1 | //===- LinalgTransformOps.cpp - Implementation of Linalg transform ops ----===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.h" |
10 | |
11 | #include "mlir/AsmParser/AsmParser.h" |
12 | |
13 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
15 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
16 | #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
17 | #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" |
18 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
19 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
20 | #include "mlir/Dialect/Linalg/TransformOps/GPUHeuristics.h" |
21 | #include "mlir/Dialect/Linalg/TransformOps/Syntax.h" |
22 | #include "mlir/Dialect/Linalg/Transforms/Hoisting.h" |
23 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
24 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
25 | #include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h" |
26 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
27 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
28 | #include "mlir/Dialect/Transform/IR/TransformDialect.h" |
29 | #include "mlir/Dialect/Transform/IR/TransformOps.h" |
30 | #include "mlir/Dialect/Transform/IR/TransformTypes.h" |
31 | #include "mlir/Dialect/Transform/Interfaces/TransformInterfaces.h" |
32 | #include "mlir/Dialect/Transform/Utils/Utils.h" |
33 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
34 | #include "mlir/Dialect/Utils/StaticValueUtils.h" |
35 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
36 | #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
37 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
38 | #include "mlir/IR/PatternMatch.h" |
39 | #include "mlir/IR/TypeUtilities.h" |
40 | #include "mlir/Interfaces/TilingInterface.h" |
41 | #include "mlir/Support/LLVM.h" |
42 | #include "mlir/Support/TypeID.h" |
43 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
44 | #include "llvm/ADT/STLExtras.h" |
45 | #include "llvm/ADT/ScopeExit.h" |
46 | #include "llvm/ADT/TypeSwitch.h" |
47 | #include "llvm/Support/Debug.h" |
48 | #include <type_traits> |
49 | |
50 | using namespace mlir; |
51 | using namespace mlir::linalg; |
52 | using namespace mlir::transform; |
53 | |
54 | #define DEBUG_TYPE "linalg-transforms" |
55 | #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ") |
56 | #define DBGSNL() (llvm::dbgs() << "\n") |
57 | #define LDBG(X) LLVM_DEBUG(DBGS() << (X) << "\n") |
58 | |
59 | /// Attempts to apply the pattern specified as template argument to the given |
60 | /// operation. The pattern is expected to have a `returningMatchAndRewrite` |
61 | /// function that returns the "main" result or failure. Returns failure if the |
62 | /// pattern failed to apply. Extra arguments are forwarded to the pattern |
63 | /// constructor. |
64 | template <typename PatternTy, typename... Args> |
65 | static FailureOr<LinalgOp> tryApply(Operation *operation, Args &&...args) { |
66 | // Check if the given operation has the type expected by the pattern. |
67 | using OpTy = typename llvm::function_traits< |
68 | decltype(&PatternTy::returningMatchAndRewrite)>::template arg_t<0>; |
69 | auto op = dyn_cast<OpTy>(operation); |
70 | if (!op) |
71 | return failure(); |
72 | |
73 | // Apply the pattern directly to the op. |
74 | PatternTy pattern(operation->getContext(), std::forward<Args>(args)...); |
75 | // We want to discourage direct use of PatternRewriter in APIs but In this |
76 | // very specific case, an IRRewriter is not enough. |
77 | struct TrivialPatternRewriter : public PatternRewriter { |
78 | public: |
79 | explicit TrivialPatternRewriter(MLIRContext *context) |
80 | : PatternRewriter(context) {} |
81 | }; |
82 | TrivialPatternRewriter rewriter(operation->getContext()); |
83 | rewriter.setInsertionPoint(operation); |
84 | auto result = pattern.returningMatchAndRewrite(op, rewriter); |
85 | if (failed(result)) |
86 | return failure(); |
87 | return cast<LinalgOp>(result->getOperation()); |
88 | } |
89 | |
90 | /// Assuming that `ofr` is an index attr or a param of index type |
91 | /// or a transform dialect handle mapped to exactly one op |
92 | /// with one index result, return that value. |
93 | static DiagnosedSilenceableFailure unpackSingleIndexResultPayloadOperations( |
94 | transform::TransformState &state, TransformOpInterface transformOp, |
95 | SmallVector<OpFoldResult> &result, ArrayRef<OpFoldResult> ofrs) { |
96 | for (OpFoldResult ofr : ofrs) { |
97 | if (auto attr = dyn_cast<Attribute>(Val&: ofr)) { |
98 | if (!isa<IntegerAttr>(Val: attr)) |
99 | return transformOp.emitDefiniteFailure() << "expected IntegerAttr"; |
100 | result.push_back(Elt: ofr); |
101 | continue; |
102 | } |
103 | |
104 | Value transformValue = cast<Value>(Val&: ofr); |
105 | if (isa<TransformParamTypeInterface>(transformValue.getType())) { |
106 | ArrayRef<Attribute> params = state.getParams(value: transformValue); |
107 | if (params.size() != 1) |
108 | return transformOp.emitDefiniteFailure() |
109 | << "requires exactly one parameter associated"; |
110 | result.push_back(Elt: params[0]); |
111 | continue; |
112 | } |
113 | |
114 | auto payloadOps = state.getPayloadOps(value: transformValue); |
115 | if (!llvm::hasSingleElement(C&: payloadOps)) { |
116 | DiagnosedSilenceableFailure diag = |
117 | transformOp.emitSilenceableError() |
118 | << "handle must be mapped to exactly one payload op"; |
119 | diag.attachNote(loc: transformValue.getLoc()) |
120 | << "mapped to "<< llvm::range_size(Range&: payloadOps) << " payload ops"; |
121 | return diag; |
122 | } |
123 | |
124 | Operation *op = *payloadOps.begin(); |
125 | if (op->getNumResults() != 1 || !op->getResult(idx: 0).getType().isIndex()) { |
126 | DiagnosedSilenceableFailure diag = |
127 | transformOp.emitSilenceableError() |
128 | << "payload op must have exactly 1 index result"; |
129 | diag.attachNote(loc: op->getLoc()) |
130 | << "has "<< op->getNumResults() << " results"; |
131 | return diag; |
132 | } |
133 | result.push_back(Elt: op->getResult(idx: 0)); |
134 | } |
135 | |
136 | return DiagnosedSilenceableFailure::success(); |
137 | } |
138 | |
139 | // Given a list of params that are index attrs or a list of OpFoldResults |
140 | // that are either index attrs or op handles, return a list of OpFoldResults |
141 | // of index attrs or a list of OpFoldResults where all op handles are |
142 | // replaced with the first (and only) OpResult of that payload op. |
143 | // (There must be exactly one parameter associated with the AnyParamType or |
144 | // one mapped payload op which must have exactly one index result.) |
145 | static DiagnosedSilenceableFailure unpackSingleIndexResultPayloadOperations( |
146 | transform::TransformState &state, TransformOpInterface transformOp, |
147 | SmallVector<OpFoldResult> &result, Value packedHandle) { |
148 | if (isa<TransformParamTypeInterface>(packedHandle.getType())) { |
149 | ArrayRef<Attribute> params = state.getParams(value: packedHandle); |
150 | for (auto param : params) { |
151 | if (!isa<IntegerAttr>(Val: param)) |
152 | return transformOp.emitDefiniteFailure() |
153 | << "expected the parameter to be associated with an integer " |
154 | "attribute"; |
155 | result.push_back(Elt: param); |
156 | } |
157 | return DiagnosedSilenceableFailure::success(); |
158 | } |
159 | |
160 | for (Operation *op : state.getPayloadOps(value: packedHandle)) { |
161 | if (op->getNumResults() != 1 || !op->getResult(idx: 0).getType().isIndex()) { |
162 | DiagnosedSilenceableFailure diag = |
163 | transformOp.emitSilenceableError() |
164 | << "payload op must have exactly 1 index result"; |
165 | diag.attachNote(loc: op->getLoc()) |
166 | << "has "<< op->getNumResults() << " results"; |
167 | return diag; |
168 | } |
169 | result.push_back(Elt: op->getResult(idx: 0)); |
170 | } |
171 | |
172 | return DiagnosedSilenceableFailure::success(); |
173 | } |
174 | |
175 | /// When possible, converts each `OpFoldResult` in `mixedResult` to |
176 | /// an integer if the value can be statically inferred. If a result |
177 | /// is a `Value` then it must be either a `ParamType` or a handle |
178 | /// to an a constant like op. |
179 | static DiagnosedSilenceableFailure reifyMixedParamAndHandleResults( |
180 | TransformState &state, TransformOpInterface &transformOp, |
181 | ArrayRef<OpFoldResult> mixedResults, SmallVectorImpl<int64_t> &reified) { |
182 | for (OpFoldResult paramOrHandle : mixedResults) { |
183 | if (auto attr = dyn_cast<Attribute>(Val&: paramOrHandle)) { |
184 | reified.push_back(Elt: cast<IntegerAttr>(attr).getInt()); |
185 | continue; |
186 | } else if (isa<ParamType>(cast<Value>(paramOrHandle).getType())) { |
187 | ArrayRef<Attribute> params = state.getParams(value: cast<Value>(Val&: paramOrHandle)); |
188 | if (params.size() != 1) |
189 | return transformOp.emitSilenceableError() << "expected a single param"; |
190 | reified.push_back( |
191 | Elt: cast<IntegerAttr>(params.front()).getValue().getSExtValue()); |
192 | continue; |
193 | } |
194 | |
195 | Value handle = cast<Value>(Val&: paramOrHandle); |
196 | if (!isa<TransformHandleTypeInterface>(handle.getType())) |
197 | return transformOp.emitSilenceableError() << "unexpected value handle"; |
198 | auto payload = state.getPayloadOps(value: handle); |
199 | if (!llvm::hasSingleElement(C&: payload)) |
200 | return transformOp.emitSilenceableError() |
201 | << "requires param or handle that is mapped to 1 payload op"; |
202 | |
203 | Operation *paramOrHandlePayloadOp = *payload.begin(); |
204 | if (paramOrHandlePayloadOp->getNumResults() != 1 || |
205 | !paramOrHandlePayloadOp->getResult(idx: 0).getType().isIndex()) { |
206 | return transformOp.emitSilenceableError() |
207 | << "requires param or handle to be result of op with 1 index " |
208 | "result"; |
209 | } |
210 | |
211 | IntegerAttr attr; |
212 | if (!matchPattern(paramOrHandlePayloadOp->getResult(idx: 0), m_Constant(&attr))) |
213 | return transformOp.emitSilenceableError() |
214 | << "requires param or handle to be the result of a constant like " |
215 | "op"; |
216 | |
217 | reified.push_back(Elt: attr.getInt()); |
218 | } |
219 | return DiagnosedSilenceableFailure::success(); |
220 | } |
221 | |
222 | //===----------------------------------------------------------------------===// |
223 | // Apply...PatternsOp |
224 | //===----------------------------------------------------------------------===// |
225 | |
226 | void transform::ApplyEraseUnnecessaryInputsPatternsOp::populatePatterns( |
227 | RewritePatternSet &patterns) { |
228 | linalg::populateEraseUnnecessaryInputsPatterns(patterns); |
229 | } |
230 | |
231 | void transform::ApplyDecomposeTensorPackUnpackPatternsOp::populatePatterns( |
232 | RewritePatternSet &patterns) { |
233 | linalg::populateDecomposePackUnpackPatterns(patterns); |
234 | } |
235 | |
236 | void transform::ApplyDecomposeTensorPadPatternsOp::populatePatterns( |
237 | RewritePatternSet &patterns) { |
238 | linalg::populateDecomposePadPatterns(patterns); |
239 | } |
240 | |
241 | void transform::ApplyFoldUnitExtentDimsViaReshapesPatternsOp::populatePatterns( |
242 | RewritePatternSet &patterns) { |
243 | linalg::ControlDropUnitDims options; |
244 | linalg::populateFoldUnitExtentDimsPatterns(patterns, options); |
245 | } |
246 | |
247 | void transform::ApplyFoldUnitExtentDimsViaSlicesPatternsOp::populatePatterns( |
248 | RewritePatternSet &patterns) { |
249 | linalg::ControlDropUnitDims options; |
250 | options.rankReductionStrategy = |
251 | linalg::ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice; |
252 | linalg::populateFoldUnitExtentDimsPatterns(patterns, options); |
253 | } |
254 | |
255 | void transform::ApplyTilingCanonicalizationPatternsOp::populatePatterns( |
256 | RewritePatternSet &patterns) { |
257 | linalg::populateLinalgTilingCanonicalizationPatterns(patterns); |
258 | } |
259 | |
260 | void transform::ApplyFoldAddIntoDestPatternsOp::populatePatterns( |
261 | RewritePatternSet &patterns) { |
262 | linalg::populateFoldAddIntoDestPatterns(patterns); |
263 | } |
264 | |
265 | void transform::ApplyPadVectorizationPatternsOp::populatePatterns( |
266 | RewritePatternSet &patterns) { |
267 | linalg::populatePadOpVectorizationPatterns(patterns); |
268 | } |
269 | |
270 | void transform::ApplyFoldIntoPackAndUnpackPatternsOp::populatePatterns( |
271 | RewritePatternSet &patterns) { |
272 | linalg::populateFoldIntoPackAndUnpackPatterns(patterns); |
273 | } |
274 | |
275 | void transform::ApplyFoldPackUnpackIntoEmptyPatternsOp::populatePatterns( |
276 | RewritePatternSet &patterns) { |
277 | linalg::populateFoldPackUnpackIntoTensorEmptyPatterns(patterns); |
278 | } |
279 | |
280 | //===----------------------------------------------------------------------===// |
281 | // BufferizeToAllocationOp |
282 | //===----------------------------------------------------------------------===// |
283 | |
284 | void transform::BufferizeToAllocationOp::build(OpBuilder &b, |
285 | OperationState &result, |
286 | Value target, |
287 | Attribute memorySpace) { |
288 | SmallVector<Type> resultTypes; |
289 | resultTypes.push_back(b.getType<transform::AnyValueType>()); |
290 | resultTypes.push_back(b.getType<transform::AnyOpType>()); |
291 | return build(b, result, |
292 | /*resultTypes=*/resultTypes, |
293 | /*target=*/target, |
294 | /*memorySpace=*/memorySpace); |
295 | } |
296 | |
297 | void transform::BufferizeToAllocationOp::build(OpBuilder &b, |
298 | OperationState &result, |
299 | Value target, |
300 | int64_t memorySpace) { |
301 | SmallVector<Type> resultTypes; |
302 | resultTypes.push_back(b.getType<transform::AnyValueType>()); |
303 | resultTypes.push_back(b.getType<transform::AnyOpType>()); |
304 | return build(b, result, |
305 | /*resultTypes=*/resultTypes, |
306 | /*target=*/target, |
307 | /*memorySpace=*/b.getI64IntegerAttr(memorySpace)); |
308 | } |
309 | |
310 | namespace { |
311 | class NewOpsListener : public RewriterBase::ForwardingListener { |
312 | public: |
313 | using RewriterBase::ForwardingListener::ForwardingListener; |
314 | |
315 | SmallVector<Operation *> getNewOps() const { |
316 | return SmallVector<Operation *>(newOps.begin(), newOps.end()); |
317 | } |
318 | |
319 | private: |
320 | void notifyOperationInserted(Operation *op, |
321 | OpBuilder::InsertPoint previous) override { |
322 | ForwardingListener::notifyOperationInserted(op, previous); |
323 | // We only care about newly created ops. |
324 | if (previous.isSet()) |
325 | return; |
326 | auto inserted = newOps.insert(V: op); |
327 | (void)inserted; |
328 | assert(inserted.second && "expected newly created op"); |
329 | } |
330 | |
331 | void notifyOperationErased(Operation *op) override { |
332 | ForwardingListener::notifyOperationErased(op); |
333 | op->walk(callback: [&](Operation *op) { newOps.erase(V: op); }); |
334 | } |
335 | |
336 | DenseSet<Operation *> newOps; |
337 | }; |
338 | } // namespace |
339 | |
340 | DiagnosedSilenceableFailure transform::BufferizeToAllocationOp::apply( |
341 | transform::TransformRewriter &rewriter, |
342 | transform::TransformResults &results, transform::TransformState &state) { |
343 | // Attach listener to keep track of newly created ops. |
344 | OpBuilder::Listener *previousListener = rewriter.getListener(); |
345 | auto resetListener = |
346 | llvm::make_scope_exit([&]() { rewriter.setListener(previousListener); }); |
347 | NewOpsListener newOpsListener(previousListener); |
348 | rewriter.setListener(&newOpsListener); |
349 | |
350 | linalg::BufferizeToAllocationOptions options; |
351 | if (getMemcpyOp() == "bufferization.materialize_in_destination") { |
352 | options.memcpyOp = linalg::BufferizeToAllocationOptions::MemcpyOp:: |
353 | MaterializeInDestination; |
354 | } else if (getMemcpyOp() == "memref.copy") { |
355 | options.memcpyOp = |
356 | linalg::BufferizeToAllocationOptions::MemcpyOp::MemrefCopy; |
357 | } else if (getMemcpyOp() == "linalg.copy") { |
358 | options.memcpyOp = |
359 | linalg::BufferizeToAllocationOptions::MemcpyOp::LinalgCopy; |
360 | } else { |
361 | llvm_unreachable("invalid memcpy op"); |
362 | } |
363 | if (getAllocOp() == "memref.alloc") { |
364 | options.allocOp = |
365 | linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloc; |
366 | } else if (getAllocOp() == "memref.alloca") { |
367 | options.allocOp = |
368 | linalg::BufferizeToAllocationOptions::AllocOp::MemrefAlloca; |
369 | } else { |
370 | llvm_unreachable("invalid alloc op"); |
371 | } |
372 | options.bufferizeDestinationOnly = getBufferizeDestinationOnly(); |
373 | options.emitDealloc = getEmitDealloc(); |
374 | |
375 | // Bufferize ops. |
376 | Attribute memorySpace = |
377 | getMemorySpace().has_value() ? getMemorySpace().value() : Attribute(); |
378 | SmallVector<Value> allocatedBuffers; |
379 | for (Operation *op : state.getPayloadOps(getTarget())) { |
380 | Value buffer = |
381 | linalg::bufferizeToAllocation(rewriter, options, op, memorySpace); |
382 | if (!buffer) { |
383 | DiagnosedSilenceableFailure diag = emitSilenceableError() |
384 | << "failed to bufferize operation"; |
385 | diag.attachNote(op->getLoc()) << "target payload op"; |
386 | return diag; |
387 | } |
388 | allocatedBuffers.push_back(buffer); |
389 | } |
390 | |
391 | // Set results. |
392 | results.setValues(cast<OpResult>(getAllocatedBuffer()), allocatedBuffers); |
393 | results.set(cast<OpResult>(getNewOps()), newOpsListener.getNewOps()); |
394 | return DiagnosedSilenceableFailure::success(); |
395 | } |
396 | |
397 | void transform::BufferizeToAllocationOp::getEffects( |
398 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
399 | if (getBufferizeDestinationOnly()) { |
400 | // The destination is replaced with a newly allocated buffer, but the op |
401 | // itself remains in place. |
402 | onlyReadsHandle(getTargetMutable(), effects); |
403 | } else { |
404 | consumesHandle(getTargetMutable(), effects); |
405 | } |
406 | producesHandle(getOperation()->getOpResults(), effects); |
407 | modifiesPayload(effects); |
408 | } |
409 | |
410 | LogicalResult transform::BufferizeToAllocationOp::verify() { |
411 | if (getMemcpyOp() != "bufferization.materialize_in_destination"&& |
412 | getMemcpyOp() != "memref.copy"&& getMemcpyOp() != "linalg.copy") |
413 | return emitOpError() << "unsupported memcpy op"; |
414 | if (getAllocOp() != "memref.alloc"&& getAllocOp() != "memref.alloca") |
415 | return emitOpError() << "unsupported alloc op"; |
416 | return success(); |
417 | } |
418 | |
419 | //===----------------------------------------------------------------------===// |
420 | // DecomposeOp |
421 | //===----------------------------------------------------------------------===// |
422 | |
423 | DiagnosedSilenceableFailure |
424 | transform::DecomposeOp::applyToOne(transform::TransformRewriter &rewriter, |
425 | LinalgOp target, |
426 | transform::ApplyToEachResultList &results, |
427 | transform::TransformState &state) { |
428 | #define DOWNSCALE(trans) \ |
429 | { \ |
430 | FailureOr<LinalgOp> res = tryApply<trans>(target); \ |
431 | if (succeeded(res)) { \ |
432 | results.push_back(*res); \ |
433 | return DiagnosedSilenceableFailure::success(); \ |
434 | } \ |
435 | } |
436 | |
437 | #define DOWNSCALE_CALL(a, b) DownscaleSizeOneWindowed2DConvolution<a, b> |
438 | #define DOWNSCALE_NORMAL(a, b) DOWNSCALE(DOWNSCALE_CALL(a, b)) |
439 | |
440 | DOWNSCALE_NORMAL(Conv2DNhwcHwcfOp, Conv1DNwcWcfOp) |
441 | DOWNSCALE_NORMAL(Conv2DNchwFchwOp, Conv1DNcwFcwOp) |
442 | DOWNSCALE_NORMAL(PoolingNhwcSumOp, PoolingNwcSumOp) |
443 | DOWNSCALE_NORMAL(PoolingNchwSumOp, PoolingNcwSumOp) |
444 | DOWNSCALE_NORMAL(PoolingNhwcMaxOp, PoolingNwcMaxOp) |
445 | DOWNSCALE_NORMAL(PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp) |
446 | DOWNSCALE_NORMAL(PoolingNhwcMinOp, PoolingNwcMinOp) |
447 | DOWNSCALE_NORMAL(PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp) |
448 | DOWNSCALE_NORMAL(PoolingNchwMaxOp, PoolingNcwMaxOp) |
449 | DOWNSCALE(DownscaleDepthwiseConv2DNhwcHwcOp) |
450 | DOWNSCALE(DownscaleConv2DOp) |
451 | #undef DOWNSCALE_NORMAL |
452 | #undef DOWNSCALE_CALL |
453 | #undef DOWNSCALE |
454 | return emitDefaultSilenceableFailure(target); |
455 | } |
456 | |
457 | //===----------------------------------------------------------------------===// |
458 | // DecomposeInterfaceOp |
459 | //===----------------------------------------------------------------------===// |
460 | |
461 | // Decompose the target operation if it implements the AggregatedOpInterface. |
462 | // Push the decomposed operations (the ones that replaces the values produced by |
463 | // \p target) in the `results`. |
464 | DiagnosedSilenceableFailure transform::DecomposeInterfaceOp::applyToOne( |
465 | transform::TransformRewriter &rewriter, Operation *target, |
466 | transform::ApplyToEachResultList &results, |
467 | transform::TransformState &state) { |
468 | auto decomposableOp = dyn_cast<AggregatedOpInterface>(target); |
469 | if (!decomposableOp) { |
470 | failed(rewriter.notifyMatchFailure(target, |
471 | "payload is not a decomposable op")); |
472 | return emitDefaultSilenceableFailure(target); |
473 | } |
474 | |
475 | FailureOr<SmallVector<Value>> maybeNewResults = |
476 | decomposableOp.decomposeOperation(rewriter); |
477 | if (failed(maybeNewResults)) |
478 | return emitDefaultSilenceableFailure(target); |
479 | |
480 | rewriter.replaceOp(decomposableOp, *maybeNewResults); |
481 | for (Value val : *maybeNewResults) { |
482 | Operation *definition = val.getDefiningOp(); |
483 | if (definition) |
484 | results.push_back(definition); |
485 | } |
486 | return DiagnosedSilenceableFailure::success(); |
487 | } |
488 | |
489 | //===----------------------------------------------------------------------===// |
490 | // EliminateLinalgOpAnchoredEmptyTensorsOp |
491 | //===----------------------------------------------------------------------===// |
492 | |
493 | void transform::EliminateLinalgOpAnchoredEmptyTensorsOp::getEffects( |
494 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
495 | onlyReadsHandle(getTargetMutable(), effects); |
496 | modifiesPayload(effects); |
497 | } |
498 | |
499 | DiagnosedSilenceableFailure |
500 | transform::EliminateLinalgOpAnchoredEmptyTensorsOp::apply( |
501 | transform::TransformRewriter &rewriter, TransformResults &transformResults, |
502 | TransformState &state) { |
503 | bufferization::OneShotBufferizationOptions options; |
504 | options.allowReturnAllocsFromLoops = true; |
505 | |
506 | for (Operation *target : state.getPayloadOps(getTarget())) { |
507 | bufferization::OneShotAnalysisState state(target, options); |
508 | if (failed(analyzeOp(target, state))) |
509 | return mlir::emitSilenceableFailure(target->getLoc()) |
510 | << "failed to analyze op"; |
511 | if (failed(linalg::linalgOpAnchoredEmptyTensorEliminationStep( |
512 | rewriter, target, state))) |
513 | return mlir::emitSilenceableFailure(target->getLoc()) |
514 | << "failed to eliminate LinalgOp anchored tensor.empty ops"; |
515 | } |
516 | return DiagnosedSilenceableFailure::success(); |
517 | } |
518 | |
519 | //===----------------------------------------------------------------------===// |
520 | // FuseOp |
521 | //===----------------------------------------------------------------------===// |
522 | |
523 | /// Apply a tiling transformation to all payload ops and store both the |
524 | /// tiled operation as well as the created tile loops. |
525 | template <typename Range> |
526 | static LogicalResult applyTilingToAll( |
527 | RewriterBase &rewriter, Operation *transformOp, Range &&payloadOps, |
528 | unsigned numLoops, transform::TransformResults &transformResults, |
529 | function_ref<FailureOr<scf::SCFTileAndFuseResult>(TilingInterface)> |
530 | applyFn) { |
531 | SmallVector<Operation *> tiledLinalgOps; |
532 | SmallVector<SmallVector<Operation *>> loopOps(numLoops); |
533 | |
534 | for (Operation *target : payloadOps) { |
535 | auto tilingInterfaceOp = dyn_cast<TilingInterface>(target); |
536 | if (!tilingInterfaceOp) |
537 | return transformOp->emitError(message: "only TilingInterface ops are supported"); |
538 | |
539 | rewriter.setInsertionPoint(target); |
540 | FailureOr<scf::SCFTileAndFuseResult> tiledResults = |
541 | applyFn(tilingInterfaceOp); |
542 | if (failed(tiledResults)) |
543 | return failure(); |
544 | |
545 | // Perform the replacement of tiled and fused values. |
546 | SmallVector<Operation *> opsToReplace{target}; |
547 | llvm::append_range(opsToReplace, tiledResults->fusedProducers); |
548 | for (Operation *toReplace : opsToReplace) { |
549 | for (OpResult res : toReplace->getResults()) |
550 | if (auto replacement = tiledResults->replacements.lookup(res)) |
551 | rewriter.replaceAllUsesWith(res, replacement); |
552 | if (toReplace->use_empty()) { |
553 | rewriter.eraseOp(op: toReplace); |
554 | } |
555 | } |
556 | |
557 | // Report back the relevant handles to the transform op. |
558 | tiledLinalgOps.push_back(Elt: tiledResults->tiledAndFusedOps.front()); |
559 | assert(tiledResults->loops.size() == numLoops && |
560 | "Mismatched number of loops, tile and fuse transform should have " |
561 | "failed"); |
562 | for (unsigned int i = 0; i < numLoops; ++i) |
563 | loopOps[i].push_back(Elt: tiledResults->loops[i]); |
564 | } |
565 | |
566 | transformResults.set(value: transformOp->getOpResult(idx: 0), ops&: tiledLinalgOps); |
567 | for (unsigned int i = 0; i < numLoops; ++i) |
568 | transformResults.set(value: transformOp->getOpResult(idx: i + 1), ops&: loopOps[i]); |
569 | |
570 | return success(); |
571 | } |
572 | |
573 | DiagnosedSilenceableFailure |
574 | transform::FuseOp::apply(transform::TransformRewriter &rewriter, |
575 | mlir::transform::TransformResults &transformResults, |
576 | mlir::transform::TransformState &state) { |
577 | SmallVector<int64_t> tileSizes = |
578 | extractFromIntegerArrayAttr<int64_t>(getTileSizes()); |
579 | SmallVector<int64_t> tileInterchange = |
580 | extractFromIntegerArrayAttr<int64_t>(getTileInterchange()); |
581 | |
582 | scf::SCFTilingOptions tilingOptions; |
583 | tilingOptions.interchangeVector = tileInterchange; |
584 | SmallVector<OpFoldResult> tileSizesOfr = |
585 | getAsIndexOpFoldResult(rewriter.getContext(), tileSizes); |
586 | tilingOptions = tilingOptions.setTileSizes(tileSizesOfr); |
587 | scf::SCFTileAndFuseOptions tileAndFuseOptions; |
588 | tileAndFuseOptions.tilingOptions = tilingOptions; |
589 | |
590 | if (getApplyCleanup()) { |
591 | MLIRContext *context = rewriter.getContext(); |
592 | RewritePatternSet patterns(context); |
593 | tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, context); |
594 | tensor::populateMergeConsecutiveInsertExtractSlicePatterns(patterns); |
595 | tensor::populateBubbleUpExtractSliceOpPatterns(patterns); |
596 | tileAndFuseOptions.cleanupPatterns = std::move(patterns); |
597 | } |
598 | |
599 | LogicalResult result = applyTilingToAll( |
600 | rewriter, getOperation(), state.getPayloadOps(getTarget()), |
601 | tileSizes.size() - llvm::count(tileSizes, 0), transformResults, |
602 | [&](TilingInterface tilingInterfaceOp) |
603 | -> FailureOr<scf::SCFTileAndFuseResult> { |
604 | return tileConsumerAndFuseProducersUsingSCF(rewriter, tilingInterfaceOp, |
605 | tileAndFuseOptions); |
606 | }); |
607 | return failed(result) ? DiagnosedSilenceableFailure::definiteFailure() |
608 | : DiagnosedSilenceableFailure::success(); |
609 | } |
610 | |
611 | LogicalResult transform::FuseOp::verify() { |
612 | SmallVector<int64_t> permutation = |
613 | extractFromIntegerArrayAttr<int64_t>(getTileInterchange()); |
614 | auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size())); |
615 | if (!std::is_permutation(sequence.begin(), sequence.end(), |
616 | permutation.begin(), permutation.end())) { |
617 | return emitOpError() << "expects interchange to be a permutation, found " |
618 | << getTileInterchange(); |
619 | } |
620 | |
621 | SmallVector<int64_t> sizes = |
622 | extractFromIntegerArrayAttr<int64_t>(getTileSizes()); |
623 | size_t numExpectedLoops = sizes.size() - llvm::count(sizes, 0); |
624 | if (numExpectedLoops != getNumResults() - 1) |
625 | return emitOpError() << "expects "<< numExpectedLoops << " loop results"; |
626 | |
627 | return success(); |
628 | } |
629 | |
630 | //===----------------------------------------------------------------------===// |
631 | // FuseIntoContainingOp |
632 | //===----------------------------------------------------------------------===// |
633 | |
634 | void transform::FuseIntoContainingOp::build(OpBuilder &builder, |
635 | OperationState &result, |
636 | Value producerOp, |
637 | Value containingOp) { |
638 | result.addOperands({producerOp, containingOp}); |
639 | auto resultType = transform::AnyOpType::get(builder.getContext()); |
640 | result.addTypes({resultType, resultType}); |
641 | } |
642 | |
643 | /// Add new operands to the forall op for users of the producerOp |
644 | /// that are dominated by the containing scf.forall op. |
645 | static Operation *replaceForAllWithNewSignature( |
646 | RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp, |
647 | Operation *containingOp, TilingResult &tileAndFuseResult, |
648 | int64_t resultNumber, SmallVector<OpFoldResult> &offsets, |
649 | SmallVector<OpFoldResult> &sizes) { |
650 | |
651 | // Count number of users not including the containing op |
652 | SetVector<Operation *> dominatedUsers; |
653 | DominanceInfo domInfo(containingOp); |
654 | for (Operation *user : producerOp->getResult(idx: resultNumber).getUsers()) { |
655 | if (!containingOp->isAncestor(other: user) && |
656 | (domInfo.dominates(a: containingOp, b: user))) { |
657 | dominatedUsers.insert(X: user); |
658 | } |
659 | } |
660 | if (dominatedUsers.empty()) |
661 | return nullptr; |
662 | |
663 | // Create new scf.forall op |
664 | auto forallOp = cast<scf::ForallOp>(containingOp); |
665 | OpBuilder::InsertionGuard g(rewriter); |
666 | rewriter.setInsertionPoint(forallOp); |
667 | |
668 | // Get new output |
669 | Location loc = forallOp.getLoc(); |
670 | auto genericOp = dyn_cast<linalg::GenericOp>(producerOp); |
671 | if (!genericOp) |
672 | return nullptr; |
673 | SmallVector<Value> outputs = genericOp.getOutputs(); |
674 | SmallVector<Value> newOuts(forallOp.getOutputs()); |
675 | newOuts.push_back(Elt: outputs[resultNumber]); |
676 | |
677 | // Create new scf.forall op |
678 | auto newforallOp = rewriter.create<scf::ForallOp>( |
679 | loc, forallOp.getMixedLowerBound(), forallOp.getMixedUpperBound(), |
680 | forallOp.getMixedStep(), newOuts, forallOp.getMapping()); |
681 | rewriter.eraseBlock(block: newforallOp.getBody()); |
682 | newforallOp.getRegion().takeBody(forallOp.getRegion()); |
683 | |
684 | // Add additional block argument for new value being returned |
685 | // and replaces all uses of the new output with corresponding bbArg |
686 | // inside the scf.forall to enable fusion into this new scf.forall. |
687 | newforallOp.getBody()->addArgument(newOuts.back().getType(), |
688 | newOuts.back().getLoc()); |
689 | auto bbArgs = newforallOp.getBody()->getArguments(); |
690 | rewriter.replaceUsesWithIf(newOuts.back(), bbArgs.back(), |
691 | [&](OpOperand &use) { |
692 | Operation *op = use.getOwner(); |
693 | return newforallOp->isProperAncestor(op); |
694 | }); |
695 | |
696 | // Fix terminator |
697 | scf::InParallelOp terminatorOp = newforallOp.getTerminator(); |
698 | SmallVector<Operation *> yieldingOps = llvm::to_vector<4>(llvm::map_range( |
699 | terminatorOp.getYieldingOps(), [](Operation &op) { return &op; })); |
700 | Operation *firstYieldOp = yieldingOps.front(); |
701 | rewriter.setInsertionPoint(firstYieldOp); |
702 | Value src = tileAndFuseResult.tiledValues[0]; |
703 | Value dst = newforallOp.getRegionIterArgs().back(); |
704 | SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1)); |
705 | rewriter.create<tensor::ParallelInsertSliceOp>(firstYieldOp->getLoc(), src, |
706 | dst, offsets, sizes, strides); |
707 | |
708 | for (auto result : llvm::enumerate(forallOp.getResults())) { |
709 | rewriter.replaceAllUsesWith(result.value(), |
710 | newforallOp->getResult(result.index())); |
711 | } |
712 | rewriter.replaceUsesWithIf(producerOp->getResult(idx: resultNumber), |
713 | newforallOp->getResults().back(), |
714 | [&](OpOperand &use) { |
715 | Operation *user = use.getOwner(); |
716 | return dominatedUsers.contains(key: user); |
717 | }); |
718 | return newforallOp; |
719 | } |
720 | |
721 | /// Given two operands coming from a loop iter arg, 'src' and 'dst', return true |
722 | /// if the operand 'src' is equal to 'dst' or equal to a iter arg present in a |
723 | /// outer loop. To determine the second condition, this function iterates |
724 | /// using a worklist over the enclosing loops, trying to find 'src' in any of |
725 | /// the parent loop's iter args. |
726 | static bool sameOrEquivalentIterArg(Value src, Value dst) { |
727 | // Stack like vector containing possible iterArgs candidates. The first one |
728 | // is dst, and we will transverse the IR from there. |
729 | SmallVector<Value> destWorklist; |
730 | destWorklist.push_back(Elt: dst); |
731 | |
732 | while (!destWorklist.empty()) { |
733 | Value currentDst = destWorklist.pop_back_val(); |
734 | |
735 | // We have found the same operand in some iter arg in the loop structure, |
736 | // so src and dst are equivalent. |
737 | if (src == currentDst) |
738 | return true; |
739 | |
740 | // The operands are not equivalent, look for enclosing loops over |
741 | // currentDst. |
742 | auto bbArg = dyn_cast<BlockArgument>(Val&: currentDst); |
743 | if (!bbArg) |
744 | continue; |
745 | |
746 | Block *parentBlock = bbArg.getOwner(); |
747 | assert(parentBlock && "unlinked block argument"); |
748 | |
749 | Operation *parentOp = parentBlock->getParentOp(); |
750 | assert(parentOp && "expected block argument with parent operation"); |
751 | |
752 | // Check if parent is loop-like. If it's not, do not add it to the worklist. |
753 | auto parentLoop = dyn_cast<LoopLikeOpInterface>(parentOp); |
754 | if (!parentLoop) |
755 | continue; |
756 | |
757 | for (auto innerIterArg : parentLoop.getRegionIterArgs()) { |
758 | // No need to check for null as innerIterArg is tied to parentLoop. |
759 | OpOperand *operand = parentLoop.getTiedLoopInit(innerIterArg); |
760 | Value loopBlockArgument = |
761 | parentLoop->getOperand(operand->getOperandNumber()); |
762 | destWorklist.push_back(loopBlockArgument); |
763 | } |
764 | } |
765 | |
766 | return false; |
767 | } |
768 | |
769 | /// Find the first "extract" user of `producerOp` and tile it right before its |
770 | /// use. The tiled op is fused under the `containingOp`. |
771 | /// Return this fused op on success or nullptr if anything fails. |
772 | /// If tiled op has uses that are dominated by `containingOp`, return |
773 | /// a new `containingOp` with results of the fused op appended to |
774 | /// results of the `containingOp` or nullptr if there are no dominated uses. |
775 | static std::tuple<SmallVector<Operation *>, Operation *> |
776 | tileAndFuseFirstExtractUse(RewriterBase &rewriter, Diagnostic &diag, |
777 | Operation *producerOp, Operation *containingOp) { |
778 | LLVM_DEBUG(DBGS() << "Try to fuse a direct extract use\n"); |
779 | auto tileableProducer = dyn_cast<TilingInterface>(producerOp); |
780 | if (!tileableProducer) { |
781 | diag.attachNote(noteLoc: producerOp->getLoc()) |
782 | << "producer is not a TileableInterface: "<< *producerOp; |
783 | return {}; |
784 | } |
785 | |
786 | // Search the producer slices accessed within the containing operation. |
787 | // TODO: Generalize to more extract/insert/parallel_insert triples, maybe |
788 | // evolve into an interface. |
789 | auto it = llvm::find_if(tileableProducer->getUsers(), [&](Operation *user) { |
790 | auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user); |
791 | return sliceOp && containingOp->isProperAncestor(sliceOp); |
792 | }); |
793 | |
794 | // Find a fusion opportunity. |
795 | if (it == tileableProducer->getUsers().end()) { |
796 | diag.attachNote(noteLoc: tileableProducer->getLoc()) |
797 | << "could not find fusion opportunity for: "<< *tileableProducer; |
798 | return {}; |
799 | } |
800 | auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*it); |
801 | |
802 | // Try to fuse the producer in-place. |
803 | OpBuilder::InsertionGuard guard(rewriter); |
804 | rewriter.setInsertionPoint(sliceOpToTile); |
805 | |
806 | // Clone the producer inside the consumer and try to update the producer init |
807 | // operands using the loop bbArgs if applicable. More precisely, if the bbArg |
808 | // of the container loop points to a value that it is used by the consumer op, |
809 | // then, instead of using such value on the consumer, use the value coming |
810 | // from the bbArg instead. This allows to reuse the output tensor (instead of |
811 | // creating a new one) of the container when both producer and container write |
812 | // to the same output. |
813 | if (LoopLikeOpInterface containerLoop = |
814 | dyn_cast<LoopLikeOpInterface>(sliceOpToTile->getParentOp())) { |
815 | Operation *clone = rewriter.clone(op&: *producerOp); |
816 | rewriter.modifyOpInPlace(root: clone, callable: [&]() { |
817 | // Iterate over the outputs of the producer and over the loop bbArgs and |
818 | // check if any bbArg points to the same value as the producer output. In |
819 | // such case, make the producer output point to the bbArg directly. |
820 | for (OpOperand &initOperandPtr : |
821 | cast<DestinationStyleOpInterface>(clone).getDpsInitsMutable()) { |
822 | Value producerOperand = |
823 | clone->getOperand(initOperandPtr.getOperandNumber()); |
824 | for (BlockArgument containerIterArg : |
825 | containerLoop.getRegionIterArgs()) { |
826 | OpOperand *bbArg = containerLoop.getTiedLoopInit(containerIterArg); |
827 | Value consumerOperand = |
828 | containerLoop->getOperand(bbArg->getOperandNumber()); |
829 | // The producer has the same init as the loop bbArg, use it. |
830 | if (sameOrEquivalentIterArg(producerOperand, consumerOperand)) { |
831 | initOperandPtr.set(containerIterArg); |
832 | } |
833 | } |
834 | } |
835 | }); |
836 | |
837 | tileableProducer = dyn_cast<TilingInterface>(clone); |
838 | } |
839 | |
840 | // Tile the producer. |
841 | int64_t resultNumber = |
842 | cast<OpResult>(sliceOpToTile.getSource()).getResultNumber(); |
843 | LLVM_DEBUG(DBGS() << "resultNumber: "<< resultNumber << "\n"); |
844 | |
845 | SmallVector<OpFoldResult> offsets = sliceOpToTile.getMixedOffsets(); |
846 | SmallVector<OpFoldResult> sizes = sliceOpToTile.getMixedSizes(); |
847 | |
848 | FailureOr<TilingResult> tileAndFuseResult = |
849 | tileableProducer.generateResultTileValue(rewriter, resultNumber, offsets, |
850 | sizes); |
851 | |
852 | if (failed(Result: tileAndFuseResult)) { |
853 | diag.attachNote(noteLoc: tileableProducer->getLoc()) |
854 | << "failed to tile producer op: "<< *tileableProducer; |
855 | return {}; |
856 | } |
857 | |
858 | #ifndef NDEBUG |
859 | for (auto *tiledOp : tileAndFuseResult->tiledOps) { |
860 | LLVM_DEBUG(DBGS() << "tiledProducer: "<< *tiledOp << "\n"); |
861 | } |
862 | #endif |
863 | |
864 | // Replace the extract op. |
865 | auto maybeRankReduced = tensor::ExtractSliceOp::rankReduceIfNeeded( |
866 | rewriter, sliceOpToTile->getLoc(), tileAndFuseResult->tiledValues[0], |
867 | cast<RankedTensorType>(sliceOpToTile->getResult(0).getType()).getShape()); |
868 | if (failed(maybeRankReduced)) { |
869 | diag.attachNote(noteLoc: producerOp->getLoc()) |
870 | << "shape types don't match (missing canonicalization?):\nTiledOp: " |
871 | << tileAndFuseResult->tiledValues[0] |
872 | << "\nSliceOp: "<< sliceOpToTile.getOperation() << '\n'; |
873 | return {}; |
874 | } |
875 | rewriter.replaceOp(sliceOpToTile, *maybeRankReduced); |
876 | |
877 | // Add new outputs to containing op, if required |
878 | Operation *newContainingOp = replaceForAllWithNewSignature( |
879 | rewriter, diag, producerOp, containingOp, tileAndFuseResult&: *tileAndFuseResult, |
880 | resultNumber, offsets, sizes); |
881 | |
882 | // Cleanup clone. |
883 | if (dyn_cast<LoopLikeOpInterface>(containingOp)) |
884 | rewriter.eraseOp(op: tileableProducer); |
885 | |
886 | return std::make_tuple(args&: tileAndFuseResult->tiledOps, args&: newContainingOp); |
887 | } |
888 | |
889 | /// First, find the first "scf::ForallOp" user of `producerOp` and ensure |
890 | /// it is exactly the `containingOp`, otherwise bail. |
891 | /// Then, find the first "extract" user of the tied block argument and tile it |
892 | /// right before its "extract" use. The tiled op is fused under the |
893 | /// `containingOp`. |
894 | /// Return this fused op on success or nullptr if anything fails. |
895 | static SmallVector<Operation *> |
896 | tileAndFuseFirstExtractUseThroughContainingOpBlockArgument( |
897 | RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp, |
898 | Operation *containingOp) { |
899 | LLVM_DEBUG(DBGS() << "Try to fuse an extract use through block argument\n"); |
900 | |
901 | auto tileableProducer = dyn_cast<TilingInterface>(producerOp); |
902 | if (!tileableProducer) { |
903 | diag.attachNote(noteLoc: producerOp->getLoc()) |
904 | << "producer is not a TileableInterface: "<< *producerOp; |
905 | return {}; |
906 | } |
907 | |
908 | // Search the first use by a "scf::ForallOp" user. |
909 | scf::ForallOp forallOp; |
910 | auto itProducerUses = |
911 | llvm::find_if(tileableProducer->getUses(), [&](OpOperand &use) { |
912 | forallOp = dyn_cast<scf::ForallOp>(use.getOwner()); |
913 | return forallOp; |
914 | }); |
915 | // If it's not from the containing op, return. |
916 | if (!forallOp || forallOp != containingOp) { |
917 | diag.attachNote(noteLoc: tileableProducer->getLoc()) |
918 | << "could not find a use by the containing op: "<< *tileableProducer; |
919 | return {}; |
920 | } |
921 | |
922 | // Search the producer slices accessed within the containing |
923 | // operation. |
924 | // TODO: Generalize to more extract/insert/parallel_insert triples. |
925 | // Maybe evolve into an interface. |
926 | OpOperand *pUse = &(*itProducerUses); |
927 | BlockArgument bbArg = forallOp.getTiedBlockArgument(pUse); |
928 | |
929 | // Search the producer slices accessed within the containing operation. |
930 | // TODO: Generalize to more extract/insert/parallel_insert triples, maybe |
931 | // evolve into an interface. |
932 | auto itBBArgUsers = llvm::find_if(Range: bbArg.getUsers(), P: [&](Operation *user) { |
933 | auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user); |
934 | return sliceOp && containingOp->isProperAncestor(sliceOp); |
935 | }); |
936 | |
937 | // Find a fusion opportunity. |
938 | if (itBBArgUsers == bbArg.getUsers().end()) { |
939 | diag.attachNote(noteLoc: containingOp->getLoc()) |
940 | << "could not find fusion opportunity for bbArg: "<< bbArg; |
941 | return {}; |
942 | } |
943 | auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*itBBArgUsers); |
944 | |
945 | // Try to fuse the producer in-place. |
946 | OpBuilder::InsertionGuard guard(rewriter); |
947 | rewriter.setInsertionPoint(sliceOpToTile); |
948 | |
949 | // Replace the use in the tileableProducer before tiling: clone, replace and |
950 | // then tile. |
951 | int64_t resultNumber = cast<OpResult>(Val: pUse->get()).getResultNumber(); |
952 | LLVM_DEBUG(DBGS() << "resultNumber: "<< resultNumber << "\n"); |
953 | |
954 | // Gather destination tensors. |
955 | SmallVector<Value> destinationTensors; |
956 | if (failed(tensor::getOrCreateDestinations( |
957 | b&: rewriter, loc: tileableProducer->getLoc(), op: tileableProducer, |
958 | result&: destinationTensors))) { |
959 | diag.attachNote(noteLoc: tileableProducer->getLoc()) |
960 | << "failed to get destination tensors for: "<< *tileableProducer; |
961 | return {}; |
962 | } |
963 | |
964 | IRMapping bvm; |
965 | bvm.map(from: destinationTensors[resultNumber], to: bbArg); |
966 | auto tileableProducerClone = |
967 | cast<TilingInterface>(rewriter.clone(*tileableProducer, bvm)); |
968 | auto scopeGuard = |
969 | llvm::make_scope_exit(F: [&]() { rewriter.eraseOp(op: tileableProducerClone); }); |
970 | |
971 | // Tile the producer. |
972 | FailureOr<TilingResult> tileAndFuseResult = |
973 | tileableProducerClone.generateResultTileValue( |
974 | rewriter, resultNumber, sliceOpToTile.getMixedOffsets(), |
975 | sliceOpToTile.getMixedSizes()); |
976 | if (failed(Result: tileAndFuseResult)) { |
977 | diag.attachNote(noteLoc: tileableProducer->getLoc()) |
978 | << "failed to tile producer op: "<< *tileableProducer; |
979 | return {}; |
980 | } |
981 | |
982 | // Replace the extract op. |
983 | auto maybeRankReduced = tensor::ExtractSliceOp::rankReduceIfNeeded( |
984 | rewriter, sliceOpToTile->getLoc(), tileAndFuseResult->tiledValues[0], |
985 | cast<RankedTensorType>(sliceOpToTile->getResult(0).getType()).getShape()); |
986 | assert(succeeded(maybeRankReduced) && "unexpected shape"); |
987 | rewriter.replaceOp(sliceOpToTile, *maybeRankReduced); |
988 | |
989 | // Replace the use in containingOp. |
990 | rewriter.modifyOpInPlace(root: containingOp, callable: [&]() { |
991 | containingOp->setOperand(idx: pUse->getOperandNumber(), |
992 | value: destinationTensors.front()); |
993 | }); |
994 | |
995 | return tileAndFuseResult->tiledOps; |
996 | } |
997 | |
998 | static Operation *cloneAndFuseFirstUse(RewriterBase &rewriter, Diagnostic &diag, |
999 | Operation *producerOp, |
1000 | Operation *containingOp) { |
1001 | LLVM_DEBUG(DBGS() << "Try to fuse an use by cloning\n"); |
1002 | |
1003 | // Gather all uses inside the containing op. |
1004 | SmallVector<OpOperand *> uses; |
1005 | for (OpResult result : producerOp->getOpResults()) { |
1006 | for (OpOperand &use : result.getUses()) { |
1007 | if (containingOp->isProperAncestor(other: use.getOwner())) { |
1008 | uses.push_back(Elt: &use); |
1009 | continue; |
1010 | } |
1011 | // Cannot clone and fuse if the use is by the containing op itself: fail |
1012 | // immediately. |
1013 | if (containingOp == use.getOwner()) { |
1014 | diag.attachNote(noteLoc: producerOp->getLoc()) |
1015 | << "producer op use by containing op cannot be fused by cloning"; |
1016 | return nullptr; |
1017 | } |
1018 | } |
1019 | } |
1020 | |
1021 | // Check for a non-empty list of fusion opportunities. |
1022 | if (uses.empty()) { |
1023 | diag.attachNote(noteLoc: producerOp->getLoc()) << "no fusion opportunity by cloning"; |
1024 | return nullptr; |
1025 | } |
1026 | |
1027 | // Clone and fuse inside the containing op. |
1028 | Operation *fusedOp = nullptr; |
1029 | OpOperand *use = uses.front(); |
1030 | // Parallel insert slice is not a valid clone destination. |
1031 | // TODO: Generalize to other type of ops. |
1032 | assert(!isa<tensor::ParallelInsertSliceOp>(use->getOwner()) && |
1033 | "Parallel insert slice is not a valid clone destination"); |
1034 | unsigned resultNumber = cast<OpResult>(Val: use->get()).getResultNumber(); |
1035 | LLVM_DEBUG(DBGS() << "resultNumber: "<< resultNumber << "\n"); |
1036 | |
1037 | OpBuilder::InsertionGuard guard(rewriter); |
1038 | rewriter.setInsertionPoint(use->getOwner()); |
1039 | fusedOp = rewriter.clone(op&: *producerOp); |
1040 | rewriter.modifyOpInPlace( |
1041 | root: use->getOwner(), callable: [&] { use->set(fusedOp->getOpResult(idx: resultNumber)); }); |
1042 | |
1043 | return fusedOp; |
1044 | } |
1045 | |
1046 | bool transform::FuseIntoContainingOp::allowsRepeatedHandleOperands() { |
1047 | // Allow repeated handles since we are fusing everything anyway. |
1048 | return true; |
1049 | } |
1050 | |
1051 | DiagnosedSilenceableFailure |
1052 | transform::FuseIntoContainingOp::apply(transform::TransformRewriter &rewriter, |
1053 | transform::TransformResults &results, |
1054 | transform::TransformState &state) { |
1055 | SmallVector<Operation *> fusedOps; |
1056 | auto producerOps = state.getPayloadOps(getProducerOp()); |
1057 | auto containingOps = state.getPayloadOps(getContainingOp()); |
1058 | if (!llvm::hasSingleElement(containingOps)) { |
1059 | return emitDefiniteFailure() |
1060 | << "requires exactly one containing_op handle (got " |
1061 | << llvm::range_size(containingOps) << ")"; |
1062 | } |
1063 | Operation *containingOp = *containingOps.begin(); |
1064 | |
1065 | // If nothing to fuse, propagate success. |
1066 | if (std::empty(producerOps)) { |
1067 | results.set(cast<OpResult>(getFusedOp()), SmallVector<mlir::Operation *>{}); |
1068 | results.set(cast<OpResult>(getNewContainingOp()), {containingOp}); |
1069 | return DiagnosedSilenceableFailure::success(); |
1070 | } |
1071 | |
1072 | // Helper function to find the next producer that should be fused. Take any |
1073 | // producer that has a use inside the containing op. |
1074 | SetVector<Operation *> remainingProducers(llvm::from_range, producerOps); |
1075 | auto getNextProducer = [&]() -> FailureOr<Operation *> { |
1076 | for (const auto &it : enumerate(remainingProducers)) { |
1077 | Operation *producerOp = it.value(); |
1078 | // The containing op may be a user of producerOp: use isAncestor. |
1079 | int64_t numUsesInContainingOp = |
1080 | llvm::count_if(producerOp->getUsers(), [&](Operation *op) { |
1081 | return containingOp->isAncestor(op); |
1082 | }); |
1083 | // TODO: When resolving the TODO below (no duplicate ops), take an op |
1084 | // that has no use among the remaining producers. This is a topological |
1085 | // sorting. |
1086 | if (numUsesInContainingOp > 0) { |
1087 | if (numUsesInContainingOp == 1) |
1088 | remainingProducers.erase(remainingProducers.begin() + it.index()); |
1089 | return producerOp; |
1090 | } |
1091 | } |
1092 | return failure(); |
1093 | }; |
1094 | |
1095 | while (!remainingProducers.empty()) { |
1096 | auto nextProducer = getNextProducer(); |
1097 | if (failed(nextProducer)) { |
1098 | auto diag = mlir::emitSilenceableFailure(getLoc()) |
1099 | << "could not find next producer to fuse into container"; |
1100 | diag.attachNote(containingOp->getLoc()) << "containing op"; |
1101 | return diag; |
1102 | } |
1103 | |
1104 | Operation *producerOp = *nextProducer; |
1105 | |
1106 | // Default diagnostic, to be complemented with more failure information. |
1107 | Diagnostic diag(producerOp->getLoc(), DiagnosticSeverity::Remark); |
1108 | diag << "could not fuse "<< *producerOp << " into "<< *containingOp; |
1109 | |
1110 | // TODO: If there are multiple uses of the producer in the containing op, |
1111 | // we currently tile/clone the op multiple times (once per use). In some |
1112 | // cases, we can tile/clone once and reuse the value for each use. |
1113 | // Futhermore, producers should then be traversed according to a |
1114 | // topological sorting. |
1115 | auto [tiledOps, newContainingOp] = |
1116 | tileAndFuseFirstExtractUse(rewriter, diag, producerOp, containingOp); |
1117 | if (!tiledOps.empty()) { |
1118 | LLVM_DEBUG(DBGS() << "\nFused a direct extract use\n"<< *containingOp); |
1119 | fusedOps.append(tiledOps); |
1120 | if (newContainingOp) { |
1121 | // Update handles associated with the containing op so we don't need to |
1122 | // invalidate them. This is a hack to support better composability |
1123 | // between tiling and fusion while a proper mechanism is being |
1124 | // investigated. |
1125 | // |
1126 | // DO NOT replicate this elsewhere unless you understand what you are |
1127 | // doing. |
1128 | LogicalResult replacementStatus = |
1129 | rewriter.notifyPayloadOperationReplaced(containingOp, |
1130 | newContainingOp); |
1131 | (void)replacementStatus; |
1132 | assert(succeeded(replacementStatus) && |
1133 | "unable to update transform state mapping"); |
1134 | rewriter.eraseOp(containingOp); |
1135 | containingOp = newContainingOp; |
1136 | } |
1137 | continue; |
1138 | } |
1139 | |
1140 | SmallVector<Operation *> tiledContainingOpOperand = |
1141 | tileAndFuseFirstExtractUseThroughContainingOpBlockArgument( |
1142 | rewriter, diag, producerOp, containingOp); |
1143 | if (!tiledContainingOpOperand.empty()) { |
1144 | LLVM_DEBUG(DBGS() << "\nFused an extract use through block argument\n" |
1145 | << *containingOp); |
1146 | fusedOps.append(tiledContainingOpOperand); |
1147 | continue; |
1148 | } |
1149 | |
1150 | Operation *cloned = |
1151 | cloneAndFuseFirstUse(rewriter, diag, producerOp, containingOp); |
1152 | if (cloned) { |
1153 | LLVM_DEBUG(DBGS() << "\nFused an use by cloning\n"<< *containingOp); |
1154 | fusedOps.push_back(cloned); |
1155 | continue; |
1156 | } |
1157 | return DiagnosedSilenceableFailure::silenceableFailure(std::move(diag)); |
1158 | } |
1159 | |
1160 | results.set(cast<OpResult>(getFusedOp()), fusedOps); |
1161 | results.set(cast<OpResult>(getNewContainingOp()), {containingOp}); |
1162 | return DiagnosedSilenceableFailure::success(); |
1163 | } |
1164 | |
1165 | void transform::FuseIntoContainingOp::getEffects( |
1166 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
1167 | consumesHandle(getProducerOpMutable(), effects); |
1168 | onlyReadsHandle(getContainingOpMutable(), effects); |
1169 | producesHandle(getOperation()->getOpResults(), effects); |
1170 | modifiesPayload(effects); |
1171 | } |
1172 | |
1173 | //===----------------------------------------------------------------------===// |
1174 | // GeneralizeOp |
1175 | //===----------------------------------------------------------------------===// |
1176 | |
1177 | DiagnosedSilenceableFailure |
1178 | transform::GeneralizeOp::applyToOne(transform::TransformRewriter &rewriter, |
1179 | LinalgOp target, |
1180 | transform::ApplyToEachResultList &results, |
1181 | transform::TransformState &state) { |
1182 | // Exit early if no transformation is needed. |
1183 | if (isa<GenericOp>(target)) { |
1184 | results.push_back(target); |
1185 | return DiagnosedSilenceableFailure::success(); |
1186 | } |
1187 | rewriter.setInsertionPoint(target); |
1188 | FailureOr<LinalgOp> generic = generalizeNamedOp(rewriter, target); |
1189 | if (succeeded(generic)) { |
1190 | results.push_back(generic->getOperation()); |
1191 | return DiagnosedSilenceableFailure::success(); |
1192 | } |
1193 | return emitDefaultSilenceableFailure(target); |
1194 | } |
1195 | |
1196 | //===----------------------------------------------------------------------===// |
1197 | // SpecializeOp |
1198 | //===----------------------------------------------------------------------===/ |
1199 | |
1200 | DiagnosedSilenceableFailure |
1201 | transform::SpecializeOp::applyToOne(transform::TransformRewriter &rewriter, |
1202 | LinalgOp target, |
1203 | transform::ApplyToEachResultList &results, |
1204 | transform::TransformState &state) { |
1205 | // Exit early if the operation is not a generic. |
1206 | if (!isa<GenericOp>(target)) { |
1207 | results.push_back(target); |
1208 | return DiagnosedSilenceableFailure::success(); |
1209 | } |
1210 | rewriter.setInsertionPoint(target); |
1211 | FailureOr<LinalgOp> named = |
1212 | specializeGenericOp(rewriter, cast<GenericOp>(target)); |
1213 | if (succeeded(named)) { |
1214 | results.push_back(named->getOperation()); |
1215 | return DiagnosedSilenceableFailure::success(); |
1216 | } |
1217 | return emitDefaultSilenceableFailure(target); |
1218 | } |
1219 | |
1220 | //===----------------------------------------------------------------------===// |
1221 | // InterchangeOp |
1222 | //===----------------------------------------------------------------------===// |
1223 | |
1224 | DiagnosedSilenceableFailure |
1225 | transform::InterchangeOp::applyToOne(transform::TransformRewriter &rewriter, |
1226 | GenericOp target, |
1227 | transform::ApplyToEachResultList &results, |
1228 | transform::TransformState &state) { |
1229 | ArrayRef<int64_t> interchangeVector = getIteratorInterchange(); |
1230 | // Exit early if no transformation is needed. |
1231 | if (interchangeVector.empty()) { |
1232 | results.push_back(target); |
1233 | return DiagnosedSilenceableFailure::success(); |
1234 | } |
1235 | |
1236 | unsigned numLoops = cast<LinalgOp>(target.getOperation()).getNumLoops(); |
1237 | if (interchangeVector.size() != numLoops) { |
1238 | return emitSilenceableError() |
1239 | << getIteratorInterchangeAttrName() << " has length (" |
1240 | << interchangeVector.size() |
1241 | << ") different from the number of loops in the target operation (" |
1242 | << numLoops << ")"; |
1243 | } |
1244 | FailureOr<GenericOp> res = interchangeGenericOp( |
1245 | rewriter, target, SmallVector<unsigned>(interchangeVector)); |
1246 | if (failed(res)) |
1247 | return emitDefiniteFailure() << "failed to apply"; |
1248 | results.push_back(res->getOperation()); |
1249 | return DiagnosedSilenceableFailure::success(); |
1250 | } |
1251 | |
1252 | LogicalResult transform::InterchangeOp::verify() { |
1253 | ArrayRef<int64_t> permutation = getIteratorInterchange(); |
1254 | auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size())); |
1255 | if (!std::is_permutation(sequence.begin(), sequence.end(), |
1256 | permutation.begin(), permutation.end())) { |
1257 | return emitOpError() |
1258 | << "expects iterator_interchange to be a permutation, found " |
1259 | << getIteratorInterchange(); |
1260 | } |
1261 | return success(); |
1262 | } |
1263 | |
1264 | //===----------------------------------------------------------------------===// |
1265 | // LinalgCopyToMemrefOp |
1266 | //===----------------------------------------------------------------------===// |
1267 | |
1268 | DiagnosedSilenceableFailure transform::LinalgCopyToMemrefOp::applyToOne( |
1269 | transform::TransformRewriter &rewriter, Operation *targetOp, |
1270 | transform::ApplyToEachResultList &results, |
1271 | transform::TransformState &state) { |
1272 | |
1273 | // Check if the target can be converted. |
1274 | if (!isa<linalg::CopyOp>(targetOp)) { |
1275 | DiagnosedSilenceableFailure diag = |
1276 | emitSilenceableError() << "only linalg.copy target ops are supported"; |
1277 | diag.attachNote(targetOp->getLoc()) << "target op"; |
1278 | return diag; |
1279 | } |
1280 | |
1281 | auto copyOp = dyn_cast<linalg::CopyOp>(targetOp); |
1282 | if (!copyOp.hasPureBufferSemantics()) { |
1283 | DiagnosedSilenceableFailure diag = |
1284 | emitSilenceableError() |
1285 | << "cannot transform a linalg.copy on tensors into a memref.copy"; |
1286 | diag.attachNote(targetOp->getLoc()) << "target op"; |
1287 | return diag; |
1288 | } |
1289 | |
1290 | SmallVector<Value> inputs = copyOp.getInputs(); |
1291 | SmallVector<Value> outputs = copyOp.getOutputs(); |
1292 | assert(inputs.size() == 1 && "expected linalg copy op with one input"); |
1293 | assert(outputs.size() == 1 && "expected memref copy op with one output"); |
1294 | Value input = inputs.front(); |
1295 | Value output = outputs.front(); |
1296 | |
1297 | // linalg.copy supports different element types on source/dest whereas |
1298 | // memref.copy does not, so we must check that the source and dest types can |
1299 | // be handled by memref.copy and otherwise reject the transformation. |
1300 | if (!isa<ShapedType>(input.getType())) { |
1301 | DiagnosedSilenceableFailure diag = |
1302 | emitSilenceableError() |
1303 | << "cannot transform a linalg.copy which input has no shape"; |
1304 | diag.attachNote(targetOp->getLoc()) << "target op"; |
1305 | return diag; |
1306 | } |
1307 | |
1308 | // linalg.copy destination must be a shaped type. |
1309 | assert(isa<ShapedType>(output.getType())); |
1310 | |
1311 | if (cast<ShapedType>(input.getType()).getElementType() != |
1312 | cast<ShapedType>(output.getType()).getElementType()) { |
1313 | DiagnosedSilenceableFailure diag = |
1314 | emitSilenceableError() |
1315 | << "cannot transform a linalg.copy with different source and " |
1316 | "destination element types "; |
1317 | diag.attachNote(targetOp->getLoc()) << "target op"; |
1318 | return diag; |
1319 | } |
1320 | |
1321 | // Target can be converted, do it. |
1322 | auto memrefCopyOp = |
1323 | rewriter.replaceOpWithNewOp<memref::CopyOp>(targetOp, input, output); |
1324 | |
1325 | results.push_back(memrefCopyOp); |
1326 | return DiagnosedSilenceableFailure::success(); |
1327 | } |
1328 | |
1329 | //===----------------------------------------------------------------------===// |
1330 | // LowerPackOp |
1331 | //===----------------------------------------------------------------------===// |
1332 | |
1333 | DiagnosedSilenceableFailure transform::LowerPackOp::applyToOne( |
1334 | transform::TransformRewriter &rewriter, linalg::PackOp target, |
1335 | transform::ApplyToEachResultList &transformResults, |
1336 | transform::TransformState &state) { |
1337 | rewriter.setInsertionPoint(target); |
1338 | bool lowerPadLikeWithInsertSlice = getLowerPadLikeWithInsertSlice(); |
1339 | FailureOr<LowerPackResult> res = |
1340 | lowerPack(rewriter, target, lowerPadLikeWithInsertSlice); |
1341 | if (failed(res)) { |
1342 | return mlir::emitSilenceableFailure(target->getLoc()) |
1343 | << "cannot lower to pad + expand + transpose"; |
1344 | } |
1345 | transformResults.push_back(res->padOp); |
1346 | transformResults.push_back(res->expandShapeOp); |
1347 | transformResults.push_back(res->transposeOp); |
1348 | return DiagnosedSilenceableFailure::success(); |
1349 | } |
1350 | |
1351 | //===----------------------------------------------------------------------===// |
1352 | // LowerUnPackOp |
1353 | //===----------------------------------------------------------------------===// |
1354 | |
1355 | DiagnosedSilenceableFailure transform::LowerUnPackOp::applyToOne( |
1356 | transform::TransformRewriter &rewriter, linalg::UnPackOp target, |
1357 | transform::ApplyToEachResultList &transformResults, |
1358 | transform::TransformState &state) { |
1359 | rewriter.setInsertionPoint(target); |
1360 | bool lowerUnpadLikeWithExtractSlice = getLowerUnpadLikeWithExtractSlice(); |
1361 | FailureOr<LowerUnPackOpResult> res = |
1362 | lowerUnPack(rewriter, target, lowerUnpadLikeWithExtractSlice); |
1363 | if (failed(res)) { |
1364 | DiagnosedSilenceableFailure diag = |
1365 | emitSilenceableError() |
1366 | << "cannot lower to transpose + collapse + extract"; |
1367 | diag.attachNote(target->getLoc()) << "target payload op"; |
1368 | return diag; |
1369 | } |
1370 | transformResults.push_back(res->emptyOp); |
1371 | transformResults.push_back(res->transposeOp); |
1372 | transformResults.push_back(res->collapseShapeOp); |
1373 | transformResults.push_back(res->extractSliceOp); |
1374 | return DiagnosedSilenceableFailure::success(); |
1375 | } |
1376 | |
1377 | //===---------------------------------------------------------------------===// |
1378 | // MatchOp |
1379 | //===---------------------------------------------------------------------===// |
1380 | |
1381 | void transform::MatchOp::build(OpBuilder &builder, OperationState &result, |
1382 | Value target, ArrayRef<StringRef> opNames) { |
1383 | result.addOperands(target); |
1384 | result.addAttribute(MatchOp::getOpsAttrName(result.name), |
1385 | builder.getStrArrayAttr(opNames)); |
1386 | result.addTypes(transform::AnyOpType::get(builder.getContext())); |
1387 | } |
1388 | |
1389 | void transform::MatchOp::build(OpBuilder &builder, OperationState &result, |
1390 | TypeRange resultTypes, Value target, |
1391 | ArrayRef<StringRef> opNames) { |
1392 | result.addOperands(target); |
1393 | result.addAttribute(MatchOp::getOpsAttrName(result.name), |
1394 | builder.getStrArrayAttr(opNames)); |
1395 | result.addTypes(resultTypes); |
1396 | } |
1397 | |
1398 | DiagnosedSilenceableFailure |
1399 | transform::MatchOp::apply(transform::TransformRewriter &rewriter, |
1400 | transform::TransformResults &results, |
1401 | transform::TransformState &state) { |
1402 | llvm::StringSet<> strs; |
1403 | if (getOps().has_value()) |
1404 | strs.insert_range(getOps()->getAsValueRange<StringAttr>()); |
1405 | |
1406 | auto payloadOps = state.getPayloadOps(getTarget()); |
1407 | if (!llvm::hasSingleElement(payloadOps)) { |
1408 | return emitDefiniteFailure("requires exactly one target handle"); |
1409 | } |
1410 | |
1411 | SmallVector<Operation *> res; |
1412 | bool incorrectNumOperandTypes = false; |
1413 | auto matchFun = [&](Operation *op) { |
1414 | if (getOps().has_value() && !strs.contains(op->getName().getStringRef())) |
1415 | return; |
1416 | |
1417 | // Interfaces cannot be matched by name, just by ID. |
1418 | // So we specifically encode the interfaces we care about for this op. |
1419 | if (getInterface().has_value()) { |
1420 | auto iface = getInterface().value(); |
1421 | if (iface == transform::MatchInterfaceEnum::LinalgOp && |
1422 | !isa<LinalgOp>(op)) |
1423 | return; |
1424 | if (iface == transform::MatchInterfaceEnum::TilingInterface && |
1425 | !isa<TilingInterface>(op)) |
1426 | return; |
1427 | if (iface == transform::MatchInterfaceEnum::LoopLikeInterface && |
1428 | !isa<LoopLikeOpInterface>(op)) |
1429 | return; |
1430 | } |
1431 | |
1432 | // Check if all specified attributes match. |
1433 | if (getOpAttrs().has_value()) { |
1434 | DictionaryAttr opAttrs = getOpAttrs().value(); |
1435 | for (NamedAttribute attr : opAttrs) { |
1436 | if (attr.getName() == getInterfaceAttrName() || |
1437 | attr.getName() == getOpsAttrName()) |
1438 | continue; |
1439 | if (!op->hasAttr(attr.getName())) |
1440 | return; |
1441 | if (op->getAttr(attr.getName()) != attr.getValue()) |
1442 | return; |
1443 | } |
1444 | } |
1445 | |
1446 | if (getFilterResultType().has_value()) { |
1447 | Type t = getFilterResultType().value(); |
1448 | if (op->getNumResults() != 1 || op->getResultTypes().front() != t) |
1449 | return; |
1450 | } |
1451 | |
1452 | if (getFilterOperandTypes().has_value()) { |
1453 | mlir::ArrayAttr types = getFilterOperandTypes().value(); |
1454 | auto operandTypes = op->getOperandTypes(); |
1455 | |
1456 | if (types.size() == 1) { |
1457 | // All the operands must must be equal to the specified type |
1458 | auto typeattr = |
1459 | dyn_cast<mlir::TypeAttr>(getFilterOperandTypes().value()[0]); |
1460 | Type t = cast<::mlir::Type>(typeattr.getValue()); |
1461 | if (!llvm::all_of(op->getOperandTypes(), |
1462 | [&](Type operandType) { return operandType == t; })) |
1463 | return; |
1464 | } else { |
1465 | // The operand types must match all the types in the list (in the same |
1466 | // order in with they are specified) |
1467 | if (types.size() != operandTypes.size()) { |
1468 | incorrectNumOperandTypes = true; |
1469 | return; |
1470 | } |
1471 | |
1472 | for (auto [attr, operandType] : |
1473 | llvm::zip_equal(getFilterOperandTypes().value(), operandTypes)) { |
1474 | auto typeattr = cast<mlir::TypeAttr>(attr); |
1475 | Type type = cast<::mlir::Type>(typeattr.getValue()); |
1476 | |
1477 | if (type != operandType) |
1478 | return; |
1479 | } |
1480 | } |
1481 | } |
1482 | |
1483 | // All constraints are satisfied. |
1484 | res.push_back(op); |
1485 | return; |
1486 | }; |
1487 | |
1488 | (*payloadOps.begin())->walk(matchFun); |
1489 | if (incorrectNumOperandTypes) |
1490 | return emitDefiniteFailure("If filter_operand_types contains more than a " |
1491 | "type, then it must contain as much types as " |
1492 | "the number of operands in the target ops"); |
1493 | results.set(cast<OpResult>(getResult()), res); |
1494 | return DiagnosedSilenceableFailure::success(); |
1495 | } |
1496 | |
1497 | //===---------------------------------------------------------------------===// |
1498 | // MultiTileSizesOp |
1499 | //===---------------------------------------------------------------------===// |
1500 | |
1501 | static void printMultitileSizesTypes(OpAsmPrinter &printer, Operation *op, |
1502 | Type targetType, Type lowSizeType, Type, |
1503 | Type) { |
1504 | printer.printFunctionalType(inputs: TypeRange{targetType}, results: TypeRange{lowSizeType}); |
1505 | } |
1506 | |
1507 | static ParseResult parseMultitileSizesTypes(OpAsmParser &parser, |
1508 | Type &targetType, Type &lowSizeType, |
1509 | Type &highSizeType, |
1510 | Type &splitPointType) { |
1511 | FunctionType funcType; |
1512 | llvm::SMLoc typeLoc = parser.getCurrentLocation(); |
1513 | if (failed(parser.parseType<FunctionType>(funcType))) |
1514 | return failure(); |
1515 | |
1516 | if (funcType.getNumInputs() != 1 || funcType.getNumResults() != 1) { |
1517 | parser.emitError(loc: typeLoc) << "expects a trailing functional type with one " |
1518 | "argument and one result"; |
1519 | } |
1520 | targetType = funcType.getInput(0); |
1521 | lowSizeType = highSizeType = splitPointType = funcType.getResult(0); |
1522 | |
1523 | return success(); |
1524 | } |
1525 | |
1526 | DiagnosedSilenceableFailure transform::MultiTileSizesOp::applyToOne( |
1527 | transform::TransformRewriter &rewriter, LinalgOp target, |
1528 | transform::ApplyToEachResultList &results, TransformState &state) { |
1529 | if (isa<TransformParamTypeInterface>(getLowSize().getType())) { |
1530 | if (target.hasDynamicShape()) { |
1531 | auto diag = emitSilenceableError() |
1532 | << "cannot compute parametric tile sizes for dynamically " |
1533 | "shaped payload op"; |
1534 | diag.attachNote(target->getLoc()) << "payload op"; |
1535 | return diag; |
1536 | } |
1537 | |
1538 | FailureOr<StaticMultiSizeSpecification> spec = computeStaticMultiTileSizes( |
1539 | target, getDimension(), getTargetSize(), getDivisor()); |
1540 | if (failed(spec)) { |
1541 | return emitSilenceableError() |
1542 | << "failed to compute multi-size tiling sizes"; |
1543 | } |
1544 | |
1545 | Builder builder(target.getContext()); |
1546 | results.assign(llvm::map_range( |
1547 | ArrayRef<int64_t>({spec->lowTileSize, spec->highTileSize, |
1548 | spec->lowTileSize * spec->lowTripCount}), |
1549 | [&builder, this](int64_t value) { |
1550 | return builder.getIntegerAttr( |
1551 | cast<ParamType>(getLowSize().getType()).getType(), value); |
1552 | })); |
1553 | return DiagnosedSilenceableFailure::success(); |
1554 | } |
1555 | |
1556 | OpBuilder builder(target.getContext()); |
1557 | builder.setInsertionPoint(target); |
1558 | OpFoldResult targetSize = builder.getIndexAttr(getTargetSize()); |
1559 | OpFoldResult divisor = builder.getIndexAttr(getDivisor()); |
1560 | FailureOr<MultiSizeSpecification> spec = computeMultiTileSizes( |
1561 | builder, target, getDimension(), targetSize, divisor); |
1562 | if (failed(spec)) { |
1563 | return emitSilenceableError() << "could not generate tile size computation"; |
1564 | } |
1565 | |
1566 | AffineExpr s0 = builder.getAffineSymbolExpr(0); |
1567 | AffineExpr s1 = builder.getAffineSymbolExpr(1); |
1568 | Operation *splitPoint = |
1569 | affine::makeComposedAffineApply(builder, target.getLoc(), s0 * s1, |
1570 | {spec->lowTileSize, spec->lowTripCount}); |
1571 | Operation *lowTileSize = spec->lowTileSize.getDefiningOp(); |
1572 | Operation *highTileSize = spec->highTileSize.getDefiningOp(); |
1573 | assert(lowTileSize && highTileSize && splitPoint && |
1574 | "tile sizes are not produced by operations"); |
1575 | results.reserve(results.size() + 3); |
1576 | results.push_back(lowTileSize); |
1577 | results.push_back(highTileSize); |
1578 | results.push_back(splitPoint); |
1579 | return DiagnosedSilenceableFailure::success(); |
1580 | } |
1581 | |
1582 | void transform::MultiTileSizesOp::getEffects( |
1583 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
1584 | onlyReadsHandle(getTargetMutable(), effects); |
1585 | producesHandle(getOperation()->getOpResults(), effects); |
1586 | if (isa<TransformParamTypeInterface>(getLowSize().getType())) |
1587 | onlyReadsPayload(effects); |
1588 | else |
1589 | modifiesPayload(effects); |
1590 | } |
1591 | |
1592 | LogicalResult transform::MultiTileSizesOp::verify() { |
1593 | if (getLowSize().getType() != getHighSize().getType() || |
1594 | getLowSize().getType() != getSplitPoint().getType()) { |
1595 | return emitOpError() << "expects all results type to be the same"; |
1596 | } |
1597 | return success(); |
1598 | } |
1599 | |
1600 | //===---------------------------------------------------------------------===// |
1601 | // PackOp |
1602 | //===---------------------------------------------------------------------===// |
1603 | |
1604 | void transform::PackOp::build(OpBuilder &builder, OperationState &result, |
1605 | Value target, |
1606 | ArrayRef<OpFoldResult> mixedPackedSizes) { |
1607 | SmallVector<int64_t> staticPackedSizes; |
1608 | SmallVector<Value> dynamicPackedSizes; |
1609 | dispatchIndexOpFoldResults(mixedPackedSizes, dynamicPackedSizes, |
1610 | staticPackedSizes); |
1611 | // Call the default builder which sets up the proper operands segment sizes |
1612 | // attributes for multiple variadic operands. In the absence of this, horrible |
1613 | // bugs ensue. |
1614 | Type linalgOpHType = transform::OperationType::get( |
1615 | builder.getContext(), GenericOp::getOperationName()); |
1616 | build(builder, result, |
1617 | /*resultType=*/linalgOpHType, |
1618 | /*target=*/target, |
1619 | /*dynamic_sizes=*/dynamicPackedSizes, |
1620 | /*static_sizes=*/builder.getDenseI64ArrayAttr(staticPackedSizes)); |
1621 | } |
1622 | |
1623 | SmallVector<OpFoldResult> transform::PackOp::getMixedPackedSizes() { |
1624 | Builder b(getContext()); |
1625 | return getMixedValues(getStaticPackedSizes(), getPackedSizes(), b); |
1626 | } |
1627 | |
1628 | DiagnosedSilenceableFailure |
1629 | transform::PackOp::apply(transform::TransformRewriter &rewriter, |
1630 | transform::TransformResults &transformResults, |
1631 | transform::TransformState &state) { |
1632 | auto targetOps = state.getPayloadOps(getTarget()); |
1633 | // If nothing to pack, propagate success. |
1634 | if (std::empty(targetOps)) { |
1635 | transformResults.set(cast<OpResult>(getPackedOp()), |
1636 | ArrayRef<Operation *>({})); |
1637 | return DiagnosedSilenceableFailure::success(); |
1638 | } |
1639 | // Fail on multi-op handles. |
1640 | auto linalgOp = dyn_cast<LinalgOp>(*targetOps.begin()); |
1641 | if (!llvm::hasSingleElement(targetOps) || !linalgOp) { |
1642 | return emitSilenceableError() |
1643 | << "requires target to map to exactly 1 LinalgOp (got " |
1644 | << llvm::range_size(targetOps) << ")"; |
1645 | } |
1646 | // Fail on mismatched number of pack sizes. |
1647 | if (getMixedPackedSizes().size() != linalgOp.getNumLoops()) { |
1648 | return emitSilenceableError() |
1649 | << "requires number of packed sizes match the number of loops (" |
1650 | << getMixedPackedSizes().size() << " vs "<< linalgOp.getNumLoops() |
1651 | << ")"; |
1652 | } |
1653 | |
1654 | // Unpack handles to constants or actual SSA index values. |
1655 | SmallVector<OpFoldResult> packedSizes; |
1656 | DiagnosedSilenceableFailure status = unpackSingleIndexResultPayloadOperations( |
1657 | state, *this, packedSizes, getMixedPackedSizes()); |
1658 | |
1659 | rewriter.setInsertionPoint(linalgOp); |
1660 | FailureOr<PackResult> maybeResult = pack(rewriter, linalgOp, packedSizes); |
1661 | if (failed(maybeResult)) |
1662 | return emitDefiniteFailure("data tiling failed"); |
1663 | |
1664 | transformResults.set(cast<OpResult>(getPackedOp()), |
1665 | {maybeResult->packedLinalgOp.getOperation()}); |
1666 | return DiagnosedSilenceableFailure::success(); |
1667 | } |
1668 | |
1669 | void transform::PackOp::getEffects( |
1670 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
1671 | transform::consumesHandle(getTargetMutable(), effects); |
1672 | transform::onlyReadsHandle(getPackedSizesMutable(), effects); |
1673 | transform::producesHandle(getOperation()->getOpResults(), effects); |
1674 | transform::modifiesPayload(effects); |
1675 | } |
1676 | |
1677 | //===---------------------------------------------------------------------===// |
1678 | // PackGreedilyOp. |
1679 | //===---------------------------------------------------------------------===// |
1680 | |
1681 | LogicalResult transform::PackGreedilyOp::verify() { |
1682 | if (!isPermutationVector(getMatmulInnerDimsOrder())) { |
1683 | return emitOpError() << getMatmulInnerDimsOrderAttrName() |
1684 | << " is not a valid permutation"; |
1685 | } |
1686 | // TODO: relax to allow empty once we have another strategy than just matmul. |
1687 | if (!getMatmulPaddedSizesNextMultipleOf().empty()) { |
1688 | for (auto [s, nmo] : |
1689 | llvm::zip_equal(getMixedMatmulPackedSizes(), |
1690 | getMatmulPaddedSizesNextMultipleOf())) { |
1691 | std::optional<int64_t> maybeStaticPackedSize = getConstantIntValue(s); |
1692 | if (nmo != 0 && |
1693 | (!maybeStaticPackedSize.has_value() || *maybeStaticPackedSize != 0)) { |
1694 | return emitOpError() << "at most one of the packed_size and the " |
1695 | "padded_sizes_next_multiple_of can be nonzero " |
1696 | "for the matmul strategy"; |
1697 | } |
1698 | } |
1699 | } |
1700 | return success(); |
1701 | } |
1702 | |
1703 | DiagnosedSilenceableFailure |
1704 | PackGreedilyOp::apply(transform::TransformRewriter &rewriter, |
1705 | transform::TransformResults &transformResults, |
1706 | transform::TransformState &state) { |
1707 | SmallVector<Operation *> results; |
1708 | for (Operation *op : state.getPayloadOps(getTarget())) { |
1709 | auto linalgOp = dyn_cast<LinalgOp>(op); |
1710 | if (!linalgOp) |
1711 | continue; |
1712 | // linalgOp will be replaced and the insertion point may be invalidated if |
1713 | // we set it before -> set it after. |
1714 | rewriter.setInsertionPointAfter(linalgOp); |
1715 | // Failing to pack greedily is perfectly fine. |
1716 | // In the future we will want to order packings according to some metric. |
1717 | FailureOr<PackResult> packResult = packMatmulGreedily( |
1718 | /*rewriter=*/rewriter, |
1719 | /*linalgOp=*/linalgOp, |
1720 | /*mnkPackedSizes=*/getMixedMatmulPackedSizes(), |
1721 | /*mnkPaddedSizesNextMultipleOf=*/ |
1722 | getMatmulPaddedSizesNextMultipleOf(), |
1723 | /*mnkOrder=*/getMatmulInnerDimsOrder()); |
1724 | if (succeeded(packResult)) { |
1725 | results.push_back(packResult->packedLinalgOp); |
1726 | continue; |
1727 | } |
1728 | results.push_back(linalgOp); |
1729 | } |
1730 | transformResults.set(cast<OpResult>(getPackedOp()), results); |
1731 | return DiagnosedSilenceableFailure::success(); |
1732 | } |
1733 | |
1734 | SmallVector<OpFoldResult> PackGreedilyOp::getMixedMatmulPackedSizes() { |
1735 | Builder b(getContext()); |
1736 | return getMixedValues(getStaticMatmulPackedSizes(), getMatmulPackedSizes(), |
1737 | b); |
1738 | } |
1739 | |
1740 | void transform::PackGreedilyOp::getEffects( |
1741 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
1742 | transform::consumesHandle(getTargetMutable(), effects); |
1743 | transform::onlyReadsHandle(getMatmulPackedSizesMutable(), effects); |
1744 | transform::producesHandle(getOperation()->getOpResults(), effects); |
1745 | transform::modifiesPayload(effects); |
1746 | } |
1747 | |
1748 | //===---------------------------------------------------------------------===// |
1749 | // PackTransposeOp |
1750 | //===---------------------------------------------------------------------===// |
1751 | |
1752 | LogicalResult transform::PackTransposeOp::verify() { |
1753 | if (!isPermutationVector(getInnerPerm())) { |
1754 | return emitOpError() << getInnerPermAttrName() |
1755 | << " is not a valid permutation"; |
1756 | } |
1757 | if (!isPermutationVector(getOuterPerm())) { |
1758 | return emitOpError() << getOuterPermAttrName() |
1759 | << " is not a valid permutation"; |
1760 | } |
1761 | if (getInnerPerm().empty() && getOuterPerm().empty()) { |
1762 | return emitOpError() << " at least one of "<< getInnerPermAttrName() |
1763 | << " or "<< getOuterPermAttrName() |
1764 | << " must be specified"; |
1765 | } |
1766 | return success(); |
1767 | } |
1768 | |
1769 | namespace { |
1770 | enum class OuterOrInnerPerm { Outer = 0, Inner = 1 }; |
1771 | } // namespace |
1772 | |
1773 | /// Return true if `permutation` is a valid permutation of the |
1774 | /// `outer_dims_perm` (case OuterOrInnerPerm::Outer) or `inner_dims_pos` |
1775 | /// (OuterOrInnerPerm::Inner) of the `tensor.pack` or `tensor.unpack` `op. |
1776 | /// This is the case when the `permutation` rank matches the rank expected by |
1777 | /// `op` and `permutation` is itself a permutation vector. |
1778 | /// Return true if either `op` or `permutation` are empty to allow a simpler |
1779 | /// polymorphic implementation. |
1780 | template <typename RelayoutOpTy> |
1781 | bool isValidPackingPermutation( |
1782 | RelayoutOpTy op, ArrayRef<int64_t> permutation, |
1783 | OuterOrInnerPerm outerOrInnerPerm = OuterOrInnerPerm::Outer) { |
1784 | static_assert( |
1785 | llvm::is_one_of<RelayoutOpTy, linalg::PackOp, linalg::UnPackOp>::value, |
1786 | "applies to only pack or unpack operations"); |
1787 | if (!op || permutation.empty()) |
1788 | return true; |
1789 | size_t innerRank = op.getInnerDimsPos().size(); |
1790 | if (outerOrInnerPerm == OuterOrInnerPerm::Inner) |
1791 | return permutation.size() == innerRank && isPermutationVector(interchange: permutation); |
1792 | // op.getOuterDimsPerm() may be empty, in which case it is identity. |
1793 | // Don't rely on it. |
1794 | if (std::is_same<RelayoutOpTy, linalg::PackOp>::value) { |
1795 | return permutation.size() == op.getSourceRank() && |
1796 | isPermutationVector(interchange: permutation); |
1797 | } |
1798 | return permutation.size() == op.getDestRank() && |
1799 | isPermutationVector(interchange: permutation); |
1800 | } |
1801 | |
1802 | DiagnosedSilenceableFailure |
1803 | transform::PackTransposeOp::apply(transform::TransformRewriter &rewriter, |
1804 | transform::TransformResults &transformResults, |
1805 | transform::TransformState &state) { |
1806 | auto packOrUnpackOps = state.getPayloadOps(getTargetPackOrUnPackOp()); |
1807 | auto linalgOps = state.getPayloadOps(getTargetLinalgOp()); |
1808 | // Step 1. If nothing to pack, propagate success. |
1809 | if (std::empty(packOrUnpackOps)) { |
1810 | transformResults.set(cast<OpResult>(getPackedOp()), {}); |
1811 | transformResults.set(cast<OpResult>(getPackOp()), {}); |
1812 | transformResults.set(cast<OpResult>(getUnPackOp()), {}); |
1813 | return DiagnosedSilenceableFailure::success(); |
1814 | } |
1815 | |
1816 | // Step 2. Bunch of runtime sanity check and error messages. |
1817 | // Step 2.1. Fail on multi-op handles. |
1818 | if (!llvm::hasSingleElement(packOrUnpackOps) || |
1819 | !llvm::hasSingleElement(linalgOps)) { |
1820 | return emitSilenceableError() |
1821 | << "requires target to map to exactly 1 " |
1822 | "packing op and 1 packed op (" |
1823 | << "got "<< llvm::range_size(packOrUnpackOps) << " and " |
1824 | << llvm::range_size(linalgOps) << ")"; |
1825 | } |
1826 | |
1827 | // Step 2.2. Fail on wrong type. |
1828 | auto packOp = dyn_cast<linalg::PackOp>(*packOrUnpackOps.begin()); |
1829 | auto unPackOp = dyn_cast<linalg::UnPackOp>(*packOrUnpackOps.begin()); |
1830 | if ((!packOp && !unPackOp)) { |
1831 | return emitSilenceableError() << "requires target to map to a " |
1832 | "linalg.pack or linalg.unpack"; |
1833 | } |
1834 | LinalgOp linalgOpTarget = dyn_cast<LinalgOp>(*linalgOps.begin()); |
1835 | if (!linalgOpTarget) |
1836 | return emitSilenceableError() << "requires a LinalgOp target"; |
1837 | |
1838 | // Step 2.3. Fail if we can't get the producer / consumer Linalg op. |
1839 | LinalgOp linalgOp; |
1840 | if (packOp && packOp.getResult().hasOneUse()) |
1841 | linalgOp = dyn_cast<LinalgOp>(*(packOp.getResult().getUsers().begin())); |
1842 | else if (unPackOp) |
1843 | linalgOp = unPackOp.getSource().getDefiningOp<LinalgOp>(); |
1844 | if (linalgOp != linalgOpTarget) { |
1845 | auto errorMsg = |
1846 | packOp ? StringLiteral{"not a single use by the LinalgOp target"} |
1847 | : StringLiteral{"not produced by the LinalgOp target"}; |
1848 | return emitSilenceableError() << errorMsg; |
1849 | } |
1850 | |
1851 | // Step 2.4. If we have an UnPackOp, we need to fetch the symmetrical |
1852 | // PackOp. |
1853 | if (unPackOp) { |
1854 | assert(!packOp && "packOp must be null on entry when unPackOp is not null"); |
1855 | OpOperand *packUse = linalgOp.getDpsInitOperand( |
1856 | cast<OpResult>(unPackOp.getSource()).getResultNumber()); |
1857 | packOp = dyn_cast_or_null<linalg::PackOp>(packUse->get().getDefiningOp()); |
1858 | if (!packOp || !packOp.getResult().hasOneUse()) |
1859 | return emitSilenceableError() << "could not find matching pack op"; |
1860 | } |
1861 | |
1862 | // Step 2.5. Fail if any permutation does not validate. |
1863 | for (auto permType : {OuterOrInnerPerm::Outer, OuterOrInnerPerm::Inner}) { |
1864 | ArrayRef<int64_t> perm = |
1865 | (permType == OuterOrInnerPerm::Outer) ? getOuterPerm() : getInnerPerm(); |
1866 | auto errorMsg = (permType == OuterOrInnerPerm::Outer) |
1867 | ? StringLiteral{"invalid outer_perm"} |
1868 | : StringLiteral{"invalid inner_perm"}; |
1869 | if (!isValidPackingPermutation(packOp, perm, permType) || |
1870 | !isValidPackingPermutation(unPackOp, perm, permType)) { |
1871 | Operation *packOrUnpackOp = |
1872 | unPackOp ? unPackOp.getOperation() : packOp.getOperation(); |
1873 | return emitSilenceableError() << errorMsg << ": "<< *packOrUnpackOp; |
1874 | } |
1875 | } |
1876 | |
1877 | // From here on, packOp and linalgOp are always present, unPackOp may or may |
1878 | // not be present. |
1879 | assert(packOp && linalgOp && "unexpected null op"); |
1880 | |
1881 | // Step 3. Actually transpose the ops. |
1882 | FailureOr<PackTransposeResult> res = packTranspose( |
1883 | rewriter, packOp, linalgOp, unPackOp, getOuterPerm(), getInnerPerm()); |
1884 | // Preconditions have been checked, it is an error to fail here. |
1885 | assert(succeeded(res) && "unexpected packTranspose failure"); |
1886 | |
1887 | // Step 4. Return results. |
1888 | transformResults.set(cast<OpResult>(getPackOp()), {res->transposedPackOp}); |
1889 | transformResults.set(cast<OpResult>(getPackedOp()), |
1890 | {res->transposedLinalgOp}); |
1891 | if (unPackOp) { |
1892 | transformResults.set(cast<OpResult>(getUnPackOp()), |
1893 | {res->transposedUnPackOp}); |
1894 | } else { |
1895 | transformResults.set(cast<OpResult>(getUnPackOp()), {}); |
1896 | } |
1897 | |
1898 | return DiagnosedSilenceableFailure::success(); |
1899 | } |
1900 | |
1901 | //===---------------------------------------------------------------------===// |
1902 | // PadOp |
1903 | //===---------------------------------------------------------------------===// |
1904 | |
1905 | void transform::PadOp::build(OpBuilder &b, OperationState &result, Value target, |
1906 | ArrayRef<int64_t> paddingDimensions, |
1907 | ArrayRef<int64_t> padToMultipleOf, |
1908 | ArrayRef<int64_t> nofoldFlags, |
1909 | ArrayRef<Attribute> transposePaddings, |
1910 | StringRef copyBackOp) { |
1911 | auto resultType = transform::AnyOpType::get(b.getContext()); |
1912 | return build(/*builder=*/b, |
1913 | /*result=*/result, |
1914 | /*types=*/TypeRange{resultType, resultType}, |
1915 | /*target=*/target, |
1916 | /*paddingValues=*/ArrayAttr(), // let inference handle this |
1917 | /*paddingDimensions=*/b.getI64ArrayAttr(paddingDimensions), |
1918 | /*padToMultipleOf=*/ValueRange{}, |
1919 | /*padToMultipleOf=*/ |
1920 | (padToMultipleOf.empty() |
1921 | ? DenseI64ArrayAttr() |
1922 | : b.getDenseI64ArrayAttr(padToMultipleOf)), |
1923 | /*nofoldFlags=*/b.getI64ArrayAttr(nofoldFlags), |
1924 | /*transposePaddings=*/b.getArrayAttr(transposePaddings), |
1925 | /*copyBackOp=*/b.getStringAttr(copyBackOp)); |
1926 | } |
1927 | |
1928 | void transform::PadOp::build(OpBuilder &b, OperationState &result, Value target, |
1929 | ArrayRef<int64_t> paddingDimensions, |
1930 | ArrayRef<OpFoldResult> mixedPadToMultipleOf, |
1931 | ArrayRef<int64_t> nofoldFlags, |
1932 | ArrayRef<Attribute> transposePaddings, |
1933 | StringRef copyBackOp) { |
1934 | auto resultType = transform::AnyOpType::get(b.getContext()); |
1935 | SmallVector<int64_t> staticPadToMultipleOf; |
1936 | SmallVector<Value> dynamicPadToMultipleOf; |
1937 | dispatchIndexOpFoldResults(mixedPadToMultipleOf, dynamicPadToMultipleOf, |
1938 | staticPadToMultipleOf); |
1939 | return build(/*builder=*/b, |
1940 | /*result=*/result, |
1941 | /*types=*/TypeRange{resultType, resultType}, |
1942 | /*target=*/target, |
1943 | /*paddingValues=*/ArrayAttr(), // let inference handle this |
1944 | /*paddingDimensions=*/b.getI64ArrayAttr(paddingDimensions), |
1945 | /*padToMultipleOf=*/dynamicPadToMultipleOf, |
1946 | /*padToMultipleOf=*/staticPadToMultipleOf, |
1947 | /*nofoldFlags=*/b.getI64ArrayAttr(nofoldFlags), |
1948 | /*transposePaddings=*/b.getArrayAttr(transposePaddings), |
1949 | /*copyBackOp=*/b.getStringAttr(copyBackOp)); |
1950 | } |
1951 | |
1952 | void PadOp::getEffects( |
1953 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
1954 | consumesHandle(getTargetMutable(), effects); |
1955 | onlyReadsHandle(getPadToMultipleOfMutable(), effects); |
1956 | producesHandle(getOperation()->getOpResults(), effects); |
1957 | modifiesPayload(effects); |
1958 | } |
1959 | |
1960 | SmallVector<OpFoldResult> PadOp::getMixedPadToMultipleOf() { |
1961 | Builder b(getContext()); |
1962 | return getMixedValues(getStaticPadToMultipleOf(), getPadToMultipleOf(), b); |
1963 | } |
1964 | |
1965 | DiagnosedSilenceableFailure |
1966 | transform::PadOp::apply(transform::TransformRewriter &rewriter, |
1967 | transform::TransformResults &results, |
1968 | transform::TransformState &state) { |
1969 | auto transformOp = cast<TransformOpInterface>(getOperation()); |
1970 | SmallVector<Operation *> paddedOps, padOps, copyBackOps; |
1971 | |
1972 | for (Operation *target : state.getPayloadOps(getTarget())) { |
1973 | auto linalgTarget = dyn_cast<LinalgOp>(target); |
1974 | if (!linalgTarget) { |
1975 | auto diag = emitSilenceableError() << "expected LinalgOp target"; |
1976 | diag.attachNote(target->getLoc()) << "target op"; |
1977 | return diag; |
1978 | } |
1979 | |
1980 | // Convert the integer packing flags to booleans. |
1981 | SmallVector<bool> nofoldFlags; |
1982 | for (int64_t packPadding : |
1983 | extractFromIntegerArrayAttr<int64_t>(getNofoldFlags())) |
1984 | nofoldFlags.push_back(static_cast<bool>(packPadding)); |
1985 | |
1986 | // Convert the padding values to attributes. |
1987 | SmallVector<Attribute> paddingValues; |
1988 | for (auto const &it : |
1989 | llvm::zip(getPaddingValues(), linalgTarget->getOperandTypes())) { |
1990 | auto attr = dyn_cast<TypedAttr>(std::get<0>(it)); |
1991 | if (!attr) { |
1992 | emitOpError("expects padding values to be typed attributes"); |
1993 | return DiagnosedSilenceableFailure::definiteFailure(); |
1994 | } |
1995 | Type elementType = getElementTypeOrSelf(std::get<1>(it)); |
1996 | // Try to parse string attributes to obtain an attribute of element type. |
1997 | if (auto stringAttr = dyn_cast<StringAttr>(attr)) { |
1998 | auto parsedAttr = dyn_cast_if_present<TypedAttr>(parseAttribute( |
1999 | stringAttr, getContext(), elementType, |
2000 | /*numRead=*/nullptr, /*isKnownNullTerminated=*/true)); |
2001 | if (!parsedAttr || parsedAttr.getType() != elementType) { |
2002 | auto diag = this->emitOpError("expects a padding that parses to ") |
2003 | << elementType << ", got "<< std::get<0>(it); |
2004 | diag.attachNote(linalgTarget.getLoc()) << "when applied to this op"; |
2005 | return DiagnosedSilenceableFailure::definiteFailure(); |
2006 | } |
2007 | paddingValues.push_back(parsedAttr); |
2008 | continue; |
2009 | } |
2010 | // Otherwise, add the attribute directly. |
2011 | if (attr.getType() != elementType) { |
2012 | auto diag = this->emitOpError("expects a padding value of type ") |
2013 | << elementType << ", got "<< attr; |
2014 | diag.attachNote(linalgTarget.getLoc()) << "when applied to this op"; |
2015 | return DiagnosedSilenceableFailure::definiteFailure(); |
2016 | } |
2017 | paddingValues.push_back(attr); |
2018 | } |
2019 | |
2020 | // Extract the transpose vectors. |
2021 | SmallVector<SmallVector<int64_t>> transposePaddings; |
2022 | for (Attribute transposeVector : cast<ArrayAttr>(getTransposePaddings())) |
2023 | transposePaddings.push_back(extractFromIntegerArrayAttr<int64_t>( |
2024 | cast<ArrayAttr>(transposeVector))); |
2025 | |
2026 | LinalgOp paddedOp; |
2027 | LinalgPaddingOptions options; |
2028 | options.paddingDimensions = |
2029 | extractFromIntegerArrayAttr<int64_t>(getPaddingDimensions()); |
2030 | |
2031 | SmallVector<int64_t> padToMultipleOf; |
2032 | DiagnosedSilenceableFailure status = reifyMixedParamAndHandleResults( |
2033 | state, transformOp, getMixedPadToMultipleOf(), padToMultipleOf); |
2034 | if (!status.succeeded()) |
2035 | return status; |
2036 | if (padToMultipleOf.empty()) |
2037 | padToMultipleOf = |
2038 | SmallVector<int64_t>(options.paddingDimensions.size(), 1); |
2039 | |
2040 | options.padToMultipleOf = padToMultipleOf; |
2041 | options.paddingValues = paddingValues; |
2042 | options.nofoldFlags = nofoldFlags; |
2043 | if (getCopyBackOp() == |
2044 | bufferization::MaterializeInDestinationOp::getOperationName()) { |
2045 | options.copyBackOp = LinalgPaddingOptions::CopyBackOp:: |
2046 | BufferizationMaterializeInDestination; |
2047 | } else if (getCopyBackOp() == linalg::CopyOp::getOperationName()) { |
2048 | options.copyBackOp = LinalgPaddingOptions::CopyBackOp::LinalgCopy; |
2049 | } else if (getCopyBackOp() == kCopyOpNone) { |
2050 | options.copyBackOp = LinalgPaddingOptions::CopyBackOp::None; |
2051 | } else { |
2052 | llvm_unreachable("unsupported copy_back op"); |
2053 | } |
2054 | |
2055 | SmallVector<Value> replacements; |
2056 | SmallVector<tensor::PadOp> newPadOps; |
2057 | if (failed(rewriteAsPaddedOp(rewriter, linalgTarget, options, paddedOp, |
2058 | replacements, newPadOps))) { |
2059 | auto diag = emitSilenceableError() << "failed to pad op"; |
2060 | diag.attachNote(target->getLoc()) << "target op"; |
2061 | return diag; |
2062 | } |
2063 | |
2064 | // We need to perform our own replacement here because this API is still |
2065 | // used in patterns that "pad and hoist", for which the replacement values |
2066 | // need to be different. |
2067 | // TODO: clean this up and stop "pad and hoist" behavior more globally now |
2068 | // that we have more composable abstractions. |
2069 | rewriter.replaceOp(linalgTarget, replacements); |
2070 | paddedOps.push_back(paddedOp); |
2071 | padOps.append(newPadOps.begin(), newPadOps.end()); |
2072 | if (options.copyBackOp != LinalgPaddingOptions::CopyBackOp::None) { |
2073 | for (Value v : replacements) { |
2074 | Operation *copyBackOp = v.getDefiningOp(); |
2075 | if (!llvm::is_contained(copyBackOps, copyBackOp)) |
2076 | copyBackOps.push_back(copyBackOp); |
2077 | } |
2078 | } |
2079 | } |
2080 | |
2081 | results.set(cast<OpResult>(getPadded()), paddedOps); |
2082 | results.set(cast<OpResult>(getPad()), padOps); |
2083 | results.set(cast<OpResult>(getCopy()), copyBackOps); |
2084 | return DiagnosedSilenceableFailure::success(); |
2085 | } |
2086 | |
2087 | LogicalResult transform::PadOp::verify() { |
2088 | SmallVector<int64_t> nofoldFlags = |
2089 | extractFromIntegerArrayAttr<int64_t>(getNofoldFlags()); |
2090 | if (any_of(nofoldFlags, [](int64_t packPadding) { |
2091 | return packPadding != 0 && packPadding != 1; |
2092 | })) { |
2093 | return emitOpError() |
2094 | << "expects nofold_flags to contain booleans (0/1), found " |
2095 | << getNofoldFlags(); |
2096 | } |
2097 | |
2098 | SmallVector<int64_t> paddingDimensions = |
2099 | extractFromIntegerArrayAttr<int64_t>(getPaddingDimensions()); |
2100 | if (any_of(paddingDimensions, |
2101 | [](int64_t paddingDimension) { return paddingDimension < 0; })) { |
2102 | return emitOpError() << "expects padding_dimensions to contain positive " |
2103 | "integers, found " |
2104 | << getPaddingDimensions(); |
2105 | } |
2106 | if (!getMixedPadToMultipleOf().empty()) { |
2107 | if (getMixedPadToMultipleOf().size() != paddingDimensions.size()) { |
2108 | return emitOpError() << "expects as many multiples as padding_dimensions"; |
2109 | } |
2110 | } |
2111 | ArrayAttr transposes = getTransposePaddings(); |
2112 | for (Attribute attr : transposes) { |
2113 | SmallVector<int64_t> transpose = extractFromIntegerArrayAttr<int64_t>(attr); |
2114 | auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size())); |
2115 | if (!std::is_permutation(sequence.begin(), sequence.end(), |
2116 | transpose.begin(), transpose.end())) { |
2117 | return emitOpError() |
2118 | << "expects transpose_paddings to be a permutation, found " |
2119 | << attr; |
2120 | } |
2121 | } |
2122 | if (getCopyBackOp() != |
2123 | bufferization::MaterializeInDestinationOp::getOperationName() && |
2124 | getCopyBackOp() != linalg::CopyOp::getOperationName() && |
2125 | getCopyBackOp() != kCopyOpNone) |
2126 | return emitOpError() << "invalid copy_back_op"; |
2127 | return success(); |
2128 | } |
2129 | |
2130 | //===---------------------------------------------------------------------===// |
2131 | // HoistPadOp |
2132 | //===---------------------------------------------------------------------===// |
2133 | |
2134 | DiagnosedSilenceableFailure transform::HoistPadBuildPackingLoopNestOp::apply( |
2135 | transform::TransformRewriter &rewriter, |
2136 | transform::TransformResults &transformResults, |
2137 | transform::TransformState &state) { |
2138 | auto targetOps = state.getPayloadOps(getTarget()); |
2139 | auto loopOps = state.getPayloadOps(getLoop()); |
2140 | if (!llvm::hasSingleElement(targetOps) || !llvm::hasSingleElement(loopOps)) { |
2141 | return emitDefiniteFailure() |
2142 | << "requires exactly one target and one loop handle (got " |
2143 | << llvm::range_size(targetOps) << " and " |
2144 | << llvm::range_size(loopOps) << ")"; |
2145 | } |
2146 | |
2147 | auto padOp = dyn_cast_or_null<tensor::PadOp>(*targetOps.begin()); |
2148 | auto loopOp = dyn_cast_or_null<scf::ForOp>(*loopOps.begin()); |
2149 | if (!padOp || !loopOp) |
2150 | return emitDefiniteFailure() << "requires exactly 2 non-null handles"; |
2151 | |
2152 | FailureOr<linalg::detail::PackingResult> result = |
2153 | linalg::detail::buildPackingLoopNest(rewriter, padOp, loopOp, |
2154 | getTranspose()); |
2155 | if (failed(result)) |
2156 | return emitDefiniteFailure() << "could not build packing loop nest"; |
2157 | |
2158 | if (result->clonedLoopIvs.empty()) { |
2159 | transformResults.set(cast<OpResult>(getPackingLoop()), |
2160 | {result->hoistedPadOp.getOperation()}); |
2161 | return DiagnosedSilenceableFailure::success(); |
2162 | } |
2163 | auto outerPackedLoop = |
2164 | scf::getForInductionVarOwner(result->clonedLoopIvs.front()); |
2165 | transformResults.set(cast<OpResult>(getPackingLoop()), |
2166 | {outerPackedLoop.getOperation()}); |
2167 | return DiagnosedSilenceableFailure::success(); |
2168 | } |
2169 | |
2170 | LogicalResult transform::HoistPadBuildPackingLoopNestOp::verify() { |
2171 | ArrayRef<int64_t> transpose = getTranspose(); |
2172 | auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size())); |
2173 | if (!std::is_permutation(sequence.begin(), sequence.end(), transpose.begin(), |
2174 | transpose.end())) { |
2175 | return emitOpError() << "expects transpose to be a permutation, found " |
2176 | << getTranspose(); |
2177 | } |
2178 | return success(); |
2179 | } |
2180 | |
2181 | void transform::HoistPadBuildPackingLoopNestOp::getEffects( |
2182 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
2183 | transform::onlyReadsHandle(getTargetMutable(), effects); |
2184 | transform::onlyReadsHandle(getLoopMutable(), effects); |
2185 | transform::producesHandle(getOperation()->getOpResults(), effects); |
2186 | transform::modifiesPayload(effects); |
2187 | } |
2188 | |
2189 | DiagnosedSilenceableFailure |
2190 | transform::HoistPadOp::applyToOne(transform::TransformRewriter &rewriter, |
2191 | tensor::PadOp target, |
2192 | transform::ApplyToEachResultList &results, |
2193 | transform::TransformState &state) { |
2194 | tensor::PadOp hoistedPadOp; |
2195 | SmallVector<TransposeOp> transposeOps; |
2196 | FailureOr<Value> result = |
2197 | hoistPaddingOnTensors(rewriter, target, getNumLoops(), getTranspose(), |
2198 | hoistedPadOp, transposeOps); |
2199 | if (succeeded(result)) { |
2200 | // We need to perform our own replacement here because this API is still |
2201 | // used in patterns that "pad and hoist", for which the replacement values |
2202 | // need to be different. |
2203 | // TODO: clean this up and stop "pad and hoist" behavior more globally now |
2204 | // that we have more composable abstractions. |
2205 | rewriter.replaceOp(target, *result); |
2206 | results.push_back(hoistedPadOp); |
2207 | return DiagnosedSilenceableFailure::success(); |
2208 | } |
2209 | return emitDefaultSilenceableFailure(target); |
2210 | } |
2211 | |
2212 | LogicalResult transform::HoistPadOp::verify() { |
2213 | ArrayRef<int64_t> transpose = getTranspose(); |
2214 | auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size())); |
2215 | if (!std::is_permutation(sequence.begin(), sequence.end(), transpose.begin(), |
2216 | transpose.end())) { |
2217 | return emitOpError() << "expects transpose to be a permutation, found " |
2218 | << getTranspose(); |
2219 | } |
2220 | return success(); |
2221 | } |
2222 | |
2223 | //===----------------------------------------------------------------------===// |
2224 | // PromoteOp |
2225 | //===----------------------------------------------------------------------===// |
2226 | |
2227 | DiagnosedSilenceableFailure |
2228 | transform::PromoteOp::applyToOne(transform::TransformRewriter &rewriter, |
2229 | LinalgOp target, |
2230 | transform::ApplyToEachResultList &results, |
2231 | transform::TransformState &state) { |
2232 | LinalgPromotionOptions promotionOptions; |
2233 | if (!getOperandsToPromote().empty()) |
2234 | promotionOptions = promotionOptions.setOperandsToPromote( |
2235 | extractFromIntegerArrayAttr<int64_t>(getOperandsToPromote())); |
2236 | if (getUseFullTilesByDefault()) |
2237 | promotionOptions = promotionOptions.setUseFullTileBuffersByDefault( |
2238 | getUseFullTilesByDefault()); |
2239 | if (getUseAlloca()) |
2240 | promotionOptions = promotionOptions.setUseAlloca(getUseAlloca()); |
2241 | if (!getUseFullTileBuffers().empty()) |
2242 | promotionOptions = promotionOptions.setUseFullTileBuffers( |
2243 | llvm::to_vector(getUseFullTileBuffers().getAsValueRange<BoolAttr>())); |
2244 | if (getAlignment().has_value()) |
2245 | promotionOptions = promotionOptions.setAlignment(*getAlignment()); |
2246 | if (getMemorySpace().has_value()) |
2247 | promotionOptions = promotionOptions.setMemorySpace(*getMemorySpace()); |
2248 | |
2249 | if (getMapping().has_value()) { |
2250 | // The mapping should only contain an element |
2251 | auto mapping = *getMapping(); |
2252 | if (mapping.size() > 1) |
2253 | return emitDefaultDefiniteFailure(target); |
2254 | |
2255 | auto addressSpace = cast<mlir::gpu::GPUMemorySpaceMappingAttr>(mapping[0]); |
2256 | |
2257 | if (addressSpace.getAddressSpace() == |
2258 | mlir::gpu::GPUDialect::getWorkgroupAddressSpace()) { |
2259 | promotionOptions = |
2260 | promotionOptions |
2261 | .setAllocationDeallocationFns(allocateWorkgroupMemory, |
2262 | deallocateWorkgroupMemory) |
2263 | .setCopyInOutFns(copyToWorkgroupMemory, copyToWorkgroupMemory) |
2264 | .setUseFullTileBuffers({false, false}); |
2265 | } else if (addressSpace.getAddressSpace() == |
2266 | mlir::gpu::GPUDialect::getPrivateAddressSpace()) { |
2267 | promotionOptions = |
2268 | promotionOptions |
2269 | .setAllocationDeallocationFns(allocateGPUPrivateMemory, |
2270 | deallocateGPUPrivateMemory) |
2271 | .setCopyInOutFns(copyToGPUPrivateMemory, copyToGPUPrivateMemory) |
2272 | .setUseFullTileBuffers({false, false}); |
2273 | } else { |
2274 | return emitDefaultDefiniteFailure(target); |
2275 | } |
2276 | } |
2277 | |
2278 | if (failed(promoteSubviewsPrecondition(target, promotionOptions))) |
2279 | return emitDefaultDefiniteFailure(target); |
2280 | |
2281 | rewriter.setInsertionPoint(target); |
2282 | FailureOr<LinalgOp> res = promoteSubViews(rewriter, target, promotionOptions); |
2283 | if (failed(res)) |
2284 | return emitDefaultDefiniteFailure(target); |
2285 | results.push_back(target); |
2286 | return DiagnosedSilenceableFailure::success(); |
2287 | } |
2288 | |
2289 | //===----------------------------------------------------------------------===// |
2290 | // ReplaceOp |
2291 | //===----------------------------------------------------------------------===// |
2292 | |
2293 | DiagnosedSilenceableFailure |
2294 | transform::ReplaceOp::apply(transform::TransformRewriter &rewriter, |
2295 | TransformResults &transformResults, |
2296 | TransformState &state) { |
2297 | auto payload = state.getPayloadOps(getTarget()); |
2298 | |
2299 | // Check for invalid targets. |
2300 | for (Operation *target : payload) { |
2301 | if (target->getNumOperands() > 0) |
2302 | return emitDefiniteFailure() << "expected target without operands"; |
2303 | if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>() && |
2304 | target->getNumRegions() > 0) |
2305 | return emitDefiniteFailure() |
2306 | << "expected target that is isolated from above"; |
2307 | } |
2308 | |
2309 | // Clone and replace. |
2310 | Operation *pattern = &getBodyRegion().front().front(); |
2311 | SmallVector<Operation *> replacements; |
2312 | for (Operation *target : payload) { |
2313 | if (getOperation()->isAncestor(target)) |
2314 | continue; |
2315 | rewriter.setInsertionPoint(target); |
2316 | Operation *replacement = rewriter.clone(*pattern); |
2317 | rewriter.replaceOp(target, replacement->getResults()); |
2318 | replacements.push_back(replacement); |
2319 | } |
2320 | transformResults.set(cast<OpResult>(getReplacement()), replacements); |
2321 | return DiagnosedSilenceableFailure::success(); |
2322 | } |
2323 | |
2324 | void transform::ReplaceOp::getEffects( |
2325 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
2326 | consumesHandle(getTargetMutable(), effects); |
2327 | producesHandle(getOperation()->getOpResults(), effects); |
2328 | modifiesPayload(effects); |
2329 | } |
2330 | |
2331 | LogicalResult transform::ReplaceOp::verify() { |
2332 | if (!getBodyRegion().hasOneBlock()) |
2333 | return emitOpError() << "expected one block"; |
2334 | if (std::distance(getBodyRegion().front().begin(), |
2335 | getBodyRegion().front().end()) != 1) |
2336 | return emitOpError() << "expected one operation in block"; |
2337 | Operation *replacement = &getBodyRegion().front().front(); |
2338 | if (replacement->getNumOperands() > 0) |
2339 | return replacement->emitOpError() |
2340 | << "expected replacement without operands"; |
2341 | if (!replacement->hasTrait<OpTrait::IsIsolatedFromAbove>() && |
2342 | replacement->getNumRegions() > 0) |
2343 | return replacement->emitOpError() |
2344 | << "expect op that is isolated from above"; |
2345 | return success(); |
2346 | } |
2347 | |
2348 | //===----------------------------------------------------------------------===// |
2349 | // ScalarizeOp |
2350 | //===----------------------------------------------------------------------===// |
2351 | |
2352 | DiagnosedSilenceableFailure |
2353 | transform::ScalarizeOp::applyToOne(transform::TransformRewriter &rewriter, |
2354 | LinalgOp target, |
2355 | transform::ApplyToEachResultList &results, |
2356 | transform::TransformState &state) { |
2357 | scf::SCFTilingOptions tilingOptions; |
2358 | tilingOptions.setTileSizeComputationFunction([&](OpBuilder &b, Operation *) { |
2359 | SmallVector<OpFoldResult> tileSizes; |
2360 | Location loc = target.getLoc(); |
2361 | SmallVector<OpFoldResult> allShapeSizes = |
2362 | target.createFlatListOfOperandDims(b, loc); |
2363 | AffineMap map = target.getShapesToLoopsMap(); |
2364 | if (!map) |
2365 | return tileSizes; |
2366 | SmallVector<OpFoldResult> shapeSizes = |
2367 | affine::makeComposedFoldedMultiResultAffineApply(rewriter, loc, map, |
2368 | allShapeSizes); |
2369 | // If the shape size is dynamic, tile by 1. |
2370 | // Otherwise, do not tile (i.e. tile size 0). |
2371 | for (OpFoldResult shapeSize : shapeSizes) { |
2372 | tileSizes.push_back(getConstantIntValue(shapeSize) ? b.getIndexAttr(0) |
2373 | : b.getIndexAttr(1)); |
2374 | } |
2375 | return tileSizes; |
2376 | }); |
2377 | rewriter.setInsertionPoint(target); |
2378 | FailureOr<scf::SCFTilingResult> maybeTilingResult = tileUsingSCF( |
2379 | rewriter, cast<TilingInterface>(target.getOperation()), tilingOptions); |
2380 | if (failed(maybeTilingResult)) |
2381 | return emitDefaultDefiniteFailure(target); |
2382 | |
2383 | if (target->getNumResults()) |
2384 | rewriter.replaceOp(target, maybeTilingResult->replacements); |
2385 | else |
2386 | rewriter.eraseOp(target); |
2387 | |
2388 | results.reserve(maybeTilingResult->tiledOps.size()); |
2389 | for (Operation *tiled : maybeTilingResult->tiledOps) |
2390 | results.push_back(tiled); |
2391 | return DiagnosedSilenceableFailure::success(); |
2392 | } |
2393 | |
2394 | //===----------------------------------------------------------------------===// |
2395 | // ConvertToLoopsOp |
2396 | //===----------------------------------------------------------------------===// |
2397 | |
2398 | DiagnosedSilenceableFailure |
2399 | transform::ConvertToLoopsOp::apply(transform::TransformRewriter &rewriter, |
2400 | transform::TransformResults &results, |
2401 | transform::TransformState &state) { |
2402 | SmallVector<Operation *> loops; |
2403 | for (Operation *target : state.getPayloadOps(getTarget())) { |
2404 | auto tilingOp = dyn_cast<TilingInterface>(*target); |
2405 | if (!tilingOp) { |
2406 | DiagnosedSilenceableFailure diag = |
2407 | emitSilenceableError() |
2408 | << "expected the payload to implement TilingInterface"; |
2409 | diag.attachNote(target->getLoc()) << "payload op"; |
2410 | return diag; |
2411 | } |
2412 | rewriter.setInsertionPoint(target); |
2413 | FailureOr<SmallVector<scf::ForOp>> generatedLoops = |
2414 | scf::lowerToLoopsUsingSCFForOp(rewriter, tilingOp); |
2415 | if (failed(generatedLoops)) |
2416 | return emitDefaultDefiniteFailure(target); |
2417 | for (scf::ForOp &loop : *generatedLoops) { |
2418 | loops.push_back(loop.getOperation()); |
2419 | } |
2420 | rewriter.eraseOp(target); |
2421 | } |
2422 | results.set(cast<OpResult>(getResult()), loops); |
2423 | return DiagnosedSilenceableFailure::success(); |
2424 | } |
2425 | |
2426 | //===----------------------------------------------------------------------===// |
2427 | // RewriteInDestinationPassingStyleOp |
2428 | //===----------------------------------------------------------------------===// |
2429 | |
2430 | DiagnosedSilenceableFailure |
2431 | transform::RewriteInDestinationPassingStyleOp::applyToOne( |
2432 | transform::TransformRewriter &rewriter, Operation *target, |
2433 | transform::ApplyToEachResultList &results, |
2434 | transform::TransformState &state) { |
2435 | rewriter.setInsertionPoint(target); |
2436 | FailureOr<Operation *> maybeResult = |
2437 | TypeSwitch<Operation *, FailureOr<Operation *>>(target) |
2438 | .Case<tensor::FromElementsOp, tensor::GenerateOp, tensor::PadOp>( |
2439 | [&rewriter](auto op) { |
2440 | return rewriteInDestinationPassingStyle(rewriter, op); |
2441 | }); |
2442 | if (failed(maybeResult)) |
2443 | return emitDefaultSilenceableFailure(target); |
2444 | results.push_back(*maybeResult); |
2445 | return DiagnosedSilenceableFailure::success(); |
2446 | } |
2447 | |
2448 | //===----------------------------------------------------------------------===// |
2449 | // SplitOp |
2450 | //===----------------------------------------------------------------------===// |
2451 | |
2452 | DiagnosedSilenceableFailure |
2453 | SplitOp::apply(transform::TransformRewriter &rewriter, |
2454 | TransformResults &results, TransformState &state) { |
2455 | // Collect the dynamic split points if provided. |
2456 | SmallVector<Operation *> payload = |
2457 | llvm::to_vector(state.getPayloadOps(getTarget())); |
2458 | |
2459 | bool isMultiwaySplit = getMultiway(); |
2460 | |
2461 | if (isMultiwaySplit && !llvm::hasSingleElement(payload)) { |
2462 | return mlir::emitSilenceableFailure(getLoc()) |
2463 | << "requires exactly one target when " |
2464 | "multiway split is enabled (got " |
2465 | << llvm::range_size(payload) << ")"; |
2466 | } |
2467 | |
2468 | SmallVector<OpFoldResult> chunkSizes; |
2469 | |
2470 | if (!isMultiwaySplit) |
2471 | chunkSizes.reserve(payload.size()); |
2472 | |
2473 | if (getDynamicChunkSizes()) { |
2474 | auto diag = DiagnosedSilenceableFailure::success(); |
2475 | if (isa<TransformHandleTypeInterface>(getDynamicChunkSizes().getType())) { |
2476 | chunkSizes = llvm::to_vector(llvm::map_range( |
2477 | state.getPayloadOps(getDynamicChunkSizes()), [&](Operation *op) { |
2478 | if (op->getNumResults() != 1 || |
2479 | !op->getResult(0).getType().isIndex()) { |
2480 | diag = emitSilenceableError() |
2481 | << "expected dynamic split point handle to point to a " |
2482 | "single-result index-typed op"; |
2483 | diag.attachNote(op->getLoc()) << "dynamic split point"; |
2484 | } |
2485 | return OpFoldResult(op->getResult(0)); |
2486 | })); |
2487 | } else { |
2488 | chunkSizes = llvm::to_vector( |
2489 | llvm::map_range(state.getParams(getDynamicChunkSizes()), |
2490 | [](Attribute attr) { return OpFoldResult(attr); })); |
2491 | } |
2492 | if (diag.isSilenceableFailure()) |
2493 | return diag; |
2494 | |
2495 | // For multiway split, a single payload is expected to have multiple |
2496 | // split points. |
2497 | if (!isMultiwaySplit && chunkSizes.size() != payload.size()) { |
2498 | return emitDefiniteFailure() |
2499 | << "expected the dynamic split point handle to point to as " |
2500 | "many operations (" |
2501 | << chunkSizes.size() << ") as the target handle (" |
2502 | << payload.size() << ")"; |
2503 | } |
2504 | } else { |
2505 | chunkSizes.resize(payload.size(), |
2506 | rewriter.getIndexAttr(getStaticChunkSizes())); |
2507 | } |
2508 | |
2509 | auto checkStructuredOpAndDimensions = |
2510 | [&](LinalgOp linalgOp, Location loc) -> DiagnosedSilenceableFailure { |
2511 | if (!linalgOp) { |
2512 | auto diag = emitSilenceableError() << "only applies to structured ops"; |
2513 | diag.attachNote(loc) << "target op"; |
2514 | return diag; |
2515 | } |
2516 | |
2517 | if (getDimension() >= linalgOp.getNumLoops()) { |
2518 | auto diag = emitSilenceableError() << "dimension "<< getDimension() |
2519 | << " does not exist in target op"; |
2520 | diag.attachNote(loc) << "target op"; |
2521 | return diag; |
2522 | } |
2523 | return DiagnosedSilenceableFailure::success(); |
2524 | }; |
2525 | |
2526 | auto checkFailureInSplitting = |
2527 | [&](bool hasFailed, Location loc) -> DiagnosedSilenceableFailure { |
2528 | if (hasFailed) { |
2529 | auto diag = emitDefiniteFailure() << "internal failure in splitting"; |
2530 | diag.attachNote(loc) << "target op"; |
2531 | return diag; |
2532 | } |
2533 | return DiagnosedSilenceableFailure::success(); |
2534 | }; |
2535 | |
2536 | SmallVector<Operation *> opList; |
2537 | if (isMultiwaySplit) { |
2538 | |
2539 | // Split a single target operation at multiple points. |
2540 | TilingInterface head, tail; |
2541 | Operation *target = payload.front(); |
2542 | |
2543 | LinalgOp linalgOp = dyn_cast<LinalgOp>(target); |
2544 | |
2545 | // Check that the target is a valid LinalgOp with correct dimensions. |
2546 | DiagnosedSilenceableFailure diag = |
2547 | checkStructuredOpAndDimensions(linalgOp, target->getLoc()); |
2548 | if (diag.isSilenceableFailure()) |
2549 | return diag; |
2550 | |
2551 | for (auto &&[idx, chunkSize] : llvm::enumerate(chunkSizes)) { |
2552 | |
2553 | if (idx > 0) |
2554 | target = tail.getOperation(); |
2555 | |
2556 | if (!target) |
2557 | break; |
2558 | |
2559 | linalgOp = cast<LinalgOp>(target); |
2560 | Location loc = target->getLoc(); |
2561 | |
2562 | rewriter.setInsertionPoint(linalgOp); |
2563 | std::tie(head, tail) = linalg::splitOp( |
2564 | rewriter, cast<TilingInterface>(linalgOp.getOperation()), |
2565 | getDimension(), chunkSize); |
2566 | |
2567 | // Propagate errors. |
2568 | DiagnosedSilenceableFailure diag = |
2569 | checkFailureInSplitting(!head && !tail, loc); |
2570 | if (diag.isDefiniteFailure()) |
2571 | return diag; |
2572 | |
2573 | opList.push_back(head.getOperation()); |
2574 | } |
2575 | |
2576 | // Append any leftover parts to the end of the result list. |
2577 | if (tail) |
2578 | opList.push_back(tail.getOperation()); |
2579 | |
2580 | } else { |
2581 | // Split each target operation. |
2582 | SmallVector<Operation *> first, second; |
2583 | Operation *noSecondPart = nullptr; |
2584 | for (const auto &pair : llvm::zip(payload, chunkSizes)) { |
2585 | Operation *target = std::get<0>(pair); |
2586 | Location loc = target->getLoc(); |
2587 | LinalgOp linalgOp = dyn_cast<LinalgOp>(target); |
2588 | DiagnosedSilenceableFailure diag = |
2589 | checkStructuredOpAndDimensions(linalgOp, target->getLoc()); |
2590 | |
2591 | if (diag.isSilenceableFailure()) |
2592 | return diag; |
2593 | |
2594 | rewriter.setInsertionPoint(linalgOp); |
2595 | std::tie(first.emplace_back(), second.emplace_back()) = linalg::splitOp( |
2596 | rewriter, cast<TilingInterface>(linalgOp.getOperation()), |
2597 | getDimension(), std::get<1>(pair)); |
2598 | |
2599 | // Propagate errors. |
2600 | DiagnosedSilenceableFailure diagSplit = |
2601 | checkFailureInSplitting(!first.back() && !second.back(), loc); |
2602 | if (diagSplit.isDefiniteFailure()) |
2603 | return diag; |
2604 | |
2605 | // Do not add null second parts. |
2606 | if (!second.back()) { |
2607 | noSecondPart = target; |
2608 | second.pop_back(); |
2609 | } |
2610 | } |
2611 | |
2612 | if (second.size() != first.size() && !second.empty()) { |
2613 | auto diag = emitSilenceableError() |
2614 | << "splitting does not produce the second part for a subset " |
2615 | "of targets"; |
2616 | diag.attachNote() |
2617 | << "expected splitting to produce the second part of all " |
2618 | "or none of the targets"; |
2619 | diag.attachNote(noSecondPart->getLoc()) |
2620 | << "first target with no second part"; |
2621 | return diag; |
2622 | } |
2623 | |
2624 | opList.append(first); |
2625 | if (second.size()) |
2626 | opList.append(second); |
2627 | } |
2628 | results.set(cast<OpResult>(getSplitList()), opList); |
2629 | return DiagnosedSilenceableFailure::success(); |
2630 | } |
2631 | |
2632 | void SplitOp::getEffects( |
2633 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
2634 | consumesHandle(getTargetMutable(), effects); |
2635 | if (getDynamicChunkSizes()) |
2636 | onlyReadsHandle(getDynamicChunkSizesMutable(), effects); |
2637 | producesHandle(getOperation()->getOpResults(), effects); |
2638 | modifiesPayload(effects); |
2639 | } |
2640 | |
2641 | ParseResult SplitOp::parse(OpAsmParser &parser, OperationState &result) { |
2642 | OpAsmParser::UnresolvedOperand target, dynamicChunkSizes; |
2643 | IntegerAttr staticChunkSizes; |
2644 | if (parser.parseOperand(target) || parser.parseKeyword("after")) |
2645 | return failure(); |
2646 | |
2647 | OptionalParseResult dynamicPointParseResult = |
2648 | parser.parseOptionalOperand(dynamicChunkSizes); |
2649 | if (!dynamicPointParseResult.has_value()) { |
2650 | int64_t staticChunkSizesValue; |
2651 | if (failed(parser.parseInteger(staticChunkSizesValue))) |
2652 | return failure(); |
2653 | |
2654 | staticChunkSizes = |
2655 | parser.getBuilder().getI64IntegerAttr(staticChunkSizesValue); |
2656 | } |
2657 | |
2658 | Type targetType; |
2659 | if (parser.parseOptionalAttrDict(result.attributes) || |
2660 | parser.parseColonType(targetType) || |
2661 | parser.resolveOperand(target, targetType, result.operands)) { |
2662 | return failure(); |
2663 | } |
2664 | if (dynamicPointParseResult.has_value()) { |
2665 | Type ChunkSizesType; |
2666 | if (failed(*dynamicPointParseResult) || parser.parseComma() || |
2667 | parser.parseType(ChunkSizesType) || |
2668 | parser.resolveOperand(dynamicChunkSizes, ChunkSizesType, |
2669 | result.operands)) { |
2670 | return failure(); |
2671 | } |
2672 | |
2673 | staticChunkSizes = |
2674 | parser.getBuilder().getI64IntegerAttr(ShapedType::kDynamic); |
2675 | } |
2676 | |
2677 | result.addAttribute( |
2678 | SplitOp::getStaticChunkSizesAttrName(result.name).getValue(), |
2679 | staticChunkSizes); |
2680 | result.addTypes(targetType); |
2681 | return success(); |
2682 | } |
2683 | |
2684 | void SplitOp::print(OpAsmPrinter &printer) { |
2685 | printer << " "<< getTarget() << " after "; |
2686 | int64_t staticChunkSize = static_cast<int64_t>(getStaticChunkSizes()); |
2687 | if (staticChunkSize != ShapedType::kDynamic) |
2688 | printer << staticChunkSize; |
2689 | else |
2690 | printer << getDynamicChunkSizes(); |
2691 | printer << " "; |
2692 | printer.printOptionalAttrDict(getOperation()->getAttrs(), |
2693 | {getStaticChunkSizesAttrName()}); |
2694 | printer << " : "<< getTarget().getType(); |
2695 | if (staticChunkSize == ShapedType::kDynamic) |
2696 | printer << ", "<< getDynamicChunkSizes().getType(); |
2697 | } |
2698 | |
2699 | LogicalResult SplitOp::verify() { |
2700 | if ((static_cast<int64_t>(getStaticChunkSizes()) != ShapedType::kDynamic) ^ |
2701 | (getDynamicChunkSizes() == nullptr)) { |
2702 | return emitOpError() << "expects either a dynamic or a static split " |
2703 | "point to be provided"; |
2704 | } |
2705 | return success(); |
2706 | } |
2707 | |
2708 | //===----------------------------------------------------------------------===// |
2709 | // SplitReductionOp |
2710 | //===----------------------------------------------------------------------===// |
2711 | |
2712 | void transform::SplitReductionOp::build( |
2713 | OpBuilder &builder, OperationState &result, Value target, |
2714 | int64_t splitFactor, int64_t insertSplitDimension, bool innerParallel, |
2715 | bool useScalingAlgorithm, bool useAlloc) { |
2716 | MLIRContext *ctx = builder.getContext(); |
2717 | result.addOperands(target); |
2718 | result.addAttribute(SplitReductionOp::getSplitFactorAttrName(result.name), |
2719 | builder.getI64IntegerAttr(splitFactor)); |
2720 | result.addAttribute( |
2721 | SplitReductionOp::getInsertSplitDimensionAttrName(result.name), |
2722 | builder.getI64IntegerAttr(insertSplitDimension)); |
2723 | if (innerParallel) { |
2724 | result.addAttribute(SplitReductionOp::getInnerParallelAttrName(result.name), |
2725 | builder.getUnitAttr()); |
2726 | } |
2727 | if (useScalingAlgorithm) { |
2728 | result.addAttribute( |
2729 | SplitReductionOp::getUseScalingAlgorithmAttrName(result.name), |
2730 | builder.getUnitAttr()); |
2731 | } |
2732 | if (useAlloc) { |
2733 | result.addAttribute(SplitReductionOp::getUseAllocAttrName(result.name), |
2734 | builder.getUnitAttr()); |
2735 | } |
2736 | auto resultType = transform::AnyOpType::get(ctx); |
2737 | result.addTypes({resultType, resultType, resultType, resultType}); |
2738 | } |
2739 | |
2740 | DiagnosedSilenceableFailure transform::SplitReductionOp::applyToOne( |
2741 | transform::TransformRewriter &rewriter, LinalgOp target, |
2742 | transform::ApplyToEachResultList &results, |
2743 | transform::TransformState &state) { |
2744 | ControlSplitReductionFn splitFn = [&](LinalgOp) { |
2745 | return linalg::SplitReductionOptions{int64_t(getSplitFactor()), |
2746 | unsigned(getInsertSplitDimension()), |
2747 | bool(getInnerParallel())}; |
2748 | }; |
2749 | rewriter.setInsertionPoint(target); |
2750 | FailureOr<SplitReductionResult> splitResult = |
2751 | (getUseScalingAlgorithm()) |
2752 | ? splitReductionByScaling(rewriter, target, splitFn, getUseAlloc()) |
2753 | : splitReduction(rewriter, target, splitFn, getUseAlloc()); |
2754 | if (failed(splitResult)) |
2755 | return emitDefaultDefiniteFailure(target); |
2756 | |
2757 | results.push_back(splitResult->initOrAlloc); |
2758 | results.push_back(splitResult->fillOp); |
2759 | results.push_back(splitResult->splitLinalgOp); |
2760 | results.push_back(splitResult->resultCombiningLinalgOp); |
2761 | return DiagnosedSilenceableFailure::success(); |
2762 | } |
2763 | |
2764 | //===----------------------------------------------------------------------===// |
2765 | // TileReductionUsingForOp |
2766 | //===----------------------------------------------------------------------===// |
2767 | |
2768 | void transform::TileReductionUsingForOp::build( |
2769 | OpBuilder &builder, OperationState &result, Value target, |
2770 | ArrayRef<int64_t> staticTileSizes) { |
2771 | // Call the default builder. |
2772 | // This is future-proof re mixed static-dynamic and setting up the proper |
2773 | // operands segment sizes attributes for multiple variadic operands. |
2774 | // In the absence of this, horrible bugs ensue. |
2775 | // TODO: support mixed static-dynamic (see TileUsingForallOp). |
2776 | MLIRContext *ctx = builder.getContext(); |
2777 | auto opTy = transform::AnyOpType::get(ctx); |
2778 | auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
2779 | build(builder, result, |
2780 | /*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy}, |
2781 | /*target=*/target, |
2782 | /*tile_sizes=*/staticTileSizesAttr); |
2783 | } |
2784 | |
2785 | DiagnosedSilenceableFailure transform::TileReductionUsingForOp::applyToOne( |
2786 | transform::TransformRewriter &rewriter, Operation *target, |
2787 | transform::ApplyToEachResultList &results, |
2788 | transform::TransformState &state) { |
2789 | rewriter.setInsertionPoint(target); |
2790 | |
2791 | auto partialReductionOp = dyn_cast<PartialReductionOpInterface>(target); |
2792 | if (!partialReductionOp) { |
2793 | return emitSilenceableFailure( |
2794 | target->getLoc(), |
2795 | "Operation should implement PartialReductionOpInterface"); |
2796 | } |
2797 | FailureOr<scf::SCFTilingResult> result = scf::tileReductionUsingScf( |
2798 | rewriter, partialReductionOp, |
2799 | getAsOpFoldResult(rewriter.getI64ArrayAttr(getTileSizes()))); |
2800 | |
2801 | if (failed(result)) |
2802 | return emitDefaultSilenceableFailure(target); |
2803 | rewriter.replaceOp(target, result->replacements); |
2804 | for (Value initValue : result->initialValues) |
2805 | results.push_back(initValue.getDefiningOp()); |
2806 | for (auto parallelTiledOp : result->tiledOps) |
2807 | results.push_back(parallelTiledOp); |
2808 | for (auto mergeOp : result->mergeOps) |
2809 | results.push_back(mergeOp); |
2810 | results.push_back(result->loops.front()); |
2811 | return DiagnosedSilenceableFailure::success(); |
2812 | } |
2813 | |
2814 | //===----------------------------------------------------------------------===// |
2815 | // TileReductionUsingForallOp |
2816 | //===----------------------------------------------------------------------===// |
2817 | |
2818 | void transform::TileReductionUsingForallOp::build( |
2819 | OpBuilder &builder, OperationState &result, Value target, |
2820 | ArrayRef<int64_t> staticNumThreads, ArrayRef<int64_t> staticTileSizes, |
2821 | ArrayAttr mapping) { |
2822 | // Call the default builder. |
2823 | // This is future-proof re mixed static-dynamic and setting up the proper |
2824 | // operands segment sizes attributes for multiple variadic operands. |
2825 | // In the absence of this, horrible bugs ensue. |
2826 | // TODO: support mixed static-dynamic (see TileUsingForallOp). |
2827 | MLIRContext *ctx = builder.getContext(); |
2828 | auto opTy = transform::AnyOpType::get(ctx); |
2829 | auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads); |
2830 | auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
2831 | build(builder, result, |
2832 | /*resultTypes=*/TypeRange{opTy, opTy, opTy, opTy}, |
2833 | /*target=*/target, |
2834 | /*num_threads=*/staticNumThreadsAttr, |
2835 | /*tile_sizes=*/staticTileSizesAttr, |
2836 | /*mapping=*/mapping); |
2837 | } |
2838 | |
2839 | DiagnosedSilenceableFailure transform::TileReductionUsingForallOp::applyToOne( |
2840 | transform::TransformRewriter &rewriter, LinalgOp target, |
2841 | transform::ApplyToEachResultList &results, |
2842 | transform::TransformState &state) { |
2843 | rewriter.setInsertionPoint(target); |
2844 | SmallVector<OpFoldResult> numThreads = |
2845 | getAsOpFoldResult(rewriter.getI64ArrayAttr(getNumThreads())); |
2846 | SmallVector<OpFoldResult> tileSizes = |
2847 | getAsOpFoldResult(rewriter.getI64ArrayAttr(getTileSizes())); |
2848 | FailureOr<linalg::ForallReductionTilingResult> result = |
2849 | linalg::tileReductionUsingForall( |
2850 | rewriter, cast<PartialReductionOpInterface>(target.getOperation()), |
2851 | numThreads, tileSizes, getMapping()); |
2852 | |
2853 | if (failed(result)) { |
2854 | auto diag = emitSilenceableError() << "could not tile reduction"; |
2855 | diag.attachNote(target.getLoc()) << "target operation"; |
2856 | return diag; |
2857 | } |
2858 | for (Value initValue : result->initialValues) |
2859 | results.push_back(initValue.getDefiningOp()); |
2860 | for (auto parallelTiledOp : result->parallelTiledOps) |
2861 | results.push_back(parallelTiledOp); |
2862 | for (auto mergeOp : result->mergeOps) |
2863 | results.push_back(mergeOp); |
2864 | results.push_back(result->loops); |
2865 | return DiagnosedSilenceableFailure::success(); |
2866 | } |
2867 | |
2868 | //===----------------------------------------------------------------------===// |
2869 | // ContinuousTileSizesOp |
2870 | //===----------------------------------------------------------------------===// |
2871 | |
2872 | DiagnosedSilenceableFailure |
2873 | transform::ContinuousTileSizesOp::apply(transform::TransformRewriter &rewriter, |
2874 | TransformResults &transformResults, |
2875 | TransformState &state) { |
2876 | |
2877 | SmallVector<Operation *> targetOps = |
2878 | llvm::to_vector(state.getPayloadOps(getTarget())); |
2879 | |
2880 | if (!llvm::hasSingleElement(targetOps)) { |
2881 | return mlir::emitSilenceableFailure(getLoc()) |
2882 | << "requires exactly one target (got "<< llvm::range_size(targetOps) |
2883 | << ")"; |
2884 | } |
2885 | |
2886 | Operation *target = *targetOps.begin(); |
2887 | auto linalgOp = dyn_cast<LinalgOp>(target); |
2888 | auto tileableOp = dyn_cast<TilingInterface>(target); |
2889 | |
2890 | if (!linalgOp) |
2891 | return emitDefiniteFailure() << "expected Linalg Op"; |
2892 | |
2893 | OpBuilder builder(linalgOp.getContext()); |
2894 | |
2895 | if (isa<TransformParamTypeInterface>(getChunkSizes().getType())) { |
2896 | if (linalgOp.hasDynamicShape()) { |
2897 | auto diag = emitSilenceableError() |
2898 | << "cannot compute parametric tile sizes for dynamically " |
2899 | "shaped payload op"; |
2900 | diag.attachNote(linalgOp->getLoc()) << "payload op"; |
2901 | return diag; |
2902 | } |
2903 | |
2904 | FailureOr<StaticContinuousTileSizeSpecification> spec = |
2905 | computeStaticContinuousTileSizes(linalgOp, getDimension(), |
2906 | getTargetSize()); |
2907 | if (failed(spec)) { |
2908 | return emitSilenceableError() |
2909 | << "failed to compute multi-size tiling sizes"; |
2910 | } |
2911 | |
2912 | SmallVector<int64_t> chunkSizes; |
2913 | |
2914 | for (auto &&[tileSize, tripCount] : |
2915 | llvm::zip_equal(spec->tileSizes, spec->tripCounts)) |
2916 | chunkSizes.push_back(tileSize * tripCount); |
2917 | |
2918 | auto getI64AttrsFromI64 = [&](ArrayRef<int64_t> values) { |
2919 | return llvm::map_to_vector(values, [&](int64_t value) -> Attribute { |
2920 | return builder.getI64IntegerAttr(value); |
2921 | }); |
2922 | }; |
2923 | transformResults.setParams(cast<OpResult>(getTileSizes()), |
2924 | getI64AttrsFromI64(spec->tileSizes)); |
2925 | transformResults.setParams(cast<OpResult>(getChunkSizes()), |
2926 | getI64AttrsFromI64(chunkSizes)); |
2927 | |
2928 | return DiagnosedSilenceableFailure::success(); |
2929 | } |
2930 | |
2931 | builder.setInsertionPoint(linalgOp); |
2932 | |
2933 | OpFoldResult targetSize = builder.getIndexAttr(getTargetSize()); |
2934 | unsigned dimension = getDimension(); |
2935 | |
2936 | FailureOr<ContinuousTileSizeSpecification> spec = computeContinuousTileSizes( |
2937 | builder, tileableOp, dimension, targetSize, true); |
2938 | if (failed(spec)) { |
2939 | return emitSilenceableError() << "could not generate tile size computation"; |
2940 | } |
2941 | |
2942 | AffineExpr s0 = builder.getAffineSymbolExpr(0); |
2943 | AffineExpr s1 = builder.getAffineSymbolExpr(1); |
2944 | auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value { |
2945 | return affine::makeComposedAffineApply(builder, linalgOp->getLoc(), expr, |
2946 | ofrs); |
2947 | }; |
2948 | |
2949 | SmallVector<Value> chunkSizes; |
2950 | Value splitPoint; |
2951 | for (auto &&[tileSize, tripCount] : |
2952 | llvm::zip_equal(spec->tileSizes, spec->tripCounts)) { |
2953 | splitPoint = apply(s0 * s1, {tileSize, tripCount}); |
2954 | chunkSizes.push_back(splitPoint); |
2955 | } |
2956 | |
2957 | auto getDefiningOps = [&](ArrayRef<Value> values) { |
2958 | return llvm::map_to_vector(values, [&](Value value) -> Operation * { |
2959 | return value.getDefiningOp(); |
2960 | }); |
2961 | }; |
2962 | |
2963 | transformResults.set(cast<OpResult>(getTileSizes()), |
2964 | getDefiningOps(spec->tileSizes)); |
2965 | transformResults.set(cast<OpResult>(getChunkSizes()), |
2966 | getDefiningOps(chunkSizes)); |
2967 | |
2968 | return DiagnosedSilenceableFailure::success(); |
2969 | } |
2970 | |
2971 | LogicalResult transform::ContinuousTileSizesOp::verify() { |
2972 | |
2973 | if (getTileSizes().getType() != getChunkSizes().getType()) { |
2974 | return emitOpError() << "expects all results type to be the same"; |
2975 | } |
2976 | |
2977 | return success(); |
2978 | } |
2979 | |
2980 | void transform::ContinuousTileSizesOp::getEffects( |
2981 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
2982 | if (isa<TransformParamTypeInterface>(getTileSizes().getType())) |
2983 | onlyReadsPayload(effects); |
2984 | else |
2985 | modifiesPayload(effects); |
2986 | onlyReadsHandle(getTargetMutable(), effects); |
2987 | producesHandle(getOperation()->getOpResults(), effects); |
2988 | } |
2989 | |
2990 | static void printContinuousTileSizeTypes(OpAsmPrinter &printer, Operation *op, |
2991 | Type targetType, Type tile_sizes, |
2992 | Type) { |
2993 | printer.printFunctionalType(inputs: TypeRange{targetType}, results: TypeRange{tile_sizes}); |
2994 | } |
2995 | |
2996 | static ParseResult parseContinuousTileSizeTypes(OpAsmParser &parser, |
2997 | Type &targetType, |
2998 | Type &tileSizesType, |
2999 | Type &chunkSizesType) { |
3000 | FunctionType funcType; |
3001 | llvm::SMLoc typeLoc = parser.getCurrentLocation(); |
3002 | if (failed(parser.parseType<FunctionType>(funcType))) |
3003 | return failure(); |
3004 | |
3005 | if (funcType.getNumInputs() != 1 || funcType.getNumResults() != 1) { |
3006 | parser.emitError(loc: typeLoc) << "expects a trailing functional type with one " |
3007 | "argument and one result"; |
3008 | } |
3009 | targetType = funcType.getInput(0); |
3010 | tileSizesType = chunkSizesType = funcType.getResult(0); |
3011 | |
3012 | return success(); |
3013 | } |
3014 | |
3015 | //===----------------------------------------------------------------------===// |
3016 | // TileUsingForOp |
3017 | //===----------------------------------------------------------------------===// |
3018 | |
3019 | void transform::TileUsingForOp::build( |
3020 | OpBuilder &builder, OperationState &result, TypeRange loopTypes, |
3021 | Value target, ArrayRef<int64_t> staticTileSizes, |
3022 | ArrayRef<int64_t> interchange, |
3023 | std::optional<ArrayRef<bool>> scalableSizes) { |
3024 | return build(builder, result, loopTypes, |
3025 | /*target=*/target, |
3026 | /*mixedTileSizes=*/ |
3027 | getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)), |
3028 | interchange, scalableSizes); |
3029 | } |
3030 | |
3031 | void transform::TileUsingForOp::build( |
3032 | OpBuilder &builder, OperationState &result, Value target, |
3033 | ArrayRef<int64_t> staticTileSizes, ArrayRef<int64_t> interchange, |
3034 | std::optional<ArrayRef<bool>> scalableSizes) { |
3035 | build(builder, result, target, |
3036 | getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)), |
3037 | interchange, scalableSizes); |
3038 | } |
3039 | |
3040 | void transform::TileUsingForOp::build( |
3041 | OpBuilder &builder, OperationState &result, Value target, |
3042 | ArrayRef<OpFoldResult> mixedTileSizes, ArrayRef<int64_t> interchange, |
3043 | std::optional<ArrayRef<bool>> scalableSizes) { |
3044 | // Loop types are automaticaly splat by the callee, setting up one is |
3045 | // enough. |
3046 | SmallVector<Type> loopTypes(1, builder.getType<transform::AnyOpType>()); |
3047 | build(builder, result, loopTypes, target, mixedTileSizes, interchange, |
3048 | scalableSizes); |
3049 | } |
3050 | |
3051 | void transform::TileUsingForOp::build( |
3052 | OpBuilder &builder, OperationState &result, TypeRange loopTypes, |
3053 | Value target, ArrayRef<OpFoldResult> mixedTileSizes, |
3054 | ArrayRef<int64_t> interchange, |
3055 | std::optional<ArrayRef<bool>> scalableSizes) { |
3056 | SmallVector<int64_t> staticTileSizes; |
3057 | SmallVector<Value> dynamicTileSizes; |
3058 | dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes); |
3059 | // Call the default builder which sets up the proper operands segment sizes |
3060 | // attributes for multiple variadic operands. In the absence of this, |
3061 | // horrible bugs ensue. |
3062 | auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
3063 | unsigned numExpectedLoops = |
3064 | staticTileSizes.size() - llvm::count(staticTileSizes, 0); |
3065 | SmallVector<Type> resultTypes; |
3066 | resultTypes.reserve(numExpectedLoops); |
3067 | assert((loopTypes.size() == 1 || loopTypes.size() == numExpectedLoops) && |
3068 | "expected one loop type or as many as loops"); |
3069 | if (loopTypes.size() == 1) |
3070 | resultTypes.append(numExpectedLoops, loopTypes[0]); |
3071 | else |
3072 | llvm::append_range(resultTypes, loopTypes); |
3073 | SmallVector<bool> expandedScalableSizes(mixedTileSizes.size(), false); |
3074 | if (scalableSizes.has_value()) |
3075 | expandedScalableSizes.assign(scalableSizes->begin(), scalableSizes->end()); |
3076 | build(builder, result, /*tiled_linalg_op=*/target.getType(), |
3077 | /*loops=*/resultTypes, |
3078 | /*target=*/target, |
3079 | /*dynamic_sizes=*/dynamicTileSizes, |
3080 | /*static_sizes=*/staticTileSizesAttr, |
3081 | /*interchange=*/builder.getDenseI64ArrayAttr(interchange), |
3082 | /*scalable_sizes=*/expandedScalableSizes); |
3083 | } |
3084 | |
3085 | LogicalResult transform::TileUsingForOp::verify() { |
3086 | if (getMixedSizes().size() != getScalableSizes().size()) |
3087 | return emitOpError("expected same number of sizes (") |
3088 | << getMixedSizes().size() << ") and scalable sizes (" |
3089 | << getScalableSizes().size() << ")"; |
3090 | ArrayRef<int64_t> staticSizes = getStaticSizes(); |
3091 | unsigned numExpectedLoops = staticSizes.size() - llvm::count(staticSizes, 0); |
3092 | if (getLoops().size() != numExpectedLoops) |
3093 | return emitOpError("expected number of loops to tile (") |
3094 | << numExpectedLoops << ") to match number of `loops` results (" |
3095 | << getLoops().size() << ")"; |
3096 | return success(); |
3097 | } |
3098 | |
3099 | DiagnosedSilenceableFailure |
3100 | transform::TileUsingForOp::apply(transform::TransformRewriter &rewriter, |
3101 | TransformResults &transformResults, |
3102 | TransformState &state) { |
3103 | ArrayRef<int64_t> tileSizes = getStaticSizes(); |
3104 | |
3105 | SmallVector<Operation *> targets = |
3106 | llvm::to_vector(state.getPayloadOps(getTarget())); |
3107 | SmallVector<SmallVector<Operation *>> dynamicSizeProducers; |
3108 | SmallVector<SmallVector<int64_t>> paramSizes; |
3109 | dynamicSizeProducers.reserve(getDynamicSizes().size()); |
3110 | paramSizes.reserve(getDynamicSizes().size()); |
3111 | for (Value transformValue : getDynamicSizes()) { |
3112 | if (isa<ParamType>(transformValue.getType())) { |
3113 | dynamicSizeProducers.push_back({}); |
3114 | ArrayRef<Attribute> params = state.getParams(transformValue); |
3115 | paramSizes.push_back( |
3116 | llvm::to_vector(llvm::map_range(params, [](Attribute attr) { |
3117 | return cast<IntegerAttr>(attr).getValue().getSExtValue(); |
3118 | }))); |
3119 | |
3120 | if (paramSizes.back().size() != targets.size()) { |
3121 | DiagnosedSilenceableFailure diag = |
3122 | emitSilenceableError() |
3123 | << "expected as many parameter values (" |
3124 | << dynamicSizeProducers.back().size() << ") as target ops (" |
3125 | << targets.size() << ")"; |
3126 | diag.attachNote(transformValue.getLoc()) << "for this parameter"; |
3127 | return diag; |
3128 | } |
3129 | |
3130 | continue; |
3131 | } |
3132 | paramSizes.push_back({}); |
3133 | dynamicSizeProducers.push_back( |
3134 | llvm::to_vector(state.getPayloadOps(transformValue))); |
3135 | |
3136 | if (dynamicSizeProducers.back().size() != targets.size()) { |
3137 | DiagnosedSilenceableFailure diag = |
3138 | emitSilenceableError() |
3139 | << "expected as many dynamic size-producing operations (" |
3140 | << dynamicSizeProducers.back().size() << ") as target ops (" |
3141 | << targets.size() << ")"; |
3142 | diag.attachNote(transformValue.getLoc()) << "for this handle"; |
3143 | return diag; |
3144 | } |
3145 | |
3146 | for (Operation *op : dynamicSizeProducers.back()) { |
3147 | if (op->getNumResults() == 1 && |
3148 | isa<IndexType>(op->getResult(0).getType())) { |
3149 | continue; |
3150 | } |
3151 | |
3152 | DiagnosedSilenceableFailure diag = |
3153 | emitSilenceableError() << "expected sizes to be produced by ops " |
3154 | "with a single index-type result"; |
3155 | diag.attachNote(op->getLoc()) << "size producer op"; |
3156 | diag.attachNote(transformValue.getLoc()) << "for this handle"; |
3157 | return diag; |
3158 | } |
3159 | } |
3160 | |
3161 | SmallVector<Operation *> tiled; |
3162 | SmallVector<SmallVector<Operation *, 4>, 4> loops; |
3163 | loops.resize(getLoops().size()); |
3164 | auto scalableSizes = getScalableSizes(); |
3165 | for (auto [i, op] : llvm::enumerate(targets)) { |
3166 | auto tilingInterface = dyn_cast<TilingInterface>(op); |
3167 | if (!tilingInterface) { |
3168 | DiagnosedSilenceableFailure diag = |
3169 | emitSilenceableError() |
3170 | << "only ops implementing TilingInterface are supported"; |
3171 | diag.attachNote(op->getLoc()) << "target op"; |
3172 | return diag; |
3173 | } |
3174 | if (tileSizes.size() > tilingInterface.getLoopIteratorTypes().size()) { |
3175 | DiagnosedSilenceableFailure diag = |
3176 | emitSilenceableError() |
3177 | << "too many tiles provided, expected at most " |
3178 | << tilingInterface.getLoopIteratorTypes().size() << " found " |
3179 | << tileSizes.size(); |
3180 | diag.attachNote(op->getLoc()) << "target op"; |
3181 | return diag; |
3182 | } |
3183 | |
3184 | scf::SCFTilingOptions tilingOptions; |
3185 | if (tileSizes.empty()) { |
3186 | tilingOptions.setTileSizeComputationFunction( |
3187 | [](OpBuilder &, Operation *) -> SmallVector<OpFoldResult> { |
3188 | return {}; |
3189 | }); |
3190 | } else { |
3191 | tilingOptions.setTileSizeComputationFunction([&, index = i](OpBuilder &b, |
3192 | Operation *) { |
3193 | SmallVector<OpFoldResult> sizes; |
3194 | sizes.reserve(tileSizes.size()); |
3195 | unsigned dynamicIdx = 0; |
3196 | |
3197 | for (auto [ofrIdx, ofr] : llvm::enumerate(getMixedSizes())) { |
3198 | if (auto attr = llvm::dyn_cast_if_present<Attribute>(ofr)) { |
3199 | if (scalableSizes[ofrIdx]) { |
3200 | auto val = b.create<arith::ConstantIndexOp>( |
3201 | getLoc(), cast<IntegerAttr>(attr).getInt()); |
3202 | Value vscale = |
3203 | b.create<vector::VectorScaleOp>(getLoc(), b.getIndexType()); |
3204 | sizes.push_back( |
3205 | b.create<arith::MulIOp>(getLoc(), val, vscale).getResult()); |
3206 | } else { |
3207 | sizes.push_back(attr); |
3208 | } |
3209 | continue; |
3210 | } |
3211 | ArrayRef<Operation *> dynamicSizes = dynamicSizeProducers[dynamicIdx]; |
3212 | ArrayRef<int64_t> params = paramSizes[dynamicIdx]; |
3213 | ++dynamicIdx; |
3214 | assert((dynamicSizes.empty() ^ params.empty()) && |
3215 | "expected either dynamic sizes or parameters"); |
3216 | if (!params.empty()) { |
3217 | sizes.push_back(b.getIndexAttr(params[index])); |
3218 | } else { |
3219 | sizes.push_back(dynamicSizes[index]->getResult(0)); |
3220 | } |
3221 | } |
3222 | return sizes; |
3223 | }); |
3224 | } |
3225 | |
3226 | tilingOptions.setInterchange(getInterchange()); |
3227 | FailureOr<scf::SCFTilingResult> maybeTilingResult = |
3228 | tileUsingSCF(rewriter, tilingInterface, tilingOptions); |
3229 | if (failed(maybeTilingResult)) |
3230 | return DiagnosedSilenceableFailure::definiteFailure(); |
3231 | |
3232 | rewriter.replaceOp(op, maybeTilingResult->replacements); |
3233 | |
3234 | tiled.append(maybeTilingResult->tiledOps); |
3235 | for (const auto &en2 : llvm::enumerate(maybeTilingResult->loops)) |
3236 | loops[en2.index()].push_back(en2.value()); |
3237 | } |
3238 | |
3239 | transformResults.set(cast<OpResult>(getTiledLinalgOp()), tiled); |
3240 | for (const auto &en : llvm::enumerate(loops)) |
3241 | transformResults.set(cast<OpResult>(getLoops()[en.index()]), en.value()); |
3242 | |
3243 | return DiagnosedSilenceableFailure::success(); |
3244 | } |
3245 | |
3246 | SmallVector<OpFoldResult> transform::TileUsingForOp::getMixedSizes() { |
3247 | ValueRange dynamic = getDynamicSizes(); |
3248 | ArrayRef<int64_t> tileSizes = getStaticSizes(); |
3249 | SmallVector<OpFoldResult> results; |
3250 | results.reserve(tileSizes.size()); |
3251 | unsigned dynamicPos = 0; |
3252 | Builder builder(getContext()); |
3253 | for (int64_t size : tileSizes) { |
3254 | if (size == ShapedType::kDynamic) { |
3255 | results.push_back(dynamic[dynamicPos++]); |
3256 | } else { |
3257 | results.push_back(builder.getIndexAttr(size)); |
3258 | } |
3259 | } |
3260 | return results; |
3261 | } |
3262 | |
3263 | void transform::TileUsingForOp::getEffects( |
3264 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
3265 | consumesHandle(getTargetMutable(), effects); |
3266 | onlyReadsHandle(getDynamicSizesMutable(), effects); |
3267 | producesHandle(getOperation()->getOpResults(), effects); |
3268 | modifiesPayload(effects); |
3269 | } |
3270 | |
3271 | //===----------------------------------------------------------------------===// |
3272 | // TileUsingForallOp |
3273 | //===----------------------------------------------------------------------===// |
3274 | |
3275 | void transform::TileUsingForallOp::build(OpBuilder &builder, |
3276 | OperationState &result, Value target, |
3277 | ArrayRef<int64_t> staticTileSizes, |
3278 | transform::TileSizesSpec, |
3279 | ArrayAttr mapping) { |
3280 | return build(builder, result, |
3281 | /*target=*/target, |
3282 | /*mixedTileSizes=*/ |
3283 | getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)), |
3284 | /*_=*/TileSizesSpec(), |
3285 | /*mapping=*/mapping); |
3286 | } |
3287 | |
3288 | void transform::TileUsingForallOp::build(OpBuilder &builder, |
3289 | OperationState &result, Value target, |
3290 | ArrayRef<OpFoldResult> mixedTileSizes, |
3291 | transform::TileSizesSpec, |
3292 | ArrayAttr mapping) { |
3293 | SmallVector<int64_t> staticTileSizes; |
3294 | SmallVector<Value> dynamicTileSizes; |
3295 | dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes); |
3296 | // Call the default builder which sets up the proper operands segment sizes |
3297 | // attributes for multiple variadic operands. In the absence of this, |
3298 | // horrible bugs ensue. |
3299 | MLIRContext *ctx = builder.getContext(); |
3300 | auto operationType = transform::AnyOpType::get(ctx); |
3301 | auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes); |
3302 | build(builder, result, |
3303 | /*resultTypes=*/TypeRange{operationType, operationType}, |
3304 | /*target=*/target, |
3305 | /*num_threads=*/ValueRange{}, |
3306 | /*tile_sizes=*/dynamicTileSizes, |
3307 | /*packed_num_threads=*/Value(), |
3308 | /*packed_tile_sizes=*/Value(), |
3309 | /*static_num_threads=*/builder.getDenseI64ArrayAttr({}), |
3310 | /*static_tile_sizes=*/staticTileSizesAttr, |
3311 | /*mapping=*/mapping); |
3312 | } |
3313 | |
3314 | void transform::TileUsingForallOp::build(OpBuilder &builder, |
3315 | OperationState &result, Value target, |
3316 | ArrayRef<int64_t> staticNumThreads, |
3317 | transform::NumThreadsSpec, |
3318 | ArrayAttr mapping) { |
3319 | return build(builder, result, target, |
3320 | getAsOpFoldResult(builder.getI64ArrayAttr(staticNumThreads)), |
3321 | NumThreadsSpec(), mapping); |
3322 | } |
3323 | |
3324 | void transform::TileUsingForallOp::build(OpBuilder &builder, |
3325 | OperationState &result, Value target, |
3326 | ArrayRef<OpFoldResult> mixedNumThreads, |
3327 | transform::NumThreadsSpec, |
3328 | ArrayAttr mapping) { |
3329 | SmallVector<int64_t> staticNumThreads; |
3330 | SmallVector<Value> dynamicNumThreads; |
3331 | dispatchIndexOpFoldResults(mixedNumThreads, dynamicNumThreads, |
3332 | staticNumThreads); |
3333 | // Call the default builder which sets up the proper operands segment sizes |
3334 | // attributes for multiple variadic operands. In the absence of this, |
3335 | // horrible bugs ensue. |
3336 | MLIRContext *ctx = builder.getContext(); |
3337 | auto operationType = transform::AnyOpType::get(ctx); |
3338 | auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads); |
3339 | build(builder, result, |
3340 | /*resultTypes=*/TypeRange{operationType, operationType}, |
3341 | /*target=*/target, |
3342 | /*num_threads=*/dynamicNumThreads, |
3343 | /*tile_sizes=*/ValueRange{}, |
3344 | /*packed_num_threads=*/Value(), |
3345 | /*packed_tile_sizes=*/Value(), |
3346 | /*static_num_threads=*/staticNumThreadsAttr, |
3347 | /*static_tile_sizes=*/builder.getDenseI64ArrayAttr({}), |
3348 | /*mapping=*/mapping); |
3349 | } |
3350 | |
3351 | /// Given `lbs`, `ubs` and `steps` of loops, return (for each loop), the |
3352 | /// normalized upper bound. |
3353 | static SmallVector<OpFoldResult> |
3354 | normalizeUpperBounds(RewriterBase &rewriter, Location loc, |
3355 | ArrayRef<OpFoldResult> lbs, ArrayRef<OpFoldResult> ubs, |
3356 | ArrayRef<OpFoldResult> steps) { |
3357 | AffineExpr s0, s1, s2; |
3358 | bindSymbols(ctx: rewriter.getContext(), exprs&: s0, exprs&: s1, exprs&: s2); |
3359 | AffineExpr normalizedUbExpr = (s1 - s0).ceilDiv(other: s2); |
3360 | SmallVector<OpFoldResult> normalizedUbs; |
3361 | for (auto [lb, ub, step] : llvm::zip_equal(t&: lbs, u&: ubs, args&: steps)) { |
3362 | OpFoldResult normalizedUb = affine::makeComposedFoldedAffineApply( |
3363 | b&: rewriter, loc, expr: normalizedUbExpr, operands: {lb, ub, step}); |
3364 | normalizedUbs.push_back(Elt: normalizedUb); |
3365 | } |
3366 | return normalizedUbs; |
3367 | } |
3368 | |
3369 | /// When a loop is normalized, the uses of the induction variable within the |
3370 | /// loop need to replaced with `original_lb + old_iv * original_step`. |
3371 | static SmallVector<Value> denormalizeIndVar(RewriterBase &rewriter, |
3372 | Location loc, ValueRange ivs, |
3373 | ArrayRef<OpFoldResult> lbs, |
3374 | ArrayRef<OpFoldResult> steps) { |
3375 | AffineExpr s0, s1; |
3376 | AffineExpr d0; |
3377 | bindSymbols(ctx: rewriter.getContext(), exprs&: s0, exprs&: s1); |
3378 | bindDims(ctx: rewriter.getContext(), exprs&: d0); |
3379 | AffineExpr denormExpr = s0 + d0 * s1; |
3380 | SmallVector<Value> denormalizedIvs; |
3381 | |
3382 | for (auto [iv, lb, step] : llvm::zip_equal(t&: ivs, u&: lbs, args&: steps)) { |
3383 | OpFoldResult denormValue = affine::makeComposedFoldedAffineApply( |
3384 | b&: rewriter, loc, expr: denormExpr, operands: ArrayRef<OpFoldResult>{iv, lb, step}); |
3385 | denormalizedIvs.push_back( |
3386 | Elt: getValueOrCreateConstantIndexOp(b&: rewriter, loc, ofr: denormValue)); |
3387 | } |
3388 | return denormalizedIvs; |
3389 | } |
3390 | |
3391 | /// Given a `scf.forall` loop return a loop op with the loop bounds |
3392 | /// normalized. |
3393 | /// TODO: Replace this with a general utility to normalize `scf.forall`. |
3394 | /// At the time of writing, this wasnt done since adding this to `scf` |
3395 | /// dialect would disallow using of `affine.apply` operations due |
3396 | /// to cyclic dependencies. To avoid churn in lit tests |
3397 | /// with the change this was added with, defer that to a follow up. |
3398 | static scf::ForallOp normalizeForallLoopOp(RewriterBase &rewriter, |
3399 | scf::ForallOp loop) { |
3400 | SmallVector<OpFoldResult> lbs = loop.getMixedLowerBound(); |
3401 | SmallVector<OpFoldResult> ubs = loop.getMixedUpperBound(); |
3402 | SmallVector<OpFoldResult> steps = loop.getMixedStep(); |
3403 | |
3404 | if (llvm::all_of(Range&: lbs, P: isZeroInteger) && llvm::all_of(Range&: steps, P: isOneInteger)) { |
3405 | return loop; |
3406 | } |
3407 | |
3408 | Location loc = loop.getLoc(); |
3409 | SmallVector<OpFoldResult> normalizedUbs = |
3410 | normalizeUpperBounds(rewriter, loc, lbs, ubs, steps); |
3411 | SmallVector<OpFoldResult> normalizedLbs(normalizedUbs.size(), |
3412 | rewriter.getIndexAttr(0)); |
3413 | SmallVector<OpFoldResult> normalizedSteps(normalizedUbs.size(), |
3414 | rewriter.getIndexAttr(1)); |
3415 | |
3416 | auto normalizedForallOp = rewriter.create<scf::ForallOp>( |
3417 | loc, normalizedLbs, normalizedUbs, normalizedSteps, loop.getOutputs(), |
3418 | loop.getMapping(), [](OpBuilder &, Location, ValueRange) {}); |
3419 | |
3420 | auto normalizedLoopIvs = normalizedForallOp.getInductionVars(); |
3421 | OpBuilder::InsertionGuard g(rewriter); |
3422 | Block *normalizedLoopBlock = normalizedForallOp.getBody(); |
3423 | rewriter.setInsertionPointToStart(normalizedLoopBlock); |
3424 | |
3425 | SmallVector<Value> argValues = |
3426 | denormalizeIndVar(rewriter, loc, normalizedLoopIvs, lbs, steps); |
3427 | argValues.append(normalizedForallOp.getRegionIterArgs().begin(), |
3428 | normalizedForallOp.getRegionIterArgs().end()); |
3429 | Block *origLoopBlock = loop.getBody(); |
3430 | rewriter.mergeBlocks(source: origLoopBlock, dest: normalizedLoopBlock, argValues); |
3431 | |
3432 | rewriter.replaceOp(loop, normalizedForallOp); |
3433 | return normalizedForallOp; |
3434 | } |
3435 | |
3436 | DiagnosedSilenceableFailure transform::tileToForallOpImpl( |
3437 | RewriterBase &rewriter, transform::TransformState &state, |
3438 | TransformOpInterface transformOp, Operation *target, |
3439 | ArrayRef<OpFoldResult> mixedNumThreads, |
3440 | ArrayRef<OpFoldResult> mixedTileSizes, std::optional<ArrayAttr> mapping, |
3441 | scf::SCFTilingResult &tilingResult) { |
3442 | // Transform all targets one by one. |
3443 | auto tileableOp = dyn_cast<TilingInterface>(target); |
3444 | if (!tileableOp) { |
3445 | DiagnosedSilenceableFailure diag = |
3446 | transformOp.emitSilenceableError() |
3447 | << "only TilingInterface ops are supported"; |
3448 | diag.attachNote(loc: target->getLoc()) << "target op"; |
3449 | return diag; |
3450 | } |
3451 | rewriter.setInsertionPoint(tileableOp); |
3452 | scf::SCFTilingOptions options; |
3453 | options.setLoopType(scf::SCFTilingOptions::LoopType::ForallOp); |
3454 | if (!mixedNumThreads.empty()) { |
3455 | options.setNumThreads(mixedNumThreads); |
3456 | } else { |
3457 | options.setTileSizes(mixedTileSizes); |
3458 | } |
3459 | if (mapping) { |
3460 | options.setMapping(mapping.value().getValue()); |
3461 | } |
3462 | FailureOr<scf::SCFTilingResult> maybeTilingResult = |
3463 | scf::tileUsingSCF(rewriter, tileableOp, options); |
3464 | |
3465 | if (failed(maybeTilingResult)) |
3466 | return transformOp.emitDefaultSilenceableFailure(tileableOp); |
3467 | |
3468 | rewriter.replaceOp(tileableOp, maybeTilingResult->replacements); |
3469 | |
3470 | tilingResult = *maybeTilingResult; |
3471 | |
3472 | if (mixedNumThreads.empty()) { |
3473 | auto generatedForallOp = cast<scf::ForallOp>(tilingResult.loops.front()); |
3474 | OpBuilder::InsertionGuard g(rewriter); |
3475 | rewriter.setInsertionPoint(generatedForallOp); |
3476 | scf::ForallOp normalizedForallOp = |
3477 | normalizeForallLoopOp(rewriter, generatedForallOp); |
3478 | tilingResult.loops.front() = normalizedForallOp; |
3479 | } |
3480 | |
3481 | return DiagnosedSilenceableFailure::success(); |
3482 | } |
3483 | |
3484 | DiagnosedSilenceableFailure transform::TileUsingForallOp::apply( |
3485 | transform::TransformRewriter &rewriter, |
3486 | transform::TransformResults &transformResults, |
3487 | transform::TransformState &state) { |
3488 | auto transformOp = cast<TransformOpInterface>(getOperation()); |
3489 | |
3490 | // Result payload ops. |
3491 | SmallVector<Operation *> tileOps; |
3492 | SmallVector<Operation *> tiledOps; |
3493 | |
3494 | // Unpack handles. |
3495 | SmallVector<OpFoldResult> mixedNumThreads; |
3496 | DiagnosedSilenceableFailure status = |
3497 | getPackedNumThreads() |
3498 | ? unpackSingleIndexResultPayloadOperations( |
3499 | state, transformOp, mixedNumThreads, getPackedNumThreads()) |
3500 | : unpackSingleIndexResultPayloadOperations( |
3501 | state, transformOp, mixedNumThreads, getMixedNumThreads()); |
3502 | if (!status.succeeded()) |
3503 | return status; |
3504 | SmallVector<OpFoldResult> mixedTileSizes; |
3505 | status = getPackedTileSizes() |
3506 | ? unpackSingleIndexResultPayloadOperations( |
3507 | state, transformOp, mixedTileSizes, getPackedTileSizes()) |
3508 | : unpackSingleIndexResultPayloadOperations( |
3509 | state, transformOp, mixedTileSizes, getMixedTileSizes()); |
3510 | if (!status.succeeded()) |
3511 | return status; |
3512 | |
3513 | for (Operation *target : state.getPayloadOps(getTarget())) { |
3514 | scf::SCFTilingResult tilingResult; |
3515 | DiagnosedSilenceableFailure diag = tileToForallOpImpl( |
3516 | rewriter, state, transformOp, target, mixedNumThreads, mixedTileSizes, |
3517 | getMapping(), tilingResult); |
3518 | if (!diag.succeeded()) |
3519 | return diag; |
3520 | tileOps.push_back(tilingResult.loops.front()); |
3521 | tiledOps.append(tilingResult.tiledOps); |
3522 | } |
3523 | |
3524 | transformResults.set(cast<OpResult>(getForallOp()), tileOps); |
3525 | transformResults.set(cast<OpResult>(getTiledOp()), tiledOps); |
3526 | |
3527 | return DiagnosedSilenceableFailure::success(); |
3528 | } |
3529 | |
3530 | void transform::TileUsingForallOp::getEffects( |
3531 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
3532 | consumesHandle(getTargetMutable(), effects); |
3533 | onlyReadsHandle(getTileSizesMutable(), effects); |
3534 | onlyReadsHandle(getNumThreadsMutable(), effects); |
3535 | onlyReadsHandle(getPackedNumThreadsMutable(), effects); |
3536 | onlyReadsHandle(getPackedTileSizesMutable(), effects); |
3537 | producesHandle(getOperation()->getOpResults(), effects); |
3538 | modifiesPayload(effects); |
3539 | } |
3540 | |
3541 | SmallVector<OpFoldResult> TileUsingForallOp::getMixedNumThreads() { |
3542 | Builder b(getContext()); |
3543 | return getMixedValues(getStaticNumThreads(), getNumThreads(), b); |
3544 | } |
3545 | |
3546 | SmallVector<OpFoldResult> TileUsingForallOp::getMixedTileSizes() { |
3547 | Builder b(getContext()); |
3548 | return getMixedValues(getStaticTileSizes(), getTileSizes(), b); |
3549 | } |
3550 | |
3551 | LogicalResult TileUsingForallOp::verify() { |
3552 | int numThreadsSpec = static_cast<int>(!getMixedNumThreads().empty()) + |
3553 | static_cast<int>(getPackedNumThreads() != Value()); |
3554 | if (numThreadsSpec > 1) |
3555 | return emitOpError( |
3556 | "num_threads and packed_num_threads are mutually exclusive"); |
3557 | int tileSizesSpec = static_cast<int>(!getMixedTileSizes().empty()) + |
3558 | static_cast<int>(getPackedTileSizes() != Value()); |
3559 | if (tileSizesSpec > 1) |
3560 | return emitOpError( |
3561 | "tile_sizes and packed_tile_sizes are mutually exclusive"); |
3562 | if (numThreadsSpec == 0 && tileSizesSpec == 0) |
3563 | return emitOpError("either (packed_)num_threads or (packed_)tile_sizes " |
3564 | "must be specified"); |
3565 | return success(); |
3566 | } |
3567 | |
3568 | //===----------------------------------------------------------------------===// |
3569 | // VectorizeChildrenAndApplyPatternsOp |
3570 | //===----------------------------------------------------------------------===// |
3571 | |
3572 | void transform::VectorizeChildrenAndApplyPatternsOp::build( |
3573 | OpBuilder &builder, OperationState &result, Value target, |
3574 | bool vectorizePadding, bool vectorizeExtract, bool flatten1DDepthwiseConv) { |
3575 | result.addOperands(target); |
3576 | if (vectorizePadding) { |
3577 | result.addAttribute( |
3578 | VectorizeChildrenAndApplyPatternsOp::getVectorizePaddingAttrName( |
3579 | result.name), |
3580 | builder.getUnitAttr()); |
3581 | } |
3582 | if (vectorizeExtract) { |
3583 | result.addAttribute( |
3584 | VectorizeChildrenAndApplyPatternsOp::getVectorizeNdExtractAttrName( |
3585 | result.name), |
3586 | builder.getUnitAttr()); |
3587 | } |
3588 | if (flatten1DDepthwiseConv) { |
3589 | result.addAttribute( |
3590 | VectorizeChildrenAndApplyPatternsOp::getFlatten_1dDepthwiseConvAttrName( |
3591 | result.name), |
3592 | builder.getUnitAttr()); |
3593 | } |
3594 | result.addTypes(transform::AnyOpType::get(builder.getContext())); |
3595 | } |
3596 | |
3597 | namespace { |
3598 | /// This is an helper only to call vectorize via a pattern inside of |
3599 | /// VectorizeChildrenAndApplyPatternsOp::applyToOne. |
3600 | struct VectorizationPattern : public RewritePattern { |
3601 | explicit VectorizationPattern(MLIRContext *context, |
3602 | bool vectorizeExtract = false, |
3603 | bool flattenConv = false) |
3604 | : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context), |
3605 | vectorizeNDExtract(vectorizeExtract), |
3606 | flatten1DDepthwiseConv(flattenConv) {} |
3607 | LogicalResult matchAndRewrite(Operation *op, |
3608 | PatternRewriter &rewriter) const override { |
3609 | if (!linalg::hasVectorizationImpl(op)) |
3610 | return rewriter.notifyMatchFailure(arg&: op, |
3611 | msg: "Unsupported Op, cannot vectorize"); |
3612 | return vectorize(rewriter, op, /*inputVectorSizes=*/{}, |
3613 | /*inputScalableVecDims=*/{}, vectorizeNDExtract, |
3614 | flatten1DDepthwiseConv); |
3615 | } |
3616 | |
3617 | private: |
3618 | /// Controls whether to vectorize `tensor.extract` when the input tensor is |
3619 | /// rank >= 2. |
3620 | bool vectorizeNDExtract = false; |
3621 | /// Controls whether to "flatten" the channel dimension when vectorising 1D |
3622 | /// depthwise convolutions. This should lead to bette vectorization for |
3623 | /// tensors with a low number of channel dimensions. |
3624 | bool flatten1DDepthwiseConv = false; |
3625 | }; |
3626 | } // namespace |
3627 | |
3628 | DiagnosedSilenceableFailure |
3629 | transform::VectorizeChildrenAndApplyPatternsOp::applyToOne( |
3630 | transform::TransformRewriter &rewriter, Operation *target, |
3631 | transform::ApplyToEachResultList &results, |
3632 | transform::TransformState &state) { |
3633 | if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>()) { |
3634 | auto diag = this->emitOpError("requires isolated-from-above targets"); |
3635 | diag.attachNote(target->getLoc()) << "non-isolated target"; |
3636 | return DiagnosedSilenceableFailure::definiteFailure(); |
3637 | } |
3638 | |
3639 | MLIRContext *ctx = getContext(); |
3640 | RewritePatternSet patterns(ctx); |
3641 | patterns.add<VectorizationPattern>(ctx, getVectorizeNdExtract(), |
3642 | getFlatten_1dDepthwiseConv()); |
3643 | |
3644 | if (!getDisableTransferPermutationMapLoweringPatterns()) |
3645 | vector::populateVectorTransferPermutationMapLoweringPatterns(patterns); |
3646 | |
3647 | if (!getDisableMultiReductionToContractPatterns()) |
3648 | vector::populateVectorReductionToContractPatterns(patterns); |
3649 | |
3650 | vector::populateSinkVectorOpsPatterns(patterns); |
3651 | |
3652 | patterns.add<linalg::LinalgCopyVTRForwardingPattern, |
3653 | linalg::LinalgCopyVTWForwardingPattern>(ctx, |
3654 | /*benefit=*/2); |
3655 | vector::TransferReadOp::getCanonicalizationPatterns(patterns, ctx); |
3656 | vector::TransferWriteOp::getCanonicalizationPatterns(patterns, ctx); |
3657 | tensor::populateFoldTensorSubsetIntoVectorTransferPatterns(patterns); |
3658 | |
3659 | patterns.add<CopyVectorizationPattern>(ctx); |
3660 | |
3661 | if (getVectorizePadding()) { |
3662 | linalg::populatePadOpVectorizationPatterns(patterns); |
3663 | // This creates an alternative path for lowering tensor.pad - by |
3664 | // decomposing it into e.g. linalg.fill. |
3665 | linalg::populateDecomposePadPatterns(patterns); |
3666 | } |
3667 | vector::populateVectorStepLoweringPatterns(patterns); |
3668 | |
3669 | TrackingListener listener(state, *this); |
3670 | if (failed( |
3671 | applyPatternsGreedily(target, std::move(patterns), |
3672 | GreedyRewriteConfig().setListener(&listener)))) |
3673 | return emitDefaultDefiniteFailure(target); |
3674 | |
3675 | results.push_back(target); |
3676 | return DiagnosedSilenceableFailure::success(); |
3677 | } |
3678 | |
3679 | //===----------------------------------------------------------------------===// |
3680 | // VectorizeOp |
3681 | //===----------------------------------------------------------------------===// |
3682 | |
3683 | DiagnosedSilenceableFailure transform::VectorizeOp::apply( |
3684 | transform::TransformRewriter &rewriter, |
3685 | mlir::transform::TransformResults &transformResults, |
3686 | mlir::transform::TransformState &state) { |
3687 | auto targets = state.getPayloadOps(getTarget()); |
3688 | if (std::empty(targets)) |
3689 | return DiagnosedSilenceableFailure::success(); |
3690 | auto transformOp = cast<TransformOpInterface>(getOperation()); |
3691 | SmallVector<int64_t> vectorSizes; |
3692 | DiagnosedSilenceableFailure status = reifyMixedParamAndHandleResults( |
3693 | state, transformOp, getMixedVectorSizes(), vectorSizes); |
3694 | if (!status.succeeded()) |
3695 | return status; |
3696 | |
3697 | // TODO: Check that the correct number of vectorSizes was provided. |
3698 | for (Operation *target : targets) { |
3699 | if (!linalg::hasVectorizationImpl(target)) { |
3700 | return mlir::emitSilenceableFailure(target->getLoc()) |
3701 | << "Unsupported Op, cannot vectorize"; |
3702 | } |
3703 | |
3704 | if (failed(linalg::vectorize(rewriter, target, vectorSizes, |
3705 | getScalableSizes(), |
3706 | getVectorizeNdExtract().value_or(false)))) { |
3707 | return mlir::emitSilenceableFailure(target->getLoc()) |
3708 | << "Attempted to vectorize, but failed"; |
3709 | } |
3710 | } |
3711 | |
3712 | return DiagnosedSilenceableFailure::success(); |
3713 | } |
3714 | |
3715 | void transform::VectorizeOp::getEffects( |
3716 | SmallVectorImpl<MemoryEffects::EffectInstance> &effects) { |
3717 | consumesHandle(getTargetMutable(), effects); |
3718 | onlyReadsHandle(getVectorSizesMutable(), effects); |
3719 | modifiesPayload(effects); |
3720 | } |
3721 | |
3722 | SmallVector<OpFoldResult> VectorizeOp::getMixedVectorSizes() { |
3723 | OpBuilder b(getContext()); |
3724 | return getMixedValues(getStaticVectorSizes(), getVectorSizes(), b); |
3725 | } |
3726 | |
3727 | LogicalResult transform::VectorizeOp::verify() { |
3728 | if (getStaticVectorSizes().size() != getScalableSizes().size()) |
3729 | return emitOpError("expected same number of vector sizes (") |
3730 | << getStaticVectorSizes().size() << ") and scalable sizes (" |
3731 | << getScalableSizes().size() << ")"; |
3732 | return success(); |
3733 | } |
3734 | |
3735 | //===----------------------------------------------------------------------===// |
3736 | // HoistRedundantVectorTransfersOp |
3737 | //===----------------------------------------------------------------------===// |
3738 | |
3739 | DiagnosedSilenceableFailure |
3740 | transform::HoistRedundantVectorTransfersOp::applyToOne( |
3741 | transform::TransformRewriter &rewriter, func::FuncOp target, |
3742 | transform::ApplyToEachResultList &results, |
3743 | transform::TransformState &state) { |
3744 | // WARNING: This hoisting does not model parallelism and is generally |
3745 | // incorrect when used on distributed loops with memref semantics! |
3746 | // TODO: obsolete and should be retired. |
3747 | linalg::hoistRedundantVectorTransfers(target, getVerifyNonZeroTrip()); |
3748 | results.push_back(target); |
3749 | return DiagnosedSilenceableFailure::success(); |
3750 | } |
3751 | |
3752 | //===----------------------------------------------------------------------===// |
3753 | // HoistRedundantVectorBroadcastsOp |
3754 | //===----------------------------------------------------------------------===// |
3755 | |
3756 | DiagnosedSilenceableFailure |
3757 | transform::HoistRedundantVectorBroadcastsOp::applyToOne( |
3758 | transform::TransformRewriter &rewriter, mlir::Operation *target, |
3759 | transform::ApplyToEachResultList &results, |
3760 | transform::TransformState &state) { |
3761 | rewriter.setInsertionPoint(target); |
3762 | linalg::hoistRedundantVectorBroadcasts(rewriter, target); |
3763 | results.push_back(target); |
3764 | return DiagnosedSilenceableFailure::success(); |
3765 | } |
3766 | |
3767 | //===----------------------------------------------------------------------===// |
3768 | // ConvertConv2DToImg2ColOp. |
3769 | //===----------------------------------------------------------------------===// |
3770 | |
3771 | DiagnosedSilenceableFailure transform::ConvertConv2DToImg2ColOp::applyToOne( |
3772 | transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
3773 | transform::ApplyToEachResultList &results, |
3774 | transform::TransformState &state) { |
3775 | rewriter.setInsertionPoint(target); |
3776 | auto maybeTransformed = |
3777 | TypeSwitch<Operation *, FailureOr<std::pair<Operation *, Operation *>>>( |
3778 | target) |
3779 | .Case([&](linalg::Conv2DNhwcHwcfOp op) { |
3780 | return rewriteInIm2Col(rewriter, op); |
3781 | }) |
3782 | .Case([&](linalg::Conv2DNhwcFhwcOp op) { |
3783 | return rewriteInIm2Col(rewriter, op); |
3784 | }) |
3785 | .Case([&](linalg::DepthwiseConv2DNhwcHwcOp op) { |
3786 | return rewriteInIm2Col(rewriter, op); |
3787 | }) |
3788 | .Case([&](linalg::Conv2DNchwFchwOp op) { |
3789 | return rewriteInIm2Col(rewriter, op); |
3790 | }) |
3791 | .Default([&](Operation *op) { |
3792 | return rewriter.notifyMatchFailure(op, "not supported"); |
3793 | }); |
3794 | if (failed(maybeTransformed)) |
3795 | return emitDefaultSilenceableFailure(target); |
3796 | // Handle to the operation producing the img2col tensor. |
3797 | results.push_back(maybeTransformed->first); |
3798 | // Handle to the operation that replaces the original convolution. |
3799 | results.push_back(maybeTransformed->second); |
3800 | return DiagnosedSilenceableFailure::success(); |
3801 | } |
3802 | |
3803 | //===----------------------------------------------------------------------===// |
3804 | // FlattenElementwiseLinalgOp. |
3805 | //===----------------------------------------------------------------------===// |
3806 | |
3807 | DiagnosedSilenceableFailure transform::FlattenElementwiseLinalgOp::applyToOne( |
3808 | transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
3809 | transform::ApplyToEachResultList &results, |
3810 | transform::TransformState &state) { |
3811 | rewriter.setInsertionPoint(target); |
3812 | if (!isElementwise(target)) |
3813 | return mlir::emitSilenceableFailure(target->getLoc()) |
3814 | << "only elementwise flattening is supported"; |
3815 | |
3816 | // If rank <= 1, do nothing |
3817 | if (target.getNumLoops() <= 1) { |
3818 | results.push_back(target); |
3819 | return DiagnosedSilenceableFailure::success(); |
3820 | } |
3821 | |
3822 | // Attempt to flatten all dims to one. |
3823 | ReassociationIndices reassociation(target.getNumLoops()); |
3824 | std::iota(reassociation.begin(), reassociation.end(), 0); |
3825 | auto maybeFlattened = |
3826 | collapseOpIterationDims(target, reassociation, rewriter); |
3827 | if (failed(maybeFlattened)) |
3828 | return mlir::emitSilenceableFailure(target->getLoc()) |
3829 | << "attempted to flatten, but failed"; |
3830 | results.push_back(maybeFlattened->collapsedOp); |
3831 | rewriter.replaceOp(target, maybeFlattened->results); |
3832 | return DiagnosedSilenceableFailure::success(); |
3833 | } |
3834 | |
3835 | //===----------------------------------------------------------------------===// |
3836 | // TransposeConv2DOp |
3837 | //===----------------------------------------------------------------------===// |
3838 | |
3839 | DiagnosedSilenceableFailure transform::TransposeConv2DOp::applyToOne( |
3840 | transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
3841 | transform::ApplyToEachResultList &results, |
3842 | transform::TransformState &state) { |
3843 | rewriter.setInsertionPoint(target); |
3844 | auto maybeTransformed = |
3845 | TypeSwitch<Operation *, FailureOr<Operation *>>(target) |
3846 | .Case([&](linalg::Conv2DNhwcFhwcOp op) { |
3847 | return transposeConv2D(rewriter, op); |
3848 | }) |
3849 | .Case([&](linalg::Conv2DNhwcFhwcQOp op) { |
3850 | return transposeConv2D(rewriter, op); |
3851 | }) |
3852 | .Default([&](Operation *op) { |
3853 | return rewriter.notifyMatchFailure(op, "not supported"); |
3854 | }); |
3855 | if (failed(maybeTransformed)) |
3856 | return emitDefaultSilenceableFailure(target); |
3857 | // Handle to the new Conv2D operation with transposed filters |
3858 | results.push_back(*maybeTransformed); |
3859 | return DiagnosedSilenceableFailure::success(); |
3860 | } |
3861 | |
3862 | //===----------------------------------------------------------------------===// |
3863 | // TransposeMatmulOp |
3864 | //===----------------------------------------------------------------------===// |
3865 | |
3866 | DiagnosedSilenceableFailure transform::TransposeMatmulOp::applyToOne( |
3867 | transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
3868 | transform::ApplyToEachResultList &results, |
3869 | transform::TransformState &state) { |
3870 | rewriter.setInsertionPoint(target); |
3871 | bool transposeLHS = getInputToTranspose() == TransposeMatmulInput::lhs; |
3872 | auto maybeTransformed = |
3873 | TypeSwitch<Operation *, FailureOr<Operation *>>(target) |
3874 | .Case([&](linalg::MatmulOp op) { |
3875 | return transposeMatmul(rewriter, op, transposeLHS); |
3876 | }) |
3877 | .Case([&](linalg::BatchMatmulOp op) { |
3878 | return transposeBatchMatmul(rewriter, op, transposeLHS); |
3879 | }) |
3880 | .Default([&](Operation *op) { return failure(); }); |
3881 | if (failed(maybeTransformed)) |
3882 | return emitSilenceableFailure(target->getLoc()) << "not supported"; |
3883 | // Handle to the new Matmul operation with transposed filters |
3884 | results.push_back(*maybeTransformed); |
3885 | return DiagnosedSilenceableFailure::success(); |
3886 | } |
3887 | |
3888 | //===----------------------------------------------------------------------===// |
3889 | // InsertSliceToCopyOp |
3890 | //===----------------------------------------------------------------------===// |
3891 | template <typename OpTy> |
3892 | DiagnosedSilenceableFailure doit(RewriterBase &rewriter, OpTy target, |
3893 | transform::ApplyToEachResultList &results, |
3894 | transform::TransformState &state) { |
3895 | static_assert(llvm::is_one_of<OpTy, tensor::InsertSliceOp, |
3896 | tensor::ParallelInsertSliceOp>() && |
3897 | "wrong op type"); |
3898 | |
3899 | if (auto copySource = |
3900 | target.getSource().template getDefiningOp<linalg::CopyOp>()) { |
3901 | results.push_back(copySource); |
3902 | return DiagnosedSilenceableFailure::success(); |
3903 | } |
3904 | |
3905 | // If we are inside an InParallel region, temporarily set the insertion point |
3906 | // outside: only tensor.parallel_insert_slice ops are allowed in there. |
3907 | if constexpr (std::is_same_v<OpTy, tensor::ParallelInsertSliceOp>) { |
3908 | rewriter.setInsertionPoint( |
3909 | target->template getParentOfType<scf::InParallelOp>()); |
3910 | } |
3911 | |
3912 | Value extracted = rewriter.create<tensor::ExtractSliceOp>( |
3913 | target.getLoc(), target.getDest(), target.getMixedOffsets(), |
3914 | target.getMixedSizes(), target.getMixedStrides()); |
3915 | Value copied = rewriter |
3916 | .create<linalg::CopyOp>(target.getLoc(), |
3917 | target.getSource(), extracted) |
3918 | .getResult(0); |
3919 | // Reset the insertion point. |
3920 | rewriter.setInsertionPoint(target); |
3921 | rewriter.replaceOpWithNewOp<OpTy>( |
3922 | target, copied, target.getDest(), target.getMixedOffsets(), |
3923 | target.getMixedSizes(), target.getMixedStrides()); |
3924 | |
3925 | results.push_back(op: copied.getDefiningOp()); |
3926 | return DiagnosedSilenceableFailure::success(); |
3927 | } |
3928 | |
3929 | DiagnosedSilenceableFailure transform::InsertSliceToCopyOp::applyToOne( |
3930 | transform::TransformRewriter &rewriter, Operation *targetOp, |
3931 | transform::ApplyToEachResultList &results, |
3932 | transform::TransformState &state) { |
3933 | |
3934 | rewriter.setInsertionPoint(targetOp); |
3935 | if (auto target = dyn_cast<tensor::InsertSliceOp>(targetOp)) |
3936 | return doit(rewriter, target, results, state); |
3937 | if (auto target = dyn_cast<tensor::ParallelInsertSliceOp>(targetOp)) |
3938 | return doit(rewriter, target, results, state); |
3939 | |
3940 | DiagnosedSilenceableFailure diag = |
3941 | emitSilenceableError() |
3942 | << "only InsertSliceOp and ParallelInsertSliceOp ops are supported"; |
3943 | diag.attachNote(targetOp->getLoc()) << "target op"; |
3944 | return diag; |
3945 | } |
3946 | |
3947 | //===----------------------------------------------------------------------===// |
3948 | // MapCopyToThreadsOp |
3949 | //===----------------------------------------------------------------------===// |
3950 | |
3951 | DiagnosedSilenceableFailure transform::MapCopyToThreadsOp::applyToOne( |
3952 | transform::TransformRewriter &rewriter, Operation *target, |
3953 | transform::ApplyToEachResultList &results, |
3954 | transform::TransformState &state) { |
3955 | // Check if the op is supported. |
3956 | if (!isa<linalg::CopyOp, tensor::PadOp>(target)) { |
3957 | DiagnosedSilenceableFailure diag = |
3958 | emitSilenceableError() |
3959 | << "only linalg.copy and tensor.pad target ops are supported"; |
3960 | diag.attachNote(target->getLoc()) << "target op"; |
3961 | return diag; |
3962 | } |
3963 | assert(target->getNumResults() == 1 && "expected single result"); |
3964 | auto resultShapedType = cast<ShapedType>(target->getResult(0).getType()); |
3965 | if (!resultShapedType.hasStaticShape()) { |
3966 | DiagnosedSilenceableFailure diag = |
3967 | emitSilenceableError() |
3968 | << "only statically sized ops of rank <= 3 are supported"; |
3969 | diag.attachNote(target->getLoc()) << "target op"; |
3970 | return diag; |
3971 | } |
3972 | |
3973 | // Conservatively set the minimum viable desired bitwidth alignment. |
3974 | int64_t desiredBitAlignment = getDesiredBitAlignment(); |
3975 | int64_t eltBitwidth = |
3976 | resultShapedType.getElementType().getIntOrFloatBitWidth(); |
3977 | if (desiredBitAlignment % eltBitwidth != 0) { |
3978 | desiredBitAlignment = eltBitwidth; |
3979 | } |
3980 | |
3981 | gpu::CopyMappingInfo mapping( |
3982 | /*ctx=*/getContext(), |
3983 | /*totalNumThreads=*/getTotalNumThreads(), |
3984 | /*alignment=*/desiredBitAlignment, |
3985 | /*sizes=*/resultShapedType.getShape(), |
3986 | /*favorPredication=*/false, |
3987 | /*elementalBitwidth=*/ |
3988 | resultShapedType.getElementType().getIntOrFloatBitWidth()); |
3989 | if (mapping.status == gpu::CopyMappingInfo::Status::Invalid) { |
3990 | DiagnosedSilenceableFailure diag = |
3991 | emitSilenceableError() |
3992 | << "too few threads to map copy op to threads on the most minor " |
3993 | "dimension, given alignment and vector size constraints, try " |
3994 | "smaller tile size of mapping to more threads"; |
3995 | diag.attachNote(target->getLoc()) << "target op"; |
3996 | return diag; |
3997 | } |
3998 | |
3999 | // OpBuilder only used to compute attributes. |
4000 | OpBuilder b(getContext()); |
4001 | scf::SCFTilingResult tilingResult; |
4002 | DiagnosedSilenceableFailure diag = tileToForallOpImpl( |
4003 | /*rewriter=*/rewriter, |
4004 | /*state=*/state, |
4005 | /*transformOp=*/*this, |
4006 | /*target=*/target, |
4007 | /*mixedNumThreads=*/getMixedValues(mapping.numThreads, {}, b), |
4008 | /*mixedTileSizes=*/ArrayRef<OpFoldResult>{}, |
4009 | /*mapping=*/b.getArrayAttr(mapping.threadMapping), |
4010 | /*tilingResult=*/tilingResult); |
4011 | if (!diag.succeeded()) |
4012 | return diag; |
4013 | |
4014 | results.push_back(tilingResult.loops.front()); |
4015 | for (auto op : tilingResult.tiledOps) |
4016 | results.push_back(op); |
4017 | return DiagnosedSilenceableFailure::success(); |
4018 | } |
4019 | |
4020 | //===----------------------------------------------------------------------===// |
4021 | // WinogradConv2DOp |
4022 | //===----------------------------------------------------------------------===// |
4023 | |
4024 | DiagnosedSilenceableFailure transform::WinogradConv2DOp::applyToOne( |
4025 | transform::TransformRewriter &rewriter, linalg::LinalgOp target, |
4026 | transform::ApplyToEachResultList &results, |
4027 | transform::TransformState &state) { |
4028 | rewriter.setInsertionPoint(target); |
4029 | FailureOr<Operation *> maybeTransformed = failure(); |
4030 | bool supported = TypeSwitch<Operation *, bool>(target) |
4031 | .Case([&](linalg::Conv2DNhwcFhwcOp op) { |
4032 | maybeTransformed = |
4033 | winogradConv2D(rewriter, op, getM(), getR()); |
4034 | return true; |
4035 | }) |
4036 | .Default([&](Operation *op) { return false; }); |
4037 | |
4038 | if (!supported) { |
4039 | return emitSilenceableError() |
4040 | << "this operation is not supported to convert to Winograd Conv2D"; |
4041 | } |
4042 | |
4043 | if (failed(maybeTransformed)) { |
4044 | return emitSilenceableError() << "apply Winograd Conv2D failed"; |
4045 | } |
4046 | |
4047 | results.push_back(*maybeTransformed); |
4048 | return DiagnosedSilenceableFailure::success(); |
4049 | } |
4050 | |
4051 | DiagnosedSilenceableFailure transform::DecomposeWinogradOp::applyToOne( |
4052 | transform::TransformRewriter &rewriter, Operation *target, |
4053 | transform::ApplyToEachResultList &results, |
4054 | transform::TransformState &state) { |
4055 | rewriter.setInsertionPoint(target); |
4056 | FailureOr<Operation *> maybeTransformed = failure(); |
4057 | bool supported = |
4058 | TypeSwitch<Operation *, bool>(target) |
4059 | .Case([&](linalg::WinogradFilterTransformOp op) { |
4060 | maybeTransformed = decomposeWinogradFilterTransformOp(rewriter, op); |
4061 | return true; |
4062 | }) |
4063 | .Case([&](linalg::WinogradInputTransformOp op) { |
4064 | maybeTransformed = decomposeWinogradInputTransformOp(rewriter, op); |
4065 | return true; |
4066 | }) |
4067 | .Case([&](linalg::WinogradOutputTransformOp op) { |
4068 | maybeTransformed = decomposeWinogradOutputTransformOp(rewriter, op); |
4069 | return true; |
4070 | }) |
4071 | .Default([&](Operation *op) { return false; }); |
4072 | |
4073 | if (!supported) { |
4074 | DiagnosedSilenceableFailure diag = |
4075 | emitSilenceableError() |
4076 | << "this operation is not supported to decompose into other operations"; |
4077 | diag.attachNote(target->getLoc()) << "target op"; |
4078 | return diag; |
4079 | } |
4080 | |
4081 | if (failed(maybeTransformed)) { |
4082 | DiagnosedSilenceableFailure diag = |
4083 | emitSilenceableError() << "decompose Winograd operations failed"; |
4084 | diag.attachNote(target->getLoc()) << "target op"; |
4085 | return diag; |
4086 | } |
4087 | |
4088 | results.push_back(*maybeTransformed); |
4089 | return DiagnosedSilenceableFailure::success(); |
4090 | } |
4091 | |
4092 | #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOpsEnums.cpp.inc" |
4093 | |
4094 | #define GET_OP_CLASSES |
4095 | #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp.inc" |
4096 |
Definitions
- tryApply
- unpackSingleIndexResultPayloadOperations
- unpackSingleIndexResultPayloadOperations
- reifyMixedParamAndHandleResults
- NewOpsListener
- getNewOps
- notifyOperationInserted
- notifyOperationErased
- applyTilingToAll
- replaceForAllWithNewSignature
- sameOrEquivalentIterArg
- tileAndFuseFirstExtractUse
- tileAndFuseFirstExtractUseThroughContainingOpBlockArgument
- cloneAndFuseFirstUse
- printMultitileSizesTypes
- parseMultitileSizesTypes
- OuterOrInnerPerm
- isValidPackingPermutation
- printContinuousTileSizeTypes
- parseContinuousTileSizeTypes
- normalizeUpperBounds
- denormalizeIndVar
- normalizeForallLoopOp
- tileToForallOpImpl
- VectorizationPattern
- VectorizationPattern
- matchAndRewrite
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more