| 1 | //===- ConvertConv2DToImg2Col.cpp - im2col implementation -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Affine/Utils.h" |
| 10 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 11 | #include "mlir/Dialect/Complex/IR/Complex.h" |
| 12 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 13 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| 14 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 15 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| 16 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 17 | #include "mlir/IR/AffineExpr.h" |
| 18 | #include "mlir/IR/AffineMap.h" |
| 19 | #include "mlir/IR/Builders.h" |
| 20 | #include "mlir/IR/BuiltinAttributes.h" |
| 21 | #include "mlir/IR/BuiltinTypes.h" |
| 22 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 23 | #include <utility> |
| 24 | |
| 25 | namespace mlir { |
| 26 | namespace linalg { |
| 27 | static bool hasAllOneValues(DenseIntElementsAttr attr) { |
| 28 | return llvm::all_of( |
| 29 | Range&: attr, P: [](const APInt &element) { return element.getSExtValue() == 1; }); |
| 30 | } |
| 31 | |
| 32 | static Value createAdd(Location loc, Value x, Value y, OpBuilder &builder) { |
| 33 | if (isa<IntegerType>(x.getType())) |
| 34 | return builder.create<arith::AddIOp>(loc, x, y); |
| 35 | if (isa<ComplexType>(x.getType())) |
| 36 | return builder.create<complex::AddOp>(loc, x, y); |
| 37 | return builder.create<arith::AddFOp>(loc, x, y); |
| 38 | } |
| 39 | |
| 40 | static Value createMul(Location loc, Value x, Value y, Type accType, |
| 41 | OpBuilder &builder) { |
| 42 | // Linalg named ops specify signed extend for named ops. |
| 43 | Value xConvert = |
| 44 | convertScalarToDtype(b&: builder, loc, operand: x, toType: accType, /*isUnsignedCast=*/false); |
| 45 | Value yConvert = |
| 46 | convertScalarToDtype(b&: builder, loc, operand: y, toType: accType, /*isUnsignedCast=*/false); |
| 47 | if (isa<ComplexType>(accType)) |
| 48 | return builder.create<complex::MulOp>(loc, xConvert, yConvert); |
| 49 | if (isa<IntegerType>(accType)) |
| 50 | return builder.create<arith::MulIOp>(loc, xConvert, yConvert); |
| 51 | return builder.create<arith::MulFOp>(loc, xConvert, yConvert); |
| 52 | } |
| 53 | |
| 54 | // Delinearizes the given composite `index` by the basis specified in `factors`. |
| 55 | static SmallVector<Value> unrollIndex(OpBuilder &b, Location loc, Value index, |
| 56 | ArrayRef<int64_t> factors) { |
| 57 | assert(!factors.empty() && "empty factor list" ); |
| 58 | SmallVector<Value> basis; |
| 59 | for (int64_t f : factors) |
| 60 | basis.push_back(b.create<arith::ConstantOp>(loc, b.getIndexAttr(f))); |
| 61 | FailureOr<SmallVector<Value>> multiIndex = |
| 62 | affine::delinearizeIndex(b, loc, linearIndex: index, basis); |
| 63 | assert(!failed(multiIndex) && "Failed to linearize img2col index" ); |
| 64 | return *multiIndex; |
| 65 | } |
| 66 | |
| 67 | // Given indices corresponding to iterators in the output (oIndex) and filter |
| 68 | // (fIndex) for a convolution, compute the convolved index for the |
| 69 | // input as `oIndex * stride + fIndex`. |
| 70 | static Value getConvolvedIndex(OpBuilder &b, Location loc, Value oIndex, |
| 71 | Value fIndex, int64_t stride) { |
| 72 | AffineExpr oExpr, fExpr; |
| 73 | bindSymbols(ctx: b.getContext(), exprs&: oExpr, exprs&: fExpr); |
| 74 | AffineMap convMap = AffineMap::get(dimCount: 0, symbolCount: 2, result: stride * oExpr + fExpr); |
| 75 | return affine::makeComposedAffineApply(b, loc, convMap, {oIndex, fIndex}); |
| 76 | } |
| 77 | |
| 78 | FailureOr<std::pair<Operation *, Operation *>> |
| 79 | rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcHwcfOp convOp) { |
| 80 | auto inputType = cast<ShapedType>(convOp.getInputs()[0].getType()); |
| 81 | auto filterType = cast<ShapedType>(convOp.getInputs()[1].getType()); |
| 82 | auto outputType = cast<ShapedType>(convOp.getOutputs()[0].getType()); |
| 83 | |
| 84 | if (!filterType.hasStaticShape()) |
| 85 | return rewriter.notifyMatchFailure( |
| 86 | convOp, "expected a static shape for the filter" ); |
| 87 | |
| 88 | if (!inputType.hasStaticShape()) |
| 89 | return rewriter.notifyMatchFailure(convOp, |
| 90 | "expected a static shape for the input" ); |
| 91 | |
| 92 | // TODO: Support dilation. |
| 93 | if (!hasAllOneValues(convOp.getDilations())) |
| 94 | return rewriter.notifyMatchFailure(convOp, |
| 95 | "expected all ones for dilations" ); |
| 96 | |
| 97 | MLIRContext *context = rewriter.getContext(); |
| 98 | Value input = convOp.getInputs()[0]; |
| 99 | Value filter = convOp.getInputs()[1]; |
| 100 | Value output = convOp.getOutputs()[0]; |
| 101 | |
| 102 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
| 103 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 104 | |
| 105 | int64_t n = outputShape[0]; |
| 106 | int64_t oh = outputShape[1]; |
| 107 | int64_t ow = outputShape[2]; |
| 108 | int64_t oc = outputShape[3]; |
| 109 | int64_t fh = filterShape[0]; |
| 110 | int64_t fw = filterShape[1]; |
| 111 | int64_t ic = filterShape[2]; |
| 112 | |
| 113 | Location loc = convOp.getLoc(); |
| 114 | |
| 115 | // Reshape output and filter to the LHS and result of a (B)MNK matmul. |
| 116 | SmallVector<ReassociationIndices> filterReassocIndices = {{0, 1, 2}, {3}}; |
| 117 | auto reshapedFilterType = |
| 118 | RankedTensorType::get({fh * fw * ic, oc}, filterType.getElementType()); |
| 119 | Value reshapedFilter = rewriter.create<tensor::CollapseShapeOp>( |
| 120 | loc, reshapedFilterType, filter, filterReassocIndices); |
| 121 | |
| 122 | SmallVector<ReassociationIndices> outputReassocIndices = {{0}, {1, 2}, {3}}; |
| 123 | RankedTensorType reshapedOutputType = |
| 124 | RankedTensorType::get({n, oh * ow, oc}, outputType.getElementType()); |
| 125 | Value reshapedOutput = rewriter.create<tensor::CollapseShapeOp>( |
| 126 | loc, reshapedOutputType, output, outputReassocIndices); |
| 127 | |
| 128 | SmallVector<int64_t> colTensorShape = {n, oh * ow, fh * fw * ic}; |
| 129 | Value colTensor = rewriter.create<tensor::EmptyOp>( |
| 130 | loc, colTensorShape, inputType.getElementType()); |
| 131 | |
| 132 | // Convert the input to a (BMK) column tensor. |
| 133 | auto nloops = colTensorShape.size(); |
| 134 | |
| 135 | auto parallel = utils::IteratorType::parallel; |
| 136 | auto reduction = utils::IteratorType::reduction; |
| 137 | SmallVector<utils::IteratorType> img2colIterators(nloops, parallel); |
| 138 | |
| 139 | SmallVector<AffineMap> img2colIndexingMaps = { |
| 140 | AffineMap::getMultiDimIdentityMap(numDims: nloops, context)}; |
| 141 | |
| 142 | auto img2ColTensor = rewriter.create<linalg::GenericOp>( |
| 143 | loc, colTensor.getType(), |
| 144 | /*inputs=*/ValueRange{}, /*outputs=*/colTensor, img2colIndexingMaps, |
| 145 | img2colIterators, |
| 146 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 147 | // Get the iterators named based on the matmul (batch, m, k). |
| 148 | Value bIndex = nestedBuilder.create<linalg::IndexOp>(loc, 0); |
| 149 | Value mIndex = nestedBuilder.create<linalg::IndexOp>(loc, 1); |
| 150 | Value kIndex = nestedBuilder.create<linalg::IndexOp>(loc, 2); |
| 151 | |
| 152 | // Recover the original iteration indices from the problem/input sizes. |
| 153 | SmallVector<Value> mIndices = unrollIndex( |
| 154 | b&: nestedBuilder, loc: nestedLoc, index: mIndex, factors: ArrayRef<int64_t>{oh, ow}); |
| 155 | auto ohIndex = mIndices[0]; |
| 156 | auto owIndex = mIndices[1]; |
| 157 | |
| 158 | SmallVector<Value> kIndices = unrollIndex( |
| 159 | b&: nestedBuilder, loc: nestedLoc, index: kIndex, factors: ArrayRef<int64_t>{fh, fw, ic}); |
| 160 | auto fhIndex = kIndices[0]; |
| 161 | auto fwIndex = kIndices[1]; |
| 162 | auto icIndex = kIndices[2]; |
| 163 | |
| 164 | // Extract the input element corresponding to the expanded indices. |
| 165 | Value hIndex = |
| 166 | getConvolvedIndex(nestedBuilder, nestedLoc, ohIndex, fhIndex, |
| 167 | convOp.getStrides().getValues<int64_t>()[0]); |
| 168 | Value wIndex = |
| 169 | getConvolvedIndex(nestedBuilder, nestedLoc, owIndex, fwIndex, |
| 170 | convOp.getStrides().getValues<int64_t>()[1]); |
| 171 | |
| 172 | // im2col[n, oh*ow, fh*fw*ic] = input[n, sh*oh + fh, sw*ow + fw, ic] |
| 173 | SmallVector<Value> {bIndex, hIndex, wIndex, icIndex}; |
| 174 | Value inputVal = nestedBuilder.create<tensor::ExtractOp>( |
| 175 | loc, input, extractionIndices); |
| 176 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, inputVal); |
| 177 | }); |
| 178 | |
| 179 | // Because the filter does not share the same batch dimension, |
| 180 | // the batch dimension is only used in indexing the input and output. Thus |
| 181 | // we cannot use existing linalg named ops like linalg.batch_matmul. |
| 182 | // i.e. (B x) M x K * K x N = (B x) M x N |
| 183 | AffineExpr bDim, mDim, nDim, kDim; |
| 184 | bindDims(ctx: context, exprs&: bDim, exprs&: mDim, exprs&: nDim, exprs&: kDim); |
| 185 | auto lhsMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {bDim, mDim, kDim}, context); |
| 186 | auto rhsMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {kDim, nDim}, context); |
| 187 | auto resultMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {bDim, mDim, nDim}, context); |
| 188 | SmallVector<utils::IteratorType> genericIterators = {parallel, parallel, |
| 189 | parallel, reduction}; |
| 190 | |
| 191 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 192 | loc, reshapedOutputType, |
| 193 | /*inputs=*/ValueRange{img2ColTensor.getResult(0), reshapedFilter}, |
| 194 | /*outputs=*/ValueRange{reshapedOutput}, |
| 195 | ArrayRef<AffineMap>{lhsMap, rhsMap, resultMap}, genericIterators, |
| 196 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 197 | Value mul = |
| 198 | createMul(loc, x: args[0], y: args[1], accType: args[2].getType(), builder&: nestedBuilder); |
| 199 | Value add = createAdd(loc, x: mul, y: args[2], builder&: nestedBuilder); |
| 200 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, add); |
| 201 | }); |
| 202 | Value result = genericOp.getResults().front(); |
| 203 | |
| 204 | auto reshapedResult = rewriter.create<tensor::ExpandShapeOp>( |
| 205 | loc, outputType, result, outputReassocIndices); |
| 206 | |
| 207 | rewriter.replaceOp(convOp, ArrayRef<Value>{reshapedResult}); |
| 208 | |
| 209 | return std::make_pair(img2ColTensor.getOperation(), |
| 210 | reshapedResult.getOperation()); |
| 211 | } |
| 212 | |
| 213 | FailureOr<std::pair<Operation *, Operation *>> |
| 214 | rewriteInIm2Col(RewriterBase &rewriter, |
| 215 | linalg::DepthwiseConv2DNhwcHwcOp convOp) { |
| 216 | auto inputType = cast<RankedTensorType>(convOp.getInputs()[0].getType()); |
| 217 | auto filterType = cast<RankedTensorType>(convOp.getInputs()[1].getType()); |
| 218 | auto outputType = cast<RankedTensorType>(convOp.getOutputs()[0].getType()); |
| 219 | |
| 220 | if (!filterType.hasStaticShape()) |
| 221 | return rewriter.notifyMatchFailure( |
| 222 | convOp, "expected a static shape for the filter" ); |
| 223 | |
| 224 | if (!inputType.hasStaticShape()) |
| 225 | return rewriter.notifyMatchFailure(convOp, |
| 226 | "expected a static shape for the input" ); |
| 227 | |
| 228 | // TODO: Support dilation. |
| 229 | if (!hasAllOneValues(convOp.getDilations())) |
| 230 | return rewriter.notifyMatchFailure(convOp, |
| 231 | "expected all ones for dilations" ); |
| 232 | |
| 233 | Location loc = convOp.getLoc(); |
| 234 | |
| 235 | auto transposeOperand = [&](Value operand, ArrayRef<int64_t> indices) { |
| 236 | auto operandTensorType = cast<RankedTensorType>(operand.getType()); |
| 237 | auto nloops = indices.size(); |
| 238 | ArrayRef<int64_t> inputShape = operandTensorType.getShape(); |
| 239 | |
| 240 | SmallVector<AffineExpr> exprs = llvm::to_vector<4>( |
| 241 | Range: llvm::map_range(C&: indices, F: [&](int64_t index) -> AffineExpr { |
| 242 | return rewriter.getAffineDimExpr(position: index); |
| 243 | })); |
| 244 | |
| 245 | SmallVector<int64_t> targetShape = llvm::to_vector<4>(Range: llvm::map_range( |
| 246 | C&: indices, F: [&](int64_t index) -> int64_t { return inputShape[index]; })); |
| 247 | |
| 248 | Value outputTensor = rewriter.create<tensor::EmptyOp>( |
| 249 | loc, targetShape, operandTensorType.getElementType()); |
| 250 | |
| 251 | SmallVector<utils::IteratorType> loopAttributeTypes( |
| 252 | nloops, utils::IteratorType::parallel); |
| 253 | |
| 254 | SmallVector<AffineMap> indexingMaps = { |
| 255 | inversePermutation( |
| 256 | map: AffineMap::get(dimCount: nloops, symbolCount: 0, results: exprs, context: rewriter.getContext())), |
| 257 | AffineMap::getMultiDimIdentityMap(numDims: nloops, context: rewriter.getContext())}; |
| 258 | |
| 259 | auto transposedOp = rewriter.create<linalg::GenericOp>( |
| 260 | loc, outputTensor.getType(), |
| 261 | /*inputs=*/operand, /*outputs=*/outputTensor, indexingMaps, |
| 262 | loopAttributeTypes, |
| 263 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 264 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); |
| 265 | }); |
| 266 | |
| 267 | return transposedOp.getResult(0); |
| 268 | }; |
| 269 | |
| 270 | Value input = convOp.getInputs()[0]; |
| 271 | Value filter = convOp.getInputs()[1]; |
| 272 | Value output = convOp.getOutputs()[0]; |
| 273 | |
| 274 | // Transpose input, filter so channels are outermost |
| 275 | Value inputT = transposeOperand(input, {0, 3, 1, 2}); |
| 276 | Value filterT = transposeOperand(filter, {2, 0, 1}); |
| 277 | ArrayRef<int64_t> filterTShape = |
| 278 | cast<RankedTensorType>(filterT.getType()).getShape(); |
| 279 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 280 | |
| 281 | int n = outputShape[0]; |
| 282 | int oh = outputShape[1]; |
| 283 | int ow = outputShape[2]; |
| 284 | int c = outputShape[3]; |
| 285 | int fh = filterTShape[1]; |
| 286 | int fw = filterTShape[2]; |
| 287 | |
| 288 | SmallVector<int64_t> colTensorShape = {n, c, oh, ow, fh, fw}; |
| 289 | Value transposedOutputTensor = transposeOperand(output, {0, 3, 1, 2}); |
| 290 | |
| 291 | AffineExpr nDim, cDim, ohDim, owDim, khDim, kwDim; |
| 292 | bindDims(ctx: rewriter.getContext(), exprs&: nDim, exprs&: cDim, exprs&: ohDim, exprs&: owDim, exprs&: khDim, exprs&: kwDim); |
| 293 | |
| 294 | AffineExpr shSym = rewriter.getAffineConstantExpr( |
| 295 | constant: convOp.getStrides().getValues<int64_t>()[0]); |
| 296 | AffineExpr swSym = rewriter.getAffineConstantExpr( |
| 297 | constant: convOp.getStrides().getValues<int64_t>()[1]); |
| 298 | |
| 299 | SmallVector<AffineExpr> inputExprs = {nDim, cDim, ohDim * shSym + khDim, |
| 300 | owDim * swSym + kwDim}; |
| 301 | |
| 302 | auto nloops = colTensorShape.size(); |
| 303 | |
| 304 | SmallVector<utils::IteratorType> loopAttributeTypes( |
| 305 | nloops, utils::IteratorType::parallel); |
| 306 | |
| 307 | SmallVector<AffineMap> indexingMaps = { |
| 308 | AffineMap::get(nloops, 0, inputExprs, rewriter.getContext()), |
| 309 | AffineMap::getMultiDimIdentityMap(numDims: nloops, context: rewriter.getContext())}; |
| 310 | |
| 311 | Value colTensor = rewriter.create<tensor::EmptyOp>( |
| 312 | loc, colTensorShape, inputType.getElementType()); |
| 313 | |
| 314 | auto img2ColTensor = rewriter.create<linalg::GenericOp>( |
| 315 | loc, colTensor.getType(), |
| 316 | /*inputs=*/inputT, /*outputs=*/colTensor, indexingMaps, |
| 317 | loopAttributeTypes, |
| 318 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 319 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]); |
| 320 | }); |
| 321 | |
| 322 | SmallVector<ReassociationIndices> img2ColTensorReassocIndices = { |
| 323 | {0, 1}, {2, 3}, {4, 5}}; |
| 324 | SmallVector<ReassociationIndices> filterReassociationIndice = {{0}, {1, 2}}; |
| 325 | SmallVector<ReassociationIndices> outputReassociationIndice = {{0, 1}, |
| 326 | {2, 3}}; |
| 327 | |
| 328 | auto reshapedImg2ColTensorType = RankedTensorType::get( |
| 329 | {n * c, oh * ow, fh * fw}, inputType.getElementType()); |
| 330 | auto reshapedFilterTensorType = |
| 331 | RankedTensorType::get({c, fh * fw}, filterType.getElementType()); |
| 332 | auto reshapedOutputTensorType = |
| 333 | RankedTensorType::get({n * c, oh * ow}, outputType.getElementType()); |
| 334 | |
| 335 | Value reshapedImg2ColTensor = rewriter.create<tensor::CollapseShapeOp>( |
| 336 | loc, reshapedImg2ColTensorType, img2ColTensor.getResult(0), |
| 337 | img2ColTensorReassocIndices); |
| 338 | Value reshapedFilterTensor = rewriter.create<tensor::CollapseShapeOp>( |
| 339 | loc, reshapedFilterTensorType, filterT, filterReassociationIndice); |
| 340 | Value reshapedoutputTensor = rewriter.create<tensor::CollapseShapeOp>( |
| 341 | loc, reshapedOutputTensorType, transposedOutputTensor, |
| 342 | outputReassociationIndice); |
| 343 | |
| 344 | auto batchMatVecResult = rewriter.create<linalg::BatchMatvecOp>( |
| 345 | loc, TypeRange{reshapedoutputTensor.getType()}, |
| 346 | ValueRange{reshapedImg2ColTensor, reshapedFilterTensor}, |
| 347 | ValueRange{reshapedoutputTensor}); |
| 348 | |
| 349 | SmallVector<ReassociationIndices> batchMatVecReassociationIndice = {{0, 1}, |
| 350 | {2, 3}}; |
| 351 | |
| 352 | auto batchMatVecResultReshaped = rewriter.create<tensor::ExpandShapeOp>( |
| 353 | loc, transposedOutputTensor.getType(), batchMatVecResult.getResult(0), |
| 354 | batchMatVecReassociationIndice); |
| 355 | |
| 356 | Value transposedResult = |
| 357 | transposeOperand(batchMatVecResultReshaped, {0, 2, 3, 1}); |
| 358 | |
| 359 | rewriter.replaceOp(convOp, ArrayRef<Value>{transposedResult}); |
| 360 | return std::make_pair(img2ColTensor.getOperation(), |
| 361 | transposedResult.getDefiningOp()); |
| 362 | } |
| 363 | |
| 364 | FailureOr<std::pair<Operation *, Operation *>> |
| 365 | rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNchwFchwOp convOp) { |
| 366 | auto inputType = cast<ShapedType>(convOp.getInputs()[0].getType()); |
| 367 | auto filterType = cast<ShapedType>(convOp.getInputs()[1].getType()); |
| 368 | auto outputType = cast<ShapedType>(convOp.getOutputs()[0].getType()); |
| 369 | |
| 370 | if (!filterType.hasStaticShape()) |
| 371 | return rewriter.notifyMatchFailure( |
| 372 | convOp, "expected a static shape for the filter" ); |
| 373 | |
| 374 | if (!inputType.hasStaticShape()) |
| 375 | return rewriter.notifyMatchFailure(convOp, |
| 376 | "expected a static shape for the input" ); |
| 377 | |
| 378 | // TODO: Support dilation. |
| 379 | if (!hasAllOneValues(convOp.getDilations())) |
| 380 | return rewriter.notifyMatchFailure(convOp, |
| 381 | "expected all ones for dilations" ); |
| 382 | |
| 383 | Value input = convOp.getInputs()[0]; |
| 384 | Value filter = convOp.getInputs()[1]; |
| 385 | Value output = convOp.getOutputs()[0]; |
| 386 | |
| 387 | auto filterShape = filterType.getShape(); |
| 388 | auto outputShape = outputType.getShape(); |
| 389 | |
| 390 | int64_t n = outputShape[0]; |
| 391 | int64_t oc = outputShape[1]; |
| 392 | int64_t oh = outputShape[2]; |
| 393 | int64_t ow = outputShape[3]; |
| 394 | int64_t ic = filterShape[1]; |
| 395 | int64_t fh = filterShape[2]; |
| 396 | int64_t fw = filterShape[3]; |
| 397 | |
| 398 | auto loc = convOp.getLoc(); |
| 399 | MLIRContext *context = rewriter.getContext(); |
| 400 | |
| 401 | SmallVector<ReassociationIndices> filterReassocIndices = {{0}, {1, 2, 3}}; |
| 402 | auto reshapedFilterType = |
| 403 | RankedTensorType::get({oc, ic * fh * fw}, inputType.getElementType()); |
| 404 | Value reshapedFilter = rewriter.create<tensor::CollapseShapeOp>( |
| 405 | loc, reshapedFilterType, filter, filterReassocIndices); |
| 406 | |
| 407 | SmallVector<ReassociationIndices> outputReassocIndices = {{0}, {1}, {2, 3}}; |
| 408 | auto reshapedOutputType = |
| 409 | RankedTensorType::get({n, oc, oh * ow}, outputType.getElementType()); |
| 410 | Value reshapedOutput = rewriter.create<tensor::CollapseShapeOp>( |
| 411 | loc, reshapedOutputType, output, outputReassocIndices); |
| 412 | |
| 413 | // Convert the input to a (BKN) tensor. |
| 414 | SmallVector<int64_t, 4> colTensorShape = {n, ic * fh * fw, oh * ow}; |
| 415 | Value colTensor = rewriter.create<tensor::EmptyOp>( |
| 416 | loc, colTensorShape, inputType.getElementType()); |
| 417 | |
| 418 | auto nloops = colTensorShape.size(); |
| 419 | |
| 420 | auto parallel = utils::IteratorType::parallel; |
| 421 | auto reduction = utils::IteratorType::reduction; |
| 422 | SmallVector<utils::IteratorType, 3> img2colIterators(nloops, parallel); |
| 423 | |
| 424 | SmallVector<AffineMap, 4> img2colIndexingMaps = { |
| 425 | AffineMap::getMultiDimIdentityMap(numDims: nloops, context)}; |
| 426 | |
| 427 | auto img2ColTensor = rewriter.create<linalg::GenericOp>( |
| 428 | loc, colTensor.getType(), |
| 429 | /*inputs=*/ValueRange{}, /*outputs=*/colTensor, img2colIndexingMaps, |
| 430 | img2colIterators, |
| 431 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 432 | // Get the iterators named based on the matmul (batch, m, k). |
| 433 | Value bIndex = nestedBuilder.create<linalg::IndexOp>(loc, 0); |
| 434 | Value kIndex = nestedBuilder.create<linalg::IndexOp>(loc, 1); |
| 435 | Value nIndex = nestedBuilder.create<linalg::IndexOp>(loc, 2); |
| 436 | |
| 437 | // Recover the original iteration indices from the problem/input sizes. |
| 438 | SmallVector<Value> kIndices = unrollIndex( |
| 439 | b&: nestedBuilder, loc: nestedLoc, index: kIndex, factors: ArrayRef<int64_t>{ic, fh, fw}); |
| 440 | auto icIndex = kIndices[0]; |
| 441 | auto fhIndex = kIndices[1]; |
| 442 | auto fwIndex = kIndices[2]; |
| 443 | |
| 444 | SmallVector<Value> nIndices = unrollIndex( |
| 445 | b&: nestedBuilder, loc: nestedLoc, index: nIndex, factors: ArrayRef<int64_t>{oh, ow}); |
| 446 | auto ohIndex = nIndices[0]; |
| 447 | auto owIndex = nIndices[1]; |
| 448 | |
| 449 | // Extract the input element corresponding to the expanded indices. |
| 450 | Value hIndex = |
| 451 | getConvolvedIndex(nestedBuilder, nestedLoc, ohIndex, fhIndex, |
| 452 | convOp.getStrides().getValues<int64_t>()[0]); |
| 453 | Value wIndex = |
| 454 | getConvolvedIndex(nestedBuilder, nestedLoc, owIndex, fwIndex, |
| 455 | convOp.getStrides().getValues<int64_t>()[1]); |
| 456 | |
| 457 | // im2col[n, ic*fh*fw, oh*ow] = input[n, ic, sh*oh + fh, sw*ow + fw] |
| 458 | SmallVector<Value> {bIndex, icIndex, hIndex, wIndex}; |
| 459 | Value inputVal = nestedBuilder.create<tensor::ExtractOp>( |
| 460 | loc, input, extractionIndices); |
| 461 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, inputVal); |
| 462 | }); |
| 463 | |
| 464 | // Because the filter does not share the same batch dimension, |
| 465 | // the batch dimension is only used in indexing the input and output. Thus |
| 466 | // we cannot use existing linalg named ops like linalg.batch_matmul. |
| 467 | // i.e. M x K * (B x) K x N = (B x) M x N |
| 468 | AffineExpr bDim, mDim, nDim, kDim; |
| 469 | bindDims(ctx: context, exprs&: bDim, exprs&: mDim, exprs&: nDim, exprs&: kDim); |
| 470 | auto lhsMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {mDim, kDim}, context); |
| 471 | auto rhsMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {bDim, kDim, nDim}, context); |
| 472 | auto resultMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {bDim, mDim, nDim}, context); |
| 473 | SmallVector<utils::IteratorType> genericIterators = {parallel, parallel, |
| 474 | parallel, reduction}; |
| 475 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 476 | loc, reshapedOutputType, |
| 477 | /*inputs=*/ValueRange{reshapedFilter, img2ColTensor.getResult(0)}, |
| 478 | /*outputs=*/ValueRange{reshapedOutput}, |
| 479 | ArrayRef<AffineMap>{lhsMap, rhsMap, resultMap}, genericIterators, |
| 480 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 481 | Value mul = |
| 482 | createMul(loc, args[0], args[1], args[2].getType(), nestedBuilder); |
| 483 | Value add = createAdd(loc, mul, args[2], nestedBuilder); |
| 484 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, add); |
| 485 | }); |
| 486 | Value result = genericOp.getResults().front(); |
| 487 | |
| 488 | auto reshapedResult = rewriter.create<tensor::ExpandShapeOp>( |
| 489 | loc, outputType, result, outputReassocIndices); |
| 490 | |
| 491 | rewriter.replaceOp(convOp, ArrayRef<Value>{reshapedResult}); |
| 492 | |
| 493 | return std::make_pair(img2ColTensor.getOperation(), |
| 494 | reshapedResult.getOperation()); |
| 495 | } |
| 496 | |
| 497 | FailureOr<std::pair<Operation *, Operation *>> |
| 498 | rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcFhwcOp convOp) { |
| 499 | auto inputType = cast<ShapedType>(convOp.getInputs()[0].getType()); |
| 500 | auto filterType = cast<ShapedType>(convOp.getInputs()[1].getType()); |
| 501 | auto outputType = cast<ShapedType>(convOp.getOutputs()[0].getType()); |
| 502 | |
| 503 | if (!filterType.hasStaticShape()) |
| 504 | return rewriter.notifyMatchFailure( |
| 505 | convOp, "expected a static shape for the filter" ); |
| 506 | |
| 507 | if (!inputType.hasStaticShape()) |
| 508 | return rewriter.notifyMatchFailure(convOp, |
| 509 | "expected a static shape for the input" ); |
| 510 | |
| 511 | // TODO: Support dilation. |
| 512 | if (!hasAllOneValues(convOp.getDilations())) |
| 513 | return rewriter.notifyMatchFailure(convOp, |
| 514 | "expected all ones for dilations" ); |
| 515 | |
| 516 | MLIRContext *context = rewriter.getContext(); |
| 517 | Value input = convOp.getInputs()[0]; |
| 518 | Value filter = convOp.getInputs()[1]; |
| 519 | Value output = convOp.getOutputs()[0]; |
| 520 | |
| 521 | ArrayRef<int64_t> filterShape = filterType.getShape(); |
| 522 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 523 | |
| 524 | int64_t n = outputShape[0]; |
| 525 | int64_t oh = outputShape[1]; |
| 526 | int64_t ow = outputShape[2]; |
| 527 | int64_t oc = outputShape[3]; |
| 528 | int64_t fh = filterShape[1]; |
| 529 | int64_t fw = filterShape[2]; |
| 530 | int64_t ic = filterShape[3]; |
| 531 | |
| 532 | Location loc = convOp.getLoc(); |
| 533 | |
| 534 | // Reshape output and filter to the LHS and result of a "row-wise" matrix |
| 535 | // multiplication. |
| 536 | SmallVector<ReassociationIndices> filterReassocIndices = {{0}, {1, 2, 3}}; |
| 537 | auto reshapedFilterType = |
| 538 | RankedTensorType::get({oc, fh * fw * ic}, filterType.getElementType()); |
| 539 | Value reshapedFilter = rewriter.create<tensor::CollapseShapeOp>( |
| 540 | loc, reshapedFilterType, filter, filterReassocIndices); |
| 541 | |
| 542 | SmallVector<ReassociationIndices> outputReassocIndices = {{0}, {1, 2}, {3}}; |
| 543 | RankedTensorType reshapedOutputType = |
| 544 | RankedTensorType::get({n, oh * ow, oc}, outputType.getElementType()); |
| 545 | Value reshapedOutput = rewriter.create<tensor::CollapseShapeOp>( |
| 546 | loc, reshapedOutputType, output, outputReassocIndices); |
| 547 | |
| 548 | SmallVector<int64_t> colTensorShape = {n, oh * ow, fh * fw * ic}; |
| 549 | Value colTensor = rewriter.create<tensor::EmptyOp>( |
| 550 | loc, colTensorShape, inputType.getElementType()); |
| 551 | |
| 552 | // Convert the input to a (BMK) column tensor. |
| 553 | auto nloops = colTensorShape.size(); |
| 554 | |
| 555 | auto parallel = utils::IteratorType::parallel; |
| 556 | auto reduction = utils::IteratorType::reduction; |
| 557 | SmallVector<utils::IteratorType> img2colIterators(nloops, parallel); |
| 558 | |
| 559 | SmallVector<AffineMap> img2colIndexingMaps = { |
| 560 | AffineMap::getMultiDimIdentityMap(numDims: nloops, context)}; |
| 561 | |
| 562 | auto img2ColTensor = rewriter.create<linalg::GenericOp>( |
| 563 | loc, colTensor.getType(), |
| 564 | /*inputs=*/ValueRange{}, /*outputs=*/colTensor, img2colIndexingMaps, |
| 565 | img2colIterators, |
| 566 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 567 | // Get the iterators named based on the matmul (batch, m, k). |
| 568 | Value bIndex = nestedBuilder.create<linalg::IndexOp>(loc, 0); |
| 569 | Value mIndex = nestedBuilder.create<linalg::IndexOp>(loc, 1); |
| 570 | Value kIndex = nestedBuilder.create<linalg::IndexOp>(loc, 2); |
| 571 | |
| 572 | // Recover the original iteration indices from the problem/input sizes. |
| 573 | SmallVector<Value> mIndices = unrollIndex( |
| 574 | b&: nestedBuilder, loc: nestedLoc, index: mIndex, factors: ArrayRef<int64_t>{oh, ow}); |
| 575 | auto ohIndex = mIndices[0]; |
| 576 | auto owIndex = mIndices[1]; |
| 577 | |
| 578 | SmallVector<Value> kIndices = unrollIndex( |
| 579 | b&: nestedBuilder, loc: nestedLoc, index: kIndex, factors: ArrayRef<int64_t>{fh, fw, ic}); |
| 580 | auto fhIndex = kIndices[0]; |
| 581 | auto fwIndex = kIndices[1]; |
| 582 | auto icIndex = kIndices[2]; |
| 583 | |
| 584 | // Extract the input element corresponding to the expanded indices. |
| 585 | Value hIndex = |
| 586 | getConvolvedIndex(nestedBuilder, nestedLoc, ohIndex, fhIndex, |
| 587 | convOp.getStrides().getValues<int64_t>()[0]); |
| 588 | Value wIndex = |
| 589 | getConvolvedIndex(nestedBuilder, nestedLoc, owIndex, fwIndex, |
| 590 | convOp.getStrides().getValues<int64_t>()[1]); |
| 591 | |
| 592 | // im2col[n, oh*ow, fh*fw*ic] = input[n, sh*oh + fh, sw*ow + fw, ic] |
| 593 | SmallVector<Value> {bIndex, hIndex, wIndex, icIndex}; |
| 594 | Value inputVal = nestedBuilder.create<tensor::ExtractOp>( |
| 595 | loc, input, extractionIndices); |
| 596 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, inputVal); |
| 597 | }); |
| 598 | |
| 599 | // Because we didn't transpose the filters we don't actually have a batched |
| 600 | // matrix multiply. Instead, we have an operation consisting of "row-wise" dot |
| 601 | // products. |
| 602 | AffineExpr bDim, mDim, nDim, kDim; |
| 603 | bindDims(ctx: context, exprs&: bDim, exprs&: mDim, exprs&: nDim, exprs&: kDim); |
| 604 | auto lhsMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {bDim, mDim, kDim}, context); |
| 605 | auto rhsMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {nDim, kDim}, context); |
| 606 | auto resultMap = AffineMap::get(dimCount: 4, symbolCount: 0, results: {bDim, mDim, nDim}, context); |
| 607 | SmallVector<utils::IteratorType> genericIterators = {parallel, parallel, |
| 608 | parallel, reduction}; |
| 609 | |
| 610 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 611 | loc, reshapedOutputType, |
| 612 | /*inputs=*/ValueRange{img2ColTensor.getResult(0), reshapedFilter}, |
| 613 | /*outputs=*/ValueRange{reshapedOutput}, |
| 614 | ArrayRef<AffineMap>{lhsMap, rhsMap, resultMap}, genericIterators, |
| 615 | [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { |
| 616 | Value mul = |
| 617 | createMul(loc, x: args[0], y: args[1], accType: args[2].getType(), builder&: nestedBuilder); |
| 618 | Value add = createAdd(loc, x: mul, y: args[2], builder&: nestedBuilder); |
| 619 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, add); |
| 620 | }); |
| 621 | Value result = genericOp.getResults().front(); |
| 622 | |
| 623 | auto reshapedResult = rewriter.create<tensor::ExpandShapeOp>( |
| 624 | loc, outputType, result, outputReassocIndices); |
| 625 | |
| 626 | rewriter.replaceOp(convOp, ArrayRef<Value>{reshapedResult}); |
| 627 | |
| 628 | return std::make_pair(img2ColTensor.getOperation(), |
| 629 | reshapedResult.getOperation()); |
| 630 | } |
| 631 | |
| 632 | namespace { |
| 633 | |
| 634 | class ConvertConv2DNhwcHwcf final |
| 635 | : public OpRewritePattern<linalg::Conv2DNhwcHwcfOp> { |
| 636 | public: |
| 637 | using OpRewritePattern::OpRewritePattern; |
| 638 | |
| 639 | LogicalResult matchAndRewrite(linalg::Conv2DNhwcHwcfOp convOp, |
| 640 | PatternRewriter &rewriter) const override { |
| 641 | if (failed(rewriteInIm2Col(rewriter, convOp))) |
| 642 | return failure(); |
| 643 | return success(); |
| 644 | } |
| 645 | }; |
| 646 | |
| 647 | class ConvertDepthwiseConv2DNhwcHwc final |
| 648 | : public OpRewritePattern<linalg::DepthwiseConv2DNhwcHwcOp> { |
| 649 | public: |
| 650 | using OpRewritePattern<linalg::DepthwiseConv2DNhwcHwcOp>::OpRewritePattern; |
| 651 | |
| 652 | LogicalResult matchAndRewrite(linalg::DepthwiseConv2DNhwcHwcOp convOp, |
| 653 | PatternRewriter &rewriter) const override { |
| 654 | if (failed(rewriteInIm2Col(rewriter, convOp))) |
| 655 | return failure(); |
| 656 | return success(); |
| 657 | } |
| 658 | }; |
| 659 | |
| 660 | class ConvertConv2DNchwFchw final |
| 661 | : public OpRewritePattern<linalg::Conv2DNchwFchwOp> { |
| 662 | public: |
| 663 | using OpRewritePattern::OpRewritePattern; |
| 664 | |
| 665 | LogicalResult matchAndRewrite(linalg::Conv2DNchwFchwOp convOp, |
| 666 | PatternRewriter &rewriter) const override { |
| 667 | if (failed(rewriteInIm2Col(rewriter, convOp))) |
| 668 | return failure(); |
| 669 | return success(); |
| 670 | } |
| 671 | }; |
| 672 | |
| 673 | class ConvertConv2DNhwcFhwc final |
| 674 | : public OpRewritePattern<linalg::Conv2DNhwcFhwcOp> { |
| 675 | public: |
| 676 | using OpRewritePattern::OpRewritePattern; |
| 677 | |
| 678 | LogicalResult matchAndRewrite(linalg::Conv2DNhwcFhwcOp convOp, |
| 679 | PatternRewriter &rewriter) const override { |
| 680 | if (failed(rewriteInIm2Col(rewriter, convOp))) |
| 681 | return failure(); |
| 682 | return success(); |
| 683 | } |
| 684 | }; |
| 685 | } // end anonymous namespace |
| 686 | |
| 687 | void populateConvertConv2DToImg2ColPatterns(RewritePatternSet &patterns) { |
| 688 | MLIRContext *context = patterns.getContext(); |
| 689 | patterns.insert<ConvertConv2DNhwcHwcf, ConvertDepthwiseConv2DNhwcHwc, |
| 690 | ConvertConv2DNchwFchw, ConvertConv2DNhwcFhwc>(arg&: context); |
| 691 | } |
| 692 | } // end namespace linalg |
| 693 | } // end namespace mlir |
| 694 | |