1 | //===- ElementwiseToLinalg.cpp - conversion of elementwise to linalg ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Linalg/Passes.h" |
10 | |
11 | #include "mlir/Dialect/Arith/Utils/Utils.h" |
12 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
13 | #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
14 | #include "mlir/Dialect/Linalg/Utils/Utils.h" |
15 | #include "mlir/Transforms/DialectConversion.h" |
16 | |
17 | namespace mlir { |
18 | #define GEN_PASS_DEF_CONVERTELEMENTWISETOLINALGPASS |
19 | #include "mlir/Dialect/Linalg/Passes.h.inc" |
20 | } // namespace mlir |
21 | |
22 | using namespace mlir; |
23 | |
24 | static bool isElementwiseMappableOpOnRankedTensors(Operation *op) { |
25 | if (!OpTrait::hasElementwiseMappableTraits(op)) |
26 | return false; |
27 | |
28 | // TODO: The conversion pattern can be made to work for `any_of` here, but |
29 | // it's more complex as it requires tracking which operands are scalars. |
30 | return llvm::all_of(op->getOperandTypes(), llvm::IsaPred<RankedTensorType>); |
31 | } |
32 | |
33 | /// Given `op` assumed `isElementwiseMappableOpOnRankedTensors`, iterate over |
34 | /// the result types and return a list of values such that, for each result type |
35 | /// `t` and value `v` at the same index `idx`: |
36 | /// 1. `v.getType() == t` |
37 | /// 2. If an operand of `op` has type `t`, let `operand_first` be the first |
38 | /// such operand. Then`v == operand_first`. |
39 | /// 3. Otherwise, v is a newly created `tensor::EmptyOp` with: |
40 | /// a. Static and dynamic dims extracted from the first operand of `op`. |
41 | /// b. Elemental type equal to the elemental type of `t`. |
42 | /// |
43 | /// This is sufficient because ElementwiseMappable guarantees that "The static |
44 | /// types of all vector (resp. tensor) operands and results must have the same |
45 | /// shape". |
46 | static SmallVector<Value, 4> |
47 | getOrCreateOperandsMatchingResultTypes(OpBuilder &b, Operation *op) { |
48 | assert(isElementwiseMappableOpOnRankedTensors(op)); |
49 | Location loc = op->getLoc(); |
50 | ValueRange operands = op->getOperands(); |
51 | TypeRange rankedTensorTypes = op->getResultTypes(); |
52 | SmallVector<Value, 4> res; |
53 | res.reserve(N: rankedTensorTypes.size()); |
54 | for (Type t : rankedTensorTypes) { |
55 | // Try to find an operand with type matching the result tensor. |
56 | bool found = false; |
57 | for (Value v : operands) { |
58 | if (v.getType() == t) { |
59 | found = true; |
60 | res.push_back(Elt: v); |
61 | break; |
62 | } |
63 | } |
64 | if (found) |
65 | continue; |
66 | |
67 | // Extract static / dynamic shape mix from the first operand. |
68 | res.push_back(b.create<tensor::EmptyOp>( |
69 | loc, tensor::getMixedSizes(b, loc, operands.front()), |
70 | cast<RankedTensorType>(t).getElementType())); |
71 | } |
72 | return res; |
73 | } |
74 | |
75 | namespace { |
76 | struct ConvertAnyElementwiseMappableOpOnRankedTensors : public RewritePattern { |
77 | ConvertAnyElementwiseMappableOpOnRankedTensors(MLIRContext *context) |
78 | : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} |
79 | LogicalResult matchAndRewrite(Operation *op, |
80 | PatternRewriter &rewriter) const final { |
81 | if (!isElementwiseMappableOpOnRankedTensors(op)) |
82 | return rewriter.notifyMatchFailure( |
83 | arg&: op, msg: "requires elementwise op on ranked tensors" ); |
84 | |
85 | auto rank = cast<RankedTensorType>(op->getResult(idx: 0).getType()).getRank(); |
86 | SmallVector<AffineMap, 3> indexingMaps( |
87 | op->getNumResults() + op->getNumOperands(), |
88 | rewriter.getMultiDimIdentityMap(rank: rank)); |
89 | SmallVector<utils::IteratorType, 6> iteratorTypes( |
90 | rank, utils::IteratorType::parallel); |
91 | auto outputs = getOrCreateOperandsMatchingResultTypes(b&: rewriter, op); |
92 | rewriter.replaceOpWithNewOp<linalg::GenericOp>( |
93 | op, /*resultTensorTypes=*/op->getResultTypes(), |
94 | /*inputs=*/op->getOperands(), |
95 | /*outputs=*/outputs, |
96 | /*indexingMaps=*/indexingMaps, |
97 | /*iteratorTypes=*/iteratorTypes, |
98 | /*bodyBuilder=*/ |
99 | [&](OpBuilder &builder, Location loc, ValueRange regionArgs) { |
100 | auto resultTypes = llvm::to_vector<6>( |
101 | llvm::map_range(op->getResultTypes(), [](Type type) { |
102 | return cast<TensorType>(type).getElementType(); |
103 | })); |
104 | auto *scalarOp = |
105 | builder.create(loc, op->getName().getIdentifier(), |
106 | regionArgs.take_front(op->getNumOperands()), |
107 | resultTypes, op->getAttrs()); |
108 | builder.create<linalg::YieldOp>(loc, scalarOp->getResults()); |
109 | }); |
110 | return success(); |
111 | } |
112 | }; |
113 | } // namespace |
114 | |
115 | void mlir::linalg::populateElementwiseToLinalgConversionPatterns( |
116 | RewritePatternSet &patterns) { |
117 | patterns.add<ConvertAnyElementwiseMappableOpOnRankedTensors>( |
118 | arg: patterns.getContext()); |
119 | } |
120 | |
121 | namespace { |
122 | class ConvertElementwiseToLinalgPass |
123 | : public impl::ConvertElementwiseToLinalgPassBase< |
124 | ConvertElementwiseToLinalgPass> { |
125 | using impl::ConvertElementwiseToLinalgPassBase< |
126 | ConvertElementwiseToLinalgPass>::ConvertElementwiseToLinalgPassBase; |
127 | |
128 | void runOnOperation() final { |
129 | auto *func = getOperation(); |
130 | auto *context = &getContext(); |
131 | ConversionTarget target(*context); |
132 | RewritePatternSet patterns(context); |
133 | |
134 | mlir::linalg::populateElementwiseToLinalgConversionPatterns(patterns); |
135 | target.markUnknownOpDynamicallyLegal(fn: [](Operation *op) { |
136 | return !isElementwiseMappableOpOnRankedTensors(op); |
137 | }); |
138 | |
139 | if (failed(applyPartialConversion(func, target, std::move(patterns)))) |
140 | signalPassFailure(); |
141 | } |
142 | }; |
143 | } // namespace |
144 | |