| 1 | //===- Detensorize.cpp - Linalg transformations as patterns ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Linalg/Passes.h" |
| 10 | |
| 11 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
| 12 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 13 | #include "mlir/Dialect/Func/Transforms/FuncConversions.h" |
| 14 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 15 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 16 | #include "mlir/IR/OpDefinition.h" |
| 17 | #include "mlir/Transforms/DialectConversion.h" |
| 18 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 19 | #include <iterator> |
| 20 | #include <memory> |
| 21 | #include <utility> |
| 22 | |
| 23 | namespace mlir { |
| 24 | #define GEN_PASS_DEF_LINALGDETENSORIZEPASS |
| 25 | #include "mlir/Dialect/Linalg/Passes.h.inc" |
| 26 | } // namespace mlir |
| 27 | |
| 28 | using namespace mlir; |
| 29 | using namespace mlir::linalg; |
| 30 | |
| 31 | static Value sourceMaterializationCallback(OpBuilder &builder, Type type, |
| 32 | ValueRange inputs, Location loc) { |
| 33 | assert(inputs.size() == 1); |
| 34 | auto inputType = inputs[0].getType(); |
| 35 | if (isa<TensorType>(inputType)) |
| 36 | return nullptr; |
| 37 | |
| 38 | // A detensored value is converted back by creating a new tensor from its |
| 39 | // element(s). |
| 40 | return builder.create<tensor::FromElementsOp>( |
| 41 | loc, RankedTensorType::get({}, inputType), inputs[0]); |
| 42 | } |
| 43 | |
| 44 | namespace { |
| 45 | /// Defines the criteria a TensorType must follow in order to be considered |
| 46 | /// "detensorable". |
| 47 | /// |
| 48 | /// NOTE: For now, only 0-D tensors are supported. |
| 49 | /// |
| 50 | /// Returns true if tensorType can be detensored. |
| 51 | bool canBeDetensored(TensorType tensorType) { |
| 52 | return tensorType.hasRank() && tensorType.getRank() == 0; |
| 53 | } |
| 54 | |
| 55 | bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) { |
| 56 | GenericOp genericOp = dyn_cast_or_null<GenericOp>(op); |
| 57 | return genericOp && |
| 58 | llvm::all_of(genericOp->getOpOperands(), [&](OpOperand &opOperand) { |
| 59 | return !typeConverter.isLegal(type: opOperand.get().getType()); |
| 60 | }); |
| 61 | } |
| 62 | |
| 63 | /// A conversion pattern for detensoring `linalg.generic` ops. |
| 64 | class DetensorizeGenericOp : public OpConversionPattern<GenericOp> { |
| 65 | public: |
| 66 | using OpConversionPattern::OpConversionPattern; |
| 67 | LogicalResult |
| 68 | matchAndRewrite(GenericOp op, OpAdaptor adaptor, |
| 69 | ConversionPatternRewriter &rewriter) const override { |
| 70 | Block *originalBlock = op->getBlock(); |
| 71 | |
| 72 | // Gather some information about the op before inlining its region. |
| 73 | Block *opEntryBlock = &*op.getRegion().begin(); |
| 74 | YieldOp yieldOp = dyn_cast<YieldOp>(op.getRegion().back().getTerminator()); |
| 75 | |
| 76 | // Split the op's region before the op. This way, we have a clear insertion |
| 77 | // point in which the op can be inlined. |
| 78 | Block *newBlock = rewriter.splitBlock(block: originalBlock, before: Block::iterator(op)); |
| 79 | rewriter.inlineRegionBefore(op.getRegion(), newBlock); |
| 80 | // Now that op's region is inlined, the operands of its YieldOp are mapped |
| 81 | // to the materialized target values. Therefore, we can replace the op's |
| 82 | // uses with those of its YielOp's operands. |
| 83 | rewriter.replaceOp(op, yieldOp->getOperands()); |
| 84 | |
| 85 | // No need for these intermediate blocks, merge them into 1. |
| 86 | rewriter.mergeBlocks(source: opEntryBlock, dest: originalBlock, argValues: adaptor.getOperands()); |
| 87 | rewriter.mergeBlocks(source: newBlock, dest: originalBlock, argValues: {}); |
| 88 | |
| 89 | rewriter.eraseOp(op: &*Block::iterator(yieldOp)); |
| 90 | |
| 91 | return success(); |
| 92 | } |
| 93 | }; |
| 94 | |
| 95 | /// A conversion pattern for detensoring internal (non-entry) blocks within a |
| 96 | /// function. |
| 97 | struct FunctionNonEntryBlockConversion |
| 98 | : public OpInterfaceConversionPattern<FunctionOpInterface> { |
| 99 | FunctionNonEntryBlockConversion(MLIRContext *ctx, TypeConverter &converter, |
| 100 | DenseSet<BlockArgument> blockArgsToDetensor) |
| 101 | : OpInterfaceConversionPattern(converter, ctx), |
| 102 | blockArgsToDetensor(std::move(blockArgsToDetensor)) {} |
| 103 | |
| 104 | LogicalResult |
| 105 | matchAndRewrite(FunctionOpInterface op, ArrayRef<Value> operands, |
| 106 | ConversionPatternRewriter &rewriter) const override { |
| 107 | rewriter.startOpModification(op: op); |
| 108 | Region ®ion = op.getFunctionBody(); |
| 109 | |
| 110 | for (Block &block : |
| 111 | llvm::make_early_inc_range(llvm::drop_begin(region, 1))) { |
| 112 | TypeConverter::SignatureConversion conversion( |
| 113 | /*numOrigInputs=*/block.getNumArguments()); |
| 114 | |
| 115 | for (BlockArgument blockArgument : block.getArguments()) { |
| 116 | int idx = blockArgument.getArgNumber(); |
| 117 | |
| 118 | if (blockArgsToDetensor.count(blockArgument)) |
| 119 | conversion.addInputs(idx, {getTypeConverter()->convertType( |
| 120 | block.getArgumentTypes()[idx])}); |
| 121 | else |
| 122 | conversion.addInputs(idx, {block.getArgumentTypes()[idx]}); |
| 123 | } |
| 124 | |
| 125 | rewriter.applySignatureConversion(&block, conversion, getTypeConverter()); |
| 126 | } |
| 127 | |
| 128 | rewriter.finalizeOpModification(op: op); |
| 129 | return success(); |
| 130 | } |
| 131 | |
| 132 | private: |
| 133 | const DenseSet<BlockArgument> blockArgsToDetensor; |
| 134 | }; |
| 135 | |
| 136 | class DetensorizeTypeConverter : public TypeConverter { |
| 137 | public: |
| 138 | DetensorizeTypeConverter() { |
| 139 | addConversion(callback: [](Type type) { return type; }); |
| 140 | |
| 141 | // A TensorType that can be detensored, is converted to the underlying |
| 142 | // element type. |
| 143 | addConversion(callback: [](TensorType tensorType) -> Type { |
| 144 | if (canBeDetensored(tensorType)) |
| 145 | return tensorType.getElementType(); |
| 146 | |
| 147 | return tensorType; |
| 148 | }); |
| 149 | |
| 150 | // A tensor value is detensoried by extracting its element(s). |
| 151 | addTargetMaterialization(callback: [](OpBuilder &builder, Type type, |
| 152 | ValueRange inputs, Location loc) -> Value { |
| 153 | return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{}); |
| 154 | }); |
| 155 | |
| 156 | addSourceMaterialization(callback&: sourceMaterializationCallback); |
| 157 | } |
| 158 | }; |
| 159 | |
| 160 | /// @see LinalgDetensorize in Linalg/Passes.td for more details. |
| 161 | struct LinalgDetensorize |
| 162 | : public impl::LinalgDetensorizePassBase<LinalgDetensorize> { |
| 163 | using impl::LinalgDetensorizePassBase< |
| 164 | LinalgDetensorize>::LinalgDetensorizePassBase; |
| 165 | LinalgDetensorize() = default; |
| 166 | |
| 167 | class CostModel { |
| 168 | public: |
| 169 | virtual ~CostModel() = default; |
| 170 | |
| 171 | /// A cost model algorithm computes the following outputs: |
| 172 | /// |
| 173 | /// - opsToDetensor: the list of linalg ops that should be |
| 174 | /// detensored. |
| 175 | /// |
| 176 | /// - blockArgsToDetensor: since the operands and results of detensored |
| 177 | /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come |
| 178 | /// from a BB argument and a linalg op's output can be passed to successor |
| 179 | /// BBs), we need to maintain the sub-set of arguments that should be |
| 180 | /// detensored (i.e. converted by typeConverter) for each affected BB. |
| 181 | /// |
| 182 | /// Example: |
| 183 | /// |
| 184 | /// For the following snippet: |
| 185 | /// ... |
| 186 | /// ^bb1(%6: tensor<i32>, %9: tensor<i32>): |
| 187 | /// %7 = tensor.empty() : tensor<i32> |
| 188 | /// %8 = linalg.generic #attrs |
| 189 | /// ins(%6, %6 : tensor<i32>, tensor<i32>) |
| 190 | /// outs(%7 : tensor<i32>) { |
| 191 | /// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): |
| 192 | /// %9 = arith.addi %arg0, %arg1 : i32 |
| 193 | /// linalg.yield %9 : i32 |
| 194 | /// } -> tensor<i32> |
| 195 | /// %10 = "some.op"(%9) |
| 196 | /// br ^bb2(%8 : tensor<i32>) |
| 197 | /// ... |
| 198 | /// |
| 199 | /// if the cost model decides that the linalg.generic op should be |
| 200 | /// detensored, then: |
| 201 | /// - opsToDetensor should be = {linalg.generic{add}}. |
| 202 | /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}. |
| 203 | virtual void compute(FunctionOpInterface func, |
| 204 | DetensorizeTypeConverter typeConverter, |
| 205 | DenseSet<Operation *> &opsToDetensor, |
| 206 | DenseSet<BlockArgument> &blockArgsToDetensor) = 0; |
| 207 | |
| 208 | /// From the blockArgsToDetensor set computed by a CostModel |
| 209 | /// implementation, this method computes the corresponding branch op |
| 210 | /// detensoring. The result is a map from a branch op to a subset of indices |
| 211 | /// of its operands. The indices specify which of the branch op's operands |
| 212 | /// should be detensored. |
| 213 | /// |
| 214 | /// For the previous example, this method would compute: {bb2 -> {0}}. |
| 215 | static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring( |
| 216 | const DenseSet<BlockArgument> &blockArgsToDetensor) { |
| 217 | DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; |
| 218 | |
| 219 | for (auto blockArgumentElem : blockArgsToDetensor) { |
| 220 | Block *block = blockArgumentElem.getOwner(); |
| 221 | |
| 222 | for (PredecessorIterator pred = block->pred_begin(); |
| 223 | pred != block->pred_end(); ++pred) { |
| 224 | BranchOpInterface terminator = |
| 225 | dyn_cast<BranchOpInterface>((*pred)->getTerminator()); |
| 226 | auto blockOperands = |
| 227 | terminator.getSuccessorOperands(pred.getSuccessorIndex()); |
| 228 | |
| 229 | if (blockOperands.empty() || |
| 230 | blockOperands.isOperandProduced(blockArgumentElem.getArgNumber())) |
| 231 | continue; |
| 232 | |
| 233 | detensorableBranchOps[terminator].insert( |
| 234 | blockOperands.getOperandIndex(blockArgumentElem.getArgNumber())); |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | return detensorableBranchOps; |
| 239 | } |
| 240 | }; |
| 241 | |
| 242 | /// Detensorize linalg ops involved in control-flow within a function. |
| 243 | /// |
| 244 | /// This model starts from BranchOps and CondBranchOps within a function. For |
| 245 | /// each such branch, the model then walks the use-def chain for the branch's |
| 246 | /// condition backwards in order to understand where the condition's value |
| 247 | /// comes from. If the condition value is (indirectly) computed by a linalg op |
| 248 | /// that can be detensored, the model then continues walking the use-def chain |
| 249 | /// in order to understand where the linalg op's operands come from. This |
| 250 | /// leads to discovering a "detensoring component". A detensoring component is |
| 251 | /// the set of operations + block arguments that are involved in control-flow |
| 252 | /// AND can be detensored. |
| 253 | class ControlFlowDetectionModel : public CostModel { |
| 254 | public: |
| 255 | void compute(FunctionOpInterface func, |
| 256 | DetensorizeTypeConverter typeConverter, |
| 257 | DenseSet<Operation *> &opsToDetensor, |
| 258 | DenseSet<BlockArgument> &blockArgsToDetensor) override { |
| 259 | SmallVector<Value> workList; |
| 260 | |
| 261 | func->walk([&](cf::CondBranchOp condBr) { |
| 262 | llvm::append_range(workList, condBr.getOperands()); |
| 263 | }); |
| 264 | |
| 265 | func->walk([&](cf::BranchOp br) { |
| 266 | llvm::append_range(workList, br.getOperands()); |
| 267 | }); |
| 268 | |
| 269 | DenseSet<Value> visitedValues; |
| 270 | DenseSet<Operation *> visitedOps; |
| 271 | |
| 272 | // For a (to-be-detesored) value, check if it "escapes" the block by being |
| 273 | // passed to terminator. If it does, then workList is updated with the |
| 274 | // corresponding argument to the successor block. |
| 275 | auto updateWorkListWithSuccessorArguments = |
| 276 | [&](Value value, BranchOpInterface terminator) { |
| 277 | if (!terminator) |
| 278 | return; |
| 279 | |
| 280 | for (auto operandIdx : |
| 281 | llvm::seq<unsigned>(0, terminator->getOperands().size())) { |
| 282 | Value operand = terminator->getOperand(operandIdx); |
| 283 | |
| 284 | if (operand == value) { |
| 285 | auto succBlockArg = |
| 286 | terminator.getSuccessorBlockArgument(operandIdx); |
| 287 | |
| 288 | if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg)) |
| 289 | workList.push_back(*succBlockArg); |
| 290 | } |
| 291 | } |
| 292 | }; |
| 293 | |
| 294 | while (!workList.empty()) { |
| 295 | Value currentItem = workList.pop_back_val(); |
| 296 | |
| 297 | if (!visitedValues.insert(V: currentItem).second) |
| 298 | continue; |
| 299 | |
| 300 | // 1 - Look forward: |
| 301 | // 1.1 - If currentItem escapes to one or more successors, add |
| 302 | // the corresponding successor arguments to workList. |
| 303 | updateWorkListWithSuccessorArguments( |
| 304 | currentItem, dyn_cast<BranchOpInterface>( |
| 305 | currentItem.getParentBlock()->getTerminator())); |
| 306 | |
| 307 | // 1.2 - For each user of currentItem, add the defined values to |
| 308 | // workList. This way, the user ops can be inspected later if they are |
| 309 | // detensorable and if so, their operands will be added to workList to |
| 310 | // potentially discover other parts of the detensorable component. |
| 311 | for (auto *user : currentItem.getUsers()) |
| 312 | llvm::append_range(C&: workList, R: user->getResults()); |
| 313 | |
| 314 | // 2 - Look backward: |
| 315 | // 2.1 - The current item is defined by a block argument. If the owner |
| 316 | // block is a non-entry one, then: |
| 317 | // * Add the argument to blockArgsToDetensor. |
| 318 | // * Walk the use-def chain backwards to add each predecessor's |
| 319 | // terminator-operands corresponding to currentItem to workList. |
| 320 | if (auto currentItemBlockArgument = |
| 321 | dyn_cast<BlockArgument>(Val&: currentItem)) { |
| 322 | Block *ownerBlock = currentItemBlockArgument.getOwner(); |
| 323 | |
| 324 | // Function arguments are not detensored/converted. |
| 325 | if (&*ownerBlock->getParent()->begin() == ownerBlock) |
| 326 | continue; |
| 327 | |
| 328 | // This inner-block argument is involved in control-flow, it should be |
| 329 | // detensored. |
| 330 | blockArgsToDetensor.insert(V: currentItemBlockArgument); |
| 331 | |
| 332 | for (PredecessorIterator pred = ownerBlock->pred_begin(); |
| 333 | pred != ownerBlock->pred_end(); ++pred) { |
| 334 | BranchOpInterface predTerminator = |
| 335 | dyn_cast<BranchOpInterface>((*pred)->getTerminator()); |
| 336 | |
| 337 | // TODO: For now, we give up if any of the control-flow components |
| 338 | // in a function is not detensorable. Fix that. |
| 339 | if (!predTerminator) { |
| 340 | opsToDetensor.clear(); |
| 341 | blockArgsToDetensor.clear(); |
| 342 | return; |
| 343 | } |
| 344 | |
| 345 | auto ownerBlockOperands = |
| 346 | predTerminator.getSuccessorOperands(pred.getSuccessorIndex()); |
| 347 | |
| 348 | if (ownerBlockOperands.empty() || |
| 349 | ownerBlockOperands.isOperandProduced( |
| 350 | currentItemBlockArgument.getArgNumber())) |
| 351 | continue; |
| 352 | |
| 353 | // For each predecessor, add the value it passes to that argument to |
| 354 | // workList to find out how it's computed. |
| 355 | workList.push_back( |
| 356 | Elt: ownerBlockOperands[currentItemBlockArgument.getArgNumber()]); |
| 357 | } |
| 358 | |
| 359 | continue; |
| 360 | } |
| 361 | |
| 362 | Operation *currentItemDefiningOp = currentItem.getDefiningOp(); |
| 363 | |
| 364 | if (!visitedOps.insert(V: currentItemDefiningOp).second) |
| 365 | continue; |
| 366 | |
| 367 | // 2.2 - The current item is computed by a GenericOp. If the op should |
| 368 | // be detensored, then: |
| 369 | // * Add it to opsToDetensor. |
| 370 | // * Add its operands to workList to discover other parts of the |
| 371 | // potentially detensorable component. |
| 372 | if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) { |
| 373 | // The op was encountered already, no need to inspect it again. |
| 374 | if (opsToDetensor.count(V: genericOp)) |
| 375 | continue; |
| 376 | |
| 377 | // The op should not be detensored, give up on it but continue with |
| 378 | // discovering the rest of the control-flow component. |
| 379 | if (!shouldBeDetensored(genericOp, typeConverter)) { |
| 380 | continue; |
| 381 | } |
| 382 | |
| 383 | opsToDetensor.insert(genericOp); |
| 384 | llvm::append_range(workList, genericOp.getInputs()); |
| 385 | continue; |
| 386 | } |
| 387 | |
| 388 | // 2.3 - The current item is the result of a FromElementsOp, it will be |
| 389 | // trivially detensored later as part of canonicalization patterns |
| 390 | // applied at the end of detensoring. |
| 391 | // |
| 392 | // Note: No need to check whether the result type of this op is |
| 393 | // detensorable since if it wasn't we wouldn't reach that point in the |
| 394 | // work list. |
| 395 | if (isa<tensor::FromElementsOp>(currentItemDefiningOp)) |
| 396 | continue; |
| 397 | |
| 398 | // 2.4 - The current item is the result of a scalar op, add all its |
| 399 | // operands to the work list. |
| 400 | if (llvm::all_of( |
| 401 | Range: currentItemDefiningOp->getResultTypes(), |
| 402 | P: [&](Type resultType) { return resultType.isIntOrFloat(); })) |
| 403 | llvm::append_range(C&: workList, R: currentItemDefiningOp->getOperands()); |
| 404 | } |
| 405 | |
| 406 | // Since the cost model gives up on some ops (see the details of step 2.2 |
| 407 | // above), block arguments that correspond to the values produced by those |
| 408 | // ops should not be detensored as well. |
| 409 | |
| 410 | DenseSet<BlockArgument> blockArgsToRemove; |
| 411 | |
| 412 | for (auto &blockArg : blockArgsToDetensor) { |
| 413 | Block *block = blockArg.getParentBlock(); |
| 414 | |
| 415 | // For the potentially detensorable block argument, find the |
| 416 | // corresponding operands in predecessor blocks. |
| 417 | for (PredecessorIterator pred = block->pred_begin(); |
| 418 | pred != block->pred_end(); ++pred) { |
| 419 | BranchOpInterface terminator = |
| 420 | dyn_cast<BranchOpInterface>((*pred)->getTerminator()); |
| 421 | auto blockOperands = |
| 422 | terminator.getSuccessorOperands(pred.getSuccessorIndex()); |
| 423 | |
| 424 | if (blockOperands.empty() || |
| 425 | blockOperands.isOperandProduced(blockArg.getArgNumber())) |
| 426 | continue; |
| 427 | |
| 428 | Operation *definingOp = |
| 429 | blockOperands[blockArg.getArgNumber()].getDefiningOp(); |
| 430 | |
| 431 | // If the operand is defined by a GenericOp that will not be |
| 432 | // detensored, then do not detensor the corresponding block argument. |
| 433 | if (isa_and_nonnull<GenericOp>(Val: definingOp) && |
| 434 | opsToDetensor.count(V: definingOp) == 0) { |
| 435 | blockArgsToRemove.insert(V: blockArg); |
| 436 | break; |
| 437 | } |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | for (auto &blockArg : blockArgsToRemove) { |
| 442 | blockArgsToDetensor.erase(V: blockArg); |
| 443 | } |
| 444 | } |
| 445 | }; |
| 446 | |
| 447 | /// Detensorize everything that can detensored. |
| 448 | class AggressiveDetensoringModel : public CostModel { |
| 449 | public: |
| 450 | void compute(FunctionOpInterface func, |
| 451 | DetensorizeTypeConverter typeConverter, |
| 452 | DenseSet<Operation *> &opsToDetensor, |
| 453 | DenseSet<BlockArgument> &blockArgsToDetensor) override { |
| 454 | func->walk([&](GenericOp genericOp) { |
| 455 | if (shouldBeDetensored(genericOp, typeConverter)) |
| 456 | opsToDetensor.insert(genericOp); |
| 457 | }); |
| 458 | |
| 459 | for (Block &block : llvm::drop_begin(func.getFunctionBody(), 1)) |
| 460 | blockArgsToDetensor.insert_range(block.getArguments()); |
| 461 | } |
| 462 | }; |
| 463 | |
| 464 | void runOnOperation() override { |
| 465 | MLIRContext *context = &getContext(); |
| 466 | DetensorizeTypeConverter typeConverter; |
| 467 | RewritePatternSet patterns(context); |
| 468 | ConversionTarget target(*context); |
| 469 | DenseSet<Operation *> opsToDetensor; |
| 470 | DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; |
| 471 | DenseSet<BlockArgument> blockArgsToDetensor; |
| 472 | FunctionOpInterface funcOp = getOperation(); |
| 473 | |
| 474 | if (funcOp.getFunctionBody().empty()) |
| 475 | return; |
| 476 | |
| 477 | // Make sure the entry block of the function doesn't contain any Linalg ops. |
| 478 | // Otherwise, it may lead to the signature of the block being changed by the |
| 479 | // dialect conversion below, which would make the function op invalid |
| 480 | // because its type shouldn't change. |
| 481 | IRRewriter rewriter(funcOp->getContext()); |
| 482 | Block *entryBlock = &funcOp.getFunctionBody().front(); |
| 483 | Block *postEntryBlock = |
| 484 | rewriter.splitBlock(block: entryBlock, before: entryBlock->begin()); |
| 485 | rewriter.setInsertionPointToStart(entryBlock); |
| 486 | auto branch = |
| 487 | rewriter.create<cf::BranchOp>(rewriter.getUnknownLoc(), postEntryBlock); |
| 488 | |
| 489 | if (aggressiveMode.getValue()) { |
| 490 | AggressiveDetensoringModel costModel; |
| 491 | costModel.compute(func: funcOp, typeConverter, opsToDetensor, |
| 492 | blockArgsToDetensor); |
| 493 | } else { |
| 494 | ControlFlowDetectionModel costModel; |
| 495 | costModel.compute(func: funcOp, typeConverter, opsToDetensor, |
| 496 | blockArgsToDetensor); |
| 497 | } |
| 498 | |
| 499 | detensorableBranchOps = |
| 500 | CostModel::computeBranchOpDetensoring(blockArgsToDetensor); |
| 501 | |
| 502 | target.addDynamicallyLegalOp<GenericOp>( |
| 503 | callback: [&](GenericOp op) { return !opsToDetensor.count(op); }); |
| 504 | |
| 505 | target.markUnknownOpDynamicallyLegal([&](Operation *op) { |
| 506 | // A function is legal if all of its non-entry blocks are legal. We |
| 507 | // don't legalize the entry block (i.e. the function's signature) |
| 508 | // since detensoring can't happen along external calling convention |
| 509 | // boundaries, which we conservatively approximate as all function |
| 510 | // signatures. |
| 511 | if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { |
| 512 | Region &body = funcOp.getFunctionBody(); |
| 513 | return llvm::all_of(llvm::drop_begin(body, 1), [&](Block &block) { |
| 514 | return !llvm::any_of( |
| 515 | blockArgsToDetensor, [&](BlockArgument blockArgument) { |
| 516 | return blockArgument.getOwner() == &block && |
| 517 | !typeConverter.isLegal(blockArgument.getType()); |
| 518 | }); |
| 519 | }); |
| 520 | } |
| 521 | |
| 522 | if (isNotBranchOpInterfaceOrReturnLikeOp(op) || |
| 523 | isLegalForReturnOpTypeConversionPattern(op, typeConverter, |
| 524 | /*returnOpAlwaysLegal*/ true)) |
| 525 | return true; |
| 526 | |
| 527 | if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { |
| 528 | if (!detensorableBranchOps.count(branchOp)) |
| 529 | return true; |
| 530 | |
| 531 | for (auto operandIdx : detensorableBranchOps[branchOp]) |
| 532 | if (!typeConverter.isLegal( |
| 533 | branchOp->getOperand(operandIdx).getType())) |
| 534 | return false; |
| 535 | |
| 536 | return true; |
| 537 | } |
| 538 | |
| 539 | return false; |
| 540 | }); |
| 541 | |
| 542 | patterns.add<DetensorizeGenericOp>(arg&: typeConverter, args&: context); |
| 543 | patterns.add<FunctionNonEntryBlockConversion>(arg&: context, args&: typeConverter, |
| 544 | args&: blockArgsToDetensor); |
| 545 | // Since non-entry block arguments get detensorized, we also need to |
| 546 | // update the control flow inside the function to reflect the correct |
| 547 | // types. |
| 548 | auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp, |
| 549 | int operandIdx) -> bool { |
| 550 | return detensorableBranchOps.count(Val: branchOp) && |
| 551 | detensorableBranchOps[branchOp].count(operandIdx); |
| 552 | }; |
| 553 | |
| 554 | populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter, |
| 555 | shouldConvertBranchOperand); |
| 556 | |
| 557 | if (failed( |
| 558 | applyFullConversion(getOperation(), target, std::move(patterns)))) |
| 559 | signalPassFailure(); |
| 560 | |
| 561 | RewritePatternSet canonPatterns(context); |
| 562 | tensor::FromElementsOp::getCanonicalizationPatterns(canonPatterns, context); |
| 563 | if (failed(applyPatternsGreedily(getOperation(), std::move(canonPatterns)))) |
| 564 | signalPassFailure(); |
| 565 | |
| 566 | // Get rid of the dummy entry block we created in the beginning to work |
| 567 | // around dialect conversion signature rewriting. |
| 568 | rewriter.eraseOp(op: branch); |
| 569 | rewriter.mergeBlocks(source: postEntryBlock, dest: entryBlock); |
| 570 | } |
| 571 | }; |
| 572 | } // namespace |
| 573 | |