1//===- AffineCanonicalizationUtils.cpp - Affine Canonicalization in SCF ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Utility functions to canonicalize affine ops within SCF op regions.
10//
11//===----------------------------------------------------------------------===//
12
13#include <utility>
14
15#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
16#include "mlir/Dialect/Affine/Analysis/Utils.h"
17#include "mlir/Dialect/Affine/IR/AffineOps.h"
18#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
19#include "mlir/Dialect/SCF/IR/SCF.h"
20#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
21#include "mlir/Dialect/Utils/StaticValueUtils.h"
22#include "mlir/IR/AffineMap.h"
23#include "mlir/IR/Matchers.h"
24#include "mlir/IR/PatternMatch.h"
25#include "llvm/Support/Debug.h"
26
27#define DEBUG_TYPE "mlir-scf-affine-utils"
28
29using namespace mlir;
30using namespace affine;
31using namespace presburger;
32
33LogicalResult scf::matchForLikeLoop(Value iv, OpFoldResult &lb,
34 OpFoldResult &ub, OpFoldResult &step) {
35 if (scf::ForOp forOp = scf::getForInductionVarOwner(iv)) {
36 lb = forOp.getLowerBound();
37 ub = forOp.getUpperBound();
38 step = forOp.getStep();
39 return success();
40 }
41 if (scf::ParallelOp parOp = scf::getParallelForInductionVarOwner(iv)) {
42 for (unsigned idx = 0; idx < parOp.getNumLoops(); ++idx) {
43 if (parOp.getInductionVars()[idx] == iv) {
44 lb = parOp.getLowerBound()[idx];
45 ub = parOp.getUpperBound()[idx];
46 step = parOp.getStep()[idx];
47 return success();
48 }
49 }
50 return failure();
51 }
52 if (scf::ForallOp forallOp = scf::getForallOpThreadIndexOwner(iv)) {
53 for (int64_t idx = 0; idx < forallOp.getRank(); ++idx) {
54 if (forallOp.getInductionVar(idx) == iv) {
55 lb = forallOp.getMixedLowerBound()[idx];
56 ub = forallOp.getMixedUpperBound()[idx];
57 step = forallOp.getMixedStep()[idx];
58 return success();
59 }
60 }
61 return failure();
62 }
63 return failure();
64}
65
66static FailureOr<AffineApplyOp>
67canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op,
68 FlatAffineValueConstraints constraints) {
69 RewriterBase::InsertionGuard guard(rewriter);
70 rewriter.setInsertionPoint(op);
71 FailureOr<AffineValueMap> simplified =
72 affine::simplifyConstrainedMinMaxOp(op, constraints: std::move(constraints));
73 if (failed(result: simplified))
74 return failure();
75 return rewriter.replaceOpWithNewOp<AffineApplyOp>(
76 op, simplified->getAffineMap(), simplified->getOperands());
77}
78
79LogicalResult scf::addLoopRangeConstraints(FlatAffineValueConstraints &cstr,
80 Value iv, OpFoldResult lb,
81 OpFoldResult ub, OpFoldResult step) {
82 Builder b(iv.getContext());
83
84 // IntegerPolyhedron does not support semi-affine expressions.
85 // Therefore, only constant step values are supported.
86 auto stepInt = getConstantIntValue(ofr: step);
87 if (!stepInt)
88 return failure();
89
90 unsigned dimIv = cstr.appendDimVar(vals: iv);
91 auto lbv = llvm::dyn_cast_if_present<Value>(Val&: lb);
92 unsigned symLb =
93 lbv ? cstr.appendSymbolVar(vals: lbv) : cstr.appendSymbolVar(/*num=*/1);
94 auto ubv = llvm::dyn_cast_if_present<Value>(Val&: ub);
95 unsigned symUb =
96 ubv ? cstr.appendSymbolVar(vals: ubv) : cstr.appendSymbolVar(/*num=*/1);
97
98 // If loop lower/upper bounds are constant: Add EQ constraint.
99 std::optional<int64_t> lbInt = getConstantIntValue(ofr: lb);
100 std::optional<int64_t> ubInt = getConstantIntValue(ofr: ub);
101 if (lbInt)
102 cstr.addBound(type: BoundType::EQ, pos: symLb, value: *lbInt);
103 if (ubInt)
104 cstr.addBound(type: BoundType::EQ, pos: symUb, value: *ubInt);
105
106 // Lower bound: iv >= lb (equiv.: iv - lb >= 0)
107 SmallVector<int64_t> ineqLb(cstr.getNumCols(), 0);
108 ineqLb[dimIv] = 1;
109 ineqLb[symLb] = -1;
110 cstr.addInequality(inEq: ineqLb);
111
112 // Upper bound
113 AffineExpr ivUb;
114 if (lbInt && ubInt && (*lbInt + *stepInt >= *ubInt)) {
115 // The loop has at most one iteration.
116 // iv < lb + 1
117 // TODO: Try to derive this constraint by simplifying the expression in
118 // the else-branch.
119 ivUb = b.getAffineSymbolExpr(position: symLb - cstr.getNumDimVars()) + 1;
120 } else {
121 // The loop may have more than one iteration.
122 // iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
123 AffineExpr exprLb =
124 lbInt ? b.getAffineConstantExpr(constant: *lbInt)
125 : b.getAffineSymbolExpr(position: symLb - cstr.getNumDimVars());
126 AffineExpr exprUb =
127 ubInt ? b.getAffineConstantExpr(constant: *ubInt)
128 : b.getAffineSymbolExpr(position: symUb - cstr.getNumDimVars());
129 ivUb = exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(v: *stepInt)));
130 }
131 auto map = AffineMap::get(
132 /*dimCount=*/cstr.getNumDimVars(),
133 /*symbolCount=*/cstr.getNumSymbolVars(), /*result=*/ivUb);
134
135 return cstr.addBound(type: BoundType::UB, pos: dimIv, boundMap: map);
136}
137
138/// Canonicalize min/max operations in the context of for loops with a known
139/// range. Call `canonicalizeMinMaxOp` and add the following constraints to
140/// the constraint system (along with the missing dimensions):
141///
142/// * iv >= lb
143/// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
144///
145/// Note: Due to limitations of IntegerPolyhedron, only constant step sizes
146/// are currently supported.
147LogicalResult scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter,
148 Operation *op,
149 LoopMatcherFn loopMatcher) {
150 FlatAffineValueConstraints constraints;
151 DenseSet<Value> allIvs;
152
153 // Find all iteration variables among `minOp`'s operands add constrain them.
154 for (Value operand : op->getOperands()) {
155 // Skip duplicate ivs.
156 if (allIvs.contains(V: operand))
157 continue;
158
159 // If `operand` is an iteration variable: Find corresponding loop
160 // bounds and step.
161 Value iv = operand;
162 OpFoldResult lb, ub, step;
163 if (failed(result: loopMatcher(operand, lb, ub, step)))
164 continue;
165 allIvs.insert(V: iv);
166
167 if (failed(result: addLoopRangeConstraints(cstr&: constraints, iv, lb, ub, step)))
168 return failure();
169 }
170
171 return canonicalizeMinMaxOp(rewriter, op, constraints);
172}
173
174/// Try to simplify the given affine.min/max operation `op` after loop peeling.
175/// This function can simplify min/max operations such as (ub is the previous
176/// upper bound of the unpeeled loop):
177/// ```
178/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
179/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
180/// ```
181/// and rewrites them into (in the case the peeled loop):
182/// ```
183/// %r = %step
184/// ```
185/// min/max operations inside the partial iteration are rewritten in a similar
186/// way.
187///
188/// This function builds up a set of constraints, capable of proving that:
189/// * Inside the peeled loop: min(step, ub - iv) == step
190/// * Inside the partial iteration: min(step, ub - iv) == ub - iv
191///
192/// Returns `success` if the given operation was replaced by a new operation;
193/// `failure` otherwise.
194///
195/// Note: `ub` is the previous upper bound of the loop (before peeling).
196/// `insideLoop` must be true for min/max ops inside the loop and false for
197/// affine.min ops inside the partial iteration. For an explanation of the other
198/// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
199LogicalResult scf::rewritePeeledMinMaxOp(RewriterBase &rewriter, Operation *op,
200 Value iv, Value ub, Value step,
201 bool insideLoop) {
202 FlatAffineValueConstraints constraints;
203 constraints.appendDimVar(vals: {iv});
204 constraints.appendSymbolVar(vals: {ub, step});
205 if (auto constUb = getConstantIntValue(ofr: ub))
206 constraints.addBound(type: BoundType::EQ, pos: 1, value: *constUb);
207 if (auto constStep = getConstantIntValue(ofr: step))
208 constraints.addBound(type: BoundType::EQ, pos: 2, value: *constStep);
209
210 // Add loop peeling invariant. This is the main piece of knowledge that
211 // enables AffineMinOp simplification.
212 if (insideLoop) {
213 // ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0)
214 // Intuitively: Inside the peeled loop, every iteration is a "full"
215 // iteration, i.e., step divides the iteration space `ub - lb` evenly.
216 constraints.addInequality(inEq: {-1, 1, -1, 0});
217 } else {
218 // ub - iv < step (equiv.: iv + -ub + step - 1 >= 0)
219 // Intuitively: `iv` is the split bound here, i.e., the iteration variable
220 // value of the very last iteration (in the unpeeled loop). At that point,
221 // there are less than `step` elements remaining. (Otherwise, the peeled
222 // loop would run for at least one more iteration.)
223 constraints.addInequality(inEq: {1, -1, 1, -1});
224 }
225
226 return canonicalizeMinMaxOp(rewriter, op, constraints);
227}
228

source code of mlir/lib/Dialect/SCF/Utils/AffineCanonicalizationUtils.cpp