1 | //===- UniformSupport.cpp - Support utilities for uniform quant -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Dialect/Quant/UniformSupport.h" |
10 | #include "mlir/IR/BuiltinTypes.h" |
11 | #include <numeric> |
12 | |
13 | using namespace mlir; |
14 | using namespace mlir::quant; |
15 | |
16 | static bool isQuantizablePrimitiveType(Type inputType) { |
17 | return isa<FloatType>(Val: inputType); |
18 | } |
19 | |
20 | ExpressedToQuantizedConverter |
21 | ExpressedToQuantizedConverter::forInputType(Type inputType) { |
22 | if (isa<TensorType, VectorType>(Val: inputType)) { |
23 | Type elementType = cast<ShapedType>(inputType).getElementType(); |
24 | if (!isQuantizablePrimitiveType(inputType: elementType)) |
25 | return ExpressedToQuantizedConverter{.inputType: inputType, .expressedType: nullptr}; |
26 | return ExpressedToQuantizedConverter{.inputType: inputType, .expressedType: elementType}; |
27 | } |
28 | // Supported primitive type (which just is the expressed type). |
29 | if (isQuantizablePrimitiveType(inputType)) |
30 | return ExpressedToQuantizedConverter{.inputType: inputType, .expressedType: inputType}; |
31 | // Unsupported. |
32 | return ExpressedToQuantizedConverter{.inputType: inputType, .expressedType: nullptr}; |
33 | } |
34 | |
35 | Type ExpressedToQuantizedConverter::convert(QuantizedType elementalType) const { |
36 | assert(expressedType && "convert() on unsupported conversion" ); |
37 | if (auto tensorType = dyn_cast<RankedTensorType>(inputType)) |
38 | return RankedTensorType::get(tensorType.getShape(), elementalType); |
39 | if (dyn_cast<UnrankedTensorType>(inputType)) |
40 | return UnrankedTensorType::get(elementalType); |
41 | if (auto vectorType = dyn_cast<VectorType>(inputType)) |
42 | return VectorType::get(vectorType.getShape(), elementalType); |
43 | |
44 | // If the expressed types match, just use the new elemental type. |
45 | if (elementalType.getExpressedType() == expressedType) |
46 | return elementalType; |
47 | // Unsupported. |
48 | return nullptr; |
49 | } |
50 | |
51 | ElementsAttr |
52 | UniformQuantizedPerAxisValueConverter::convert(Attribute realValue) { |
53 | if (auto attr = dyn_cast<DenseFPElementsAttr>(realValue)) { |
54 | return convert(attr); |
55 | } |
56 | // TODO: handles sparse elements attribute |
57 | return nullptr; |
58 | } |
59 | |
60 | DenseElementsAttr |
61 | UniformQuantizedPerAxisValueConverter::convert(DenseFPElementsAttr attr) { |
62 | // Creates the converter for each chunk. Normally the size of the |
63 | // quantization dim is 3, so we can cache all the converters. |
64 | ShapedType type = attr.getType(); |
65 | size_t dimSize = type.getDimSize(quantizationDim); |
66 | if (dimSize != scales.size()) { |
67 | return {}; |
68 | } |
69 | SmallVector<UniformQuantizedValueConverter, 4> converters; |
70 | converters.reserve(N: dimSize); |
71 | for (int i = 0, e = dimSize; i != e; ++i) { |
72 | converters.push_back(Elt: getPerChunkConverter(index: i)); |
73 | } |
74 | |
75 | // Scan the elements of the dense elements attributes and quantize them by |
76 | // using the right quantization parameters. |
77 | int64_t flattenIndex = 0; |
78 | auto shape = type.getShape(); |
79 | int64_t chunkSize = |
80 | std::accumulate(std::next(shape.begin(), quantizationDim + 1), |
81 | shape.end(), 1, std::multiplies<int64_t>()); |
82 | Type newElementType = IntegerType::get(attr.getContext(), storageBitWidth); |
83 | return attr.mapValues(newElementType, [&](const APFloat &old) { |
84 | int chunkIndex = (flattenIndex++) / chunkSize; |
85 | return converters[chunkIndex % dimSize].quantizeFloatToInt(old); |
86 | }); |
87 | } |
88 | |