| 1 | //===- Spmdization.cpp --------------------------------------------- C++ --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Mesh/Transforms/Spmdization.h" |
| 10 | |
| 11 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 12 | #include "mlir/Dialect/Mesh/IR/MeshDialect.h" |
| 13 | #include "mlir/Dialect/Mesh/IR/MeshOps.h" |
| 14 | #include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h" |
| 15 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 16 | #include "mlir/IR/Builders.h" |
| 17 | #include "mlir/IR/BuiltinAttributes.h" |
| 18 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
| 19 | #include "mlir/IR/BuiltinTypes.h" |
| 20 | #include "mlir/IR/Diagnostics.h" |
| 21 | #include "mlir/IR/IRMapping.h" |
| 22 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 23 | #include "mlir/IR/Location.h" |
| 24 | #include "mlir/IR/MLIRContext.h" |
| 25 | #include "mlir/IR/SymbolTable.h" |
| 26 | #include "mlir/IR/Value.h" |
| 27 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| 28 | #include "mlir/Interfaces/FunctionInterfaces.h" |
| 29 | #include "mlir/Pass/Pass.h" |
| 30 | #include "mlir/Support/LLVM.h" |
| 31 | #include "llvm/ADT/APInt.h" |
| 32 | #include "llvm/ADT/DenseSet.h" |
| 33 | #include "llvm/ADT/STLExtras.h" |
| 34 | #include "llvm/ADT/SmallVector.h" |
| 35 | #include "llvm/Support/Casting.h" |
| 36 | #include <iterator> |
| 37 | #include <optional> |
| 38 | #include <tuple> |
| 39 | #include <type_traits> |
| 40 | |
| 41 | namespace mlir::mesh { |
| 42 | |
| 43 | template <typename SourceAxes, typename TargetAxes> |
| 44 | static bool arePartialAxesCompatible(const SourceAxes &sourceAxes, |
| 45 | const TargetAxes &targetAxes) { |
| 46 | return llvm::all_of(targetAxes, [&sourceAxes](auto &targetAxis) { |
| 47 | return sourceAxes.contains(targetAxis); |
| 48 | }); |
| 49 | } |
| 50 | |
| 51 | // Return the reduced value and its corresponding sharding. |
| 52 | // Example: |
| 53 | // sourceSharding = <@mesh_1d, [[0]], partial = sum[0]> |
| 54 | // targetSharding = <@mesh_1d, [[]]> |
| 55 | // Then will apply all-reduce on the source value |
| 56 | // and return it with the sharding <@mesh_1d, [[0]]>. |
| 57 | static std::tuple<TypedValue<ShapedType>, MeshSharding> |
| 58 | handlePartialAxesDuringResharding(OpBuilder &builder, |
| 59 | MeshSharding sourceSharding, |
| 60 | MeshSharding targetSharding, |
| 61 | TypedValue<ShapedType> sourceShard) { |
| 62 | if (sourceSharding.getPartialAxes().empty() && |
| 63 | targetSharding.getPartialAxes().empty()) { |
| 64 | return {sourceShard, sourceSharding}; |
| 65 | } |
| 66 | assert(targetSharding.getPartialAxes().empty() || |
| 67 | (!sourceSharding.getPartialAxes().empty() && |
| 68 | sourceSharding.getPartialType() == targetSharding.getPartialType())); |
| 69 | using Axis = std::decay_t<decltype(sourceSharding.getPartialAxes().front())>; |
| 70 | using AxisSet = llvm::SmallDenseSet<Axis>; |
| 71 | AxisSet sourceShardingPartialAxesSet(sourceSharding.getPartialAxes().begin(), |
| 72 | sourceSharding.getPartialAxes().end()); |
| 73 | AxisSet targetShardingPartialAxesSet(targetSharding.getPartialAxes().begin(), |
| 74 | targetSharding.getPartialAxes().end()); |
| 75 | assert(arePartialAxesCompatible(sourceShardingPartialAxesSet, |
| 76 | targetShardingPartialAxesSet)); |
| 77 | llvm::SmallVector<MeshAxis> allReduceMeshAxes; |
| 78 | llvm::copy_if(Range&: sourceShardingPartialAxesSet, |
| 79 | Out: std::back_inserter(x&: allReduceMeshAxes), |
| 80 | P: [&targetShardingPartialAxesSet](Axis a) { |
| 81 | return !targetShardingPartialAxesSet.contains(V: a); |
| 82 | }); |
| 83 | if (allReduceMeshAxes.empty()) { |
| 84 | return {sourceShard, sourceSharding}; |
| 85 | } |
| 86 | |
| 87 | builder.setInsertionPointAfterValue(sourceShard); |
| 88 | TypedValue<ShapedType> resultValue = cast<TypedValue<ShapedType>>( |
| 89 | builder |
| 90 | .create<AllReduceOp>(sourceShard.getLoc(), sourceShard.getType(), |
| 91 | sourceSharding.getMeshAttr().getLeafReference(), |
| 92 | allReduceMeshAxes, sourceShard, |
| 93 | sourceSharding.getPartialType()) |
| 94 | .getResult()); |
| 95 | |
| 96 | llvm::SmallVector<MeshAxis> remainingPartialAxes; |
| 97 | llvm::copy_if(Range&: sourceShardingPartialAxesSet, |
| 98 | Out: std::back_inserter(x&: allReduceMeshAxes), |
| 99 | P: [&targetShardingPartialAxesSet](Axis a) { |
| 100 | return targetShardingPartialAxesSet.contains(V: a); |
| 101 | }); |
| 102 | MeshSharding resultSharding = MeshSharding::get( |
| 103 | sourceSharding.getMeshAttr(), sourceSharding.getSplitAxes(), |
| 104 | remainingPartialAxes, sourceSharding.getPartialType()); |
| 105 | return {resultValue, resultSharding}; |
| 106 | } |
| 107 | |
| 108 | static MeshSharding targetShardingInSplitLastAxis(MLIRContext *ctx, |
| 109 | MeshSharding sourceSharding, |
| 110 | int64_t splitTensorAxis, |
| 111 | MeshAxis splitMeshAxis) { |
| 112 | SmallVector<MeshAxesAttr> targetShardingSplitAxes = |
| 113 | llvm::to_vector(sourceSharding.getSplitAxes()); |
| 114 | while (static_cast<int64_t>(targetShardingSplitAxes.size()) <= |
| 115 | splitTensorAxis) { |
| 116 | targetShardingSplitAxes.push_back(MeshAxesAttr::get(ctx, {})); |
| 117 | } |
| 118 | auto targetSplitAxes = |
| 119 | llvm::to_vector(targetShardingSplitAxes[splitTensorAxis].asArrayRef()); |
| 120 | targetSplitAxes.push_back(splitMeshAxis); |
| 121 | targetShardingSplitAxes[splitTensorAxis] = |
| 122 | MeshAxesAttr::get(ctx, targetSplitAxes); |
| 123 | return MeshSharding::get( |
| 124 | sourceSharding.getMeshAttr(), targetShardingSplitAxes, |
| 125 | sourceSharding.getPartialAxes(), sourceSharding.getPartialType()); |
| 126 | } |
| 127 | |
| 128 | // Split a replicated tensor along a mesh axis. |
| 129 | // E.g. [[0, 1]] -> [[0, 1, 2]]. |
| 130 | // Returns the spmdized target value with its sharding. |
| 131 | static std::tuple<TypedValue<ShapedType>, MeshSharding> |
| 132 | splitLastAxisInResharding(ImplicitLocOpBuilder &builder, |
| 133 | MeshSharding sourceSharding, |
| 134 | TypedValue<ShapedType> sourceShard, MeshOp mesh, |
| 135 | int64_t splitTensorAxis, MeshAxis splitMeshAxis) { |
| 136 | TypedValue<ShapedType> targetShard = cast<TypedValue<ShapedType>>( |
| 137 | builder |
| 138 | .create<AllSliceOp>(sourceShard, mesh, |
| 139 | ArrayRef<MeshAxis>(splitMeshAxis), |
| 140 | splitTensorAxis) |
| 141 | .getResult()); |
| 142 | MeshSharding targetSharding = targetShardingInSplitLastAxis( |
| 143 | ctx: builder.getContext(), sourceSharding, splitTensorAxis, splitMeshAxis); |
| 144 | return {targetShard, targetSharding}; |
| 145 | } |
| 146 | |
| 147 | // Detect if the resharding is of type e.g. |
| 148 | // [[0, 1]] -> [[0, 1, 2]]. |
| 149 | // If detected, returns the corresponding tensor axis mesh axis pair. |
| 150 | // Does not detect insertions like |
| 151 | // [[0, 1]] -> [[0, 2, 1]]. |
| 152 | static std::optional<std::tuple<int64_t, MeshAxis>> |
| 153 | detectSplitLastAxisInResharding(MeshSharding sourceSharding, |
| 154 | MeshSharding targetSharding) { |
| 155 | for (size_t tensorAxis = 0; tensorAxis < targetSharding.getSplitAxes().size(); |
| 156 | ++tensorAxis) { |
| 157 | if (sourceSharding.getSplitAxes().size() > tensorAxis) { |
| 158 | if (sourceSharding.getSplitAxes()[tensorAxis].size() + 1 != |
| 159 | targetSharding.getSplitAxes()[tensorAxis].size()) { |
| 160 | continue; |
| 161 | } |
| 162 | if (!llvm::equal( |
| 163 | sourceSharding.getSplitAxes()[tensorAxis].asArrayRef(), |
| 164 | llvm::make_range( |
| 165 | targetSharding.getSplitAxes()[tensorAxis] |
| 166 | .asArrayRef() |
| 167 | .begin(), |
| 168 | targetSharding.getSplitAxes()[tensorAxis].asArrayRef().end() - |
| 169 | 1))) { |
| 170 | continue; |
| 171 | } |
| 172 | } else { |
| 173 | if (targetSharding.getSplitAxes()[tensorAxis].size() != 1) { |
| 174 | continue; |
| 175 | } |
| 176 | } |
| 177 | return std::make_tuple( |
| 178 | tensorAxis, |
| 179 | targetSharding.getSplitAxes()[tensorAxis].asArrayRef().back()); |
| 180 | } |
| 181 | return std::nullopt; |
| 182 | } |
| 183 | |
| 184 | static std::optional<std::tuple<TypedValue<ShapedType>, MeshSharding>> |
| 185 | trySplitLastAxisInResharding(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 186 | MeshSharding sourceSharding, |
| 187 | MeshSharding targetSharding, |
| 188 | TypedValue<ShapedType> sourceShard) { |
| 189 | if (auto detectRes = |
| 190 | detectSplitLastAxisInResharding(sourceSharding, targetSharding)) { |
| 191 | auto [tensorAxis, meshAxis] = detectRes.value(); |
| 192 | return splitLastAxisInResharding(builder, sourceSharding, sourceShard, mesh, |
| 193 | tensorAxis, meshAxis); |
| 194 | } |
| 195 | |
| 196 | return std::nullopt; |
| 197 | } |
| 198 | |
| 199 | // Detect if the resharding is of type e.g. |
| 200 | // [[0, 1, 2]] -> [[0, 1]]. |
| 201 | // If detected, returns the corresponding tensor axis mesh axis pair. |
| 202 | static std::optional<std::tuple<int64_t, MeshAxis>> |
| 203 | detectUnsplitLastAxisInResharding(MeshSharding sourceSharding, |
| 204 | MeshSharding targetSharding) { |
| 205 | for (size_t tensorAxis = 0; tensorAxis < sourceSharding.getSplitAxes().size(); |
| 206 | ++tensorAxis) { |
| 207 | if (targetSharding.getSplitAxes().size() > tensorAxis) { |
| 208 | if (sourceSharding.getSplitAxes()[tensorAxis].size() != |
| 209 | targetSharding.getSplitAxes()[tensorAxis].size() + 1) |
| 210 | continue; |
| 211 | if (!llvm::equal( |
| 212 | llvm::make_range( |
| 213 | sourceSharding.getSplitAxes()[tensorAxis] |
| 214 | .asArrayRef() |
| 215 | .begin(), |
| 216 | sourceSharding.getSplitAxes()[tensorAxis].asArrayRef().end() - |
| 217 | 1), |
| 218 | targetSharding.getSplitAxes()[tensorAxis].asArrayRef())) |
| 219 | continue; |
| 220 | } else { |
| 221 | if (sourceSharding.getSplitAxes()[tensorAxis].size() != 1) |
| 222 | continue; |
| 223 | } |
| 224 | return std::make_tuple( |
| 225 | tensorAxis, |
| 226 | sourceSharding.getSplitAxes()[tensorAxis].asArrayRef().back()); |
| 227 | } |
| 228 | return std::nullopt; |
| 229 | } |
| 230 | |
| 231 | static MeshSharding targetShardingInUnsplitLastAxis(MLIRContext *ctx, |
| 232 | MeshSharding sourceSharding, |
| 233 | int64_t splitTensorAxis) { |
| 234 | SmallVector<MeshAxesAttr> targetShardingSplitAxes = |
| 235 | llvm::to_vector(sourceSharding.getSplitAxes()); |
| 236 | assert(static_cast<int64_t>(targetShardingSplitAxes.size()) > |
| 237 | splitTensorAxis); |
| 238 | auto targetSplitAxes = |
| 239 | llvm::to_vector(targetShardingSplitAxes[splitTensorAxis].asArrayRef()); |
| 240 | |
| 241 | targetSplitAxes.pop_back(); |
| 242 | targetShardingSplitAxes[splitTensorAxis] = |
| 243 | MeshAxesAttr::get(ctx, targetSplitAxes); |
| 244 | return MeshSharding::get( |
| 245 | sourceSharding.getMeshAttr(), targetShardingSplitAxes, |
| 246 | sourceSharding.getPartialAxes(), sourceSharding.getPartialType()); |
| 247 | } |
| 248 | |
| 249 | static ShapedType allGatherResultShapeInUnsplitLastAxis( |
| 250 | ShapedType sourceShape, int64_t splitCount, int64_t splitTensorAxis) { |
| 251 | SmallVector<int64_t> targetShape = llvm::to_vector(sourceShape.getShape()); |
| 252 | targetShape[splitTensorAxis] = |
| 253 | gatherDimension(dimSize: targetShape[splitTensorAxis], shardCount: splitCount); |
| 254 | return sourceShape.cloneWith(targetShape, sourceShape.getElementType()); |
| 255 | } |
| 256 | |
| 257 | static std::tuple<TypedValue<ShapedType>, MeshSharding> |
| 258 | unsplitLastAxisInResharding(ImplicitLocOpBuilder &builder, |
| 259 | MeshSharding sourceSharding, |
| 260 | ShapedType sourceUnshardedShape, |
| 261 | TypedValue<ShapedType> sourceShard, MeshOp mesh, |
| 262 | int64_t splitTensorAxis, MeshAxis splitMeshAxis) { |
| 263 | MLIRContext *ctx = builder.getContext(); |
| 264 | builder.setInsertionPointAfterValue(sourceShard); |
| 265 | |
| 266 | MeshSharding targetSharding = |
| 267 | targetShardingInUnsplitLastAxis(ctx, sourceSharding, splitTensorAxis); |
| 268 | ShapedType allGatherResultShape = allGatherResultShapeInUnsplitLastAxis( |
| 269 | sourceShard.getType(), mesh.getShape()[splitMeshAxis], splitTensorAxis); |
| 270 | Value allGatherResult = builder.create<AllGatherOp>( |
| 271 | RankedTensorType::get(allGatherResultShape.getShape(), |
| 272 | allGatherResultShape.getElementType()), |
| 273 | mesh.getSymName(), SmallVector<MeshAxis>({splitMeshAxis}), sourceShard, |
| 274 | APInt(64, splitTensorAxis)); |
| 275 | ShapedType targetShape = |
| 276 | shardShapedType(sourceUnshardedShape, mesh, targetSharding); |
| 277 | TypedValue<ShapedType> targetShard = cast<TypedValue<ShapedType>>( |
| 278 | builder.create<tensor::CastOp>(targetShape, allGatherResult).getResult()); |
| 279 | return {targetShard, targetSharding}; |
| 280 | } |
| 281 | |
| 282 | static std::optional<std::tuple<TypedValue<ShapedType>, MeshSharding>> |
| 283 | tryUnsplitLastAxisInResharding(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 284 | MeshSharding sourceSharding, |
| 285 | MeshSharding targetSharding, |
| 286 | ShapedType sourceUnshardedShape, |
| 287 | TypedValue<ShapedType> sourceShard) { |
| 288 | if (auto detectRes = |
| 289 | detectUnsplitLastAxisInResharding(sourceSharding, targetSharding)) { |
| 290 | auto [tensorAxis, meshAxis] = detectRes.value(); |
| 291 | return unsplitLastAxisInResharding(builder, sourceSharding, |
| 292 | sourceUnshardedShape, sourceShard, mesh, |
| 293 | tensorAxis, meshAxis); |
| 294 | } |
| 295 | |
| 296 | return std::nullopt; |
| 297 | } |
| 298 | |
| 299 | // Detect if the resharding is of type e.g. |
| 300 | // [[0, 1], [2]] -> [[0], [1, 2]]. |
| 301 | // Only moving the last axis counts. |
| 302 | // If detected, returns the corresponding (source_tensor_axis, |
| 303 | // target_tensor_axis, mesh_axis) tuple. |
| 304 | static std::optional<std::tuple<int64_t, int64_t, MeshAxis>> |
| 305 | detectMoveLastSplitAxisInResharding(MeshSharding sourceSharding, |
| 306 | MeshSharding targetSharding) { |
| 307 | for (size_t sourceTensorAxis = 0; |
| 308 | sourceTensorAxis < sourceSharding.getSplitAxes().size(); |
| 309 | ++sourceTensorAxis) { |
| 310 | for (size_t targetTensorAxis = 0; |
| 311 | targetTensorAxis < targetSharding.getSplitAxes().size(); |
| 312 | ++targetTensorAxis) { |
| 313 | if (sourceTensorAxis == targetTensorAxis) |
| 314 | continue; |
| 315 | if (sourceSharding.getSplitAxes()[sourceTensorAxis].empty() || |
| 316 | targetSharding.getSplitAxes()[targetTensorAxis].empty() || |
| 317 | sourceSharding.getSplitAxes()[sourceTensorAxis].asArrayRef().back() != |
| 318 | targetSharding.getSplitAxes()[targetTensorAxis] |
| 319 | .asArrayRef() |
| 320 | .back()) |
| 321 | continue; |
| 322 | if (!llvm::equal( |
| 323 | llvm::make_range(sourceSharding.getSplitAxes()[sourceTensorAxis] |
| 324 | .asArrayRef() |
| 325 | .begin(), |
| 326 | sourceSharding.getSplitAxes()[sourceTensorAxis] |
| 327 | .asArrayRef() |
| 328 | .end() - |
| 329 | 1), |
| 330 | llvm::make_range(targetSharding.getSplitAxes()[targetTensorAxis] |
| 331 | .asArrayRef() |
| 332 | .begin(), |
| 333 | targetSharding.getSplitAxes()[targetTensorAxis] |
| 334 | .asArrayRef() |
| 335 | .end() - |
| 336 | 1))) |
| 337 | continue; |
| 338 | return std::make_tuple( |
| 339 | sourceTensorAxis, targetTensorAxis, |
| 340 | sourceSharding.getSplitAxes()[sourceTensorAxis].asArrayRef().back()); |
| 341 | } |
| 342 | } |
| 343 | return std::nullopt; |
| 344 | } |
| 345 | |
| 346 | static MeshSharding targetShardingInMoveLastAxis(MLIRContext *ctx, |
| 347 | MeshSharding sourceSharding, |
| 348 | int64_t sourceTensorAxis, |
| 349 | int64_t targetTensorAxis) { |
| 350 | SmallVector<MeshAxesAttr> targetShardingSplitAxes = |
| 351 | llvm::to_vector(sourceSharding.getSplitAxes()); |
| 352 | while (static_cast<int64_t>(targetShardingSplitAxes.size()) <= |
| 353 | targetTensorAxis) { |
| 354 | targetShardingSplitAxes.push_back(MeshAxesAttr::get(ctx, {})); |
| 355 | } |
| 356 | |
| 357 | auto sourceSplitAxes = |
| 358 | llvm::to_vector(targetShardingSplitAxes[sourceTensorAxis].asArrayRef()); |
| 359 | assert(!sourceSplitAxes.empty()); |
| 360 | auto meshAxis = sourceSplitAxes.back(); |
| 361 | sourceSplitAxes.pop_back(); |
| 362 | targetShardingSplitAxes[sourceTensorAxis] = |
| 363 | MeshAxesAttr::get(ctx, sourceSplitAxes); |
| 364 | |
| 365 | auto targetSplitAxes = |
| 366 | llvm::to_vector(targetShardingSplitAxes[targetTensorAxis].asArrayRef()); |
| 367 | targetSplitAxes.push_back(meshAxis); |
| 368 | targetShardingSplitAxes[targetTensorAxis] = |
| 369 | MeshAxesAttr::get(ctx, targetSplitAxes); |
| 370 | |
| 371 | return MeshSharding::get( |
| 372 | sourceSharding.getMeshAttr(), targetShardingSplitAxes, |
| 373 | sourceSharding.getPartialAxes(), sourceSharding.getPartialType()); |
| 374 | } |
| 375 | |
| 376 | static ShapedType allToAllResultShapeInMoveLastAxis(ShapedType sourceShape, |
| 377 | int64_t splitCount, |
| 378 | int64_t sourceTensorAxis, |
| 379 | int64_t targetTensorAxis) { |
| 380 | SmallVector<int64_t> targetShape = llvm::to_vector(sourceShape.getShape()); |
| 381 | targetShape[sourceTensorAxis] = |
| 382 | gatherDimension(dimSize: targetShape[sourceTensorAxis], shardCount: splitCount); |
| 383 | targetShape[targetTensorAxis] = |
| 384 | shardDimension(dimSize: targetShape[targetTensorAxis], shardCount: splitCount); |
| 385 | return sourceShape.cloneWith(targetShape, sourceShape.getElementType()); |
| 386 | } |
| 387 | |
| 388 | static std::tuple<TypedValue<ShapedType>, MeshSharding> |
| 389 | moveLastSplitAxisInResharding(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 390 | MeshSharding sourceSharding, |
| 391 | ShapedType sourceUnshardedShape, |
| 392 | TypedValue<ShapedType> sourceShard, |
| 393 | int64_t sourceTensorAxis, |
| 394 | int64_t targetTensorAxis, MeshAxis meshAxis) { |
| 395 | MLIRContext *ctx = builder.getContext(); |
| 396 | builder.setInsertionPointAfterValue(sourceShard); |
| 397 | |
| 398 | MeshSharding targetSharding = targetShardingInMoveLastAxis( |
| 399 | ctx, sourceSharding, sourceTensorAxis, targetTensorAxis); |
| 400 | ShapedType allToAllResultShape = allToAllResultShapeInMoveLastAxis( |
| 401 | sourceShard.getType(), mesh.getShape()[meshAxis], sourceTensorAxis, |
| 402 | targetTensorAxis); |
| 403 | Value allToAllResult = builder.create<AllToAllOp>( |
| 404 | RankedTensorType::get(allToAllResultShape.getShape(), |
| 405 | allToAllResultShape.getElementType()), |
| 406 | mesh.getSymName(), SmallVector<MeshAxis>({meshAxis}), sourceShard, |
| 407 | APInt(64, targetTensorAxis), APInt(64, sourceTensorAxis)); |
| 408 | ShapedType targetShape = |
| 409 | shardShapedType(sourceUnshardedShape, mesh, targetSharding); |
| 410 | TypedValue<ShapedType> targetShard = cast<TypedValue<ShapedType>>( |
| 411 | builder.create<tensor::CastOp>(targetShape, allToAllResult).getResult()); |
| 412 | return {targetShard, targetSharding}; |
| 413 | } |
| 414 | |
| 415 | static std::optional<std::tuple<TypedValue<ShapedType>, MeshSharding>> |
| 416 | tryMoveLastSplitAxisInResharding(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 417 | MeshSharding sourceSharding, |
| 418 | MeshSharding targetSharding, |
| 419 | ShapedType sourceUnshardedShape, |
| 420 | TypedValue<ShapedType> sourceShard) { |
| 421 | if (auto detectRes = |
| 422 | detectMoveLastSplitAxisInResharding(sourceSharding, targetSharding)) { |
| 423 | auto [sourceTensorAxis, targetTensorAxis, meshAxis] = detectRes.value(); |
| 424 | return moveLastSplitAxisInResharding( |
| 425 | builder, mesh, sourceSharding, sourceUnshardedShape, sourceShard, |
| 426 | sourceTensorAxis, targetTensorAxis, meshAxis); |
| 427 | } |
| 428 | |
| 429 | return std::nullopt; |
| 430 | } |
| 431 | |
| 432 | // Detect a change in the halo size (only) and create necessary operations if |
| 433 | // needed. A changed halo sizes requires copying the "core" of the source tensor |
| 434 | // into the "core" of the destination tensor followed by an update halo |
| 435 | // operation. |
| 436 | static std::optional<std::tuple<TypedValue<ShapedType>, MeshSharding>> |
| 437 | tryUpdateHaloInResharding(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 438 | MeshSharding sourceSharding, |
| 439 | MeshSharding targetSharding, |
| 440 | ShapedType sourceUnshardedShape, |
| 441 | TypedValue<ShapedType> sourceShard) { |
| 442 | // Currently handles only cases where halo sizes differ but everything else |
| 443 | // stays the same (from source to destination sharding). |
| 444 | if (!sourceSharding.equalSplitAndPartialAxes(rhs: targetSharding) || |
| 445 | !sourceSharding.getPartialAxes().empty() || |
| 446 | !targetSharding.getPartialAxes().empty() || |
| 447 | !sourceSharding.getStaticShardedDimsOffsets().empty() || |
| 448 | !targetSharding.getStaticShardedDimsOffsets().empty() || |
| 449 | sourceSharding.equalHaloSizes(rhs: targetSharding)) { |
| 450 | return std::nullopt; |
| 451 | } |
| 452 | |
| 453 | auto srcHaloSizes = sourceSharding.getStaticHaloSizes(); |
| 454 | auto tgtHaloSizes = targetSharding.getStaticHaloSizes(); |
| 455 | assert(srcHaloSizes.empty() || srcHaloSizes.size() == tgtHaloSizes.size()); |
| 456 | assert(((srcHaloSizes.empty() || !ShapedType::isDynamicShape(srcHaloSizes)) && |
| 457 | !ShapedType::isDynamicShape(tgtHaloSizes) && |
| 458 | sourceShard.getType().hasStaticShape()) && |
| 459 | "dynamic shapes/halos are not supported yet for mesh-spmdization" ); |
| 460 | auto rank = sourceShard.getType().getRank(); |
| 461 | auto splitAxes = sourceSharding.getSplitAxes(); |
| 462 | SmallVector<int64_t> srcCoreOffs(rank, 0), tgtCoreOffs(rank, 0), |
| 463 | strides(rank, 1), outShape(sourceShard.getType().getShape()), |
| 464 | coreShape(sourceShard.getType().getShape()); |
| 465 | |
| 466 | // Determine "core" of source and destination. |
| 467 | // The core is the local part of the shard excluding halo regions. |
| 468 | for (auto i = 0u; i < rank; ++i) { |
| 469 | if (i < splitAxes.size() && !splitAxes[i].empty()) { |
| 470 | if (!srcHaloSizes.empty()) { |
| 471 | coreShape[i] -= srcHaloSizes[i * 2] + srcHaloSizes[i * 2 + 1]; |
| 472 | srcCoreOffs[i] = srcHaloSizes[i * 2]; |
| 473 | } |
| 474 | tgtCoreOffs[i] = tgtHaloSizes[i * 2]; |
| 475 | outShape[i] = |
| 476 | coreShape[i] + tgtHaloSizes[i * 2] + tgtHaloSizes[i * 2 + 1]; |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | // Extract core from source and copy into destination core. |
| 481 | auto noVals = ValueRange{}; |
| 482 | auto initVal = builder.create<tensor::EmptyOp>( |
| 483 | sourceShard.getLoc(), outShape, sourceShard.getType().getElementType()); |
| 484 | auto core = builder.create<tensor::ExtractSliceOp>( |
| 485 | sourceShard.getLoc(), |
| 486 | RankedTensorType::get(coreShape, sourceShard.getType().getElementType()), |
| 487 | sourceShard, noVals, noVals, noVals, srcCoreOffs, coreShape, strides); |
| 488 | auto initOprnd = builder.create<tensor::InsertSliceOp>( |
| 489 | sourceShard.getLoc(), core, initVal, noVals, noVals, noVals, tgtCoreOffs, |
| 490 | coreShape, strides); |
| 491 | |
| 492 | // Finally update the halo. |
| 493 | auto updateHaloResult = |
| 494 | builder |
| 495 | .create<UpdateHaloOp>( |
| 496 | sourceShard.getLoc(), |
| 497 | RankedTensorType::get(outShape, |
| 498 | sourceShard.getType().getElementType()), |
| 499 | initOprnd, mesh.getSymName(), |
| 500 | MeshAxesArrayAttr::get(builder.getContext(), |
| 501 | sourceSharding.getSplitAxes()), |
| 502 | targetSharding.getDynamicHaloSizes(), |
| 503 | targetSharding.getStaticHaloSizes()) |
| 504 | .getResult(); |
| 505 | return std::make_tuple(cast<TypedValue<ShapedType>>(updateHaloResult), |
| 506 | targetSharding); |
| 507 | } |
| 508 | |
| 509 | // Handles only resharding on a 1D mesh. |
| 510 | // Currently the sharded tensor axes must be exactly divisible by the single |
| 511 | // mesh axis size. |
| 512 | static TypedValue<ShapedType> |
| 513 | reshardOn1DMesh(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 514 | MeshSharding sourceSharding, MeshSharding targetSharding, |
| 515 | TypedValue<ShapedType> sourceUnshardedValue, |
| 516 | TypedValue<ShapedType> sourceShard) { |
| 517 | assert(sourceShard.getType() == |
| 518 | shardShapedType(sourceUnshardedValue.getType(), mesh, sourceSharding)); |
| 519 | [[maybe_unused]] ShapedType targetShardType = |
| 520 | shardShapedType(sourceUnshardedValue.getType(), mesh, targetSharding); |
| 521 | assert(sourceShard.getType().getRank() == targetShardType.getRank()); |
| 522 | assert(mesh.getRank() == 1 && "Only 1D meshes are currently supported." ); |
| 523 | |
| 524 | auto [reducedSourceShard, reducedSourceSharding] = |
| 525 | handlePartialAxesDuringResharding(builder, sourceSharding, targetSharding, |
| 526 | sourceShard); |
| 527 | |
| 528 | if (reducedSourceSharding == targetSharding) { |
| 529 | return reducedSourceShard; |
| 530 | } |
| 531 | |
| 532 | TypedValue<ShapedType> targetShard; |
| 533 | MeshSharding actualTargetSharding; |
| 534 | if (reducedSourceSharding.getStaticShardedDimsOffsets().empty() && |
| 535 | targetSharding.getStaticShardedDimsOffsets().empty() && |
| 536 | reducedSourceSharding.getStaticHaloSizes().empty() && |
| 537 | targetSharding.getStaticHaloSizes().empty()) { |
| 538 | if (auto tryRes = tryMoveLastSplitAxisInResharding( |
| 539 | builder, mesh, reducedSourceSharding, targetSharding, |
| 540 | sourceUnshardedValue.getType(), reducedSourceShard)) { |
| 541 | std::tie(targetShard, actualTargetSharding) = tryRes.value(); |
| 542 | } else if (auto tryRes = trySplitLastAxisInResharding( |
| 543 | builder, mesh, reducedSourceSharding, targetSharding, |
| 544 | reducedSourceShard)) { |
| 545 | std::tie(targetShard, actualTargetSharding) = tryRes.value(); |
| 546 | } else if (auto tryRes = tryUnsplitLastAxisInResharding( |
| 547 | builder, mesh, reducedSourceSharding, targetSharding, |
| 548 | sourceUnshardedValue.getType(), reducedSourceShard)) { |
| 549 | std::tie(targetShard, actualTargetSharding) = tryRes.value(); |
| 550 | } |
| 551 | } |
| 552 | assert(targetShard && "Did not find any pattern to apply." ); |
| 553 | assert(actualTargetSharding == targetSharding); |
| 554 | assert(targetShard.getType() == targetShardType); |
| 555 | return targetShard; |
| 556 | } |
| 557 | |
| 558 | TypedValue<ShapedType> reshard(ImplicitLocOpBuilder &builder, MeshOp mesh, |
| 559 | MeshSharding sourceSharding, |
| 560 | MeshSharding targetSharding, |
| 561 | TypedValue<ShapedType> sourceUnshardedValue, |
| 562 | TypedValue<ShapedType> sourceShard) { |
| 563 | // If source and destination sharding are the same, no need to do anything. |
| 564 | if (sourceSharding == targetSharding || (isFullReplication(sharding: sourceSharding) && |
| 565 | isFullReplication(sharding: targetSharding))) { |
| 566 | return sourceShard; |
| 567 | } |
| 568 | |
| 569 | // Tries to handle the case where the resharding is needed because the halo |
| 570 | // sizes are different. Supports arbitrary mesh dimensionality. |
| 571 | if (auto tryRes = tryUpdateHaloInResharding( |
| 572 | builder, mesh, sourceSharding, targetSharding, |
| 573 | sourceUnshardedValue.getType(), sourceShard)) { |
| 574 | return std::get<0>(tryRes.value()); // targetShard |
| 575 | } |
| 576 | |
| 577 | // Resort to handling only 1D meshes since the general case is complicated if |
| 578 | // it needs to be communication efficient in terms of minimizing the data |
| 579 | // transfered between devices. |
| 580 | return reshardOn1DMesh(builder, mesh, sourceSharding, targetSharding, |
| 581 | sourceUnshardedValue, sourceShard); |
| 582 | } |
| 583 | |
| 584 | TypedValue<ShapedType> reshard(OpBuilder &builder, MeshOp mesh, ShardOp source, |
| 585 | ShardOp target, |
| 586 | TypedValue<ShapedType> sourceShardValue) { |
| 587 | assert(source.getResult() == target.getSrc()); |
| 588 | auto sourceSharding = source.getSharding(); |
| 589 | auto targetSharding = target.getSharding(); |
| 590 | ImplicitLocOpBuilder implicitLocOpBuilder(target->getLoc(), builder); |
| 591 | return reshard(implicitLocOpBuilder, mesh, sourceSharding, targetSharding, |
| 592 | cast<TypedValue<ShapedType>>(source.getSrc()), |
| 593 | sourceShardValue); |
| 594 | } |
| 595 | |
| 596 | TypedValue<ShapedType> reshard(OpBuilder &builder, ShardOp source, |
| 597 | ShardOp target, |
| 598 | TypedValue<ShapedType> sourceShardValue, |
| 599 | SymbolTableCollection &symbolTableCollection) { |
| 600 | MeshOp srcMesh = getMesh(source, symbolTableCollection); |
| 601 | assert(srcMesh && srcMesh == getMesh(target, symbolTableCollection)); |
| 602 | return reshard(builder, srcMesh, source, target, sourceShardValue); |
| 603 | } |
| 604 | |
| 605 | void reshardingRegisterDependentDialects(DialectRegistry ®istry) { |
| 606 | registry.insert<mesh::MeshDialect, tensor::TensorDialect>(); |
| 607 | } |
| 608 | |
| 609 | #define GEN_PASS_DEF_SPMDIZATION |
| 610 | #include "mlir/Dialect/Mesh/Transforms/Passes.h.inc" |
| 611 | |
| 612 | using UnshardedToShardedValueMap = DenseMap<Value, Value>; |
| 613 | |
| 614 | // Get the types of block arguments for an spmdized block. |
| 615 | // Reads the sharding annotations of the arguments to deduce the sharded types. |
| 616 | // Types that are not ranked tensors are left unchanged. |
| 617 | SmallVector<Type> |
| 618 | shardedBlockArgumentTypes(Block &block, |
| 619 | SymbolTableCollection &symbolTableCollection) { |
| 620 | SmallVector<Type> res; |
| 621 | llvm::transform( |
| 622 | block.getArguments(), std::back_inserter(res), |
| 623 | [&symbolTableCollection](BlockArgument arg) { |
| 624 | auto rankedTensorArg = dyn_cast<TypedValue<RankedTensorType>>(arg); |
| 625 | if (!rankedTensorArg || rankedTensorArg.getType().getRank() == 0) { |
| 626 | return arg.getType(); |
| 627 | } |
| 628 | |
| 629 | assert(rankedTensorArg.hasOneUse()); |
| 630 | Operation *useOp = *rankedTensorArg.getUsers().begin(); |
| 631 | ShardOp shardOp = llvm::dyn_cast<ShardOp>(useOp); |
| 632 | assert(shardOp); |
| 633 | MeshOp mesh = getMesh(shardOp, symbolTableCollection); |
| 634 | return cast<Type>(shardShapedType(rankedTensorArg.getType(), mesh, |
| 635 | shardOp.getSharding())); |
| 636 | }); |
| 637 | return res; |
| 638 | } |
| 639 | |
| 640 | static LogicalResult spmdizeOperation( |
| 641 | Operation &op, ArrayRef<Value> spmdizedOperands, |
| 642 | ArrayRef<MeshSharding> operandShardings, |
| 643 | ArrayRef<MeshSharding> resultShardings, IRMapping &spmdizationMap, |
| 644 | SymbolTableCollection &symbolTableCollection, OpBuilder &builder) { |
| 645 | ShardingInterface shardingInterface = llvm::dyn_cast<ShardingInterface>(op); |
| 646 | if (!shardingInterface) { |
| 647 | // If there is no sharding interface we are conservative and assume that |
| 648 | // the op should be fully replicated no all devices. |
| 649 | spmdizeFullyReplicatedOperation(op, spmdizedOperands, operandShardings, |
| 650 | resultShardings, spmdizationMap, |
| 651 | symbolTableCollection, builder); |
| 652 | } else { |
| 653 | if (failed(shardingInterface.spmdize(spmdizedOperands, operandShardings, |
| 654 | resultShardings, spmdizationMap, |
| 655 | symbolTableCollection, builder))) { |
| 656 | return failure(); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | assert(llvm::all_of(op.getResults(), [&spmdizationMap](OpResult result) { |
| 661 | return spmdizationMap.contains(result); |
| 662 | })); |
| 663 | |
| 664 | return success(); |
| 665 | } |
| 666 | |
| 667 | // Retrieve the sharding annotations for the operands of the given operation. |
| 668 | // If the type is not a ranked tensor it is not require to have an annotation. |
| 669 | static std::vector<MeshSharding> getOperandShardings(Operation &op) { |
| 670 | std::vector<MeshSharding> res; |
| 671 | res.reserve(op.getNumOperands()); |
| 672 | llvm::transform(op.getOperands(), std::back_inserter(res), [](Value operand) { |
| 673 | TypedValue<RankedTensorType> rankedTensor = |
| 674 | dyn_cast<TypedValue<RankedTensorType>>(operand); |
| 675 | if (!rankedTensor || rankedTensor.getType().getRank() == 0) { |
| 676 | return MeshSharding(); |
| 677 | } |
| 678 | |
| 679 | Operation *definingOp = operand.getDefiningOp(); |
| 680 | assert(definingOp); |
| 681 | ShardOp shardOp = llvm::cast<ShardOp>(definingOp); |
| 682 | return MeshSharding(shardOp.getSharding()); |
| 683 | }); |
| 684 | return res; |
| 685 | } |
| 686 | |
| 687 | // Retrieve the sharding annotations for the results of the given operation. |
| 688 | // If the type is not a ranked tensor it is not require to have an annotation. |
| 689 | static std::vector<MeshSharding> getResultShardings(Operation &op) { |
| 690 | std::vector<MeshSharding> res; |
| 691 | res.reserve(op.getNumResults()); |
| 692 | llvm::transform( |
| 693 | op.getResults(), std::back_inserter(res), [&op](OpResult result) { |
| 694 | if (!result.hasOneUse() || result.use_empty()) { |
| 695 | return MeshSharding(); |
| 696 | } |
| 697 | TypedValue<RankedTensorType> rankedTensor = |
| 698 | dyn_cast<TypedValue<RankedTensorType>>(result); |
| 699 | if (!rankedTensor) { |
| 700 | return MeshSharding(); |
| 701 | } |
| 702 | Operation *userOp = *result.getUsers().begin(); |
| 703 | ShardOp shardOp = llvm::dyn_cast<ShardOp>(userOp); |
| 704 | if (shardOp) { |
| 705 | return MeshSharding(shardOp.getSharding()); |
| 706 | } |
| 707 | if (rankedTensor.getType().getRank() == 0) { |
| 708 | // This is a 0d tensor result without explicit sharding. |
| 709 | // Find mesh symbol from operands, if any. |
| 710 | // Shardings without mesh are not always fully supported yet. |
| 711 | for (auto operand : op.getOperands()) { |
| 712 | if (auto sharding = operand.getDefiningOp<ShardingOp>()) { |
| 713 | return MeshSharding(sharding.getMeshAttr()); |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | return MeshSharding(); |
| 718 | }); |
| 719 | return res; |
| 720 | } |
| 721 | |
| 722 | static LogicalResult |
| 723 | spmdizeOperation(ShardOp shardOp, IRMapping &spmdizationMap, |
| 724 | SymbolTableCollection &symbolTableCollection, |
| 725 | OpBuilder &builder) { |
| 726 | Value targetSpmdValue; |
| 727 | |
| 728 | // Check if 2 shard ops are chained. If not there is no need for resharding |
| 729 | // as the source and target shared the same sharding. |
| 730 | ShardOp srcShardOp = |
| 731 | dyn_cast_or_null<ShardOp>(shardOp.getSrc().getDefiningOp()); |
| 732 | if (!srcShardOp) { |
| 733 | targetSpmdValue = spmdizationMap.lookup(shardOp.getSrc()); |
| 734 | } else { |
| 735 | // Insert resharding. |
| 736 | TypedValue<ShapedType> srcSpmdValue = |
| 737 | cast<TypedValue<ShapedType>>(spmdizationMap.lookup(srcShardOp)); |
| 738 | targetSpmdValue = reshard(builder, srcShardOp, shardOp, srcSpmdValue, |
| 739 | symbolTableCollection); |
| 740 | } |
| 741 | |
| 742 | assert(!spmdizationMap.contains(shardOp.getResult())); |
| 743 | spmdizationMap.map(shardOp.getResult(), targetSpmdValue); |
| 744 | return success(); |
| 745 | } |
| 746 | |
| 747 | static LogicalResult |
| 748 | spmdizeOperation(Operation &op, IRMapping &spmdizationMap, |
| 749 | SymbolTableCollection &symbolTableCollection, |
| 750 | OpBuilder &builder) { |
| 751 | if (isa<ShardingOp>(op)) { |
| 752 | return success(); |
| 753 | } |
| 754 | if (auto getShardingOp = dyn_cast<GetShardingOp>(op)) { |
| 755 | auto shardOp = getShardingOp.getSource().getDefiningOp<ShardOp>(); |
| 756 | if (!shardOp) { |
| 757 | return op.emitError(message: "expected a shard op as source of get_sharding" ); |
| 758 | } |
| 759 | auto newSharding = builder.clone(*shardOp.getSharding().getDefiningOp()); |
| 760 | spmdizationMap.map(op.getResult(idx: 0), newSharding->getResult(0)); |
| 761 | return success(); |
| 762 | } |
| 763 | |
| 764 | ShardOp shardOp = llvm::dyn_cast<ShardOp>(op); |
| 765 | if (shardOp) { |
| 766 | return spmdizeOperation(shardOp, spmdizationMap, symbolTableCollection, |
| 767 | builder); |
| 768 | } |
| 769 | |
| 770 | SmallVector<Value> spmdizedOperands; |
| 771 | llvm::transform(op.getOperands(), std::back_inserter(spmdizedOperands), |
| 772 | [&spmdizationMap](Value operand) { |
| 773 | assert(spmdizationMap.contains(operand)); |
| 774 | return spmdizationMap.lookup(operand); |
| 775 | }); |
| 776 | return spmdizeOperation(op, spmdizedOperands, getOperandShardings(op), |
| 777 | getResultShardings(op), spmdizationMap, |
| 778 | symbolTableCollection, builder); |
| 779 | } |
| 780 | |
| 781 | static LogicalResult spmdizeBlock(Block &block, IRMapping &spmdizationMap, |
| 782 | SymbolTableCollection &symbolTableCollection, |
| 783 | OpBuilder &builder) { |
| 784 | |
| 785 | SmallVector<Location> argLocations; |
| 786 | llvm::transform(block.getArguments(), std::back_inserter(argLocations), |
| 787 | [](BlockArgument arg) { return arg.getLoc(); }); |
| 788 | Block *newBlock = builder.createBlock( |
| 789 | block.getParent(), {}, |
| 790 | shardedBlockArgumentTypes(block, symbolTableCollection), argLocations); |
| 791 | for (auto [unshardedBlockArg, spmdizedBlockArg] : |
| 792 | llvm::zip(block.getArguments(), newBlock->getArguments())) { |
| 793 | spmdizationMap.map(unshardedBlockArg, spmdizedBlockArg); |
| 794 | } |
| 795 | |
| 796 | OpBuilder::InsertionGuard insertionGuard(builder); |
| 797 | builder.setInsertionPointToEnd(newBlock); |
| 798 | for (Operation &op : block.getOperations()) { |
| 799 | if (failed(Result: spmdizeOperation(op, spmdizationMap, symbolTableCollection, |
| 800 | builder))) { |
| 801 | return failure(); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | return success(); |
| 806 | } |
| 807 | |
| 808 | static LogicalResult |
| 809 | spmdizeFuncOp(FunctionOpInterface op, IRMapping &spmdizationMap, |
| 810 | SymbolTableCollection &symbolTableCollection) { |
| 811 | OpBuilder builder(op.getFunctionBody()); |
| 812 | |
| 813 | // Snapshot the original blocks to not mess up the iteration when adding new |
| 814 | // blocks. |
| 815 | SmallVector<Block *> originalBlocks; |
| 816 | for (Block &b : op.getBlocks()) { |
| 817 | if (llvm::any_of(b.getOperations(), |
| 818 | [](Operation &op) { return isa<ShardOp>(op); })) { |
| 819 | originalBlocks.push_back(&b); |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | for (Block *block : originalBlocks) { |
| 824 | if (failed(spmdizeBlock(*block, spmdizationMap, symbolTableCollection, |
| 825 | builder))) { |
| 826 | return failure(); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | for (Block *block : originalBlocks) { |
| 831 | block->erase(); |
| 832 | } |
| 833 | |
| 834 | // Find a return op and change the function results signature to its operands |
| 835 | // signature. |
| 836 | Operation *returnOp = nullptr; |
| 837 | for (Block &block : op.getFunctionBody()) { |
| 838 | if (block.empty()) { |
| 839 | continue; |
| 840 | } |
| 841 | |
| 842 | if (block.back().hasTrait<OpTrait::ReturnLike>()) { |
| 843 | returnOp = &block.back(); |
| 844 | break; |
| 845 | } |
| 846 | } |
| 847 | if (returnOp) { |
| 848 | op.setType(FunctionType::get( |
| 849 | op->getContext(), op.getFunctionBody().front().getArgumentTypes(), |
| 850 | returnOp->getOperandTypes())); |
| 851 | } |
| 852 | |
| 853 | return success(); |
| 854 | } |
| 855 | |
| 856 | namespace { |
| 857 | |
| 858 | struct Spmdization : public impl::SpmdizationBase<Spmdization> { |
| 859 | void runOnOperation() override { |
| 860 | IRMapping spmdizationMap; |
| 861 | SymbolTableCollection symbolTableCollection; |
| 862 | if (failed(spmdizeFuncOp(getOperation(), spmdizationMap, |
| 863 | symbolTableCollection))) { |
| 864 | return signalPassFailure(); |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | void getDependentDialects(DialectRegistry ®istry) const override { |
| 869 | reshardingRegisterDependentDialects(registry); |
| 870 | registry.insert<mesh::MeshDialect>(); |
| 871 | } |
| 872 | }; |
| 873 | |
| 874 | } // namespace |
| 875 | |
| 876 | } // namespace mlir::mesh |
| 877 | |