basis, nothing otherwise. |
| 919 | /// Because MemcpyInlineOp has its length encoded as an attribute, this requires |
| 920 | /// specialized handling. |
| 921 | template <> |
| 922 | std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemcpyInlineOp op) { |
| 923 | APInt memIntrLen = op.getLen(); |
| 924 | if (memIntrLen.getBitWidth() > 64) |
| 925 | return {}; |
| 926 | return memIntrLen.getZExtValue(); |
| 927 | } |
| 928 | |
| 929 | /// Returns the length of the given memory intrinsic in bytes if it can be known |
| 930 | /// at compile-time on a best-effort basis, nothing otherwise. |
| 931 | /// Because MemsetInlineOp has its length encoded as an attribute, this requires |
| 932 | /// specialized handling. |
| 933 | template <> |
| 934 | std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemsetInlineOp op) { |
| 935 | APInt memIntrLen = op.getLen(); |
| 936 | if (memIntrLen.getBitWidth() > 64) |
| 937 | return {}; |
| 938 | return memIntrLen.getZExtValue(); |
| 939 | } |
| 940 | |
| 941 | /// Returns an integer attribute representing the length of a memset intrinsic |
| 942 | template <class MemsetIntr> |
| 943 | IntegerAttr createMemsetLenAttr(MemsetIntr op) { |
| 944 | IntegerAttr memsetLenAttr; |
| 945 | bool successfulMatch = |
| 946 | matchPattern(op.getLen(), m_Constant<IntegerAttr>(&memsetLenAttr)); |
| 947 | (void)successfulMatch; |
| 948 | assert(successfulMatch); |
| 949 | return memsetLenAttr; |
| 950 | } |
| 951 | |
| 952 | /// Returns an integer attribute representing the length of a memset intrinsic |
| 953 | /// Because MemsetInlineOp has its length encoded as an attribute, this requires |
| 954 | /// specialized handling. |
| 955 | template <> |
| 956 | IntegerAttr createMemsetLenAttr(LLVM::MemsetInlineOp op) { |
| 957 | return op.getLenAttr(); |
| 958 | } |
| 959 | |
| 960 | /// Creates a memset intrinsic of that matches the `toReplace` intrinsic |
| 961 | /// using the provided parameters. There are template specializations for |
| 962 | /// MemsetOp and MemsetInlineOp. |
| 963 | template <class MemsetIntr> |
| 964 | void createMemsetIntr(OpBuilder &builder, MemsetIntr toReplace, |
| 965 | IntegerAttr memsetLenAttr, uint64_t newMemsetSize, |
| 966 | DenseMap<Attribute, MemorySlot> &subslots, |
| 967 | Attribute index); |
| 968 | |
| 969 | template <> |
| 970 | void createMemsetIntr(OpBuilder &builder, LLVM::MemsetOp toReplace, |
| 971 | IntegerAttr memsetLenAttr, uint64_t newMemsetSize, |
| 972 | DenseMap<Attribute, MemorySlot> &subslots, |
| 973 | Attribute index) { |
| 974 | Value newMemsetSizeValue = |
| 975 | builder |
| 976 | .create<LLVM::ConstantOp>( |
| 977 | toReplace.getLen().getLoc(), |
| 978 | IntegerAttr::get(memsetLenAttr.getType(), newMemsetSize)) |
| 979 | .getResult(); |
| 980 | |
| 981 | builder.create<LLVM::MemsetOp>(toReplace.getLoc(), subslots.at(index).ptr, |
| 982 | toReplace.getVal(), newMemsetSizeValue, |
| 983 | toReplace.getIsVolatile()); |
| 984 | } |
| 985 | |
| 986 | template <> |
| 987 | void createMemsetIntr(OpBuilder &builder, LLVM::MemsetInlineOp toReplace, |
| 988 | IntegerAttr memsetLenAttr, uint64_t newMemsetSize, |
| 989 | DenseMap<Attribute, MemorySlot> &subslots, |
| 990 | Attribute index) { |
| 991 | auto newMemsetSizeValue = |
| 992 | IntegerAttr::get(memsetLenAttr.getType(), newMemsetSize); |
| 993 | |
| 994 | builder.create<LLVM::MemsetInlineOp>( |
| 995 | toReplace.getLoc(), subslots.at(index).ptr, toReplace.getVal(), |
| 996 | newMemsetSizeValue, toReplace.getIsVolatile()); |
| 997 | } |
| 998 | |
| 999 | } // namespace |
| 1000 | |
| 1001 | /// Returns whether one can be sure the memory intrinsic does not write outside |
| 1002 | /// of the bounds of the given slot, on a best-effort basis. |
| 1003 | template <class MemIntr> |
| 1004 | static bool definitelyWritesOnlyWithinSlot(MemIntr op, const MemorySlot &slot, |
| 1005 | const DataLayout &dataLayout) { |
| 1006 | if (!isa<LLVM::LLVMPointerType>(slot.ptr.getType()) || |
| 1007 | op.getDst() != slot.ptr) |
| 1008 | return false; |
| 1009 | |
| 1010 | std::optional<uint64_t> memIntrLen = getStaticMemIntrLen(op); |
| 1011 | return memIntrLen && *memIntrLen <= dataLayout.getTypeSize(t: slot.elemType); |
| 1012 | } |
| 1013 | |
| 1014 | /// Checks whether all indices are i32. This is used to check GEPs can index |
| 1015 | /// into them. |
| 1016 | static bool areAllIndicesI32(const DestructurableMemorySlot &slot) { |
| 1017 | Type i32 = IntegerType::get(slot.ptr.getContext(), 32); |
| 1018 | return llvm::all_of(Range: llvm::make_first_range(c: slot.subelementTypes), |
| 1019 | P: [&](Attribute index) { |
| 1020 | auto intIndex = dyn_cast<IntegerAttr>(index); |
| 1021 | return intIndex && intIndex.getType() == i32; |
| 1022 | }); |
| 1023 | } |
| 1024 | |
| 1025 | //===----------------------------------------------------------------------===// |
| 1026 | // Interfaces for memset and memset.inline |
| 1027 | //===----------------------------------------------------------------------===// |
| 1028 | |
| 1029 | template <class MemsetIntr> |
| 1030 | static bool memsetCanRewire(MemsetIntr op, const DestructurableMemorySlot &slot, |
| 1031 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1032 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1033 | const DataLayout &dataLayout) { |
| 1034 | if (&slot.elemType.getDialect() != op.getOperation()->getDialect()) |
| 1035 | return false; |
| 1036 | |
| 1037 | if (op.getIsVolatile()) |
| 1038 | return false; |
| 1039 | |
| 1040 | if (!cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap()) |
| 1041 | return false; |
| 1042 | |
| 1043 | if (!areAllIndicesI32(slot)) |
| 1044 | return false; |
| 1045 | |
| 1046 | return definitelyWritesOnlyWithinSlot(op, slot, dataLayout); |
| 1047 | } |
| 1048 | |
| 1049 | template <class MemsetIntr> |
| 1050 | static Value memsetGetStored(MemsetIntr op, const MemorySlot &slot, |
| 1051 | OpBuilder &builder) { |
| 1052 | /// Returns an integer value that is `width` bits wide representing the value |
| 1053 | /// assigned to the slot by memset. |
| 1054 | auto buildMemsetValue = [&](unsigned width) -> Value { |
| 1055 | assert(width % 8 == 0); |
| 1056 | auto intType = IntegerType::get(op.getContext(), width); |
| 1057 | |
| 1058 | // If we know the pattern at compile time, we can compute and assign a |
| 1059 | // constant directly. |
| 1060 | IntegerAttr constantPattern; |
| 1061 | if (matchPattern(op.getVal(), m_Constant(&constantPattern))) { |
| 1062 | assert(constantPattern.getValue().getBitWidth() == 8); |
| 1063 | APInt memsetVal(/*numBits=*/width, /*val=*/0); |
| 1064 | for (unsigned loBit = 0; loBit < width; loBit += 8) |
| 1065 | memsetVal.insertBits(constantPattern.getValue(), loBit); |
| 1066 | return builder.create<LLVM::ConstantOp>( |
| 1067 | op.getLoc(), IntegerAttr::get(intType, memsetVal)); |
| 1068 | } |
| 1069 | |
| 1070 | // If the output is a single byte, we can return the pattern directly. |
| 1071 | if (width == 8) |
| 1072 | return op.getVal(); |
| 1073 | |
| 1074 | // Otherwise build the memset integer at runtime by repeatedly shifting the |
| 1075 | // value and or-ing it with the previous value. |
| 1076 | uint64_t coveredBits = 8; |
| 1077 | Value currentValue = |
| 1078 | builder.create<LLVM::ZExtOp>(op.getLoc(), intType, op.getVal()); |
| 1079 | while (coveredBits < width) { |
| 1080 | Value shiftBy = |
| 1081 | builder.create<LLVM::ConstantOp>(op.getLoc(), intType, coveredBits); |
| 1082 | Value shifted = |
| 1083 | builder.create<LLVM::ShlOp>(op.getLoc(), currentValue, shiftBy); |
| 1084 | currentValue = |
| 1085 | builder.create<LLVM::OrOp>(op.getLoc(), currentValue, shifted); |
| 1086 | coveredBits *= 2; |
| 1087 | } |
| 1088 | |
| 1089 | return currentValue; |
| 1090 | }; |
| 1091 | return TypeSwitch<Type, Value>(slot.elemType) |
| 1092 | .Case([&](IntegerType type) -> Value { |
| 1093 | return buildMemsetValue(type.getWidth()); |
| 1094 | }) |
| 1095 | .Case([&](FloatType type) -> Value { |
| 1096 | Value intVal = buildMemsetValue(type.getWidth()); |
| 1097 | return builder.create<LLVM::BitcastOp>(op.getLoc(), type, intVal); |
| 1098 | }) |
| 1099 | .Default([](Type) -> Value { |
| 1100 | llvm_unreachable( |
| 1101 | "getStored should not be called on memset to unsupported type" ); |
| 1102 | }); |
| 1103 | } |
| 1104 | |
| 1105 | template <class MemsetIntr> |
| 1106 | static bool |
| 1107 | memsetCanUsesBeRemoved(MemsetIntr op, const MemorySlot &slot, |
| 1108 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1109 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1110 | const DataLayout &dataLayout) { |
| 1111 | bool canConvertType = |
| 1112 | TypeSwitch<Type, bool>(slot.elemType) |
| 1113 | .Case<IntegerType, FloatType>([](auto type) { |
| 1114 | return type.getWidth() % 8 == 0 && type.getWidth() > 0; |
| 1115 | }) |
| 1116 | .Default([](Type) { return false; }); |
| 1117 | if (!canConvertType) |
| 1118 | return false; |
| 1119 | |
| 1120 | if (op.getIsVolatile()) |
| 1121 | return false; |
| 1122 | |
| 1123 | return getStaticMemIntrLen(op) == dataLayout.getTypeSize(t: slot.elemType); |
| 1124 | } |
| 1125 | |
| 1126 | template <class MemsetIntr> |
| 1127 | static DeletionKind |
| 1128 | memsetRewire(MemsetIntr op, const DestructurableMemorySlot &slot, |
| 1129 | DenseMap<Attribute, MemorySlot> &subslots, OpBuilder &builder, |
| 1130 | const DataLayout &dataLayout) { |
| 1131 | |
| 1132 | std::optional<DenseMap<Attribute, Type>> types = |
| 1133 | cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap(); |
| 1134 | |
| 1135 | IntegerAttr memsetLenAttr = createMemsetLenAttr(op); |
| 1136 | |
| 1137 | bool packed = false; |
| 1138 | if (auto structType = dyn_cast<LLVM::LLVMStructType>(slot.elemType)) |
| 1139 | packed = structType.isPacked(); |
| 1140 | |
| 1141 | Type i32 = IntegerType::get(op.getContext(), 32); |
| 1142 | uint64_t memsetLen = memsetLenAttr.getValue().getZExtValue(); |
| 1143 | uint64_t covered = 0; |
| 1144 | for (size_t i = 0; i < types->size(); i++) { |
| 1145 | // Create indices on the fly to get elements in the right order. |
| 1146 | Attribute index = IntegerAttr::get(i32, i); |
| 1147 | Type elemType = types->at(Val: index); |
| 1148 | uint64_t typeSize = dataLayout.getTypeSize(t: elemType); |
| 1149 | |
| 1150 | if (!packed) |
| 1151 | covered = |
| 1152 | llvm::alignTo(Value: covered, Align: dataLayout.getTypeABIAlignment(t: elemType)); |
| 1153 | |
| 1154 | if (covered >= memsetLen) |
| 1155 | break; |
| 1156 | |
| 1157 | // If this subslot is used, apply a new memset to it. |
| 1158 | // Otherwise, only compute its offset within the original memset. |
| 1159 | if (subslots.contains(Val: index)) { |
| 1160 | uint64_t newMemsetSize = std::min(a: memsetLen - covered, b: typeSize); |
| 1161 | createMemsetIntr(builder, op, memsetLenAttr, newMemsetSize, subslots, |
| 1162 | index); |
| 1163 | } |
| 1164 | |
| 1165 | covered += typeSize; |
| 1166 | } |
| 1167 | |
| 1168 | return DeletionKind::Delete; |
| 1169 | } |
| 1170 | |
| 1171 | bool LLVM::MemsetOp::loadsFrom(const MemorySlot &slot) { return false; } |
| 1172 | |
| 1173 | bool LLVM::MemsetOp::storesTo(const MemorySlot &slot) { |
| 1174 | return getDst() == slot.ptr; |
| 1175 | } |
| 1176 | |
| 1177 | Value LLVM::MemsetOp::getStored(const MemorySlot &slot, OpBuilder &builder, |
| 1178 | Value reachingDef, |
| 1179 | const DataLayout &dataLayout) { |
| 1180 | return memsetGetStored(*this, slot, builder); |
| 1181 | } |
| 1182 | |
| 1183 | bool LLVM::MemsetOp::canUsesBeRemoved( |
| 1184 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1185 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1186 | const DataLayout &dataLayout) { |
| 1187 | return memsetCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses, |
| 1188 | dataLayout); |
| 1189 | } |
| 1190 | |
| 1191 | DeletionKind LLVM::MemsetOp::removeBlockingUses( |
| 1192 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1193 | OpBuilder &builder, Value reachingDefinition, |
| 1194 | const DataLayout &dataLayout) { |
| 1195 | return DeletionKind::Delete; |
| 1196 | } |
| 1197 | |
| 1198 | LogicalResult LLVM::MemsetOp::ensureOnlySafeAccesses( |
| 1199 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1200 | const DataLayout &dataLayout) { |
| 1201 | return success(definitelyWritesOnlyWithinSlot(*this, slot, dataLayout)); |
| 1202 | } |
| 1203 | |
| 1204 | bool LLVM::MemsetOp::canRewire(const DestructurableMemorySlot &slot, |
| 1205 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1206 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1207 | const DataLayout &dataLayout) { |
| 1208 | return memsetCanRewire(*this, slot, usedIndices, mustBeSafelyUsed, |
| 1209 | dataLayout); |
| 1210 | } |
| 1211 | |
| 1212 | DeletionKind LLVM::MemsetOp::rewire(const DestructurableMemorySlot &slot, |
| 1213 | DenseMap<Attribute, MemorySlot> &subslots, |
| 1214 | OpBuilder &builder, |
| 1215 | const DataLayout &dataLayout) { |
| 1216 | return memsetRewire(*this, slot, subslots, builder, dataLayout); |
| 1217 | } |
| 1218 | |
| 1219 | bool LLVM::MemsetInlineOp::loadsFrom(const MemorySlot &slot) { return false; } |
| 1220 | |
| 1221 | bool LLVM::MemsetInlineOp::storesTo(const MemorySlot &slot) { |
| 1222 | return getDst() == slot.ptr; |
| 1223 | } |
| 1224 | |
| 1225 | Value LLVM::MemsetInlineOp::getStored(const MemorySlot &slot, |
| 1226 | OpBuilder &builder, Value reachingDef, |
| 1227 | const DataLayout &dataLayout) { |
| 1228 | return memsetGetStored(*this, slot, builder); |
| 1229 | } |
| 1230 | |
| 1231 | bool LLVM::MemsetInlineOp::canUsesBeRemoved( |
| 1232 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1233 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1234 | const DataLayout &dataLayout) { |
| 1235 | return memsetCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses, |
| 1236 | dataLayout); |
| 1237 | } |
| 1238 | |
| 1239 | DeletionKind LLVM::MemsetInlineOp::removeBlockingUses( |
| 1240 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1241 | OpBuilder &builder, Value reachingDefinition, |
| 1242 | const DataLayout &dataLayout) { |
| 1243 | return DeletionKind::Delete; |
| 1244 | } |
| 1245 | |
| 1246 | LogicalResult LLVM::MemsetInlineOp::ensureOnlySafeAccesses( |
| 1247 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1248 | const DataLayout &dataLayout) { |
| 1249 | return success(definitelyWritesOnlyWithinSlot(*this, slot, dataLayout)); |
| 1250 | } |
| 1251 | |
| 1252 | bool LLVM::MemsetInlineOp::canRewire( |
| 1253 | const DestructurableMemorySlot &slot, |
| 1254 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1255 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1256 | const DataLayout &dataLayout) { |
| 1257 | return memsetCanRewire(*this, slot, usedIndices, mustBeSafelyUsed, |
| 1258 | dataLayout); |
| 1259 | } |
| 1260 | |
| 1261 | DeletionKind |
| 1262 | LLVM::MemsetInlineOp::rewire(const DestructurableMemorySlot &slot, |
| 1263 | DenseMap<Attribute, MemorySlot> &subslots, |
| 1264 | OpBuilder &builder, const DataLayout &dataLayout) { |
| 1265 | return memsetRewire(*this, slot, subslots, builder, dataLayout); |
| 1266 | } |
| 1267 | |
| 1268 | //===----------------------------------------------------------------------===// |
| 1269 | // Interfaces for memcpy/memmove |
| 1270 | //===----------------------------------------------------------------------===// |
| 1271 | |
| 1272 | template <class MemcpyLike> |
| 1273 | static bool memcpyLoadsFrom(MemcpyLike op, const MemorySlot &slot) { |
| 1274 | return op.getSrc() == slot.ptr; |
| 1275 | } |
| 1276 | |
| 1277 | template <class MemcpyLike> |
| 1278 | static bool memcpyStoresTo(MemcpyLike op, const MemorySlot &slot) { |
| 1279 | return op.getDst() == slot.ptr; |
| 1280 | } |
| 1281 | |
| 1282 | template <class MemcpyLike> |
| 1283 | static Value memcpyGetStored(MemcpyLike op, const MemorySlot &slot, |
| 1284 | OpBuilder &builder) { |
| 1285 | return builder.create<LLVM::LoadOp>(op.getLoc(), slot.elemType, op.getSrc()); |
| 1286 | } |
| 1287 | |
| 1288 | template <class MemcpyLike> |
| 1289 | static bool |
| 1290 | memcpyCanUsesBeRemoved(MemcpyLike op, const MemorySlot &slot, |
| 1291 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1292 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1293 | const DataLayout &dataLayout) { |
| 1294 | // If source and destination are the same, memcpy behavior is undefined and |
| 1295 | // memmove is a no-op. Because there is no memory change happening here, |
| 1296 | // simplifying such operations is left to canonicalization. |
| 1297 | if (op.getDst() == op.getSrc()) |
| 1298 | return false; |
| 1299 | |
| 1300 | if (op.getIsVolatile()) |
| 1301 | return false; |
| 1302 | |
| 1303 | return getStaticMemIntrLen(op) == dataLayout.getTypeSize(t: slot.elemType); |
| 1304 | } |
| 1305 | |
| 1306 | template <class MemcpyLike> |
| 1307 | static DeletionKind |
| 1308 | memcpyRemoveBlockingUses(MemcpyLike op, const MemorySlot &slot, |
| 1309 | const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1310 | OpBuilder &builder, Value reachingDefinition) { |
| 1311 | if (op.loadsFrom(slot)) |
| 1312 | builder.create<LLVM::StoreOp>(op.getLoc(), reachingDefinition, op.getDst()); |
| 1313 | return DeletionKind::Delete; |
| 1314 | } |
| 1315 | |
| 1316 | template <class MemcpyLike> |
| 1317 | static LogicalResult |
| 1318 | memcpyEnsureOnlySafeAccesses(MemcpyLike op, const MemorySlot &slot, |
| 1319 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) { |
| 1320 | DataLayout dataLayout = DataLayout::closest(op); |
| 1321 | // While rewiring memcpy-like intrinsics only supports full copies, partial |
| 1322 | // copies are still safe accesses so it is enough to only check for writes |
| 1323 | // within bounds. |
| 1324 | return success(definitelyWritesOnlyWithinSlot(op, slot, dataLayout)); |
| 1325 | } |
| 1326 | |
| 1327 | template <class MemcpyLike> |
| 1328 | static bool memcpyCanRewire(MemcpyLike op, const DestructurableMemorySlot &slot, |
| 1329 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1330 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1331 | const DataLayout &dataLayout) { |
| 1332 | if (op.getIsVolatile()) |
| 1333 | return false; |
| 1334 | |
| 1335 | if (!cast<DestructurableTypeInterface>(slot.elemType).getSubelementIndexMap()) |
| 1336 | return false; |
| 1337 | |
| 1338 | if (!areAllIndicesI32(slot)) |
| 1339 | return false; |
| 1340 | |
| 1341 | // Only full copies are supported. |
| 1342 | if (getStaticMemIntrLen(op) != dataLayout.getTypeSize(t: slot.elemType)) |
| 1343 | return false; |
| 1344 | |
| 1345 | if (op.getSrc() == slot.ptr) |
| 1346 | usedIndices.insert_range(R: llvm::make_first_range(c: slot.subelementTypes)); |
| 1347 | |
| 1348 | return true; |
| 1349 | } |
| 1350 | |
| 1351 | namespace { |
| 1352 | |
| 1353 | template <class MemcpyLike> |
| 1354 | void createMemcpyLikeToReplace(OpBuilder &builder, const DataLayout &layout, |
| 1355 | MemcpyLike toReplace, Value dst, Value src, |
| 1356 | Type toCpy, bool isVolatile) { |
| 1357 | Value memcpySize = builder.create<LLVM::ConstantOp>( |
| 1358 | toReplace.getLoc(), IntegerAttr::get(toReplace.getLen().getType(), |
| 1359 | layout.getTypeSize(toCpy))); |
| 1360 | builder.create<MemcpyLike>(toReplace.getLoc(), dst, src, memcpySize, |
| 1361 | isVolatile); |
| 1362 | } |
| 1363 | |
| 1364 | template <> |
| 1365 | void createMemcpyLikeToReplace(OpBuilder &builder, const DataLayout &layout, |
| 1366 | LLVM::MemcpyInlineOp toReplace, Value dst, |
| 1367 | Value src, Type toCpy, bool isVolatile) { |
| 1368 | Type lenType = IntegerType::get(toReplace->getContext(), |
| 1369 | toReplace.getLen().getBitWidth()); |
| 1370 | builder.create<LLVM::MemcpyInlineOp>( |
| 1371 | toReplace.getLoc(), dst, src, |
| 1372 | IntegerAttr::get(lenType, layout.getTypeSize(toCpy)), isVolatile); |
| 1373 | } |
| 1374 | |
| 1375 | } // namespace |
| 1376 | |
| 1377 | /// Rewires a memcpy-like operation. Only copies to or from the full slot are |
| 1378 | /// supported. |
| 1379 | template <class MemcpyLike> |
| 1380 | static DeletionKind |
| 1381 | memcpyRewire(MemcpyLike op, const DestructurableMemorySlot &slot, |
| 1382 | DenseMap<Attribute, MemorySlot> &subslots, OpBuilder &builder, |
| 1383 | const DataLayout &dataLayout) { |
| 1384 | if (subslots.empty()) |
| 1385 | return DeletionKind::Delete; |
| 1386 | |
| 1387 | assert((slot.ptr == op.getDst()) != (slot.ptr == op.getSrc())); |
| 1388 | bool isDst = slot.ptr == op.getDst(); |
| 1389 | |
| 1390 | #ifndef NDEBUG |
| 1391 | size_t slotsTreated = 0; |
| 1392 | #endif |
| 1393 | |
| 1394 | // It was previously checked that index types are consistent, so this type can |
| 1395 | // be fetched now. |
| 1396 | Type indexType = cast<IntegerAttr>(subslots.begin()->first).getType(); |
| 1397 | for (size_t i = 0, e = slot.subelementTypes.size(); i != e; i++) { |
| 1398 | Attribute index = IntegerAttr::get(indexType, i); |
| 1399 | if (!subslots.contains(Val: index)) |
| 1400 | continue; |
| 1401 | const MemorySlot &subslot = subslots.at(Val: index); |
| 1402 | |
| 1403 | #ifndef NDEBUG |
| 1404 | slotsTreated++; |
| 1405 | #endif |
| 1406 | |
| 1407 | // First get a pointer to the equivalent of this subslot from the source |
| 1408 | // pointer. |
| 1409 | SmallVector<LLVM::GEPArg> gepIndices{ |
| 1410 | 0, static_cast<int32_t>( |
| 1411 | cast<IntegerAttr>(index).getValue().getZExtValue())}; |
| 1412 | Value subslotPtrInOther = builder.create<LLVM::GEPOp>( |
| 1413 | op.getLoc(), LLVM::LLVMPointerType::get(op.getContext()), slot.elemType, |
| 1414 | isDst ? op.getSrc() : op.getDst(), gepIndices); |
| 1415 | |
| 1416 | // Then create a new memcpy out of this source pointer. |
| 1417 | createMemcpyLikeToReplace(builder, dataLayout, op, |
| 1418 | isDst ? subslot.ptr : subslotPtrInOther, |
| 1419 | isDst ? subslotPtrInOther : subslot.ptr, |
| 1420 | subslot.elemType, op.getIsVolatile()); |
| 1421 | } |
| 1422 | |
| 1423 | assert(subslots.size() == slotsTreated); |
| 1424 | |
| 1425 | return DeletionKind::Delete; |
| 1426 | } |
| 1427 | |
| 1428 | bool LLVM::MemcpyOp::loadsFrom(const MemorySlot &slot) { |
| 1429 | return memcpyLoadsFrom(*this, slot); |
| 1430 | } |
| 1431 | |
| 1432 | bool LLVM::MemcpyOp::storesTo(const MemorySlot &slot) { |
| 1433 | return memcpyStoresTo(*this, slot); |
| 1434 | } |
| 1435 | |
| 1436 | Value LLVM::MemcpyOp::getStored(const MemorySlot &slot, OpBuilder &builder, |
| 1437 | Value reachingDef, |
| 1438 | const DataLayout &dataLayout) { |
| 1439 | return memcpyGetStored(*this, slot, builder); |
| 1440 | } |
| 1441 | |
| 1442 | bool LLVM::MemcpyOp::canUsesBeRemoved( |
| 1443 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1444 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1445 | const DataLayout &dataLayout) { |
| 1446 | return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses, |
| 1447 | dataLayout); |
| 1448 | } |
| 1449 | |
| 1450 | DeletionKind LLVM::MemcpyOp::removeBlockingUses( |
| 1451 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1452 | OpBuilder &builder, Value reachingDefinition, |
| 1453 | const DataLayout &dataLayout) { |
| 1454 | return memcpyRemoveBlockingUses(*this, slot, blockingUses, builder, |
| 1455 | reachingDefinition); |
| 1456 | } |
| 1457 | |
| 1458 | LogicalResult LLVM::MemcpyOp::ensureOnlySafeAccesses( |
| 1459 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1460 | const DataLayout &dataLayout) { |
| 1461 | return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed); |
| 1462 | } |
| 1463 | |
| 1464 | bool LLVM::MemcpyOp::canRewire(const DestructurableMemorySlot &slot, |
| 1465 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1466 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1467 | const DataLayout &dataLayout) { |
| 1468 | return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed, |
| 1469 | dataLayout); |
| 1470 | } |
| 1471 | |
| 1472 | DeletionKind LLVM::MemcpyOp::rewire(const DestructurableMemorySlot &slot, |
| 1473 | DenseMap<Attribute, MemorySlot> &subslots, |
| 1474 | OpBuilder &builder, |
| 1475 | const DataLayout &dataLayout) { |
| 1476 | return memcpyRewire(*this, slot, subslots, builder, dataLayout); |
| 1477 | } |
| 1478 | |
| 1479 | bool LLVM::MemcpyInlineOp::loadsFrom(const MemorySlot &slot) { |
| 1480 | return memcpyLoadsFrom(*this, slot); |
| 1481 | } |
| 1482 | |
| 1483 | bool LLVM::MemcpyInlineOp::storesTo(const MemorySlot &slot) { |
| 1484 | return memcpyStoresTo(*this, slot); |
| 1485 | } |
| 1486 | |
| 1487 | Value LLVM::MemcpyInlineOp::getStored(const MemorySlot &slot, |
| 1488 | OpBuilder &builder, Value reachingDef, |
| 1489 | const DataLayout &dataLayout) { |
| 1490 | return memcpyGetStored(*this, slot, builder); |
| 1491 | } |
| 1492 | |
| 1493 | bool LLVM::MemcpyInlineOp::canUsesBeRemoved( |
| 1494 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1495 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1496 | const DataLayout &dataLayout) { |
| 1497 | return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses, |
| 1498 | dataLayout); |
| 1499 | } |
| 1500 | |
| 1501 | DeletionKind LLVM::MemcpyInlineOp::removeBlockingUses( |
| 1502 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1503 | OpBuilder &builder, Value reachingDefinition, |
| 1504 | const DataLayout &dataLayout) { |
| 1505 | return memcpyRemoveBlockingUses(*this, slot, blockingUses, builder, |
| 1506 | reachingDefinition); |
| 1507 | } |
| 1508 | |
| 1509 | LogicalResult LLVM::MemcpyInlineOp::ensureOnlySafeAccesses( |
| 1510 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1511 | const DataLayout &dataLayout) { |
| 1512 | return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed); |
| 1513 | } |
| 1514 | |
| 1515 | bool LLVM::MemcpyInlineOp::canRewire( |
| 1516 | const DestructurableMemorySlot &slot, |
| 1517 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1518 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1519 | const DataLayout &dataLayout) { |
| 1520 | return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed, |
| 1521 | dataLayout); |
| 1522 | } |
| 1523 | |
| 1524 | DeletionKind |
| 1525 | LLVM::MemcpyInlineOp::rewire(const DestructurableMemorySlot &slot, |
| 1526 | DenseMap<Attribute, MemorySlot> &subslots, |
| 1527 | OpBuilder &builder, const DataLayout &dataLayout) { |
| 1528 | return memcpyRewire(*this, slot, subslots, builder, dataLayout); |
| 1529 | } |
| 1530 | |
| 1531 | bool LLVM::MemmoveOp::loadsFrom(const MemorySlot &slot) { |
| 1532 | return memcpyLoadsFrom(*this, slot); |
| 1533 | } |
| 1534 | |
| 1535 | bool LLVM::MemmoveOp::storesTo(const MemorySlot &slot) { |
| 1536 | return memcpyStoresTo(*this, slot); |
| 1537 | } |
| 1538 | |
| 1539 | Value LLVM::MemmoveOp::getStored(const MemorySlot &slot, OpBuilder &builder, |
| 1540 | Value reachingDef, |
| 1541 | const DataLayout &dataLayout) { |
| 1542 | return memcpyGetStored(*this, slot, builder); |
| 1543 | } |
| 1544 | |
| 1545 | bool LLVM::MemmoveOp::canUsesBeRemoved( |
| 1546 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1547 | SmallVectorImpl<OpOperand *> &newBlockingUses, |
| 1548 | const DataLayout &dataLayout) { |
| 1549 | return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses, |
| 1550 | dataLayout); |
| 1551 | } |
| 1552 | |
| 1553 | DeletionKind LLVM::MemmoveOp::removeBlockingUses( |
| 1554 | const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses, |
| 1555 | OpBuilder &builder, Value reachingDefinition, |
| 1556 | const DataLayout &dataLayout) { |
| 1557 | return memcpyRemoveBlockingUses(*this, slot, blockingUses, builder, |
| 1558 | reachingDefinition); |
| 1559 | } |
| 1560 | |
| 1561 | LogicalResult LLVM::MemmoveOp::ensureOnlySafeAccesses( |
| 1562 | const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1563 | const DataLayout &dataLayout) { |
| 1564 | return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed); |
| 1565 | } |
| 1566 | |
| 1567 | bool LLVM::MemmoveOp::canRewire(const DestructurableMemorySlot &slot, |
| 1568 | SmallPtrSetImpl<Attribute> &usedIndices, |
| 1569 | SmallVectorImpl<MemorySlot> &mustBeSafelyUsed, |
| 1570 | const DataLayout &dataLayout) { |
| 1571 | return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed, |
| 1572 | dataLayout); |
| 1573 | } |
| 1574 | |
| 1575 | DeletionKind LLVM::MemmoveOp::rewire(const DestructurableMemorySlot &slot, |
| 1576 | DenseMap<Attribute, MemorySlot> &subslots, |
| 1577 | OpBuilder &builder, |
| 1578 | const DataLayout &dataLayout) { |
| 1579 | return memcpyRewire(*this, slot, subslots, builder, dataLayout); |
| 1580 | } |
| 1581 | |
| 1582 | //===----------------------------------------------------------------------===// |
| 1583 | // Interfaces for destructurable types |
| 1584 | //===----------------------------------------------------------------------===// |
| 1585 | |
| 1586 | std::optional<DenseMap<Attribute, Type>> |
| 1587 | LLVM::LLVMStructType::getSubelementIndexMap() const { |
| 1588 | Type i32 = IntegerType::get(getContext(), 32); |
| 1589 | DenseMap<Attribute, Type> destructured; |
| 1590 | for (const auto &[index, elemType] : llvm::enumerate(getBody())) |
| 1591 | destructured.insert({IntegerAttr::get(i32, index), elemType}); |
| 1592 | return destructured; |
| 1593 | } |
| 1594 | |
| 1595 | Type LLVM::LLVMStructType::getTypeAtIndex(Attribute index) const { |
| 1596 | auto indexAttr = llvm::dyn_cast<IntegerAttr>(index); |
| 1597 | if (!indexAttr || !indexAttr.getType().isInteger(32)) |
| 1598 | return {}; |
| 1599 | int32_t indexInt = indexAttr.getInt(); |
| 1600 | ArrayRef<Type> body = getBody(); |
| 1601 | if (indexInt < 0 || body.size() <= static_cast<uint32_t>(indexInt)) |
| 1602 | return {}; |
| 1603 | return body[indexInt]; |
| 1604 | } |
| 1605 | |
| 1606 | std::optional<DenseMap<Attribute, Type>> |
| 1607 | LLVM::LLVMArrayType::getSubelementIndexMap() const { |
| 1608 | constexpr size_t maxArraySizeForDestructuring = 16; |
| 1609 | if (getNumElements() > maxArraySizeForDestructuring) |
| 1610 | return {}; |
| 1611 | int32_t numElements = getNumElements(); |
| 1612 | |
| 1613 | Type i32 = IntegerType::get(getContext(), 32); |
| 1614 | DenseMap<Attribute, Type> destructured; |
| 1615 | for (int32_t index = 0; index < numElements; ++index) |
| 1616 | destructured.insert({IntegerAttr::get(i32, index), getElementType()}); |
| 1617 | return destructured; |
| 1618 | } |
| 1619 | |
| 1620 | Type LLVM::LLVMArrayType::getTypeAtIndex(Attribute index) const { |
| 1621 | auto indexAttr = llvm::dyn_cast<IntegerAttr>(index); |
| 1622 | if (!indexAttr || !indexAttr.getType().isInteger(32)) |
| 1623 | return {}; |
| 1624 | int32_t indexInt = indexAttr.getInt(); |
| 1625 | if (indexInt < 0 || getNumElements() <= static_cast<uint32_t>(indexInt)) |
| 1626 | return {}; |
| 1627 | return getElementType(); |
| 1628 | } |
| 1629 | |