| 1 | //===- PolynomialApproximation.cpp - Approximate math operations ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements expansion of math operations to fast approximations |
| 10 | // that do not rely on any of the library functions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include <climits> |
| 15 | #include <cmath> |
| 16 | #include <cstddef> |
| 17 | |
| 18 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 19 | #include "mlir/Dialect/Math/IR/Math.h" |
| 20 | #include "mlir/Dialect/Math/Transforms/Approximation.h" |
| 21 | #include "mlir/Dialect/Math/Transforms/Passes.h" |
| 22 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 23 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 24 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 25 | #include "mlir/Dialect/X86Vector/X86VectorDialect.h" |
| 26 | #include "mlir/IR/Builders.h" |
| 27 | #include "mlir/IR/BuiltinTypes.h" |
| 28 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 29 | #include "mlir/IR/OpDefinition.h" |
| 30 | #include "mlir/IR/PatternMatch.h" |
| 31 | #include "mlir/IR/TypeUtilities.h" |
| 32 | #include "mlir/Transforms/DialectConversion.h" |
| 33 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 34 | #include "llvm/ADT/ArrayRef.h" |
| 35 | #include "llvm/ADT/STLExtras.h" |
| 36 | #include "llvm/Support/MathExtras.h" |
| 37 | |
| 38 | using namespace mlir; |
| 39 | using namespace mlir::math; |
| 40 | using namespace mlir::vector; |
| 41 | |
| 42 | // Helper to encapsulate a vector's shape (including scalable dims). |
| 43 | struct VectorShape { |
| 44 | ArrayRef<int64_t> sizes; |
| 45 | ArrayRef<bool> scalableFlags; |
| 46 | }; |
| 47 | |
| 48 | // Returns vector shape if the type is a vector, otherwise return nullopt. |
| 49 | static std::optional<VectorShape> vectorShape(Type type) { |
| 50 | if (auto vectorType = dyn_cast<VectorType>(type)) { |
| 51 | return VectorShape{vectorType.getShape(), vectorType.getScalableDims()}; |
| 52 | } |
| 53 | return std::nullopt; |
| 54 | } |
| 55 | |
| 56 | static std::optional<VectorShape> vectorShape(Value value) { |
| 57 | return vectorShape(type: value.getType()); |
| 58 | } |
| 59 | |
| 60 | //----------------------------------------------------------------------------// |
| 61 | // Broadcast scalar types and values into vector types and values. |
| 62 | //----------------------------------------------------------------------------// |
| 63 | |
| 64 | // Broadcasts scalar type into vector type (iff shape is non-scalar). |
| 65 | static Type broadcast(Type type, std::optional<VectorShape> shape) { |
| 66 | assert(!isa<VectorType>(type) && "must be scalar type" ); |
| 67 | return shape ? VectorType::get(shape->sizes, type, shape->scalableFlags) |
| 68 | : type; |
| 69 | } |
| 70 | |
| 71 | // Broadcasts scalar value into vector (iff shape is non-scalar). |
| 72 | static Value broadcast(ImplicitLocOpBuilder &builder, Value value, |
| 73 | std::optional<VectorShape> shape) { |
| 74 | assert(!isa<VectorType>(value.getType()) && "must be scalar value" ); |
| 75 | auto type = broadcast(type: value.getType(), shape); |
| 76 | return shape ? builder.create<BroadcastOp>(type, value) : value; |
| 77 | } |
| 78 | |
| 79 | //----------------------------------------------------------------------------// |
| 80 | // Helper function to handle n-D vectors with 1-D operations. |
| 81 | //----------------------------------------------------------------------------// |
| 82 | |
| 83 | // Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors |
| 84 | // and calls the compute function with 1-D vector operands. Stitches back all |
| 85 | // results into the original n-D vector result. |
| 86 | // |
| 87 | // Examples: vectorWidth = 8 |
| 88 | // - vector<4x8xf32> unrolled 4 times |
| 89 | // - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times |
| 90 | // - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times |
| 91 | // |
| 92 | // Some math approximations rely on ISA-specific operations that only accept |
| 93 | // fixed size 1-D vectors (e.g. AVX expects vectors of width 8). |
| 94 | // |
| 95 | // It is the caller's responsibility to verify that the inner dimension is |
| 96 | // divisible by the vectorWidth, and that all operands have the same vector |
| 97 | // shape. |
| 98 | static Value |
| 99 | handleMultidimensionalVectors(ImplicitLocOpBuilder &builder, |
| 100 | ValueRange operands, int64_t vectorWidth, |
| 101 | llvm::function_ref<Value(ValueRange)> compute) { |
| 102 | assert(!operands.empty() && "operands must be not empty" ); |
| 103 | assert(vectorWidth > 0 && "vector width must be larger than 0" ); |
| 104 | |
| 105 | VectorType inputType = cast<VectorType>(operands[0].getType()); |
| 106 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 107 | |
| 108 | // If input shape matches target vector width, we can just call the |
| 109 | // user-provided compute function with the operands. |
| 110 | if (inputShape == llvm::ArrayRef(vectorWidth)) |
| 111 | return compute(operands); |
| 112 | |
| 113 | // Check if the inner dimension has to be expanded, or we can directly iterate |
| 114 | // over the outer dimensions of the vector. |
| 115 | int64_t innerDim = inputShape.back(); |
| 116 | int64_t expansionDim = innerDim / vectorWidth; |
| 117 | assert((innerDim % vectorWidth == 0) && "invalid inner dimension size" ); |
| 118 | |
| 119 | // Maybe expand operands to the higher rank vector shape that we'll use to |
| 120 | // iterate over and extract one dimensional vectors. |
| 121 | SmallVector<int64_t> expandedShape(inputShape); |
| 122 | SmallVector<Value> expandedOperands(operands); |
| 123 | |
| 124 | if (expansionDim > 1) { |
| 125 | // Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth]. |
| 126 | expandedShape.insert(I: expandedShape.end() - 1, Elt: expansionDim); |
| 127 | expandedShape.back() = vectorWidth; |
| 128 | |
| 129 | for (unsigned i = 0; i < operands.size(); ++i) { |
| 130 | auto operand = operands[i]; |
| 131 | auto eltType = cast<VectorType>(operand.getType()).getElementType(); |
| 132 | auto expandedType = VectorType::get(expandedShape, eltType); |
| 133 | expandedOperands[i] = |
| 134 | builder.create<vector::ShapeCastOp>(expandedType, operand); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | // Iterate over all outer dimensions of the compute shape vector type. |
| 139 | auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back(); |
| 140 | int64_t maxIndex = computeMaxLinearIndex(iterationDims); |
| 141 | auto strides = computeStrides(iterationDims); |
| 142 | |
| 143 | // Compute results for each one dimensional vector. |
| 144 | SmallVector<Value> results(maxIndex); |
| 145 | |
| 146 | for (int64_t i = 0; i < maxIndex; ++i) { |
| 147 | auto offsets = delinearize(i, strides); |
| 148 | |
| 149 | SmallVector<Value> (expandedOperands.size()); |
| 150 | for (const auto &tuple : llvm::enumerate(expandedOperands)) |
| 151 | extracted[tuple.index()] = |
| 152 | builder.create<vector::ExtractOp>(tuple.value(), offsets); |
| 153 | |
| 154 | results[i] = compute(extracted); |
| 155 | } |
| 156 | |
| 157 | // Stitch results together into one large vector. |
| 158 | Type resultEltType = cast<VectorType>(results[0].getType()).getElementType(); |
| 159 | Type resultExpandedType = VectorType::get(expandedShape, resultEltType); |
| 160 | Value result = builder.create<arith::ConstantOp>( |
| 161 | resultExpandedType, builder.getZeroAttr(resultExpandedType)); |
| 162 | |
| 163 | for (int64_t i = 0; i < maxIndex; ++i) |
| 164 | result = builder.create<vector::InsertOp>(results[i], result, |
| 165 | delinearize(i, strides)); |
| 166 | |
| 167 | // Reshape back to the original vector shape. |
| 168 | return builder.create<vector::ShapeCastOp>( |
| 169 | VectorType::get(inputShape, resultEltType), result); |
| 170 | } |
| 171 | |
| 172 | //----------------------------------------------------------------------------// |
| 173 | // Helper functions to create constants. |
| 174 | //----------------------------------------------------------------------------// |
| 175 | |
| 176 | static Value boolCst(ImplicitLocOpBuilder &builder, bool value) { |
| 177 | return builder.create<arith::ConstantOp>(builder.getBoolAttr(value)); |
| 178 | } |
| 179 | |
| 180 | static Value floatCst(ImplicitLocOpBuilder &builder, float value, |
| 181 | Type elementType) { |
| 182 | assert((elementType.isF16() || elementType.isF32()) && |
| 183 | "x must be f16 or f32 type." ); |
| 184 | return builder.create<arith::ConstantOp>( |
| 185 | builder.getFloatAttr(elementType, value)); |
| 186 | } |
| 187 | |
| 188 | static Value f32Cst(ImplicitLocOpBuilder &builder, double value) { |
| 189 | return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value)); |
| 190 | } |
| 191 | |
| 192 | static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { |
| 193 | return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value)); |
| 194 | } |
| 195 | |
| 196 | static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { |
| 197 | Value i32Value = i32Cst(builder, value: static_cast<int32_t>(bits)); |
| 198 | return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value); |
| 199 | } |
| 200 | |
| 201 | //----------------------------------------------------------------------------// |
| 202 | // Helper functions to build math functions approximations. |
| 203 | //----------------------------------------------------------------------------// |
| 204 | |
| 205 | // Return the minimum of the two values or NaN if value is NaN |
| 206 | static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound) { |
| 207 | return builder.create<arith::SelectOp>( |
| 208 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, value, bound), |
| 209 | value, bound); |
| 210 | } |
| 211 | |
| 212 | // Return the maximum of the two values or NaN if value is NaN |
| 213 | static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound) { |
| 214 | return builder.create<arith::SelectOp>( |
| 215 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::UGT, value, bound), |
| 216 | value, bound); |
| 217 | } |
| 218 | |
| 219 | // Return the clamped value or NaN if value is NaN |
| 220 | static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, |
| 221 | Value upperBound) { |
| 222 | return max(builder, value: min(builder, value, bound: upperBound), bound: lowerBound); |
| 223 | } |
| 224 | |
| 225 | // Decomposes given floating point value `arg` into a normalized fraction and |
| 226 | // an integral power of two (see std::frexp). Returned values have float type. |
| 227 | static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, |
| 228 | bool isPositive = false) { |
| 229 | assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type" ); |
| 230 | std::optional<VectorShape> shape = vectorShape(value: arg); |
| 231 | |
| 232 | auto bcast = [&](Value value) -> Value { |
| 233 | return broadcast(builder, value, shape); |
| 234 | }; |
| 235 | |
| 236 | auto i32 = builder.getIntegerType(32); |
| 237 | auto i32Vec = broadcast(i32, shape); |
| 238 | auto f32Vec = broadcast(builder.getF32Type(), shape); |
| 239 | |
| 240 | Value cst126f = f32Cst(builder, value: 126.0f); |
| 241 | Value cstHalf = f32Cst(builder, value: 0.5f); |
| 242 | Value cstInvMantMask = f32FromBits(builder, bits: ~0x7f800000u); |
| 243 | |
| 244 | // Bitcast to i32 for bitwise operations. |
| 245 | Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf); |
| 246 | Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask); |
| 247 | Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg); |
| 248 | |
| 249 | // Compute normalized fraction. |
| 250 | Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask)); |
| 251 | Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half)); |
| 252 | Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1); |
| 253 | |
| 254 | // Compute exponent. |
| 255 | Value arg0 = isPositive ? arg : builder.create<math::AbsFOp>(arg); |
| 256 | Value biasedExponentBits = builder.create<arith::ShRUIOp>( |
| 257 | builder.create<arith::BitcastOp>(i32Vec, arg0), |
| 258 | bcast(i32Cst(builder, 23))); |
| 259 | Value biasedExponent = |
| 260 | builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits); |
| 261 | Value exponent = |
| 262 | builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f)); |
| 263 | |
| 264 | return {normalizedFraction, exponent}; |
| 265 | } |
| 266 | |
| 267 | // Computes exp2 for an i32 argument. |
| 268 | static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { |
| 269 | assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type" ); |
| 270 | std::optional<VectorShape> shape = vectorShape(value: arg); |
| 271 | |
| 272 | auto bcast = [&](Value value) -> Value { |
| 273 | return broadcast(builder, value, shape); |
| 274 | }; |
| 275 | |
| 276 | auto f32Vec = broadcast(builder.getF32Type(), shape); |
| 277 | // The exponent of f32 located at 23-bit. |
| 278 | auto exponetBitLocation = bcast(i32Cst(builder, value: 23)); |
| 279 | // Set the exponent bias to zero. |
| 280 | auto bias = bcast(i32Cst(builder, value: 127)); |
| 281 | |
| 282 | Value biasedArg = builder.create<arith::AddIOp>(arg, bias); |
| 283 | Value exp2ValueInt = |
| 284 | builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation); |
| 285 | Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt); |
| 286 | |
| 287 | return exp2ValueF32; |
| 288 | } |
| 289 | |
| 290 | namespace { |
| 291 | Value makePolynomialCalculation(ImplicitLocOpBuilder &builder, |
| 292 | llvm::ArrayRef<Value> coeffs, Value x) { |
| 293 | Type elementType = getElementTypeOrSelf(val: x); |
| 294 | assert((elementType.isF32() || elementType.isF16()) && |
| 295 | "x must be f32 or f16 type" ); |
| 296 | std::optional<VectorShape> shape = vectorShape(value: x); |
| 297 | |
| 298 | if (coeffs.empty()) |
| 299 | return broadcast(builder, value: floatCst(builder, value: 0.0f, elementType), shape); |
| 300 | |
| 301 | if (coeffs.size() == 1) |
| 302 | return coeffs[0]; |
| 303 | |
| 304 | Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1], |
| 305 | coeffs[coeffs.size() - 2]); |
| 306 | for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) { |
| 307 | res = builder.create<math::FmaOp>(x, res, coeffs[i]); |
| 308 | } |
| 309 | return res; |
| 310 | } |
| 311 | } // namespace |
| 312 | |
| 313 | //----------------------------------------------------------------------------// |
| 314 | // Helper function/pattern to insert casts for reusing F32 bit expansion. |
| 315 | //----------------------------------------------------------------------------// |
| 316 | |
| 317 | template <typename T> |
| 318 | LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) { |
| 319 | // Conservatively only allow where the operand and result types are exactly 1. |
| 320 | Type origType = op->getResultTypes().front(); |
| 321 | for (Type t : llvm::drop_begin(RangeOrContainer: op->getResultTypes())) |
| 322 | if (origType != t) |
| 323 | return rewriter.notifyMatchFailure(arg&: op, msg: "required all types to match" ); |
| 324 | for (Type t : op->getOperandTypes()) |
| 325 | if (origType != t) |
| 326 | return rewriter.notifyMatchFailure(arg&: op, msg: "required all types to match" ); |
| 327 | |
| 328 | // Skip if already F32 or larger than 32 bits. |
| 329 | if (getElementTypeOrSelf(type: origType).isF32() || |
| 330 | getElementTypeOrSelf(type: origType).getIntOrFloatBitWidth() > 32) |
| 331 | return failure(); |
| 332 | |
| 333 | // Create F32 equivalent type. |
| 334 | Type newType; |
| 335 | if (auto shaped = dyn_cast<ShapedType>(origType)) { |
| 336 | newType = shaped.clone(rewriter.getF32Type()); |
| 337 | } else if (isa<FloatType>(Val: origType)) { |
| 338 | newType = rewriter.getF32Type(); |
| 339 | } else { |
| 340 | return rewriter.notifyMatchFailure(arg&: op, |
| 341 | msg: "unable to find F32 equivalent type" ); |
| 342 | } |
| 343 | |
| 344 | Location loc = op->getLoc(); |
| 345 | SmallVector<Value> operands; |
| 346 | for (auto operand : op->getOperands()) |
| 347 | operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand)); |
| 348 | auto result = |
| 349 | rewriter.create<T>(loc, TypeRange{newType}, operands, op->getAttrs()); |
| 350 | rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result); |
| 351 | return success(); |
| 352 | } |
| 353 | |
| 354 | namespace { |
| 355 | // Pattern to cast to F32 to reuse F32 expansion as fallback for single-result |
| 356 | // op. |
| 357 | // TODO: Consider revising to avoid adding multiple casts for a subgraph that is |
| 358 | // all in lower precision. Currently this is only fallback support and performs |
| 359 | // simplistic casting. |
| 360 | template <typename T> |
| 361 | struct ReuseF32Expansion : public OpRewritePattern<T> { |
| 362 | public: |
| 363 | using OpRewritePattern<T>::OpRewritePattern; |
| 364 | LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final { |
| 365 | static_assert( |
| 366 | T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(), |
| 367 | "requires same operands and result types" ); |
| 368 | return insertCasts<T>(op, rewriter); |
| 369 | } |
| 370 | }; |
| 371 | } // namespace |
| 372 | |
| 373 | //----------------------------------------------------------------------------// |
| 374 | // AtanOp approximation. |
| 375 | //----------------------------------------------------------------------------// |
| 376 | |
| 377 | namespace { |
| 378 | struct AtanApproximation : public OpRewritePattern<math::AtanOp> { |
| 379 | public: |
| 380 | using OpRewritePattern::OpRewritePattern; |
| 381 | |
| 382 | LogicalResult matchAndRewrite(math::AtanOp op, |
| 383 | PatternRewriter &rewriter) const final; |
| 384 | }; |
| 385 | } // namespace |
| 386 | |
| 387 | LogicalResult |
| 388 | AtanApproximation::matchAndRewrite(math::AtanOp op, |
| 389 | PatternRewriter &rewriter) const { |
| 390 | auto operand = op.getOperand(); |
| 391 | if (!getElementTypeOrSelf(operand).isF32()) |
| 392 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 393 | |
| 394 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 395 | |
| 396 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 397 | Value abs = builder.create<math::AbsFOp>(operand); |
| 398 | |
| 399 | auto one = broadcast(builder, value: f32Cst(builder, value: 1.0), shape); |
| 400 | |
| 401 | // When 0.66 < x <= 2.41 we do (x-1) / (x+1): |
| 402 | auto twoThirds = broadcast(builder, value: f32Cst(builder, value: 0.66), shape); |
| 403 | Value cmp2 = |
| 404 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, twoThirds); |
| 405 | Value addone = builder.create<arith::AddFOp>(abs, one); |
| 406 | Value subone = builder.create<arith::SubFOp>(abs, one); |
| 407 | Value xnum = builder.create<arith::SelectOp>(cmp2, subone, abs); |
| 408 | Value xden = builder.create<arith::SelectOp>(cmp2, addone, one); |
| 409 | |
| 410 | auto bcast = [&](Value value) -> Value { |
| 411 | return broadcast(builder, value, shape); |
| 412 | }; |
| 413 | |
| 414 | // Break into the <= 0.66 or > 2.41 we do x or 1/x: |
| 415 | auto tan3pio8 = bcast(f32Cst(builder, value: 2.41421356237309504880)); |
| 416 | Value cmp1 = |
| 417 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, tan3pio8); |
| 418 | xnum = builder.create<arith::SelectOp>(cmp1, one, xnum); |
| 419 | xden = builder.create<arith::SelectOp>(cmp1, abs, xden); |
| 420 | |
| 421 | Value x = builder.create<arith::DivFOp>(xnum, xden); |
| 422 | Value xx = builder.create<arith::MulFOp>(x, x); |
| 423 | |
| 424 | // Perform the Taylor series approximation for atan over the range |
| 425 | // [0.0, 0.66]. |
| 426 | auto p0 = bcast(f32Cst(builder, value: -8.750608600031904122785e-01)); |
| 427 | auto p1 = bcast(f32Cst(builder, value: -1.615753718733365076637e+01)); |
| 428 | auto p2 = bcast(f32Cst(builder, value: -7.500855792314704667340e+01)); |
| 429 | auto p3 = bcast(f32Cst(builder, value: -1.228866684490136173410e+02)); |
| 430 | auto p4 = bcast(f32Cst(builder, value: -6.485021904942025371773e+01)); |
| 431 | auto q0 = bcast(f32Cst(builder, value: +2.485846490142306297962e+01)); |
| 432 | auto q1 = bcast(f32Cst(builder, value: +1.650270098316988542046e+02)); |
| 433 | auto q2 = bcast(f32Cst(builder, value: +4.328810604912902668951e+02)); |
| 434 | auto q3 = bcast(f32Cst(builder, value: +4.853903996359136964868e+02)); |
| 435 | auto q4 = bcast(f32Cst(builder, value: +1.945506571482613964425e+02)); |
| 436 | |
| 437 | // Apply the polynomial approximation for the numerator: |
| 438 | Value n = p0; |
| 439 | n = builder.create<math::FmaOp>(xx, n, p1); |
| 440 | n = builder.create<math::FmaOp>(xx, n, p2); |
| 441 | n = builder.create<math::FmaOp>(xx, n, p3); |
| 442 | n = builder.create<math::FmaOp>(xx, n, p4); |
| 443 | n = builder.create<arith::MulFOp>(n, xx); |
| 444 | |
| 445 | // Apply the polynomial approximation for the denominator: |
| 446 | Value d = q0; |
| 447 | d = builder.create<math::FmaOp>(xx, d, q1); |
| 448 | d = builder.create<math::FmaOp>(xx, d, q2); |
| 449 | d = builder.create<math::FmaOp>(xx, d, q3); |
| 450 | d = builder.create<math::FmaOp>(xx, d, q4); |
| 451 | |
| 452 | // Compute approximation of theta: |
| 453 | Value ans0 = builder.create<arith::DivFOp>(n, d); |
| 454 | ans0 = builder.create<math::FmaOp>(ans0, x, x); |
| 455 | |
| 456 | // Correct for the input mapping's angles: |
| 457 | Value mpi4 = bcast(f32Cst(builder, value: llvm::numbers::pi / 4)); |
| 458 | Value ans2 = builder.create<arith::AddFOp>(mpi4, ans0); |
| 459 | Value ans = builder.create<arith::SelectOp>(cmp2, ans2, ans0); |
| 460 | |
| 461 | Value mpi2 = bcast(f32Cst(builder, value: llvm::numbers::pi / 2)); |
| 462 | Value ans1 = builder.create<arith::SubFOp>(mpi2, ans0); |
| 463 | ans = builder.create<arith::SelectOp>(cmp1, ans1, ans); |
| 464 | |
| 465 | // Correct for signing of the input. |
| 466 | rewriter.replaceOpWithNewOp<math::CopySignOp>(op, ans, operand); |
| 467 | return success(); |
| 468 | } |
| 469 | |
| 470 | //----------------------------------------------------------------------------// |
| 471 | // AtanOp approximation. |
| 472 | //----------------------------------------------------------------------------// |
| 473 | |
| 474 | namespace { |
| 475 | struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> { |
| 476 | public: |
| 477 | using OpRewritePattern::OpRewritePattern; |
| 478 | |
| 479 | LogicalResult matchAndRewrite(math::Atan2Op op, |
| 480 | PatternRewriter &rewriter) const final; |
| 481 | }; |
| 482 | } // namespace |
| 483 | |
| 484 | LogicalResult |
| 485 | Atan2Approximation::matchAndRewrite(math::Atan2Op op, |
| 486 | PatternRewriter &rewriter) const { |
| 487 | auto y = op.getOperand(0); |
| 488 | auto x = op.getOperand(1); |
| 489 | if (!getElementTypeOrSelf(x).isF32()) |
| 490 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 491 | |
| 492 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 493 | std::optional<VectorShape> shape = vectorShape(op.getResult()); |
| 494 | |
| 495 | // Compute atan in the valid range. |
| 496 | auto div = builder.create<arith::DivFOp>(y, x); |
| 497 | auto atan = builder.create<math::AtanOp>(div); |
| 498 | |
| 499 | // Determine what the atan would be for a 180 degree rotation. |
| 500 | auto zero = broadcast(builder, value: f32Cst(builder, value: 0.0f), shape); |
| 501 | auto pi = broadcast(builder, value: f32Cst(builder, value: 3.14159265359f), shape); |
| 502 | auto addPi = builder.create<arith::AddFOp>(atan, pi); |
| 503 | auto subPi = builder.create<arith::SubFOp>(atan, pi); |
| 504 | auto atanGt = |
| 505 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero); |
| 506 | auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi); |
| 507 | |
| 508 | // Determine whether to directly use atan or use the 180 degree flip |
| 509 | auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero); |
| 510 | Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan); |
| 511 | |
| 512 | // Handle x = 0, y > 0 |
| 513 | Value xZero = |
| 514 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero); |
| 515 | Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero); |
| 516 | Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt); |
| 517 | auto halfPi = broadcast(builder, value: f32Cst(builder, value: 1.57079632679f), shape); |
| 518 | result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result); |
| 519 | |
| 520 | // Handle x = 0, y < 0 |
| 521 | Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero); |
| 522 | Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt); |
| 523 | auto negativeHalfPiPi = |
| 524 | broadcast(builder, value: f32Cst(builder, value: -1.57079632679f), shape); |
| 525 | result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi, |
| 526 | result); |
| 527 | |
| 528 | // Handle x = 0, y = 0; |
| 529 | Value yZero = |
| 530 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero); |
| 531 | Value isNan = builder.create<arith::AndIOp>(xZero, yZero); |
| 532 | Value cstNan = broadcast(builder, value: f32FromBits(builder, bits: 0x7fc00000), shape); |
| 533 | result = builder.create<arith::SelectOp>(isNan, cstNan, result); |
| 534 | |
| 535 | rewriter.replaceOp(op, result); |
| 536 | return success(); |
| 537 | } |
| 538 | |
| 539 | //----------------------------------------------------------------------------// |
| 540 | // TanhOp approximation. |
| 541 | //----------------------------------------------------------------------------// |
| 542 | |
| 543 | namespace { |
| 544 | struct TanhApproximation : public OpRewritePattern<math::TanhOp> { |
| 545 | public: |
| 546 | using OpRewritePattern::OpRewritePattern; |
| 547 | |
| 548 | LogicalResult matchAndRewrite(math::TanhOp op, |
| 549 | PatternRewriter &rewriter) const final; |
| 550 | }; |
| 551 | } // namespace |
| 552 | |
| 553 | LogicalResult |
| 554 | TanhApproximation::matchAndRewrite(math::TanhOp op, |
| 555 | PatternRewriter &rewriter) const { |
| 556 | if (!getElementTypeOrSelf(op.getOperand()).isF32()) |
| 557 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 558 | |
| 559 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 560 | |
| 561 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 562 | auto bcast = [&](Value value) -> Value { |
| 563 | return broadcast(builder, value, shape); |
| 564 | }; |
| 565 | |
| 566 | // Clamp operand into [plusClamp, minusClamp] range. |
| 567 | Value minusClamp = bcast(f32Cst(builder, value: -7.99881172180175781f)); |
| 568 | Value plusClamp = bcast(f32Cst(builder, value: 7.99881172180175781f)); |
| 569 | Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp); |
| 570 | |
| 571 | // Mask for tiny values that are approximated with `operand`. |
| 572 | Value tiny = bcast(f32Cst(builder, value: 0.0004f)); |
| 573 | Value tinyMask = builder.create<arith::CmpFOp>( |
| 574 | arith::CmpFPredicate::OLT, builder.create<math::AbsFOp>(op.getOperand()), |
| 575 | tiny); |
| 576 | |
| 577 | // The monomial coefficients of the numerator polynomial (odd). |
| 578 | Value alpha1 = bcast(f32Cst(builder, value: 4.89352455891786e-03f)); |
| 579 | Value alpha3 = bcast(f32Cst(builder, value: 6.37261928875436e-04f)); |
| 580 | Value alpha5 = bcast(f32Cst(builder, value: 1.48572235717979e-05f)); |
| 581 | Value alpha7 = bcast(f32Cst(builder, value: 5.12229709037114e-08f)); |
| 582 | Value alpha9 = bcast(f32Cst(builder, value: -8.60467152213735e-11f)); |
| 583 | Value alpha11 = bcast(f32Cst(builder, value: 2.00018790482477e-13f)); |
| 584 | Value alpha13 = bcast(f32Cst(builder, value: -2.76076847742355e-16f)); |
| 585 | |
| 586 | // The monomial coefficients of the denominator polynomial (even). |
| 587 | Value beta0 = bcast(f32Cst(builder, value: 4.89352518554385e-03f)); |
| 588 | Value beta2 = bcast(f32Cst(builder, value: 2.26843463243900e-03f)); |
| 589 | Value beta4 = bcast(f32Cst(builder, value: 1.18534705686654e-04f)); |
| 590 | Value beta6 = bcast(f32Cst(builder, value: 1.19825839466702e-06f)); |
| 591 | |
| 592 | // Since the polynomials are odd/even, we need x^2. |
| 593 | Value x2 = builder.create<arith::MulFOp>(x, x); |
| 594 | |
| 595 | // Evaluate the numerator polynomial p. |
| 596 | Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11); |
| 597 | p = builder.create<math::FmaOp>(x2, p, alpha9); |
| 598 | p = builder.create<math::FmaOp>(x2, p, alpha7); |
| 599 | p = builder.create<math::FmaOp>(x2, p, alpha5); |
| 600 | p = builder.create<math::FmaOp>(x2, p, alpha3); |
| 601 | p = builder.create<math::FmaOp>(x2, p, alpha1); |
| 602 | p = builder.create<arith::MulFOp>(x, p); |
| 603 | |
| 604 | // Evaluate the denominator polynomial q. |
| 605 | Value q = builder.create<math::FmaOp>(x2, beta6, beta4); |
| 606 | q = builder.create<math::FmaOp>(x2, q, beta2); |
| 607 | q = builder.create<math::FmaOp>(x2, q, beta0); |
| 608 | |
| 609 | // Divide the numerator by the denominator. |
| 610 | Value res = builder.create<arith::SelectOp>( |
| 611 | tinyMask, x, builder.create<arith::DivFOp>(p, q)); |
| 612 | |
| 613 | rewriter.replaceOp(op, res); |
| 614 | |
| 615 | return success(); |
| 616 | } |
| 617 | |
| 618 | #define LN2_VALUE \ |
| 619 | 0.693147180559945309417232121458176568075500134360255254120680009493393621L |
| 620 | #define LOG2E_VALUE \ |
| 621 | 1.442695040888963407359924681001892137426645954152985934135449406931109219L |
| 622 | |
| 623 | //----------------------------------------------------------------------------// |
| 624 | // LogOp and Log2Op approximation. |
| 625 | //----------------------------------------------------------------------------// |
| 626 | |
| 627 | namespace { |
| 628 | template <typename Op> |
| 629 | struct LogApproximationBase : public OpRewritePattern<Op> { |
| 630 | using OpRewritePattern<Op>::OpRewritePattern; |
| 631 | |
| 632 | /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. |
| 633 | LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, |
| 634 | bool base2) const; |
| 635 | }; |
| 636 | } // namespace |
| 637 | |
| 638 | // This approximation comes from Julien Pommier's SSE math library. |
| 639 | // Link: http://gruntthepeon.free.fr/ssemath |
| 640 | template <typename Op> |
| 641 | LogicalResult |
| 642 | LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter, |
| 643 | bool base2) const { |
| 644 | if (!getElementTypeOrSelf(op.getOperand()).isF32()) |
| 645 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 646 | |
| 647 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 648 | |
| 649 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 650 | auto bcast = [&](Value value) -> Value { |
| 651 | return broadcast(builder, value, shape); |
| 652 | }; |
| 653 | |
| 654 | Value cstZero = bcast(f32Cst(builder, value: 0.0f)); |
| 655 | Value cstOne = bcast(f32Cst(builder, value: 1.0f)); |
| 656 | Value cstNegHalf = bcast(f32Cst(builder, value: -0.5f)); |
| 657 | |
| 658 | // The smallest non denormalized float number. |
| 659 | Value cstMinNormPos = bcast(f32FromBits(builder, bits: 0x00800000u)); |
| 660 | Value cstMinusInf = bcast(f32FromBits(builder, bits: 0xff800000u)); |
| 661 | Value cstPosInf = bcast(f32FromBits(builder, bits: 0x7f800000u)); |
| 662 | Value cstNan = bcast(f32FromBits(builder, bits: 0x7fc00000)); |
| 663 | |
| 664 | // Polynomial coefficients. |
| 665 | Value cstCephesSQRTHF = bcast(f32Cst(builder, value: 0.707106781186547524f)); |
| 666 | Value cstCephesLogP0 = bcast(f32Cst(builder, value: 7.0376836292E-2f)); |
| 667 | Value cstCephesLogP1 = bcast(f32Cst(builder, value: -1.1514610310E-1f)); |
| 668 | Value cstCephesLogP2 = bcast(f32Cst(builder, value: 1.1676998740E-1f)); |
| 669 | Value cstCephesLogP3 = bcast(f32Cst(builder, value: -1.2420140846E-1f)); |
| 670 | Value cstCephesLogP4 = bcast(f32Cst(builder, value: +1.4249322787E-1f)); |
| 671 | Value cstCephesLogP5 = bcast(f32Cst(builder, value: -1.6668057665E-1f)); |
| 672 | Value cstCephesLogP6 = bcast(f32Cst(builder, value: +2.0000714765E-1f)); |
| 673 | Value cstCephesLogP7 = bcast(f32Cst(builder, value: -2.4999993993E-1f)); |
| 674 | Value cstCephesLogP8 = bcast(f32Cst(builder, value: +3.3333331174E-1f)); |
| 675 | |
| 676 | Value x = op.getOperand(); |
| 677 | |
| 678 | // Truncate input values to the minimum positive normal. |
| 679 | x = max(builder, value: x, bound: cstMinNormPos); |
| 680 | |
| 681 | // Extract significant in the range [0.5,1) and exponent. |
| 682 | std::pair<Value, Value> pair = frexp(builder, arg: x, /*isPositive=*/true); |
| 683 | x = pair.first; |
| 684 | Value e = pair.second; |
| 685 | |
| 686 | // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift |
| 687 | // by -1.0. The values are then centered around 0, which improves the |
| 688 | // stability of the polynomial evaluation: |
| 689 | // |
| 690 | // if( x < SQRTHF ) { |
| 691 | // e -= 1; |
| 692 | // x = x + x - 1.0; |
| 693 | // } else { x = x - 1.0; } |
| 694 | Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, |
| 695 | cstCephesSQRTHF); |
| 696 | Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero); |
| 697 | |
| 698 | x = builder.create<arith::SubFOp>(x, cstOne); |
| 699 | e = builder.create<arith::SubFOp>( |
| 700 | e, builder.create<arith::SelectOp>(mask, cstOne, cstZero)); |
| 701 | x = builder.create<arith::AddFOp>(x, tmp); |
| 702 | |
| 703 | Value x2 = builder.create<arith::MulFOp>(x, x); |
| 704 | Value x3 = builder.create<arith::MulFOp>(x2, x); |
| 705 | |
| 706 | // Evaluate the polynomial approximant of degree 8 in three parts. |
| 707 | Value y0, y1, y2; |
| 708 | y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1); |
| 709 | y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4); |
| 710 | y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7); |
| 711 | y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2); |
| 712 | y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5); |
| 713 | y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8); |
| 714 | y0 = builder.create<math::FmaOp>(y0, x3, y1); |
| 715 | y0 = builder.create<math::FmaOp>(y0, x3, y2); |
| 716 | y0 = builder.create<arith::MulFOp>(y0, x3); |
| 717 | |
| 718 | y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0); |
| 719 | x = builder.create<arith::AddFOp>(x, y0); |
| 720 | |
| 721 | if (base2) { |
| 722 | Value cstLog2e = bcast(f32Cst(builder, value: static_cast<float>(LOG2E_VALUE))); |
| 723 | x = builder.create<math::FmaOp>(x, cstLog2e, e); |
| 724 | } else { |
| 725 | Value cstLn2 = bcast(f32Cst(builder, value: static_cast<float>(LN2_VALUE))); |
| 726 | x = builder.create<math::FmaOp>(e, cstLn2, x); |
| 727 | } |
| 728 | |
| 729 | Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, |
| 730 | op.getOperand(), cstZero); |
| 731 | Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, |
| 732 | op.getOperand(), cstZero); |
| 733 | Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, |
| 734 | op.getOperand(), cstPosInf); |
| 735 | |
| 736 | // Filter out invalid values: |
| 737 | // • x == 0 -> -INF |
| 738 | // • x < 0 -> NAN |
| 739 | // • x == +INF -> +INF |
| 740 | Value aproximation = builder.create<arith::SelectOp>( |
| 741 | zeroMask, cstMinusInf, |
| 742 | builder.create<arith::SelectOp>( |
| 743 | invalidMask, cstNan, |
| 744 | builder.create<arith::SelectOp>(posInfMask, cstPosInf, x))); |
| 745 | |
| 746 | rewriter.replaceOp(op, aproximation); |
| 747 | |
| 748 | return success(); |
| 749 | } |
| 750 | |
| 751 | namespace { |
| 752 | struct LogApproximation : public LogApproximationBase<math::LogOp> { |
| 753 | using LogApproximationBase::LogApproximationBase; |
| 754 | |
| 755 | LogicalResult matchAndRewrite(math::LogOp op, |
| 756 | PatternRewriter &rewriter) const final { |
| 757 | return logMatchAndRewrite(op, rewriter, /*base2=*/false); |
| 758 | } |
| 759 | }; |
| 760 | } // namespace |
| 761 | |
| 762 | namespace { |
| 763 | struct Log2Approximation : public LogApproximationBase<math::Log2Op> { |
| 764 | using LogApproximationBase::LogApproximationBase; |
| 765 | |
| 766 | LogicalResult matchAndRewrite(math::Log2Op op, |
| 767 | PatternRewriter &rewriter) const final { |
| 768 | return logMatchAndRewrite(op, rewriter, /*base2=*/true); |
| 769 | } |
| 770 | }; |
| 771 | } // namespace |
| 772 | |
| 773 | //----------------------------------------------------------------------------// |
| 774 | // Log1p approximation. |
| 775 | //----------------------------------------------------------------------------// |
| 776 | |
| 777 | namespace { |
| 778 | struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> { |
| 779 | public: |
| 780 | using OpRewritePattern::OpRewritePattern; |
| 781 | |
| 782 | LogicalResult matchAndRewrite(math::Log1pOp op, |
| 783 | PatternRewriter &rewriter) const final; |
| 784 | }; |
| 785 | } // namespace |
| 786 | |
| 787 | // Approximate log(1+x). |
| 788 | LogicalResult |
| 789 | Log1pApproximation::matchAndRewrite(math::Log1pOp op, |
| 790 | PatternRewriter &rewriter) const { |
| 791 | if (!getElementTypeOrSelf(op.getOperand()).isF32()) |
| 792 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 793 | |
| 794 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 795 | |
| 796 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 797 | auto bcast = [&](Value value) -> Value { |
| 798 | return broadcast(builder, value, shape); |
| 799 | }; |
| 800 | |
| 801 | // Approximate log(1+x) using the following, due to W. Kahan: |
| 802 | // u = x + 1.0; |
| 803 | // if (u == 1.0 || u == inf) return x; |
| 804 | // return x * log(u) / (u - 1.0); |
| 805 | // ^^^^^^^^^^^^^^^^^^^^^^ |
| 806 | // "logLarge" below. |
| 807 | Value cstOne = bcast(f32Cst(builder, value: 1.0f)); |
| 808 | Value x = op.getOperand(); |
| 809 | Value u = builder.create<arith::AddFOp>(x, cstOne); |
| 810 | Value uSmall = |
| 811 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne); |
| 812 | Value logU = builder.create<math::LogOp>(u); |
| 813 | Value uInf = |
| 814 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU); |
| 815 | Value logLarge = builder.create<arith::MulFOp>( |
| 816 | x, builder.create<arith::DivFOp>( |
| 817 | logU, builder.create<arith::SubFOp>(u, cstOne))); |
| 818 | Value approximation = builder.create<arith::SelectOp>( |
| 819 | builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge); |
| 820 | rewriter.replaceOp(op, approximation); |
| 821 | return success(); |
| 822 | } |
| 823 | |
| 824 | //----------------------------------------------------------------------------// |
| 825 | // Asin approximation. |
| 826 | //----------------------------------------------------------------------------// |
| 827 | |
| 828 | // Approximates asin(x). |
| 829 | // This approximation is based on the following stackoverflow post: |
| 830 | // https://stackoverflow.com/a/42683455 |
| 831 | namespace { |
| 832 | struct AsinPolynomialApproximation : public OpRewritePattern<math::AsinOp> { |
| 833 | public: |
| 834 | using OpRewritePattern::OpRewritePattern; |
| 835 | |
| 836 | LogicalResult matchAndRewrite(math::AsinOp op, |
| 837 | PatternRewriter &rewriter) const final; |
| 838 | }; |
| 839 | } // namespace |
| 840 | LogicalResult |
| 841 | AsinPolynomialApproximation::matchAndRewrite(math::AsinOp op, |
| 842 | PatternRewriter &rewriter) const { |
| 843 | Value operand = op.getOperand(); |
| 844 | Type elementType = getElementTypeOrSelf(val: operand); |
| 845 | |
| 846 | if (!(elementType.isF32() || elementType.isF16())) |
| 847 | return rewriter.notifyMatchFailure(op, |
| 848 | "only f32 and f16 type is supported." ); |
| 849 | std::optional<VectorShape> shape = vectorShape(value: operand); |
| 850 | |
| 851 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 852 | auto bcast = [&](Value value) -> Value { |
| 853 | return broadcast(builder, value, shape); |
| 854 | }; |
| 855 | |
| 856 | auto fma = [&](Value a, Value b, Value c) -> Value { |
| 857 | return builder.create<math::FmaOp>(a, b, c); |
| 858 | }; |
| 859 | |
| 860 | auto mul = [&](Value a, Value b) -> Value { |
| 861 | return builder.create<arith::MulFOp>(a, b); |
| 862 | }; |
| 863 | |
| 864 | auto sub = [&](Value a, Value b) -> Value { |
| 865 | return builder.create<arith::SubFOp>(a, b); |
| 866 | }; |
| 867 | |
| 868 | auto abs = [&](Value a) -> Value { return builder.create<math::AbsFOp>(a); }; |
| 869 | |
| 870 | auto sqrt = [&](Value a) -> Value { return builder.create<math::SqrtOp>(a); }; |
| 871 | |
| 872 | auto scopy = [&](Value a, Value b) -> Value { |
| 873 | return builder.create<math::CopySignOp>(a, b); |
| 874 | }; |
| 875 | |
| 876 | auto sel = [&](Value a, Value b, Value c) -> Value { |
| 877 | return builder.create<arith::SelectOp>(a, b, c); |
| 878 | }; |
| 879 | |
| 880 | Value abso = abs(operand); |
| 881 | Value aa = mul(operand, operand); |
| 882 | Value opp = sqrt(sub(bcast(floatCst(builder, value: 1.0, elementType)), aa)); |
| 883 | |
| 884 | Value gt = |
| 885 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, aa, |
| 886 | bcast(floatCst(builder, 0.5, elementType))); |
| 887 | |
| 888 | Value x = sel(gt, opp, abso); |
| 889 | |
| 890 | // Asin(x) approximation for x = [-9/16, 9/16]: |
| 891 | Value s = mul(x, x); |
| 892 | Value q = mul(s, s); |
| 893 | Value r = bcast(floatCst(builder, value: 5.5579749017470502e-2, elementType)); |
| 894 | Value t = bcast(floatCst(builder, value: -6.2027913464120114e-2, elementType)); |
| 895 | |
| 896 | r = fma(r, q, bcast(floatCst(builder, value: 5.4224464349245036e-2, elementType))); |
| 897 | t = fma(t, q, bcast(floatCst(builder, value: -1.1326992890324464e-2, elementType))); |
| 898 | r = fma(r, q, bcast(floatCst(builder, value: 1.5268872539397656e-2, elementType))); |
| 899 | t = fma(t, q, bcast(floatCst(builder, value: 1.0493798473372081e-2, elementType))); |
| 900 | r = fma(r, q, bcast(floatCst(builder, value: 1.4106045900607047e-2, elementType))); |
| 901 | t = fma(t, q, bcast(floatCst(builder, value: 1.7339776384962050e-2, elementType))); |
| 902 | r = fma(r, q, bcast(floatCst(builder, value: 2.2372961589651054e-2, elementType))); |
| 903 | t = fma(t, q, bcast(floatCst(builder, value: 3.0381912707941005e-2, elementType))); |
| 904 | r = fma(r, q, bcast(floatCst(builder, value: 4.4642857881094775e-2, elementType))); |
| 905 | t = fma(t, q, bcast(floatCst(builder, value: 7.4999999991367292e-2, elementType))); |
| 906 | r = fma(r, s, t); |
| 907 | r = fma(r, s, bcast(floatCst(builder, value: 1.6666666666670193e-1, elementType))); |
| 908 | t = mul(x, s); |
| 909 | r = fma(r, t, x); |
| 910 | |
| 911 | Value rsub = sub(bcast(floatCst(builder, value: 1.57079632679, elementType)), r); |
| 912 | r = sel(gt, rsub, r); |
| 913 | r = scopy(r, operand); |
| 914 | |
| 915 | rewriter.replaceOp(op, r); |
| 916 | return success(); |
| 917 | } |
| 918 | |
| 919 | //----------------------------------------------------------------------------// |
| 920 | // Acos approximation. |
| 921 | //----------------------------------------------------------------------------// |
| 922 | |
| 923 | // Approximates acos(x). |
| 924 | // This approximation is based on the following stackoverflow post: |
| 925 | // https://stackoverflow.com/a/42683455 |
| 926 | namespace { |
| 927 | struct AcosPolynomialApproximation : public OpRewritePattern<math::AcosOp> { |
| 928 | public: |
| 929 | using OpRewritePattern::OpRewritePattern; |
| 930 | |
| 931 | LogicalResult matchAndRewrite(math::AcosOp op, |
| 932 | PatternRewriter &rewriter) const final; |
| 933 | }; |
| 934 | } // namespace |
| 935 | LogicalResult |
| 936 | AcosPolynomialApproximation::matchAndRewrite(math::AcosOp op, |
| 937 | PatternRewriter &rewriter) const { |
| 938 | Value operand = op.getOperand(); |
| 939 | Type elementType = getElementTypeOrSelf(val: operand); |
| 940 | |
| 941 | if (!(elementType.isF32() || elementType.isF16())) |
| 942 | return rewriter.notifyMatchFailure(op, |
| 943 | "only f32 and f16 type is supported." ); |
| 944 | std::optional<VectorShape> shape = vectorShape(value: operand); |
| 945 | |
| 946 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 947 | auto bcast = [&](Value value) -> Value { |
| 948 | return broadcast(builder, value, shape); |
| 949 | }; |
| 950 | |
| 951 | auto fma = [&](Value a, Value b, Value c) -> Value { |
| 952 | return builder.create<math::FmaOp>(a, b, c); |
| 953 | }; |
| 954 | |
| 955 | auto mul = [&](Value a, Value b) -> Value { |
| 956 | return builder.create<arith::MulFOp>(a, b); |
| 957 | }; |
| 958 | |
| 959 | Value negOperand = builder.create<arith::NegFOp>(operand); |
| 960 | Value zero = bcast(floatCst(builder, value: 0.0, elementType)); |
| 961 | Value half = bcast(floatCst(builder, value: 0.5, elementType)); |
| 962 | Value negOne = bcast(floatCst(builder, value: -1.0, elementType)); |
| 963 | Value selR = |
| 964 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand, zero); |
| 965 | Value r = builder.create<arith::SelectOp>(selR, negOperand, operand); |
| 966 | Value chkConst = bcast(floatCst(builder, value: -0.5625, elementType)); |
| 967 | Value firstPred = |
| 968 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, r, chkConst); |
| 969 | |
| 970 | Value trueVal = |
| 971 | fma(bcast(floatCst(builder, 9.3282184640716537e-1, elementType)), |
| 972 | bcast(floatCst(builder, 1.6839188885261840e+0, elementType)), |
| 973 | builder.create<math::AsinOp>(r)); |
| 974 | |
| 975 | Value falseVal = builder.create<math::SqrtOp>(fma(half, r, half)); |
| 976 | falseVal = builder.create<math::AsinOp>(falseVal); |
| 977 | falseVal = mul(bcast(floatCst(builder, value: 2.0, elementType)), falseVal); |
| 978 | |
| 979 | r = builder.create<arith::SelectOp>(firstPred, trueVal, falseVal); |
| 980 | |
| 981 | // Check whether the operand lies in between [-1.0, 0.0). |
| 982 | Value greaterThanNegOne = |
| 983 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, operand, negOne); |
| 984 | |
| 985 | Value lessThanZero = |
| 986 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero); |
| 987 | |
| 988 | Value betweenNegOneZero = |
| 989 | builder.create<arith::AndIOp>(greaterThanNegOne, lessThanZero); |
| 990 | |
| 991 | trueVal = fma(bcast(floatCst(builder, 1.8656436928143307e+0, elementType)), |
| 992 | bcast(floatCst(builder, 1.6839188885261840e+0, elementType)), |
| 993 | builder.create<arith::NegFOp>(r)); |
| 994 | |
| 995 | Value finalVal = |
| 996 | builder.create<arith::SelectOp>(betweenNegOneZero, trueVal, r); |
| 997 | |
| 998 | rewriter.replaceOp(op, finalVal); |
| 999 | return success(); |
| 1000 | } |
| 1001 | |
| 1002 | //----------------------------------------------------------------------------// |
| 1003 | // Erf approximation. |
| 1004 | //----------------------------------------------------------------------------// |
| 1005 | |
| 1006 | // Approximates erf(x) with |
| 1007 | // a - P(x)/Q(x) |
| 1008 | // where P and Q are polynomials of degree 4. |
| 1009 | // Different coefficients are chosen based on the value of x. |
| 1010 | // The approximation error is ~2.5e-07. |
| 1011 | // Boost's minimax tool that utilizes the Remez method was used to find the |
| 1012 | // coefficients. |
| 1013 | LogicalResult |
| 1014 | ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op, |
| 1015 | PatternRewriter &rewriter) const { |
| 1016 | Value operand = op.getOperand(); |
| 1017 | Type elementType = getElementTypeOrSelf(val: operand); |
| 1018 | |
| 1019 | if (!(elementType.isF32() || elementType.isF16())) |
| 1020 | return rewriter.notifyMatchFailure(op, |
| 1021 | "only f32 and f16 type is supported." ); |
| 1022 | std::optional<VectorShape> shape = vectorShape(value: operand); |
| 1023 | |
| 1024 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 1025 | auto bcast = [&](Value value) -> Value { |
| 1026 | return broadcast(builder, value, shape); |
| 1027 | }; |
| 1028 | |
| 1029 | const int intervalsCount = 3; |
| 1030 | const int polyDegree = 4; |
| 1031 | |
| 1032 | Value zero = bcast(floatCst(builder, value: 0, elementType)); |
| 1033 | Value one = bcast(floatCst(builder, value: 1, elementType)); |
| 1034 | Value pp[intervalsCount][polyDegree + 1]; |
| 1035 | pp[0][0] = bcast(floatCst(builder, value: +0.00000000000000000e+00f, elementType)); |
| 1036 | pp[0][1] = bcast(floatCst(builder, value: +1.12837916222975858e+00f, elementType)); |
| 1037 | pp[0][2] = bcast(floatCst(builder, value: -5.23018562988006470e-01f, elementType)); |
| 1038 | pp[0][3] = bcast(floatCst(builder, value: +2.09741709609267072e-01f, elementType)); |
| 1039 | pp[0][4] = bcast(floatCst(builder, value: +2.58146801602987875e-02f, elementType)); |
| 1040 | pp[1][0] = bcast(floatCst(builder, value: +0.00000000000000000e+00f, elementType)); |
| 1041 | pp[1][1] = bcast(floatCst(builder, value: +1.12750687816789140e+00f, elementType)); |
| 1042 | pp[1][2] = bcast(floatCst(builder, value: -3.64721408487825775e-01f, elementType)); |
| 1043 | pp[1][3] = bcast(floatCst(builder, value: +1.18407396425136952e-01f, elementType)); |
| 1044 | pp[1][4] = bcast(floatCst(builder, value: +3.70645533056476558e-02f, elementType)); |
| 1045 | pp[2][0] = bcast(floatCst(builder, value: -3.30093071049483172e-03f, elementType)); |
| 1046 | pp[2][1] = bcast(floatCst(builder, value: +3.51961938357697011e-03f, elementType)); |
| 1047 | pp[2][2] = bcast(floatCst(builder, value: -1.41373622814988039e-03f, elementType)); |
| 1048 | pp[2][3] = bcast(floatCst(builder, value: +2.53447094961941348e-04f, elementType)); |
| 1049 | pp[2][4] = bcast(floatCst(builder, value: -1.71048029455037401e-05f, elementType)); |
| 1050 | |
| 1051 | Value qq[intervalsCount][polyDegree + 1]; |
| 1052 | qq[0][0] = bcast(floatCst(builder, value: +1.000000000000000000e+00f, elementType)); |
| 1053 | qq[0][1] = bcast(floatCst(builder, value: -4.635138185962547255e-01f, elementType)); |
| 1054 | qq[0][2] = bcast(floatCst(builder, value: +5.192301327279782447e-01f, elementType)); |
| 1055 | qq[0][3] = bcast(floatCst(builder, value: -1.318089722204810087e-01f, elementType)); |
| 1056 | qq[0][4] = bcast(floatCst(builder, value: +7.397964654672315005e-02f, elementType)); |
| 1057 | qq[1][0] = bcast(floatCst(builder, value: +1.00000000000000000e+00f, elementType)); |
| 1058 | qq[1][1] = bcast(floatCst(builder, value: -3.27607011824493086e-01f, elementType)); |
| 1059 | qq[1][2] = bcast(floatCst(builder, value: +4.48369090658821977e-01f, elementType)); |
| 1060 | qq[1][3] = bcast(floatCst(builder, value: -8.83462621207857930e-02f, elementType)); |
| 1061 | qq[1][4] = bcast(floatCst(builder, value: +5.72442770283176093e-02f, elementType)); |
| 1062 | qq[2][0] = bcast(floatCst(builder, value: +1.00000000000000000e+00f, elementType)); |
| 1063 | qq[2][1] = bcast(floatCst(builder, value: -2.06069165953913769e+00f, elementType)); |
| 1064 | qq[2][2] = bcast(floatCst(builder, value: +1.62705939945477759e+00f, elementType)); |
| 1065 | qq[2][3] = bcast(floatCst(builder, value: -5.83389859211130017e-01f, elementType)); |
| 1066 | qq[2][4] = bcast(floatCst(builder, value: +8.21908939856640930e-02f, elementType)); |
| 1067 | |
| 1068 | Value offsets[intervalsCount]; |
| 1069 | offsets[0] = bcast(floatCst(builder, value: 0.0f, elementType)); |
| 1070 | offsets[1] = bcast(floatCst(builder, value: 0.0f, elementType)); |
| 1071 | offsets[2] = bcast(floatCst(builder, value: 1.0f, elementType)); |
| 1072 | |
| 1073 | Value bounds[intervalsCount]; |
| 1074 | bounds[0] = bcast(floatCst(builder, value: 0.8f, elementType)); |
| 1075 | bounds[1] = bcast(floatCst(builder, value: 2.0f, elementType)); |
| 1076 | bounds[2] = bcast(floatCst(builder, value: 3.75f, elementType)); |
| 1077 | |
| 1078 | Value isNegativeArg = |
| 1079 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero); |
| 1080 | Value negArg = builder.create<arith::NegFOp>(operand); |
| 1081 | Value x = builder.create<arith::SelectOp>(isNegativeArg, negArg, operand); |
| 1082 | |
| 1083 | Value offset = offsets[0]; |
| 1084 | Value p[polyDegree + 1]; |
| 1085 | Value q[polyDegree + 1]; |
| 1086 | for (int i = 0; i <= polyDegree; ++i) { |
| 1087 | p[i] = pp[0][i]; |
| 1088 | q[i] = qq[0][i]; |
| 1089 | } |
| 1090 | |
| 1091 | // TODO: maybe use vector stacking to reduce the number of selects. |
| 1092 | Value isLessThanBound[intervalsCount]; |
| 1093 | for (int j = 0; j < intervalsCount - 1; ++j) { |
| 1094 | isLessThanBound[j] = |
| 1095 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]); |
| 1096 | for (int i = 0; i <= polyDegree; ++i) { |
| 1097 | p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i], |
| 1098 | pp[j + 1][i]); |
| 1099 | q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i], |
| 1100 | qq[j + 1][i]); |
| 1101 | } |
| 1102 | offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset, |
| 1103 | offsets[j + 1]); |
| 1104 | } |
| 1105 | isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>( |
| 1106 | arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]); |
| 1107 | |
| 1108 | Value pPoly = makePolynomialCalculation(builder, coeffs: p, x); |
| 1109 | Value qPoly = makePolynomialCalculation(builder, coeffs: q, x); |
| 1110 | Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly); |
| 1111 | Value formula = builder.create<arith::AddFOp>(offset, rationalPoly); |
| 1112 | formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1], |
| 1113 | formula, one); |
| 1114 | |
| 1115 | // erf is odd function: erf(x) = -erf(-x). |
| 1116 | Value negFormula = builder.create<arith::NegFOp>(formula); |
| 1117 | Value res = |
| 1118 | builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula); |
| 1119 | |
| 1120 | rewriter.replaceOp(op, res); |
| 1121 | |
| 1122 | return success(); |
| 1123 | } |
| 1124 | |
| 1125 | // Approximates erfc(x) with p((x - 2) / (x + 2)), where p is a 9 degree |
| 1126 | // polynomial.This approximation is based on the following stackoverflow post: |
| 1127 | // https://stackoverflow.com/questions/35966695/vectorizable-implementation-of-complementary-error-function-erfcf |
| 1128 | // The stackoverflow post is in turn based on: |
| 1129 | // M. M. Shepherd and J. G. Laframboise, "Chebyshev Approximation of |
| 1130 | // (1+2x)exp(x^2)erfc x in 0 <= x < INF", Mathematics of Computation, Vol. 36, |
| 1131 | // No. 153, January 1981, pp. 249-253. |
| 1132 | // |
| 1133 | // Maximum error: 2.65 ulps |
| 1134 | LogicalResult |
| 1135 | ErfcPolynomialApproximation::matchAndRewrite(math::ErfcOp op, |
| 1136 | PatternRewriter &rewriter) const { |
| 1137 | Value x = op.getOperand(); |
| 1138 | Type et = getElementTypeOrSelf(val: x); |
| 1139 | |
| 1140 | if (!et.isF32()) |
| 1141 | return rewriter.notifyMatchFailure(op, "only f32 type is supported." ); |
| 1142 | std::optional<VectorShape> shape = vectorShape(value: x); |
| 1143 | |
| 1144 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 1145 | auto bcast = [&](Value value) -> Value { |
| 1146 | return broadcast(builder, value, shape); |
| 1147 | }; |
| 1148 | |
| 1149 | Value trueValue = bcast(boolCst(builder, value: true)); |
| 1150 | Value zero = bcast(floatCst(builder, value: 0.0f, elementType: et)); |
| 1151 | Value one = bcast(floatCst(builder, value: 1.0f, elementType: et)); |
| 1152 | Value onehalf = bcast(floatCst(builder, value: 0.5f, elementType: et)); |
| 1153 | Value neg4 = bcast(floatCst(builder, value: -4.0f, elementType: et)); |
| 1154 | Value neg2 = bcast(floatCst(builder, value: -2.0f, elementType: et)); |
| 1155 | Value pos2 = bcast(floatCst(builder, value: 2.0f, elementType: et)); |
| 1156 | Value posInf = bcast(floatCst(builder, INFINITY, elementType: et)); |
| 1157 | Value clampVal = bcast(floatCst(builder, value: 10.0546875f, elementType: et)); |
| 1158 | |
| 1159 | Value a = builder.create<math::AbsFOp>(x); |
| 1160 | Value p = builder.create<arith::AddFOp>(a, pos2); |
| 1161 | Value r = builder.create<arith::DivFOp>(one, p); |
| 1162 | Value q = builder.create<math::FmaOp>(neg4, r, one); |
| 1163 | Value t = builder.create<math::FmaOp>(builder.create<arith::AddFOp>(q, one), |
| 1164 | neg2, a); |
| 1165 | Value e = builder.create<math::FmaOp>(builder.create<arith::NegFOp>(a), q, t); |
| 1166 | q = builder.create<math::FmaOp>(r, e, q); |
| 1167 | |
| 1168 | p = bcast(floatCst(builder, value: -0x1.a4a000p-12f, elementType: et)); // -4.01139259e-4 |
| 1169 | Value c1 = bcast(floatCst(builder, value: -0x1.42a260p-10f, elementType: et)); // -1.23075210e-3 |
| 1170 | p = builder.create<math::FmaOp>(p, q, c1); |
| 1171 | Value c2 = bcast(floatCst(builder, value: 0x1.585714p-10f, elementType: et)); // 1.31355342e-3 |
| 1172 | p = builder.create<math::FmaOp>(p, q, c2); |
| 1173 | Value c3 = bcast(floatCst(builder, value: 0x1.1adcc4p-07f, elementType: et)); // 8.63227434e-3 |
| 1174 | p = builder.create<math::FmaOp>(p, q, c3); |
| 1175 | Value c4 = bcast(floatCst(builder, value: -0x1.081b82p-07f, elementType: et)); // -8.05991981e-3 |
| 1176 | p = builder.create<math::FmaOp>(p, q, c4); |
| 1177 | Value c5 = bcast(floatCst(builder, value: -0x1.bc0b6ap-05f, elementType: et)); // -5.42046614e-2 |
| 1178 | p = builder.create<math::FmaOp>(p, q, c5); |
| 1179 | Value c6 = bcast(floatCst(builder, value: 0x1.4ffc46p-03f, elementType: et)); // 1.64055392e-1 |
| 1180 | p = builder.create<math::FmaOp>(p, q, c6); |
| 1181 | Value c7 = bcast(floatCst(builder, value: -0x1.540840p-03f, elementType: et)); // -1.66031361e-1 |
| 1182 | p = builder.create<math::FmaOp>(p, q, c7); |
| 1183 | Value c8 = bcast(floatCst(builder, value: -0x1.7bf616p-04f, elementType: et)); // -9.27639827e-2 |
| 1184 | p = builder.create<math::FmaOp>(p, q, c8); |
| 1185 | Value c9 = bcast(floatCst(builder, value: 0x1.1ba03ap-02f, elementType: et)); // 2.76978403e-1 |
| 1186 | p = builder.create<math::FmaOp>(p, q, c9); |
| 1187 | |
| 1188 | Value d = builder.create<math::FmaOp>(pos2, a, one); |
| 1189 | r = builder.create<arith::DivFOp>(one, d); |
| 1190 | q = builder.create<math::FmaOp>(p, r, r); |
| 1191 | Value negfa = builder.create<arith::NegFOp>(a); |
| 1192 | Value fmaqah = builder.create<math::FmaOp>(q, negfa, onehalf); |
| 1193 | Value psubq = builder.create<arith::SubFOp>(p, q); |
| 1194 | e = builder.create<math::FmaOp>(fmaqah, pos2, psubq); |
| 1195 | r = builder.create<math::FmaOp>(e, r, q); |
| 1196 | |
| 1197 | Value s = builder.create<arith::MulFOp>(a, a); |
| 1198 | e = builder.create<math::ExpOp>(builder.create<arith::NegFOp>(s)); |
| 1199 | |
| 1200 | t = builder.create<math::FmaOp>(builder.create<arith::NegFOp>(a), a, s); |
| 1201 | r = builder.create<math::FmaOp>( |
| 1202 | r, e, |
| 1203 | builder.create<arith::MulFOp>(builder.create<arith::MulFOp>(r, e), t)); |
| 1204 | |
| 1205 | Value isNotLessThanInf = builder.create<arith::XOrIOp>( |
| 1206 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, a, posInf), |
| 1207 | trueValue); |
| 1208 | r = builder.create<arith::SelectOp>(isNotLessThanInf, |
| 1209 | builder.create<arith::AddFOp>(x, x), r); |
| 1210 | Value isGreaterThanClamp = |
| 1211 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, a, clampVal); |
| 1212 | r = builder.create<arith::SelectOp>(isGreaterThanClamp, zero, r); |
| 1213 | |
| 1214 | Value isNegative = |
| 1215 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, zero); |
| 1216 | r = builder.create<arith::SelectOp>( |
| 1217 | isNegative, builder.create<arith::SubFOp>(pos2, r), r); |
| 1218 | |
| 1219 | rewriter.replaceOp(op, r); |
| 1220 | return success(); |
| 1221 | } |
| 1222 | //----------------------------------------------------------------------------// |
| 1223 | // Exp approximation. |
| 1224 | //----------------------------------------------------------------------------// |
| 1225 | |
| 1226 | namespace { |
| 1227 | |
| 1228 | Value clampWithNormals(ImplicitLocOpBuilder &builder, |
| 1229 | const std::optional<VectorShape> shape, Value value, |
| 1230 | float lowerBound, float upperBound) { |
| 1231 | assert(!std::isnan(lowerBound)); |
| 1232 | assert(!std::isnan(upperBound)); |
| 1233 | |
| 1234 | auto bcast = [&](Value value) -> Value { |
| 1235 | return broadcast(builder, value, shape); |
| 1236 | }; |
| 1237 | |
| 1238 | auto selectCmp = [&builder](auto pred, Value value, Value bound) { |
| 1239 | return builder.create<arith::SelectOp>( |
| 1240 | builder.create<arith::CmpFOp>(pred, value, bound), value, bound); |
| 1241 | }; |
| 1242 | |
| 1243 | // Note: prefer UGE/ULE vs. UGT/ULT, since they generate vmaxps/vminps vs. |
| 1244 | // vcmpleps+vmovaps on x86_64. The latter outcome is also obtained with |
| 1245 | // arith::{Max,Min}FOp. |
| 1246 | value = selectCmp(arith::CmpFPredicate::UGE, value, |
| 1247 | bcast(f32Cst(builder, lowerBound))); |
| 1248 | value = selectCmp(arith::CmpFPredicate::ULE, value, |
| 1249 | bcast(f32Cst(builder, upperBound))); |
| 1250 | return value; |
| 1251 | } |
| 1252 | |
| 1253 | struct ExpApproximation : public OpRewritePattern<math::ExpOp> { |
| 1254 | public: |
| 1255 | using OpRewritePattern::OpRewritePattern; |
| 1256 | |
| 1257 | LogicalResult matchAndRewrite(math::ExpOp op, |
| 1258 | PatternRewriter &rewriter) const final; |
| 1259 | }; |
| 1260 | |
| 1261 | LogicalResult |
| 1262 | ExpApproximation::matchAndRewrite(math::ExpOp op, |
| 1263 | PatternRewriter &rewriter) const { |
| 1264 | auto shape = vectorShape(op.getOperand().getType()); |
| 1265 | auto elementTy = getElementTypeOrSelf(op.getType()); |
| 1266 | if (!elementTy.isF32()) |
| 1267 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 1268 | |
| 1269 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 1270 | |
| 1271 | auto add = [&](Value a, Value b) -> Value { |
| 1272 | return builder.create<arith::AddFOp>(a, b); |
| 1273 | }; |
| 1274 | auto bcast = [&](Value value) -> Value { |
| 1275 | return broadcast(builder, value, shape); |
| 1276 | }; |
| 1277 | auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); }; |
| 1278 | auto fmla = [&](Value a, Value b, Value c) { |
| 1279 | return builder.create<math::FmaOp>(a, b, c); |
| 1280 | }; |
| 1281 | auto mul = [&](Value a, Value b) -> Value { |
| 1282 | return builder.create<arith::MulFOp>(a, b); |
| 1283 | }; |
| 1284 | |
| 1285 | // Polynomial approximation from Cephes. |
| 1286 | // |
| 1287 | // To compute e^x, we re-express it as |
| 1288 | // |
| 1289 | // e^x = e^(a + b) |
| 1290 | // = e^(a + n log(2)) |
| 1291 | // = e^a * 2^n. |
| 1292 | // |
| 1293 | // We choose n = round(x / log(2)), restricting the value of `a` to |
| 1294 | // (-log(2)/2, log(2)/2). We then use a polynomial to compute e^a. The |
| 1295 | // relative error between our approximation and the true value of e^a is less |
| 1296 | // than 2^-22.5 for all values of `a` within this range. |
| 1297 | |
| 1298 | // Restrict input to a small range, including some values that evaluate to |
| 1299 | // +/- inf. Note that for our lower bound, we choose log(2^-126) instead of |
| 1300 | // log(F32_EPSILON). We do so because this routine always flushes denormal |
| 1301 | // floating points to 0. Therefore, we only need to worry about exponentiating |
| 1302 | // up to the smallest representable non-denormal floating point, which is |
| 1303 | // 2^-126. |
| 1304 | |
| 1305 | // Constants. |
| 1306 | Value cstHalf = bcast(f32Cst(builder, value: 0.5f)); |
| 1307 | Value cstOne = bcast(f32Cst(builder, value: 1.0f)); |
| 1308 | |
| 1309 | // 1/log(2) |
| 1310 | Value cstLog2ef = bcast(f32Cst(builder, value: 1.44269504088896341f)); |
| 1311 | |
| 1312 | Value cstExpC1 = bcast(f32Cst(builder, value: -0.693359375f)); |
| 1313 | Value cstExpC2 = bcast(f32Cst(builder, value: 2.12194440e-4f)); |
| 1314 | Value cstExpP0 = bcast(f32Cst(builder, value: 1.9875691500E-4f)); |
| 1315 | Value cstExpP1 = bcast(f32Cst(builder, value: 1.3981999507E-3f)); |
| 1316 | Value cstExpP2 = bcast(f32Cst(builder, value: 8.3334519073E-3f)); |
| 1317 | Value cstExpP3 = bcast(f32Cst(builder, value: 4.1665795894E-2f)); |
| 1318 | Value cstExpP4 = bcast(f32Cst(builder, value: 1.6666665459E-1f)); |
| 1319 | Value cstExpP5 = bcast(f32Cst(builder, value: 5.0000001201E-1f)); |
| 1320 | |
| 1321 | // Our computations below aren't particularly sensitive to the exact choices |
| 1322 | // here, so we choose values a bit larger/smaller than |
| 1323 | // |
| 1324 | // log(F32_MAX) = 88.723... |
| 1325 | // log(2^-126) = -87.337... |
| 1326 | Value x = op.getOperand(); |
| 1327 | x = clampWithNormals(builder, shape, x, -87.8f, 88.8f); |
| 1328 | Value n = floor(fmla(x, cstLog2ef, cstHalf)); |
| 1329 | |
| 1330 | // When we eventually do the multiplication in e^a * 2^n, we need to handle |
| 1331 | // the case when n > 127, the max fp32 exponent (so 2^n == inf) but e^a < 1 |
| 1332 | // (so e^a * 2^n != inf). There's a similar problem for n < -126, the |
| 1333 | // smallest fp32 exponent. |
| 1334 | // |
| 1335 | // A straightforward solution would be to detect n out of range and split it |
| 1336 | // up, doing |
| 1337 | // |
| 1338 | // e^a * 2^n = e^a * 2^(n1 + n2) |
| 1339 | // = (2^n1 * e^a) * 2^n2. |
| 1340 | // |
| 1341 | // But it turns out this approach is quite slow, probably because it |
| 1342 | // manipulates subnormal values. |
| 1343 | // |
| 1344 | // The approach we use instead is to clamp n to [-127, 127]. Let n' be the |
| 1345 | // value of n clamped to [-127, 127]. In the case where n' = 127, `a` can grow |
| 1346 | // up to as large as 88.8 - 127 * log(2) which is about 0.7703. Even though |
| 1347 | // this value of `a` is outside our previously specified range, e^a will still |
| 1348 | // only have a relative error of approximately 2^-16 at worse. In practice |
| 1349 | // this seems to work well enough; it passes our exhaustive tests, breaking |
| 1350 | // only one result, and by one ulp (we return exp(88.7228394) = max-float but |
| 1351 | // we should return inf). |
| 1352 | // |
| 1353 | // In the case where n' = -127, the original input value of x is so small that |
| 1354 | // e^x, our final answer, is less than 2^-126. Since 2^-126 is the smallest |
| 1355 | // normal floating point, and since we flush denormals, we simply return 0. We |
| 1356 | // do this in a branchless way by observing that our code for constructing 2^n |
| 1357 | // produces 0 if n = -127. |
| 1358 | // |
| 1359 | // The proof that n' = -127 implies e^x < 2^-126 is as follows: |
| 1360 | // |
| 1361 | // n' = -127 implies n <= -127 |
| 1362 | // implies round(x / log(2)) <= -127 |
| 1363 | // implies x/log(2) < -126.5 |
| 1364 | // implies x < -126.5 * log(2) |
| 1365 | // implies e^x < e^(-126.5 * log(2)) |
| 1366 | // implies e^x < 2^-126.5 < 2^-126 |
| 1367 | // |
| 1368 | // This proves that n' = -127 implies e^x < 2^-126. |
| 1369 | n = clampWithNormals(builder, shape, n, -127.0f, 127.0f); |
| 1370 | |
| 1371 | // Computes x = x - n' * log(2), the value for `a` |
| 1372 | x = fmla(cstExpC1, n, x); |
| 1373 | x = fmla(cstExpC2, n, x); |
| 1374 | |
| 1375 | // Polynomial to compute z = e^a, accurate for a in (-0.5, 0.5). |
| 1376 | Value z = fmla(x, cstExpP0, cstExpP1); |
| 1377 | z = fmla(z, x, cstExpP2); |
| 1378 | z = fmla(z, x, cstExpP3); |
| 1379 | z = fmla(z, x, cstExpP4); |
| 1380 | z = fmla(z, x, cstExpP5); |
| 1381 | z = fmla(z, mul(x, x), x); |
| 1382 | z = add(cstOne, z); |
| 1383 | |
| 1384 | // Convert n' to an i32. This is safe because we clamped it above. |
| 1385 | auto i32Vec = broadcast(builder.getI32Type(), shape); |
| 1386 | Value nI32 = builder.create<arith::FPToSIOp>(i32Vec, n); |
| 1387 | |
| 1388 | // Creates the value 2^n' if -126 <= n' <= 127 and 0 if n' = -127. |
| 1389 | Value pow2 = exp2I32(builder, arg: nI32); |
| 1390 | |
| 1391 | // Return z * 2^n' if -126 <= n' <= 127 and 0 if n = -127. |
| 1392 | Value ret = mul(z, pow2); |
| 1393 | |
| 1394 | rewriter.replaceOp(op, ret); |
| 1395 | return mlir::success(); |
| 1396 | } |
| 1397 | |
| 1398 | } // namespace |
| 1399 | |
| 1400 | //----------------------------------------------------------------------------// |
| 1401 | // ExpM1 approximation. |
| 1402 | //----------------------------------------------------------------------------// |
| 1403 | |
| 1404 | namespace { |
| 1405 | |
| 1406 | struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> { |
| 1407 | public: |
| 1408 | using OpRewritePattern::OpRewritePattern; |
| 1409 | |
| 1410 | LogicalResult matchAndRewrite(math::ExpM1Op op, |
| 1411 | PatternRewriter &rewriter) const final; |
| 1412 | }; |
| 1413 | } // namespace |
| 1414 | |
| 1415 | LogicalResult |
| 1416 | ExpM1Approximation::matchAndRewrite(math::ExpM1Op op, |
| 1417 | PatternRewriter &rewriter) const { |
| 1418 | if (!getElementTypeOrSelf(op.getOperand()).isF32()) |
| 1419 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 1420 | |
| 1421 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 1422 | |
| 1423 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 1424 | auto bcast = [&](Value value) -> Value { |
| 1425 | return broadcast(builder, value, shape); |
| 1426 | }; |
| 1427 | |
| 1428 | // expm1(x) = exp(x) - 1 = u - 1. |
| 1429 | // We have to handle it carefully when x is near 0, i.e. u ~= 1, |
| 1430 | // and when the input is ~= -inf, i.e. u - 1 ~= -1. |
| 1431 | Value cstOne = bcast(f32Cst(builder, value: 1.0f)); |
| 1432 | Value cstNegOne = bcast(f32Cst(builder, value: -1.0f)); |
| 1433 | Value x = op.getOperand(); |
| 1434 | Value u = builder.create<math::ExpOp>(x); |
| 1435 | Value uEqOneOrNaN = |
| 1436 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::UEQ, u, cstOne); |
| 1437 | Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne); |
| 1438 | Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>( |
| 1439 | arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne); |
| 1440 | // logU = log(u) ~= x |
| 1441 | Value logU = builder.create<math::LogOp>(u); |
| 1442 | |
| 1443 | // Detect exp(x) = +inf; written this way to avoid having to form +inf. |
| 1444 | Value isInf = |
| 1445 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u); |
| 1446 | |
| 1447 | // (u - 1) * (x / ~x) |
| 1448 | Value expm1 = builder.create<arith::MulFOp>( |
| 1449 | uMinusOne, builder.create<arith::DivFOp>(x, logU)); |
| 1450 | expm1 = builder.create<arith::SelectOp>(isInf, u, expm1); |
| 1451 | Value approximation = builder.create<arith::SelectOp>( |
| 1452 | uEqOneOrNaN, x, |
| 1453 | builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1)); |
| 1454 | rewriter.replaceOp(op, approximation); |
| 1455 | return success(); |
| 1456 | } |
| 1457 | |
| 1458 | //----------------------------------------------------------------------------// |
| 1459 | // Sin and Cos approximation. |
| 1460 | //----------------------------------------------------------------------------// |
| 1461 | |
| 1462 | namespace { |
| 1463 | |
| 1464 | template <bool isSine, typename OpTy> |
| 1465 | struct SinAndCosApproximation : public OpRewritePattern<OpTy> { |
| 1466 | public: |
| 1467 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 1468 | |
| 1469 | LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final; |
| 1470 | }; |
| 1471 | } // namespace |
| 1472 | |
| 1473 | #define TWO_OVER_PI \ |
| 1474 | 0.6366197723675813430755350534900574481378385829618257949906693762L |
| 1475 | #define PI_OVER_2 \ |
| 1476 | 1.5707963267948966192313216916397514420985846996875529104874722961L |
| 1477 | |
| 1478 | // Approximates sin(x) or cos(x) by finding the best approximation polynomial in |
| 1479 | // the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the |
| 1480 | // reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y). |
| 1481 | template <bool isSine, typename OpTy> |
| 1482 | LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite( |
| 1483 | OpTy op, PatternRewriter &rewriter) const { |
| 1484 | static_assert( |
| 1485 | llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value, |
| 1486 | "SinAndCosApproximation pattern expects math::SinOp or math::CosOp" ); |
| 1487 | |
| 1488 | if (!getElementTypeOrSelf(op.getOperand()).isF32()) |
| 1489 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 1490 | |
| 1491 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 1492 | |
| 1493 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 1494 | auto bcast = [&](Value value) -> Value { |
| 1495 | return broadcast(builder, value, shape); |
| 1496 | }; |
| 1497 | auto mul = [&](Value a, Value b) -> Value { |
| 1498 | return builder.create<arith::MulFOp>(a, b); |
| 1499 | }; |
| 1500 | auto sub = [&](Value a, Value b) -> Value { |
| 1501 | return builder.create<arith::SubFOp>(a, b); |
| 1502 | }; |
| 1503 | auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); }; |
| 1504 | |
| 1505 | auto i32Vec = broadcast(builder.getI32Type(), shape); |
| 1506 | auto fPToSingedInteger = [&](Value a) -> Value { |
| 1507 | return builder.create<arith::FPToSIOp>(i32Vec, a); |
| 1508 | }; |
| 1509 | |
| 1510 | auto modulo4 = [&](Value a) -> Value { |
| 1511 | return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3))); |
| 1512 | }; |
| 1513 | |
| 1514 | auto isEqualTo = [&](Value a, Value b) -> Value { |
| 1515 | return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b); |
| 1516 | }; |
| 1517 | |
| 1518 | auto isGreaterThan = [&](Value a, Value b) -> Value { |
| 1519 | return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b); |
| 1520 | }; |
| 1521 | |
| 1522 | auto select = [&](Value cond, Value t, Value f) -> Value { |
| 1523 | return builder.create<arith::SelectOp>(cond, t, f); |
| 1524 | }; |
| 1525 | |
| 1526 | auto fmla = [&](Value a, Value b, Value c) { |
| 1527 | return builder.create<math::FmaOp>(a, b, c); |
| 1528 | }; |
| 1529 | |
| 1530 | auto bitwiseOr = [&](Value a, Value b) { |
| 1531 | return builder.create<arith::OrIOp>(a, b); |
| 1532 | }; |
| 1533 | |
| 1534 | Value twoOverPi = bcast(f32Cst(builder, value: (float)TWO_OVER_PI)); |
| 1535 | Value piOverTwo = bcast(f32Cst(builder, value: (float)PI_OVER_2)); |
| 1536 | |
| 1537 | Value x = op.getOperand(); |
| 1538 | |
| 1539 | Value k = floor(mul(x, twoOverPi)); |
| 1540 | |
| 1541 | Value y = sub(x, mul(k, piOverTwo)); |
| 1542 | |
| 1543 | Value cstOne = bcast(f32Cst(builder, value: 1.0)); |
| 1544 | Value cstNegativeOne = bcast(f32Cst(builder, value: -1.0)); |
| 1545 | |
| 1546 | Value cstSC2 = bcast(f32Cst(builder, value: -0.16666667163372039794921875f)); |
| 1547 | Value cstSC4 = bcast(f32Cst(builder, value: 8.333347737789154052734375e-3f)); |
| 1548 | Value cstSC6 = bcast(f32Cst(builder, value: -1.9842604524455964565277099609375e-4f)); |
| 1549 | Value cstSC8 = |
| 1550 | bcast(f32Cst(builder, value: 2.760012648650445044040679931640625e-6f)); |
| 1551 | Value cstSC10 = |
| 1552 | bcast(f32Cst(builder, value: -2.50293279435709337121807038784027099609375e-8f)); |
| 1553 | |
| 1554 | Value cstCC2 = bcast(f32Cst(builder, value: -0.5f)); |
| 1555 | Value cstCC4 = bcast(f32Cst(builder, value: 4.166664183139801025390625e-2f)); |
| 1556 | Value cstCC6 = bcast(f32Cst(builder, value: -1.388833043165504932403564453125e-3f)); |
| 1557 | Value cstCC8 = bcast(f32Cst(builder, value: 2.47562347794882953166961669921875e-5f)); |
| 1558 | Value cstCC10 = |
| 1559 | bcast(f32Cst(builder, value: -2.59630184018533327616751194000244140625e-7f)); |
| 1560 | |
| 1561 | Value kMod4 = modulo4(fPToSingedInteger(k)); |
| 1562 | |
| 1563 | Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, value: 0))); |
| 1564 | Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, value: 1))); |
| 1565 | Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, value: 2))); |
| 1566 | Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, value: 3))); |
| 1567 | |
| 1568 | Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2); |
| 1569 | Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, value: 1))) |
| 1570 | : bitwiseOr(kR1, kR2); |
| 1571 | |
| 1572 | Value y2 = mul(y, y); |
| 1573 | |
| 1574 | Value base = select(sinuseCos, cstOne, y); |
| 1575 | Value cstC2 = select(sinuseCos, cstCC2, cstSC2); |
| 1576 | Value cstC4 = select(sinuseCos, cstCC4, cstSC4); |
| 1577 | Value cstC6 = select(sinuseCos, cstCC6, cstSC6); |
| 1578 | Value cstC8 = select(sinuseCos, cstCC8, cstSC8); |
| 1579 | Value cstC10 = select(sinuseCos, cstCC10, cstSC10); |
| 1580 | |
| 1581 | Value v1 = fmla(y2, cstC10, cstC8); |
| 1582 | Value v2 = fmla(y2, v1, cstC6); |
| 1583 | Value v3 = fmla(y2, v2, cstC4); |
| 1584 | Value v4 = fmla(y2, v3, cstC2); |
| 1585 | Value v5 = fmla(y2, v4, cstOne); |
| 1586 | Value v6 = mul(base, v5); |
| 1587 | |
| 1588 | Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6); |
| 1589 | |
| 1590 | rewriter.replaceOp(op, approximation); |
| 1591 | |
| 1592 | return success(); |
| 1593 | } |
| 1594 | |
| 1595 | //----------------------------------------------------------------------------// |
| 1596 | // Cbrt approximation. |
| 1597 | //----------------------------------------------------------------------------// |
| 1598 | |
| 1599 | namespace { |
| 1600 | struct CbrtApproximation : public OpRewritePattern<math::CbrtOp> { |
| 1601 | using OpRewritePattern::OpRewritePattern; |
| 1602 | |
| 1603 | LogicalResult matchAndRewrite(math::CbrtOp op, |
| 1604 | PatternRewriter &rewriter) const final; |
| 1605 | }; |
| 1606 | } // namespace |
| 1607 | |
| 1608 | // Estimation of cube-root using an algorithm defined in |
| 1609 | // Hacker's Delight 2nd Edition. |
| 1610 | LogicalResult |
| 1611 | CbrtApproximation::matchAndRewrite(math::CbrtOp op, |
| 1612 | PatternRewriter &rewriter) const { |
| 1613 | auto operand = op.getOperand(); |
| 1614 | if (!getElementTypeOrSelf(operand).isF32()) |
| 1615 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 1616 | |
| 1617 | ImplicitLocOpBuilder b(op->getLoc(), rewriter); |
| 1618 | std::optional<VectorShape> shape = vectorShape(operand); |
| 1619 | |
| 1620 | Type floatTy = getElementTypeOrSelf(operand.getType()); |
| 1621 | Type intTy = b.getIntegerType(floatTy.getIntOrFloatBitWidth()); |
| 1622 | |
| 1623 | // Convert to vector types if necessary. |
| 1624 | floatTy = broadcast(type: floatTy, shape); |
| 1625 | intTy = broadcast(type: intTy, shape); |
| 1626 | |
| 1627 | auto bconst = [&](TypedAttr attr) -> Value { |
| 1628 | Value value = b.create<arith::ConstantOp>(attr); |
| 1629 | return broadcast(builder&: b, value, shape); |
| 1630 | }; |
| 1631 | |
| 1632 | // Declare the initial values: |
| 1633 | Value intTwo = bconst(b.getI32IntegerAttr(2)); |
| 1634 | Value intFour = bconst(b.getI32IntegerAttr(4)); |
| 1635 | Value intEight = bconst(b.getI32IntegerAttr(8)); |
| 1636 | Value intMagic = bconst(b.getI32IntegerAttr(0x2a5137a0)); |
| 1637 | Value fpThird = bconst(b.getF32FloatAttr(0.33333333f)); |
| 1638 | Value fpTwo = bconst(b.getF32FloatAttr(2.0f)); |
| 1639 | Value fpZero = bconst(b.getF32FloatAttr(0.0f)); |
| 1640 | |
| 1641 | // Compute an approximation of one third: |
| 1642 | // union {int ix; float x;}; |
| 1643 | // x = x0; |
| 1644 | // ix = ix/4 + ix/16; |
| 1645 | Value absValue = b.create<math::AbsFOp>(operand); |
| 1646 | Value intValue = b.create<arith::BitcastOp>(intTy, absValue); |
| 1647 | Value divideBy4 = b.create<arith::ShRSIOp>(intValue, intTwo); |
| 1648 | Value divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour); |
| 1649 | intValue = b.create<arith::AddIOp>(divideBy4, divideBy16); |
| 1650 | |
| 1651 | // ix = ix + ix/16; |
| 1652 | divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour); |
| 1653 | intValue = b.create<arith::AddIOp>(intValue, divideBy16); |
| 1654 | |
| 1655 | // ix = ix + ix/256; |
| 1656 | Value divideBy256 = b.create<arith::ShRSIOp>(intValue, intEight); |
| 1657 | intValue = b.create<arith::AddIOp>(intValue, divideBy256); |
| 1658 | |
| 1659 | // ix = 0x2a5137a0 + ix; |
| 1660 | intValue = b.create<arith::AddIOp>(intValue, intMagic); |
| 1661 | |
| 1662 | // Perform one newtons step: |
| 1663 | // x = 0.33333333f*(2.0f*x + x0/(x*x)); |
| 1664 | Value floatValue = b.create<arith::BitcastOp>(floatTy, intValue); |
| 1665 | Value squared = b.create<arith::MulFOp>(floatValue, floatValue); |
| 1666 | Value mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo); |
| 1667 | Value divSquared = b.create<arith::DivFOp>(absValue, squared); |
| 1668 | floatValue = b.create<arith::AddFOp>(mulTwo, divSquared); |
| 1669 | floatValue = b.create<arith::MulFOp>(floatValue, fpThird); |
| 1670 | |
| 1671 | // x = 0.33333333f*(2.0f*x + x0/(x*x)); |
| 1672 | squared = b.create<arith::MulFOp>(floatValue, floatValue); |
| 1673 | mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo); |
| 1674 | divSquared = b.create<arith::DivFOp>(absValue, squared); |
| 1675 | floatValue = b.create<arith::AddFOp>(mulTwo, divSquared); |
| 1676 | floatValue = b.create<arith::MulFOp>(floatValue, fpThird); |
| 1677 | |
| 1678 | // Check for zero and restore sign. |
| 1679 | Value isZero = |
| 1680 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absValue, fpZero); |
| 1681 | floatValue = b.create<arith::SelectOp>(isZero, fpZero, floatValue); |
| 1682 | floatValue = b.create<math::CopySignOp>(floatValue, operand); |
| 1683 | |
| 1684 | rewriter.replaceOp(op, floatValue); |
| 1685 | return success(); |
| 1686 | } |
| 1687 | |
| 1688 | //----------------------------------------------------------------------------// |
| 1689 | // Rsqrt approximation. |
| 1690 | //----------------------------------------------------------------------------// |
| 1691 | |
| 1692 | namespace { |
| 1693 | struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> { |
| 1694 | using OpRewritePattern::OpRewritePattern; |
| 1695 | |
| 1696 | LogicalResult matchAndRewrite(math::RsqrtOp op, |
| 1697 | PatternRewriter &rewriter) const final; |
| 1698 | }; |
| 1699 | } // namespace |
| 1700 | |
| 1701 | LogicalResult |
| 1702 | RsqrtApproximation::matchAndRewrite(math::RsqrtOp op, |
| 1703 | PatternRewriter &rewriter) const { |
| 1704 | if (!getElementTypeOrSelf(op.getOperand()).isF32()) |
| 1705 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 1706 | |
| 1707 | std::optional<VectorShape> shape = vectorShape(op.getOperand()); |
| 1708 | |
| 1709 | // Only support already-vectorized rsqrt's. |
| 1710 | if (!shape || shape->sizes.empty() || shape->sizes.back() % 8 != 0) |
| 1711 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 1712 | |
| 1713 | ImplicitLocOpBuilder builder(op->getLoc(), rewriter); |
| 1714 | auto bcast = [&](Value value) -> Value { |
| 1715 | return broadcast(builder, value, shape); |
| 1716 | }; |
| 1717 | |
| 1718 | Value cstPosInf = bcast(f32FromBits(builder, bits: 0x7f800000u)); |
| 1719 | Value cstOnePointFive = bcast(f32Cst(builder, value: 1.5f)); |
| 1720 | Value cstNegHalf = bcast(f32Cst(builder, value: -0.5f)); |
| 1721 | Value cstMinNormPos = bcast(f32FromBits(builder, bits: 0x00800000u)); |
| 1722 | |
| 1723 | Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf); |
| 1724 | |
| 1725 | // Select only the inverse sqrt of positive normals (denormals are |
| 1726 | // flushed to zero). |
| 1727 | Value ltMinMask = builder.create<arith::CmpFOp>( |
| 1728 | arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos); |
| 1729 | Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, |
| 1730 | op.getOperand(), cstPosInf); |
| 1731 | Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask); |
| 1732 | |
| 1733 | // Compute an approximate result. |
| 1734 | Value yApprox = handleMultidimensionalVectors( |
| 1735 | builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value { |
| 1736 | return builder.create<x86vector::RsqrtOp>(operands); |
| 1737 | }); |
| 1738 | |
| 1739 | // Do a single step of Newton-Raphson iteration to improve the approximation. |
| 1740 | // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n). |
| 1741 | // It is essential to evaluate the inner term like this because forming |
| 1742 | // y_n^2 may over- or underflow. |
| 1743 | Value inner = builder.create<arith::MulFOp>(negHalf, yApprox); |
| 1744 | Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive); |
| 1745 | Value yNewton = builder.create<arith::MulFOp>(yApprox, fma); |
| 1746 | |
| 1747 | // Select the result of the Newton-Raphson step for positive normal arguments. |
| 1748 | // For other arguments, choose the output of the intrinsic. This will |
| 1749 | // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if |
| 1750 | // x is zero or a positive denormalized float (equivalent to flushing positive |
| 1751 | // denormalized inputs to zero). |
| 1752 | Value res = |
| 1753 | builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton); |
| 1754 | rewriter.replaceOp(op, res); |
| 1755 | |
| 1756 | return success(); |
| 1757 | } |
| 1758 | |
| 1759 | //----------------------------------------------------------------------------// |
| 1760 | |
| 1761 | void mlir::populatePolynomialApproximateTanhPattern( |
| 1762 | RewritePatternSet &patterns) { |
| 1763 | patterns.add<TanhApproximation>(arg: patterns.getContext()); |
| 1764 | } |
| 1765 | |
| 1766 | void mlir::populatePolynomialApproximateErfPattern( |
| 1767 | RewritePatternSet &patterns) { |
| 1768 | patterns.add<ErfPolynomialApproximation>(arg: patterns.getContext()); |
| 1769 | } |
| 1770 | |
| 1771 | void mlir::populatePolynomialApproximateErfcPattern( |
| 1772 | RewritePatternSet &patterns) { |
| 1773 | patterns.add<ErfcPolynomialApproximation>(arg: patterns.getContext()); |
| 1774 | } |
| 1775 | |
| 1776 | template <typename OpType> |
| 1777 | static void |
| 1778 | populateMathF32ExpansionPattern(RewritePatternSet &patterns, |
| 1779 | llvm::function_ref<bool(StringRef)> predicate, |
| 1780 | PatternBenefit benefit) { |
| 1781 | if (predicate(OpType::getOperationName())) { |
| 1782 | patterns.add<ReuseF32Expansion<OpType>>(patterns.getContext(), benefit); |
| 1783 | } |
| 1784 | } |
| 1785 | |
| 1786 | void mlir::populateMathF32ExpansionPatterns( |
| 1787 | RewritePatternSet &patterns, llvm::function_ref<bool(StringRef)> predicate, |
| 1788 | PatternBenefit benefit) { |
| 1789 | populateMathF32ExpansionPattern<math::AcosOp>(patterns, predicate, benefit); |
| 1790 | populateMathF32ExpansionPattern<math::AcoshOp>(patterns, predicate, benefit); |
| 1791 | populateMathF32ExpansionPattern<math::AsinOp>(patterns, predicate, benefit); |
| 1792 | populateMathF32ExpansionPattern<math::AsinhOp>(patterns, predicate, benefit); |
| 1793 | populateMathF32ExpansionPattern<math::AtanOp>(patterns, predicate, benefit); |
| 1794 | populateMathF32ExpansionPattern<math::Atan2Op>(patterns, predicate, benefit); |
| 1795 | populateMathF32ExpansionPattern<math::AtanhOp>(patterns, predicate, benefit); |
| 1796 | populateMathF32ExpansionPattern<math::CbrtOp>(patterns, predicate, benefit); |
| 1797 | populateMathF32ExpansionPattern<math::CosOp>(patterns, predicate, benefit); |
| 1798 | populateMathF32ExpansionPattern<math::CoshOp>(patterns, predicate, benefit); |
| 1799 | populateMathF32ExpansionPattern<math::ErfOp>(patterns, predicate, benefit); |
| 1800 | populateMathF32ExpansionPattern<math::ErfcOp>(patterns, predicate, benefit); |
| 1801 | populateMathF32ExpansionPattern<math::ExpOp>(patterns, predicate, benefit); |
| 1802 | populateMathF32ExpansionPattern<math::Exp2Op>(patterns, predicate, benefit); |
| 1803 | populateMathF32ExpansionPattern<math::ExpM1Op>(patterns, predicate, benefit); |
| 1804 | populateMathF32ExpansionPattern<math::LogOp>(patterns, predicate, benefit); |
| 1805 | populateMathF32ExpansionPattern<math::Log10Op>(patterns, predicate, benefit); |
| 1806 | populateMathF32ExpansionPattern<math::Log1pOp>(patterns, predicate, benefit); |
| 1807 | populateMathF32ExpansionPattern<math::Log2Op>(patterns, predicate, benefit); |
| 1808 | populateMathF32ExpansionPattern<math::PowFOp>(patterns, predicate, benefit); |
| 1809 | populateMathF32ExpansionPattern<math::RsqrtOp>(patterns, predicate, benefit); |
| 1810 | populateMathF32ExpansionPattern<math::SinOp>(patterns, predicate, benefit); |
| 1811 | populateMathF32ExpansionPattern<math::SinhOp>(patterns, predicate, benefit); |
| 1812 | populateMathF32ExpansionPattern<math::SqrtOp>(patterns, predicate, benefit); |
| 1813 | populateMathF32ExpansionPattern<math::TanOp>(patterns, predicate, benefit); |
| 1814 | populateMathF32ExpansionPattern<math::TanhOp>(patterns, predicate, benefit); |
| 1815 | } |
| 1816 | |
| 1817 | template <typename OpType, typename PatternType> |
| 1818 | static void populateMathPolynomialApproximationPattern( |
| 1819 | RewritePatternSet &patterns, llvm::function_ref<bool(StringRef)> predicate, |
| 1820 | PatternBenefit benefit) { |
| 1821 | if (predicate(OpType::getOperationName())) { |
| 1822 | patterns.add<PatternType>(patterns.getContext(), benefit); |
| 1823 | } |
| 1824 | } |
| 1825 | |
| 1826 | void mlir::populateMathPolynomialApproximationPatterns( |
| 1827 | RewritePatternSet &patterns, llvm::function_ref<bool(StringRef)> predicate, |
| 1828 | PatternBenefit benefit) { |
| 1829 | populateMathPolynomialApproximationPattern<AcosOp, |
| 1830 | AcosPolynomialApproximation>( |
| 1831 | patterns, predicate, benefit); |
| 1832 | populateMathPolynomialApproximationPattern<AsinOp, |
| 1833 | AsinPolynomialApproximation>( |
| 1834 | patterns, predicate, benefit); |
| 1835 | populateMathPolynomialApproximationPattern<AtanOp, AtanApproximation>( |
| 1836 | patterns, predicate, benefit); |
| 1837 | populateMathPolynomialApproximationPattern<Atan2Op, Atan2Approximation>( |
| 1838 | patterns, predicate, benefit); |
| 1839 | populateMathPolynomialApproximationPattern<CbrtOp, CbrtApproximation>( |
| 1840 | patterns, predicate, benefit); |
| 1841 | populateMathPolynomialApproximationPattern< |
| 1842 | CosOp, SinAndCosApproximation<false, math::CosOp>>(patterns, predicate, |
| 1843 | benefit); |
| 1844 | populateMathPolynomialApproximationPattern<ErfOp, ErfPolynomialApproximation>( |
| 1845 | patterns, predicate, benefit); |
| 1846 | populateMathPolynomialApproximationPattern<ErfcOp, |
| 1847 | ErfcPolynomialApproximation>( |
| 1848 | patterns, predicate, benefit); |
| 1849 | populateMathPolynomialApproximationPattern<ExpOp, ExpApproximation>( |
| 1850 | patterns, predicate, benefit); |
| 1851 | populateMathPolynomialApproximationPattern<ExpM1Op, ExpM1Approximation>( |
| 1852 | patterns, predicate, benefit); |
| 1853 | populateMathPolynomialApproximationPattern<LogOp, LogApproximation>( |
| 1854 | patterns, predicate, benefit); |
| 1855 | populateMathPolynomialApproximationPattern<Log2Op, Log2Approximation>( |
| 1856 | patterns, predicate, benefit); |
| 1857 | populateMathPolynomialApproximationPattern<Log1pOp, Log1pApproximation>( |
| 1858 | patterns, predicate, benefit); |
| 1859 | populateMathPolynomialApproximationPattern<RsqrtOp, RsqrtApproximation>( |
| 1860 | patterns, predicate, benefit); |
| 1861 | populateMathPolynomialApproximationPattern< |
| 1862 | SinOp, SinAndCosApproximation<true, math::SinOp>>(patterns, predicate, |
| 1863 | benefit); |
| 1864 | populateMathPolynomialApproximationPattern<TanhOp, TanhApproximation>( |
| 1865 | patterns, predicate, benefit); |
| 1866 | } |
| 1867 | |
| 1868 | void mlir::populateMathPolynomialApproximationPatterns( |
| 1869 | RewritePatternSet &patterns, |
| 1870 | const MathPolynomialApproximationOptions &options) { |
| 1871 | mlir::populateMathF32ExpansionPatterns(patterns, predicate: [](StringRef name) -> bool { |
| 1872 | return llvm::is_contained( |
| 1873 | {math::AtanOp::getOperationName(), math::Atan2Op::getOperationName(), |
| 1874 | math::TanhOp::getOperationName(), math::LogOp::getOperationName(), |
| 1875 | math::Log2Op::getOperationName(), math::Log1pOp::getOperationName(), |
| 1876 | math::ErfOp::getOperationName(), math::ErfcOp::getOperationName(), |
| 1877 | math::ExpOp::getOperationName(), math::ExpM1Op::getOperationName(), |
| 1878 | math::CbrtOp::getOperationName(), math::SinOp::getOperationName(), |
| 1879 | math::CosOp::getOperationName()}, |
| 1880 | name); |
| 1881 | }); |
| 1882 | |
| 1883 | populateMathPolynomialApproximationPatterns( |
| 1884 | patterns, predicate: [](StringRef name) -> bool { |
| 1885 | return llvm::is_contained( |
| 1886 | {math::AtanOp::getOperationName(), |
| 1887 | math::Atan2Op::getOperationName(), |
| 1888 | math::TanhOp::getOperationName(), math::LogOp::getOperationName(), |
| 1889 | math::Log2Op::getOperationName(), |
| 1890 | math::Log1pOp::getOperationName(), math::ErfOp::getOperationName(), |
| 1891 | math::ErfcOp::getOperationName(), math::AsinOp::getOperationName(), |
| 1892 | math::AcosOp::getOperationName(), math::ExpOp::getOperationName(), |
| 1893 | math::ExpM1Op::getOperationName(), |
| 1894 | math::CbrtOp::getOperationName(), math::SinOp::getOperationName(), |
| 1895 | math::CosOp::getOperationName()}, |
| 1896 | name); |
| 1897 | }); |
| 1898 | |
| 1899 | if (options.enableAvx2) { |
| 1900 | auto predicateRsqrt = [](StringRef name) { |
| 1901 | return name == math::RsqrtOp::getOperationName(); |
| 1902 | }; |
| 1903 | mlir::populateMathF32ExpansionPatterns(patterns, predicateRsqrt); |
| 1904 | mlir::populateMathPolynomialApproximationPatterns(patterns, predicateRsqrt); |
| 1905 | } |
| 1906 | } |
| 1907 | |