1 | //===- Detensorize.cpp - Linalg transformations as patterns ----------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Linalg/Passes.h" |
10 | |
11 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
12 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
13 | #include "mlir/Dialect/Func/Transforms/FuncConversions.h" |
14 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
15 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
16 | #include "mlir/IR/OpDefinition.h" |
17 | #include "mlir/Transforms/DialectConversion.h" |
18 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
19 | #include <iterator> |
20 | #include <memory> |
21 | #include <utility> |
22 | |
23 | namespace mlir { |
24 | #define GEN_PASS_DEF_LINALGDETENSORIZEPASS |
25 | #include "mlir/Dialect/Linalg/Passes.h.inc" |
26 | } // namespace mlir |
27 | |
28 | using namespace mlir; |
29 | using namespace mlir::linalg; |
30 | |
31 | static Value sourceMaterializationCallback(OpBuilder &builder, Type type, |
32 | ValueRange inputs, Location loc) { |
33 | assert(inputs.size() == 1); |
34 | auto inputType = inputs[0].getType(); |
35 | if (isa<TensorType>(inputType)) |
36 | return nullptr; |
37 | |
38 | // A detensored value is converted back by creating a new tensor from its |
39 | // element(s). |
40 | return builder.create<tensor::FromElementsOp>( |
41 | loc, RankedTensorType::get({}, inputType), inputs[0]); |
42 | } |
43 | |
44 | namespace { |
45 | /// Defines the criteria a TensorType must follow in order to be considered |
46 | /// "detensorable". |
47 | /// |
48 | /// NOTE: For now, only 0-D tensors are supported. |
49 | /// |
50 | /// Returns true if tensorType can be detensored. |
51 | bool canBeDetensored(TensorType tensorType) { |
52 | return tensorType.hasRank() && tensorType.getRank() == 0; |
53 | } |
54 | |
55 | bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) { |
56 | GenericOp genericOp = dyn_cast_or_null<GenericOp>(op); |
57 | return genericOp && |
58 | llvm::all_of(genericOp->getOpOperands(), [&](OpOperand &opOperand) { |
59 | return !typeConverter.isLegal(type: opOperand.get().getType()); |
60 | }); |
61 | } |
62 | |
63 | /// A conversion pattern for detensoring `linalg.generic` ops. |
64 | class DetensorizeGenericOp : public OpConversionPattern<GenericOp> { |
65 | public: |
66 | using OpConversionPattern::OpConversionPattern; |
67 | LogicalResult |
68 | matchAndRewrite(GenericOp op, OpAdaptor adaptor, |
69 | ConversionPatternRewriter &rewriter) const override { |
70 | Block *originalBlock = op->getBlock(); |
71 | |
72 | // Gather some information about the op before inlining its region. |
73 | Block *opEntryBlock = &*op.getRegion().begin(); |
74 | YieldOp yieldOp = dyn_cast<YieldOp>(op.getRegion().back().getTerminator()); |
75 | |
76 | // Split the op's region before the op. This way, we have a clear insertion |
77 | // point in which the op can be inlined. |
78 | Block *newBlock = rewriter.splitBlock(block: originalBlock, before: Block::iterator(op)); |
79 | rewriter.inlineRegionBefore(op.getRegion(), newBlock); |
80 | // Now that op's region is inlined, the operands of its YieldOp are mapped |
81 | // to the materialized target values. Therefore, we can replace the op's |
82 | // uses with those of its YielOp's operands. |
83 | rewriter.replaceOp(op, yieldOp->getOperands()); |
84 | |
85 | // No need for these intermediate blocks, merge them into 1. |
86 | rewriter.mergeBlocks(source: opEntryBlock, dest: originalBlock, argValues: adaptor.getOperands()); |
87 | rewriter.mergeBlocks(source: newBlock, dest: originalBlock, argValues: {}); |
88 | |
89 | rewriter.eraseOp(op: &*Block::iterator(yieldOp)); |
90 | |
91 | return success(); |
92 | } |
93 | }; |
94 | |
95 | /// A conversion pattern for detensoring internal (non-entry) blocks within a |
96 | /// function. |
97 | struct FunctionNonEntryBlockConversion |
98 | : public OpInterfaceConversionPattern<FunctionOpInterface> { |
99 | FunctionNonEntryBlockConversion(MLIRContext *ctx, TypeConverter &converter, |
100 | DenseSet<BlockArgument> blockArgsToDetensor) |
101 | : OpInterfaceConversionPattern(converter, ctx), |
102 | blockArgsToDetensor(std::move(blockArgsToDetensor)) {} |
103 | |
104 | LogicalResult |
105 | matchAndRewrite(FunctionOpInterface op, ArrayRef<Value> operands, |
106 | ConversionPatternRewriter &rewriter) const override { |
107 | rewriter.startOpModification(op: op); |
108 | Region ®ion = op.getFunctionBody(); |
109 | |
110 | for (Block &block : |
111 | llvm::make_early_inc_range(llvm::drop_begin(region, 1))) { |
112 | TypeConverter::SignatureConversion conversion( |
113 | /*numOrigInputs=*/block.getNumArguments()); |
114 | |
115 | for (BlockArgument blockArgument : block.getArguments()) { |
116 | int idx = blockArgument.getArgNumber(); |
117 | |
118 | if (blockArgsToDetensor.count(blockArgument)) |
119 | conversion.addInputs(idx, {getTypeConverter()->convertType( |
120 | block.getArgumentTypes()[idx])}); |
121 | else |
122 | conversion.addInputs(idx, {block.getArgumentTypes()[idx]}); |
123 | } |
124 | |
125 | rewriter.applySignatureConversion(&block, conversion, getTypeConverter()); |
126 | } |
127 | |
128 | rewriter.finalizeOpModification(op: op); |
129 | return success(); |
130 | } |
131 | |
132 | private: |
133 | const DenseSet<BlockArgument> blockArgsToDetensor; |
134 | }; |
135 | |
136 | class DetensorizeTypeConverter : public TypeConverter { |
137 | public: |
138 | DetensorizeTypeConverter() { |
139 | addConversion(callback: [](Type type) { return type; }); |
140 | |
141 | // A TensorType that can be detensored, is converted to the underlying |
142 | // element type. |
143 | addConversion(callback: [](TensorType tensorType) -> Type { |
144 | if (canBeDetensored(tensorType)) |
145 | return tensorType.getElementType(); |
146 | |
147 | return tensorType; |
148 | }); |
149 | |
150 | // A tensor value is detensoried by extracting its element(s). |
151 | addTargetMaterialization(callback: [](OpBuilder &builder, Type type, |
152 | ValueRange inputs, Location loc) -> Value { |
153 | return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{}); |
154 | }); |
155 | |
156 | addSourceMaterialization(callback&: sourceMaterializationCallback); |
157 | } |
158 | }; |
159 | |
160 | /// @see LinalgDetensorize in Linalg/Passes.td for more details. |
161 | struct LinalgDetensorize |
162 | : public impl::LinalgDetensorizePassBase<LinalgDetensorize> { |
163 | using impl::LinalgDetensorizePassBase< |
164 | LinalgDetensorize>::LinalgDetensorizePassBase; |
165 | LinalgDetensorize() = default; |
166 | |
167 | class CostModel { |
168 | public: |
169 | virtual ~CostModel() = default; |
170 | |
171 | /// A cost model algorithm computes the following outputs: |
172 | /// |
173 | /// - opsToDetensor: the list of linalg ops that should be |
174 | /// detensored. |
175 | /// |
176 | /// - blockArgsToDetensor: since the operands and results of detensored |
177 | /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come |
178 | /// from a BB argument and a linalg op's output can be passed to successor |
179 | /// BBs), we need to maintain the sub-set of arguments that should be |
180 | /// detensored (i.e. converted by typeConverter) for each affected BB. |
181 | /// |
182 | /// Example: |
183 | /// |
184 | /// For the following snippet: |
185 | /// ... |
186 | /// ^bb1(%6: tensor<i32>, %9: tensor<i32>): |
187 | /// %7 = tensor.empty() : tensor<i32> |
188 | /// %8 = linalg.generic #attrs |
189 | /// ins(%6, %6 : tensor<i32>, tensor<i32>) |
190 | /// outs(%7 : tensor<i32>) { |
191 | /// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): |
192 | /// %9 = arith.addi %arg0, %arg1 : i32 |
193 | /// linalg.yield %9 : i32 |
194 | /// } -> tensor<i32> |
195 | /// %10 = "some.op"(%9) |
196 | /// br ^bb2(%8 : tensor<i32>) |
197 | /// ... |
198 | /// |
199 | /// if the cost model decides that the linalg.generic op should be |
200 | /// detensored, then: |
201 | /// - opsToDetensor should be = {linalg.generic{add}}. |
202 | /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}. |
203 | virtual void compute(FunctionOpInterface func, |
204 | DetensorizeTypeConverter typeConverter, |
205 | DenseSet<Operation *> &opsToDetensor, |
206 | DenseSet<BlockArgument> &blockArgsToDetensor) = 0; |
207 | |
208 | /// From the blockArgsToDetensor set computed by a CostModel |
209 | /// implementation, this method computes the corresponding branch op |
210 | /// detensoring. The result is a map from a branch op to a subset of indices |
211 | /// of its operands. The indices specify which of the branch op's operands |
212 | /// should be detensored. |
213 | /// |
214 | /// For the previous example, this method would compute: {bb2 -> {0}}. |
215 | static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring( |
216 | const DenseSet<BlockArgument> &blockArgsToDetensor) { |
217 | DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; |
218 | |
219 | for (auto blockArgumentElem : blockArgsToDetensor) { |
220 | Block *block = blockArgumentElem.getOwner(); |
221 | |
222 | for (PredecessorIterator pred = block->pred_begin(); |
223 | pred != block->pred_end(); ++pred) { |
224 | BranchOpInterface terminator = |
225 | dyn_cast<BranchOpInterface>((*pred)->getTerminator()); |
226 | auto blockOperands = |
227 | terminator.getSuccessorOperands(pred.getSuccessorIndex()); |
228 | |
229 | if (blockOperands.empty() || |
230 | blockOperands.isOperandProduced(blockArgumentElem.getArgNumber())) |
231 | continue; |
232 | |
233 | detensorableBranchOps[terminator].insert( |
234 | blockOperands.getOperandIndex(blockArgumentElem.getArgNumber())); |
235 | } |
236 | } |
237 | |
238 | return detensorableBranchOps; |
239 | } |
240 | }; |
241 | |
242 | /// Detensorize linalg ops involved in control-flow within a function. |
243 | /// |
244 | /// This model starts from BranchOps and CondBranchOps within a function. For |
245 | /// each such branch, the model then walks the use-def chain for the branch's |
246 | /// condition backwards in order to understand where the condition's value |
247 | /// comes from. If the condition value is (indirectly) computed by a linalg op |
248 | /// that can be detensored, the model then continues walking the use-def chain |
249 | /// in order to understand where the linalg op's operands come from. This |
250 | /// leads to discovering a "detensoring component". A detensoring component is |
251 | /// the set of operations + block arguments that are involved in control-flow |
252 | /// AND can be detensored. |
253 | class ControlFlowDetectionModel : public CostModel { |
254 | public: |
255 | void compute(FunctionOpInterface func, |
256 | DetensorizeTypeConverter typeConverter, |
257 | DenseSet<Operation *> &opsToDetensor, |
258 | DenseSet<BlockArgument> &blockArgsToDetensor) override { |
259 | SmallVector<Value> workList; |
260 | |
261 | func->walk([&](cf::CondBranchOp condBr) { |
262 | llvm::append_range(workList, condBr.getOperands()); |
263 | }); |
264 | |
265 | func->walk([&](cf::BranchOp br) { |
266 | llvm::append_range(workList, br.getOperands()); |
267 | }); |
268 | |
269 | DenseSet<Value> visitedValues; |
270 | DenseSet<Operation *> visitedOps; |
271 | |
272 | // For a (to-be-detesored) value, check if it "escapes" the block by being |
273 | // passed to terminator. If it does, then workList is updated with the |
274 | // corresponding argument to the successor block. |
275 | auto updateWorkListWithSuccessorArguments = |
276 | [&](Value value, BranchOpInterface terminator) { |
277 | if (!terminator) |
278 | return; |
279 | |
280 | for (auto operandIdx : |
281 | llvm::seq<unsigned>(0, terminator->getOperands().size())) { |
282 | Value operand = terminator->getOperand(operandIdx); |
283 | |
284 | if (operand == value) { |
285 | auto succBlockArg = |
286 | terminator.getSuccessorBlockArgument(operandIdx); |
287 | |
288 | if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg)) |
289 | workList.push_back(*succBlockArg); |
290 | } |
291 | } |
292 | }; |
293 | |
294 | while (!workList.empty()) { |
295 | Value currentItem = workList.pop_back_val(); |
296 | |
297 | if (!visitedValues.insert(V: currentItem).second) |
298 | continue; |
299 | |
300 | // 1 - Look forward: |
301 | // 1.1 - If currentItem escapes to one or more successors, add |
302 | // the corresponding successor arguments to workList. |
303 | updateWorkListWithSuccessorArguments( |
304 | currentItem, dyn_cast<BranchOpInterface>( |
305 | currentItem.getParentBlock()->getTerminator())); |
306 | |
307 | // 1.2 - For each user of currentItem, add the defined values to |
308 | // workList. This way, the user ops can be inspected later if they are |
309 | // detensorable and if so, their operands will be added to workList to |
310 | // potentially discover other parts of the detensorable component. |
311 | for (auto *user : currentItem.getUsers()) |
312 | llvm::append_range(C&: workList, R: user->getResults()); |
313 | |
314 | // 2 - Look backward: |
315 | // 2.1 - The current item is defined by a block argument. If the owner |
316 | // block is a non-entry one, then: |
317 | // * Add the argument to blockArgsToDetensor. |
318 | // * Walk the use-def chain backwards to add each predecessor's |
319 | // terminator-operands corresponding to currentItem to workList. |
320 | if (auto currentItemBlockArgument = |
321 | dyn_cast<BlockArgument>(Val&: currentItem)) { |
322 | Block *ownerBlock = currentItemBlockArgument.getOwner(); |
323 | |
324 | // Function arguments are not detensored/converted. |
325 | if (&*ownerBlock->getParent()->begin() == ownerBlock) |
326 | continue; |
327 | |
328 | // This inner-block argument is involved in control-flow, it should be |
329 | // detensored. |
330 | blockArgsToDetensor.insert(V: currentItemBlockArgument); |
331 | |
332 | for (PredecessorIterator pred = ownerBlock->pred_begin(); |
333 | pred != ownerBlock->pred_end(); ++pred) { |
334 | BranchOpInterface predTerminator = |
335 | dyn_cast<BranchOpInterface>((*pred)->getTerminator()); |
336 | |
337 | // TODO: For now, we give up if any of the control-flow components |
338 | // in a function is not detensorable. Fix that. |
339 | if (!predTerminator) { |
340 | opsToDetensor.clear(); |
341 | blockArgsToDetensor.clear(); |
342 | return; |
343 | } |
344 | |
345 | auto ownerBlockOperands = |
346 | predTerminator.getSuccessorOperands(pred.getSuccessorIndex()); |
347 | |
348 | if (ownerBlockOperands.empty() || |
349 | ownerBlockOperands.isOperandProduced( |
350 | currentItemBlockArgument.getArgNumber())) |
351 | continue; |
352 | |
353 | // For each predecessor, add the value it passes to that argument to |
354 | // workList to find out how it's computed. |
355 | workList.push_back( |
356 | Elt: ownerBlockOperands[currentItemBlockArgument.getArgNumber()]); |
357 | } |
358 | |
359 | continue; |
360 | } |
361 | |
362 | Operation *currentItemDefiningOp = currentItem.getDefiningOp(); |
363 | |
364 | if (!visitedOps.insert(V: currentItemDefiningOp).second) |
365 | continue; |
366 | |
367 | // 2.2 - The current item is computed by a GenericOp. If the op should |
368 | // be detensored, then: |
369 | // * Add it to opsToDetensor. |
370 | // * Add its operands to workList to discover other parts of the |
371 | // potentially detensorable component. |
372 | if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) { |
373 | // The op was encountered already, no need to inspect it again. |
374 | if (opsToDetensor.count(V: genericOp)) |
375 | continue; |
376 | |
377 | // The op should not be detensored, give up on it but continue with |
378 | // discovering the rest of the control-flow component. |
379 | if (!shouldBeDetensored(genericOp, typeConverter)) { |
380 | continue; |
381 | } |
382 | |
383 | opsToDetensor.insert(genericOp); |
384 | llvm::append_range(workList, genericOp.getInputs()); |
385 | continue; |
386 | } |
387 | |
388 | // 2.3 - The current item is the result of a FromElementsOp, it will be |
389 | // trivially detensored later as part of canonicalization patterns |
390 | // applied at the end of detensoring. |
391 | // |
392 | // Note: No need to check whether the result type of this op is |
393 | // detensorable since if it wasn't we wouldn't reach that point in the |
394 | // work list. |
395 | if (isa<tensor::FromElementsOp>(currentItemDefiningOp)) |
396 | continue; |
397 | |
398 | // 2.4 - The current item is the result of a scalar op, add all its |
399 | // operands to the work list. |
400 | if (llvm::all_of( |
401 | Range: currentItemDefiningOp->getResultTypes(), |
402 | P: [&](Type resultType) { return resultType.isIntOrFloat(); })) |
403 | llvm::append_range(C&: workList, R: currentItemDefiningOp->getOperands()); |
404 | } |
405 | |
406 | // Since the cost model gives up on some ops (see the details of step 2.2 |
407 | // above), block arguments that correspond to the values produced by those |
408 | // ops should not be detensored as well. |
409 | |
410 | DenseSet<BlockArgument> blockArgsToRemove; |
411 | |
412 | for (auto &blockArg : blockArgsToDetensor) { |
413 | Block *block = blockArg.getParentBlock(); |
414 | |
415 | // For the potentially detensorable block argument, find the |
416 | // corresponding operands in predecessor blocks. |
417 | for (PredecessorIterator pred = block->pred_begin(); |
418 | pred != block->pred_end(); ++pred) { |
419 | BranchOpInterface terminator = |
420 | dyn_cast<BranchOpInterface>((*pred)->getTerminator()); |
421 | auto blockOperands = |
422 | terminator.getSuccessorOperands(pred.getSuccessorIndex()); |
423 | |
424 | if (blockOperands.empty() || |
425 | blockOperands.isOperandProduced(blockArg.getArgNumber())) |
426 | continue; |
427 | |
428 | Operation *definingOp = |
429 | blockOperands[blockArg.getArgNumber()].getDefiningOp(); |
430 | |
431 | // If the operand is defined by a GenericOp that will not be |
432 | // detensored, then do not detensor the corresponding block argument. |
433 | if (isa_and_nonnull<GenericOp>(Val: definingOp) && |
434 | opsToDetensor.count(V: definingOp) == 0) { |
435 | blockArgsToRemove.insert(V: blockArg); |
436 | break; |
437 | } |
438 | } |
439 | } |
440 | |
441 | for (auto &blockArg : blockArgsToRemove) { |
442 | blockArgsToDetensor.erase(V: blockArg); |
443 | } |
444 | } |
445 | }; |
446 | |
447 | /// Detensorize everything that can detensored. |
448 | class AggressiveDetensoringModel : public CostModel { |
449 | public: |
450 | void compute(FunctionOpInterface func, |
451 | DetensorizeTypeConverter typeConverter, |
452 | DenseSet<Operation *> &opsToDetensor, |
453 | DenseSet<BlockArgument> &blockArgsToDetensor) override { |
454 | func->walk([&](GenericOp genericOp) { |
455 | if (shouldBeDetensored(genericOp, typeConverter)) |
456 | opsToDetensor.insert(genericOp); |
457 | }); |
458 | |
459 | for (Block &block : llvm::drop_begin(func.getFunctionBody(), 1)) |
460 | blockArgsToDetensor.insert_range(block.getArguments()); |
461 | } |
462 | }; |
463 | |
464 | void runOnOperation() override { |
465 | MLIRContext *context = &getContext(); |
466 | DetensorizeTypeConverter typeConverter; |
467 | RewritePatternSet patterns(context); |
468 | ConversionTarget target(*context); |
469 | DenseSet<Operation *> opsToDetensor; |
470 | DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; |
471 | DenseSet<BlockArgument> blockArgsToDetensor; |
472 | FunctionOpInterface funcOp = getOperation(); |
473 | |
474 | if (funcOp.getFunctionBody().empty()) |
475 | return; |
476 | |
477 | // Make sure the entry block of the function doesn't contain any Linalg ops. |
478 | // Otherwise, it may lead to the signature of the block being changed by the |
479 | // dialect conversion below, which would make the function op invalid |
480 | // because its type shouldn't change. |
481 | IRRewriter rewriter(funcOp->getContext()); |
482 | Block *entryBlock = &funcOp.getFunctionBody().front(); |
483 | Block *postEntryBlock = |
484 | rewriter.splitBlock(block: entryBlock, before: entryBlock->begin()); |
485 | rewriter.setInsertionPointToStart(entryBlock); |
486 | auto branch = |
487 | rewriter.create<cf::BranchOp>(rewriter.getUnknownLoc(), postEntryBlock); |
488 | |
489 | if (aggressiveMode.getValue()) { |
490 | AggressiveDetensoringModel costModel; |
491 | costModel.compute(func: funcOp, typeConverter, opsToDetensor, |
492 | blockArgsToDetensor); |
493 | } else { |
494 | ControlFlowDetectionModel costModel; |
495 | costModel.compute(func: funcOp, typeConverter, opsToDetensor, |
496 | blockArgsToDetensor); |
497 | } |
498 | |
499 | detensorableBranchOps = |
500 | CostModel::computeBranchOpDetensoring(blockArgsToDetensor); |
501 | |
502 | target.addDynamicallyLegalOp<GenericOp>( |
503 | callback: [&](GenericOp op) { return !opsToDetensor.count(op); }); |
504 | |
505 | target.markUnknownOpDynamicallyLegal([&](Operation *op) { |
506 | // A function is legal if all of its non-entry blocks are legal. We |
507 | // don't legalize the entry block (i.e. the function's signature) |
508 | // since detensoring can't happen along external calling convention |
509 | // boundaries, which we conservatively approximate as all function |
510 | // signatures. |
511 | if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { |
512 | Region &body = funcOp.getFunctionBody(); |
513 | return llvm::all_of(llvm::drop_begin(body, 1), [&](Block &block) { |
514 | return !llvm::any_of( |
515 | blockArgsToDetensor, [&](BlockArgument blockArgument) { |
516 | return blockArgument.getOwner() == &block && |
517 | !typeConverter.isLegal(blockArgument.getType()); |
518 | }); |
519 | }); |
520 | } |
521 | |
522 | if (isNotBranchOpInterfaceOrReturnLikeOp(op) || |
523 | isLegalForReturnOpTypeConversionPattern(op, typeConverter, |
524 | /*returnOpAlwaysLegal*/ true)) |
525 | return true; |
526 | |
527 | if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { |
528 | if (!detensorableBranchOps.count(branchOp)) |
529 | return true; |
530 | |
531 | for (auto operandIdx : detensorableBranchOps[branchOp]) |
532 | if (!typeConverter.isLegal( |
533 | branchOp->getOperand(operandIdx).getType())) |
534 | return false; |
535 | |
536 | return true; |
537 | } |
538 | |
539 | return false; |
540 | }); |
541 | |
542 | patterns.add<DetensorizeGenericOp>(arg&: typeConverter, args&: context); |
543 | patterns.add<FunctionNonEntryBlockConversion>(arg&: context, args&: typeConverter, |
544 | args&: blockArgsToDetensor); |
545 | // Since non-entry block arguments get detensorized, we also need to |
546 | // update the control flow inside the function to reflect the correct |
547 | // types. |
548 | auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp, |
549 | int operandIdx) -> bool { |
550 | return detensorableBranchOps.count(Val: branchOp) && |
551 | detensorableBranchOps[branchOp].count(operandIdx); |
552 | }; |
553 | |
554 | populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter, |
555 | shouldConvertBranchOperand); |
556 | |
557 | if (failed( |
558 | applyFullConversion(getOperation(), target, std::move(patterns)))) |
559 | signalPassFailure(); |
560 | |
561 | RewritePatternSet canonPatterns(context); |
562 | tensor::FromElementsOp::getCanonicalizationPatterns(canonPatterns, context); |
563 | if (failed(applyPatternsGreedily(getOperation(), std::move(canonPatterns)))) |
564 | signalPassFailure(); |
565 | |
566 | // Get rid of the dummy entry block we created in the beginning to work |
567 | // around dialect conversion signature rewriting. |
568 | rewriter.eraseOp(op: branch); |
569 | rewriter.mergeBlocks(source: postEntryBlock, dest: entryBlock); |
570 | } |
571 | }; |
572 | } // namespace |
573 |
Definitions
- sourceMaterializationCallback
- canBeDetensored
- shouldBeDetensored
- DetensorizeGenericOp
- matchAndRewrite
- FunctionNonEntryBlockConversion
- FunctionNonEntryBlockConversion
- matchAndRewrite
- DetensorizeTypeConverter
- DetensorizeTypeConverter
- LinalgDetensorize
- LinalgDetensorize
- CostModel
- ~CostModel
- computeBranchOpDetensoring
- ControlFlowDetectionModel
- compute
- AggressiveDetensoringModel
- compute
Learn to use CMake with our Intro Training
Find out more