| 1 | //===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements utilities used to lower to SPIR-V dialect. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h" |
| 14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 15 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 16 | #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h" |
| 17 | #include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h" |
| 18 | #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" |
| 19 | #include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h" |
| 20 | #include "mlir/Dialect/SPIRV/IR/TargetAndABI.h" |
| 21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 22 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 23 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| 24 | #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| 25 | #include "mlir/IR/BuiltinTypes.h" |
| 26 | #include "mlir/IR/Operation.h" |
| 27 | #include "mlir/IR/PatternMatch.h" |
| 28 | #include "mlir/Pass/Pass.h" |
| 29 | #include "mlir/Support/LLVM.h" |
| 30 | #include "mlir/Transforms/DialectConversion.h" |
| 31 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 32 | #include "llvm/ADT/STLExtras.h" |
| 33 | #include "llvm/ADT/SmallVector.h" |
| 34 | #include "llvm/ADT/StringExtras.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/LogicalResult.h" |
| 37 | #include "llvm/Support/MathExtras.h" |
| 38 | |
| 39 | #include <functional> |
| 40 | #include <optional> |
| 41 | |
| 42 | #define DEBUG_TYPE "mlir-spirv-conversion" |
| 43 | |
| 44 | using namespace mlir; |
| 45 | |
| 46 | namespace { |
| 47 | |
| 48 | //===----------------------------------------------------------------------===// |
| 49 | // Utility functions |
| 50 | //===----------------------------------------------------------------------===// |
| 51 | |
| 52 | static std::optional<SmallVector<int64_t>> getTargetShape(VectorType vecType) { |
| 53 | LLVM_DEBUG(llvm::dbgs() << "Get target shape\n" ); |
| 54 | if (vecType.isScalable()) { |
| 55 | LLVM_DEBUG(llvm::dbgs() |
| 56 | << "--scalable vectors are not supported -> BAIL\n" ); |
| 57 | return std::nullopt; |
| 58 | } |
| 59 | SmallVector<int64_t> unrollShape = llvm::to_vector<4>(vecType.getShape()); |
| 60 | std::optional<SmallVector<int64_t>> targetShape = SmallVector<int64_t>( |
| 61 | 1, mlir::spirv::getComputeVectorSize(size: vecType.getShape().back())); |
| 62 | if (!targetShape) { |
| 63 | LLVM_DEBUG(llvm::dbgs() << "--no unrolling target shape defined\n" ); |
| 64 | return std::nullopt; |
| 65 | } |
| 66 | auto maybeShapeRatio = computeShapeRatio(shape: unrollShape, subShape: *targetShape); |
| 67 | if (!maybeShapeRatio) { |
| 68 | LLVM_DEBUG(llvm::dbgs() |
| 69 | << "--could not compute integral shape ratio -> BAIL\n" ); |
| 70 | return std::nullopt; |
| 71 | } |
| 72 | if (llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; })) { |
| 73 | LLVM_DEBUG(llvm::dbgs() << "--no unrolling needed -> SKIP\n" ); |
| 74 | return std::nullopt; |
| 75 | } |
| 76 | LLVM_DEBUG(llvm::dbgs() |
| 77 | << "--found an integral shape ratio to unroll to -> SUCCESS\n" ); |
| 78 | return targetShape; |
| 79 | } |
| 80 | |
| 81 | /// Checks that `candidates` extension requirements are possible to be satisfied |
| 82 | /// with the given `targetEnv`. |
| 83 | /// |
| 84 | /// `candidates` is a vector of vector for extension requirements following |
| 85 | /// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D)) |
| 86 | /// convention. |
| 87 | template <typename LabelT> |
| 88 | static LogicalResult checkExtensionRequirements( |
| 89 | LabelT label, const spirv::TargetEnv &targetEnv, |
| 90 | const spirv::SPIRVType::ExtensionArrayRefVector &candidates) { |
| 91 | for (const auto &ors : candidates) { |
| 92 | if (targetEnv.allows(ors)) |
| 93 | continue; |
| 94 | |
| 95 | LLVM_DEBUG({ |
| 96 | SmallVector<StringRef> extStrings; |
| 97 | for (spirv::Extension ext : ors) |
| 98 | extStrings.push_back(spirv::stringifyExtension(ext)); |
| 99 | |
| 100 | llvm::dbgs() << label << " illegal: requires at least one extension in [" |
| 101 | << llvm::join(extStrings, ", " ) |
| 102 | << "] but none allowed in target environment\n" ; |
| 103 | }); |
| 104 | return failure(); |
| 105 | } |
| 106 | return success(); |
| 107 | } |
| 108 | |
| 109 | /// Checks that `candidates`capability requirements are possible to be satisfied |
| 110 | /// with the given `isAllowedFn`. |
| 111 | /// |
| 112 | /// `candidates` is a vector of vector for capability requirements following |
| 113 | /// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D)) |
| 114 | /// convention. |
| 115 | template <typename LabelT> |
| 116 | static LogicalResult checkCapabilityRequirements( |
| 117 | LabelT label, const spirv::TargetEnv &targetEnv, |
| 118 | const spirv::SPIRVType::CapabilityArrayRefVector &candidates) { |
| 119 | for (const auto &ors : candidates) { |
| 120 | if (targetEnv.allows(ors)) |
| 121 | continue; |
| 122 | |
| 123 | LLVM_DEBUG({ |
| 124 | SmallVector<StringRef> capStrings; |
| 125 | for (spirv::Capability cap : ors) |
| 126 | capStrings.push_back(spirv::stringifyCapability(cap)); |
| 127 | |
| 128 | llvm::dbgs() << label << " illegal: requires at least one capability in [" |
| 129 | << llvm::join(capStrings, ", " ) |
| 130 | << "] but none allowed in target environment\n" ; |
| 131 | }); |
| 132 | return failure(); |
| 133 | } |
| 134 | return success(); |
| 135 | } |
| 136 | |
| 137 | /// Returns true if the given `storageClass` needs explicit layout when used in |
| 138 | /// Shader environments. |
| 139 | static bool needsExplicitLayout(spirv::StorageClass storageClass) { |
| 140 | switch (storageClass) { |
| 141 | case spirv::StorageClass::PhysicalStorageBuffer: |
| 142 | case spirv::StorageClass::PushConstant: |
| 143 | case spirv::StorageClass::StorageBuffer: |
| 144 | case spirv::StorageClass::Uniform: |
| 145 | return true; |
| 146 | default: |
| 147 | return false; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | /// Wraps the given `elementType` in a struct and gets the pointer to the |
| 152 | /// struct. This is used to satisfy Vulkan interface requirements. |
| 153 | static spirv::PointerType |
| 154 | wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) { |
| 155 | auto structType = needsExplicitLayout(storageClass) |
| 156 | ? spirv::StructType::get(memberTypes: elementType, /*offsetInfo=*/0) |
| 157 | : spirv::StructType::get(memberTypes: elementType); |
| 158 | return spirv::PointerType::get(structType, storageClass); |
| 159 | } |
| 160 | |
| 161 | //===----------------------------------------------------------------------===// |
| 162 | // Type Conversion |
| 163 | //===----------------------------------------------------------------------===// |
| 164 | |
| 165 | static spirv::ScalarType getIndexType(MLIRContext *ctx, |
| 166 | const SPIRVConversionOptions &options) { |
| 167 | return cast<spirv::ScalarType>( |
| 168 | IntegerType::get(ctx, options.use64bitIndex ? 64 : 32)); |
| 169 | } |
| 170 | |
| 171 | // TODO: This is a utility function that should probably be exposed by the |
| 172 | // SPIR-V dialect. Keeping it local till the use case arises. |
| 173 | static std::optional<int64_t> |
| 174 | getTypeNumBytes(const SPIRVConversionOptions &options, Type type) { |
| 175 | if (isa<spirv::ScalarType>(Val: type)) { |
| 176 | auto bitWidth = type.getIntOrFloatBitWidth(); |
| 177 | // According to the SPIR-V spec: |
| 178 | // "There is no physical size or bit pattern defined for values with boolean |
| 179 | // type. If they are stored (in conjunction with OpVariable), they can only |
| 180 | // be used with logical addressing operations, not physical, and only with |
| 181 | // non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup, |
| 182 | // Private, Function, Input, and Output." |
| 183 | if (bitWidth == 1) |
| 184 | return std::nullopt; |
| 185 | return bitWidth / 8; |
| 186 | } |
| 187 | |
| 188 | if (auto complexType = dyn_cast<ComplexType>(type)) { |
| 189 | auto elementSize = getTypeNumBytes(options, complexType.getElementType()); |
| 190 | if (!elementSize) |
| 191 | return std::nullopt; |
| 192 | return 2 * *elementSize; |
| 193 | } |
| 194 | |
| 195 | if (auto vecType = dyn_cast<VectorType>(type)) { |
| 196 | auto elementSize = getTypeNumBytes(options, vecType.getElementType()); |
| 197 | if (!elementSize) |
| 198 | return std::nullopt; |
| 199 | return vecType.getNumElements() * *elementSize; |
| 200 | } |
| 201 | |
| 202 | if (auto memRefType = dyn_cast<MemRefType>(type)) { |
| 203 | // TODO: Layout should also be controlled by the ABI attributes. For now |
| 204 | // using the layout from MemRef. |
| 205 | int64_t offset; |
| 206 | SmallVector<int64_t, 4> strides; |
| 207 | if (!memRefType.hasStaticShape() || |
| 208 | failed(memRefType.getStridesAndOffset(strides, offset))) |
| 209 | return std::nullopt; |
| 210 | |
| 211 | // To get the size of the memref object in memory, the total size is the |
| 212 | // max(stride * dimension-size) computed for all dimensions times the size |
| 213 | // of the element. |
| 214 | auto elementSize = getTypeNumBytes(options, memRefType.getElementType()); |
| 215 | if (!elementSize) |
| 216 | return std::nullopt; |
| 217 | |
| 218 | if (memRefType.getRank() == 0) |
| 219 | return elementSize; |
| 220 | |
| 221 | auto dims = memRefType.getShape(); |
| 222 | if (llvm::is_contained(dims, ShapedType::kDynamic) || |
| 223 | ShapedType::isDynamic(offset) || |
| 224 | llvm::is_contained(strides, ShapedType::kDynamic)) |
| 225 | return std::nullopt; |
| 226 | |
| 227 | int64_t memrefSize = -1; |
| 228 | for (const auto &shape : enumerate(dims)) |
| 229 | memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]); |
| 230 | |
| 231 | return (offset + memrefSize) * *elementSize; |
| 232 | } |
| 233 | |
| 234 | if (auto tensorType = dyn_cast<TensorType>(Val&: type)) { |
| 235 | if (!tensorType.hasStaticShape()) |
| 236 | return std::nullopt; |
| 237 | |
| 238 | auto elementSize = getTypeNumBytes(options, type: tensorType.getElementType()); |
| 239 | if (!elementSize) |
| 240 | return std::nullopt; |
| 241 | |
| 242 | int64_t size = *elementSize; |
| 243 | for (auto shape : tensorType.getShape()) |
| 244 | size *= shape; |
| 245 | |
| 246 | return size; |
| 247 | } |
| 248 | |
| 249 | // TODO: Add size computation for other types. |
| 250 | return std::nullopt; |
| 251 | } |
| 252 | |
| 253 | /// Converts a scalar `type` to a suitable type under the given `targetEnv`. |
| 254 | static Type |
| 255 | convertScalarType(const spirv::TargetEnv &targetEnv, |
| 256 | const SPIRVConversionOptions &options, spirv::ScalarType type, |
| 257 | std::optional<spirv::StorageClass> storageClass = {}) { |
| 258 | // Get extension and capability requirements for the given type. |
| 259 | SmallVector<ArrayRef<spirv::Extension>, 1> extensions; |
| 260 | SmallVector<ArrayRef<spirv::Capability>, 2> capabilities; |
| 261 | type.getExtensions(extensions, storageClass); |
| 262 | type.getCapabilities(capabilities, storageClass); |
| 263 | |
| 264 | // If all requirements are met, then we can accept this type as-is. |
| 265 | if (succeeded(Result: checkCapabilityRequirements(label: type, targetEnv, candidates: capabilities)) && |
| 266 | succeeded(Result: checkExtensionRequirements(label: type, targetEnv, candidates: extensions))) |
| 267 | return type; |
| 268 | |
| 269 | // Otherwise we need to adjust the type, which really means adjusting the |
| 270 | // bitwidth given this is a scalar type. |
| 271 | if (!options.emulateLT32BitScalarTypes) |
| 272 | return nullptr; |
| 273 | |
| 274 | // We only emulate narrower scalar types here and do not truncate results. |
| 275 | if (type.getIntOrFloatBitWidth() > 32) { |
| 276 | LLVM_DEBUG(llvm::dbgs() |
| 277 | << type |
| 278 | << " not converted to 32-bit for SPIR-V to avoid truncation\n" ); |
| 279 | return nullptr; |
| 280 | } |
| 281 | |
| 282 | if (auto floatType = dyn_cast<FloatType>(type)) { |
| 283 | LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n" ); |
| 284 | return Builder(targetEnv.getContext()).getF32Type(); |
| 285 | } |
| 286 | |
| 287 | auto intType = cast<IntegerType>(type); |
| 288 | LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n" ); |
| 289 | return IntegerType::get(targetEnv.getContext(), /*width=*/32, |
| 290 | intType.getSignedness()); |
| 291 | } |
| 292 | |
| 293 | /// Converts a sub-byte integer `type` to i32 regardless of target environment. |
| 294 | /// Returns a nullptr for unsupported integer types, including non sub-byte |
| 295 | /// types. |
| 296 | /// |
| 297 | /// Note that we don't recognize sub-byte types in `spirv::ScalarType` and use |
| 298 | /// the above given that these sub-byte types are not supported at all in |
| 299 | /// SPIR-V; there are no compute/storage capability for them like other |
| 300 | /// supported integer types. |
| 301 | static Type convertSubByteIntegerType(const SPIRVConversionOptions &options, |
| 302 | IntegerType type) { |
| 303 | if (type.getWidth() > 8) { |
| 304 | LLVM_DEBUG(llvm::dbgs() << "not a subbyte type\n" ); |
| 305 | return nullptr; |
| 306 | } |
| 307 | if (options.subByteTypeStorage != SPIRVSubByteTypeStorage::Packed) { |
| 308 | LLVM_DEBUG(llvm::dbgs() << "unsupported sub-byte storage kind\n" ); |
| 309 | return nullptr; |
| 310 | } |
| 311 | |
| 312 | if (!llvm::isPowerOf2_32(Value: type.getWidth())) { |
| 313 | LLVM_DEBUG(llvm::dbgs() |
| 314 | << "unsupported non-power-of-two bitwidth in sub-byte" << type |
| 315 | << "\n" ); |
| 316 | return nullptr; |
| 317 | } |
| 318 | |
| 319 | LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n" ); |
| 320 | return IntegerType::get(type.getContext(), /*width=*/32, |
| 321 | type.getSignedness()); |
| 322 | } |
| 323 | |
| 324 | /// Returns a type with the same shape but with any index element type converted |
| 325 | /// to the matching integer type. This is a noop when the element type is not |
| 326 | /// the index type. |
| 327 | static ShapedType |
| 328 | convertIndexElementType(ShapedType type, |
| 329 | const SPIRVConversionOptions &options) { |
| 330 | Type indexType = dyn_cast<IndexType>(type.getElementType()); |
| 331 | if (!indexType) |
| 332 | return type; |
| 333 | |
| 334 | return type.clone(getIndexType(type.getContext(), options)); |
| 335 | } |
| 336 | |
| 337 | /// Converts a vector `type` to a suitable type under the given `targetEnv`. |
| 338 | static Type |
| 339 | convertVectorType(const spirv::TargetEnv &targetEnv, |
| 340 | const SPIRVConversionOptions &options, VectorType type, |
| 341 | std::optional<spirv::StorageClass> storageClass = {}) { |
| 342 | type = cast<VectorType>(convertIndexElementType(type, options)); |
| 343 | auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType()); |
| 344 | if (!scalarType) { |
| 345 | // If this is not a spec allowed scalar type, try to handle sub-byte integer |
| 346 | // types. |
| 347 | auto intType = dyn_cast<IntegerType>(type.getElementType()); |
| 348 | if (!intType) { |
| 349 | LLVM_DEBUG(llvm::dbgs() |
| 350 | << type |
| 351 | << " illegal: cannot convert non-scalar element type\n" ); |
| 352 | return nullptr; |
| 353 | } |
| 354 | |
| 355 | Type elementType = convertSubByteIntegerType(options, intType); |
| 356 | if (!elementType) |
| 357 | return nullptr; |
| 358 | |
| 359 | if (type.getRank() <= 1 && type.getNumElements() == 1) |
| 360 | return elementType; |
| 361 | |
| 362 | if (type.getNumElements() > 4) { |
| 363 | LLVM_DEBUG(llvm::dbgs() |
| 364 | << type << " illegal: > 4-element unimplemented\n" ); |
| 365 | return nullptr; |
| 366 | } |
| 367 | |
| 368 | return VectorType::get(type.getShape(), elementType); |
| 369 | } |
| 370 | |
| 371 | if (type.getRank() <= 1 && type.getNumElements() == 1) |
| 372 | return convertScalarType(targetEnv, options, scalarType, storageClass); |
| 373 | |
| 374 | if (!spirv::CompositeType::isValid(type)) { |
| 375 | LLVM_DEBUG(llvm::dbgs() |
| 376 | << type << " illegal: not a valid composite type\n" ); |
| 377 | return nullptr; |
| 378 | } |
| 379 | |
| 380 | // Get extension and capability requirements for the given type. |
| 381 | SmallVector<ArrayRef<spirv::Extension>, 1> extensions; |
| 382 | SmallVector<ArrayRef<spirv::Capability>, 2> capabilities; |
| 383 | cast<spirv::CompositeType>(type).getExtensions(extensions, storageClass); |
| 384 | cast<spirv::CompositeType>(type).getCapabilities(capabilities, storageClass); |
| 385 | |
| 386 | // If all requirements are met, then we can accept this type as-is. |
| 387 | if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) && |
| 388 | succeeded(checkExtensionRequirements(type, targetEnv, extensions))) |
| 389 | return type; |
| 390 | |
| 391 | auto elementType = |
| 392 | convertScalarType(targetEnv, options, scalarType, storageClass); |
| 393 | if (elementType) |
| 394 | return VectorType::get(type.getShape(), elementType); |
| 395 | return nullptr; |
| 396 | } |
| 397 | |
| 398 | static Type |
| 399 | convertComplexType(const spirv::TargetEnv &targetEnv, |
| 400 | const SPIRVConversionOptions &options, ComplexType type, |
| 401 | std::optional<spirv::StorageClass> storageClass = {}) { |
| 402 | auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType()); |
| 403 | if (!scalarType) { |
| 404 | LLVM_DEBUG(llvm::dbgs() |
| 405 | << type << " illegal: cannot convert non-scalar element type\n" ); |
| 406 | return nullptr; |
| 407 | } |
| 408 | |
| 409 | auto elementType = |
| 410 | convertScalarType(targetEnv, options, scalarType, storageClass); |
| 411 | if (!elementType) |
| 412 | return nullptr; |
| 413 | if (elementType != type.getElementType()) { |
| 414 | LLVM_DEBUG(llvm::dbgs() |
| 415 | << type << " illegal: complex type emulation unsupported\n" ); |
| 416 | return nullptr; |
| 417 | } |
| 418 | |
| 419 | return VectorType::get(2, elementType); |
| 420 | } |
| 421 | |
| 422 | /// Converts a tensor `type` to a suitable type under the given `targetEnv`. |
| 423 | /// |
| 424 | /// Note that this is mainly for lowering constant tensors. In SPIR-V one can |
| 425 | /// create composite constants with OpConstantComposite to embed relative large |
| 426 | /// constant values and use OpCompositeExtract and OpCompositeInsert to |
| 427 | /// manipulate, like what we do for vectors. |
| 428 | static Type convertTensorType(const spirv::TargetEnv &targetEnv, |
| 429 | const SPIRVConversionOptions &options, |
| 430 | TensorType type) { |
| 431 | // TODO: Handle dynamic shapes. |
| 432 | if (!type.hasStaticShape()) { |
| 433 | LLVM_DEBUG(llvm::dbgs() |
| 434 | << type << " illegal: dynamic shape unimplemented\n" ); |
| 435 | return nullptr; |
| 436 | } |
| 437 | |
| 438 | type = cast<TensorType>(convertIndexElementType(type, options)); |
| 439 | auto scalarType = dyn_cast_or_null<spirv::ScalarType>(Val: type.getElementType()); |
| 440 | if (!scalarType) { |
| 441 | LLVM_DEBUG(llvm::dbgs() |
| 442 | << type << " illegal: cannot convert non-scalar element type\n" ); |
| 443 | return nullptr; |
| 444 | } |
| 445 | |
| 446 | std::optional<int64_t> scalarSize = getTypeNumBytes(options, type: scalarType); |
| 447 | std::optional<int64_t> tensorSize = getTypeNumBytes(options, type); |
| 448 | if (!scalarSize || !tensorSize) { |
| 449 | LLVM_DEBUG(llvm::dbgs() |
| 450 | << type << " illegal: cannot deduce element count\n" ); |
| 451 | return nullptr; |
| 452 | } |
| 453 | |
| 454 | int64_t arrayElemCount = *tensorSize / *scalarSize; |
| 455 | if (arrayElemCount == 0) { |
| 456 | LLVM_DEBUG(llvm::dbgs() |
| 457 | << type << " illegal: cannot handle zero-element tensors\n" ); |
| 458 | return nullptr; |
| 459 | } |
| 460 | |
| 461 | Type arrayElemType = convertScalarType(targetEnv, options, type: scalarType); |
| 462 | if (!arrayElemType) |
| 463 | return nullptr; |
| 464 | std::optional<int64_t> arrayElemSize = |
| 465 | getTypeNumBytes(options, type: arrayElemType); |
| 466 | if (!arrayElemSize) { |
| 467 | LLVM_DEBUG(llvm::dbgs() |
| 468 | << type << " illegal: cannot deduce converted element size\n" ); |
| 469 | return nullptr; |
| 470 | } |
| 471 | |
| 472 | return spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount); |
| 473 | } |
| 474 | |
| 475 | static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv, |
| 476 | const SPIRVConversionOptions &options, |
| 477 | MemRefType type, |
| 478 | spirv::StorageClass storageClass) { |
| 479 | unsigned numBoolBits = options.boolNumBits; |
| 480 | if (numBoolBits != 8) { |
| 481 | LLVM_DEBUG(llvm::dbgs() |
| 482 | << "using non-8-bit storage for bool types unimplemented" ); |
| 483 | return nullptr; |
| 484 | } |
| 485 | auto elementType = dyn_cast<spirv::ScalarType>( |
| 486 | IntegerType::get(type.getContext(), numBoolBits)); |
| 487 | if (!elementType) |
| 488 | return nullptr; |
| 489 | Type arrayElemType = |
| 490 | convertScalarType(targetEnv, options, elementType, storageClass); |
| 491 | if (!arrayElemType) |
| 492 | return nullptr; |
| 493 | std::optional<int64_t> arrayElemSize = |
| 494 | getTypeNumBytes(options, type: arrayElemType); |
| 495 | if (!arrayElemSize) { |
| 496 | LLVM_DEBUG(llvm::dbgs() |
| 497 | << type << " illegal: cannot deduce converted element size\n" ); |
| 498 | return nullptr; |
| 499 | } |
| 500 | |
| 501 | if (!type.hasStaticShape()) { |
| 502 | // For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing |
| 503 | // to the element. |
| 504 | if (targetEnv.allows(spirv::Capability::Kernel)) |
| 505 | return spirv::PointerType::get(arrayElemType, storageClass); |
| 506 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
| 507 | auto arrayType = spirv::RuntimeArrayType::get(elementType: arrayElemType, stride); |
| 508 | // For Vulkan we need extra wrapping struct and array to satisfy interface |
| 509 | // needs. |
| 510 | return wrapInStructAndGetPointer(arrayType, storageClass); |
| 511 | } |
| 512 | |
| 513 | if (type.getNumElements() == 0) { |
| 514 | LLVM_DEBUG(llvm::dbgs() |
| 515 | << type << " illegal: zero-element memrefs are not supported\n" ); |
| 516 | return nullptr; |
| 517 | } |
| 518 | |
| 519 | int64_t memrefSize = llvm::divideCeil(type.getNumElements() * numBoolBits, 8); |
| 520 | int64_t arrayElemCount = llvm::divideCeil(Numerator: memrefSize, Denominator: *arrayElemSize); |
| 521 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
| 522 | auto arrayType = spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount, stride); |
| 523 | if (targetEnv.allows(spirv::Capability::Kernel)) |
| 524 | return spirv::PointerType::get(arrayType, storageClass); |
| 525 | return wrapInStructAndGetPointer(arrayType, storageClass); |
| 526 | } |
| 527 | |
| 528 | static Type convertSubByteMemrefType(const spirv::TargetEnv &targetEnv, |
| 529 | const SPIRVConversionOptions &options, |
| 530 | MemRefType type, |
| 531 | spirv::StorageClass storageClass) { |
| 532 | IntegerType elementType = cast<IntegerType>(type.getElementType()); |
| 533 | Type arrayElemType = convertSubByteIntegerType(options, elementType); |
| 534 | if (!arrayElemType) |
| 535 | return nullptr; |
| 536 | int64_t arrayElemSize = *getTypeNumBytes(options, type: arrayElemType); |
| 537 | |
| 538 | if (!type.hasStaticShape()) { |
| 539 | // For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing |
| 540 | // to the element. |
| 541 | if (targetEnv.allows(spirv::Capability::Kernel)) |
| 542 | return spirv::PointerType::get(arrayElemType, storageClass); |
| 543 | int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0; |
| 544 | auto arrayType = spirv::RuntimeArrayType::get(elementType: arrayElemType, stride); |
| 545 | // For Vulkan we need extra wrapping struct and array to satisfy interface |
| 546 | // needs. |
| 547 | return wrapInStructAndGetPointer(arrayType, storageClass); |
| 548 | } |
| 549 | |
| 550 | if (type.getNumElements() == 0) { |
| 551 | LLVM_DEBUG(llvm::dbgs() |
| 552 | << type << " illegal: zero-element memrefs are not supported\n" ); |
| 553 | return nullptr; |
| 554 | } |
| 555 | |
| 556 | int64_t memrefSize = |
| 557 | llvm::divideCeil(type.getNumElements() * elementType.getWidth(), 8); |
| 558 | int64_t arrayElemCount = llvm::divideCeil(Numerator: memrefSize, Denominator: arrayElemSize); |
| 559 | int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0; |
| 560 | auto arrayType = spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount, stride); |
| 561 | if (targetEnv.allows(spirv::Capability::Kernel)) |
| 562 | return spirv::PointerType::get(arrayType, storageClass); |
| 563 | return wrapInStructAndGetPointer(arrayType, storageClass); |
| 564 | } |
| 565 | |
| 566 | static Type convertMemrefType(const spirv::TargetEnv &targetEnv, |
| 567 | const SPIRVConversionOptions &options, |
| 568 | MemRefType type) { |
| 569 | auto attr = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace()); |
| 570 | if (!attr) { |
| 571 | LLVM_DEBUG( |
| 572 | llvm::dbgs() |
| 573 | << type |
| 574 | << " illegal: expected memory space to be a SPIR-V storage class " |
| 575 | "attribute; please use MemorySpaceToStorageClassConverter to map " |
| 576 | "numeric memory spaces beforehand\n" ); |
| 577 | return nullptr; |
| 578 | } |
| 579 | spirv::StorageClass storageClass = attr.getValue(); |
| 580 | |
| 581 | if (isa<IntegerType>(type.getElementType())) { |
| 582 | if (type.getElementTypeBitWidth() == 1) |
| 583 | return convertBoolMemrefType(targetEnv, options, type, storageClass); |
| 584 | if (type.getElementTypeBitWidth() < 8) |
| 585 | return convertSubByteMemrefType(targetEnv, options, type, storageClass); |
| 586 | } |
| 587 | |
| 588 | Type arrayElemType; |
| 589 | Type elementType = type.getElementType(); |
| 590 | if (auto vecType = dyn_cast<VectorType>(elementType)) { |
| 591 | arrayElemType = |
| 592 | convertVectorType(targetEnv, options, vecType, storageClass); |
| 593 | } else if (auto complexType = dyn_cast<ComplexType>(elementType)) { |
| 594 | arrayElemType = |
| 595 | convertComplexType(targetEnv, options, complexType, storageClass); |
| 596 | } else if (auto scalarType = dyn_cast<spirv::ScalarType>(elementType)) { |
| 597 | arrayElemType = |
| 598 | convertScalarType(targetEnv, options, scalarType, storageClass); |
| 599 | } else if (auto indexType = dyn_cast<IndexType>(elementType)) { |
| 600 | type = cast<MemRefType>(convertIndexElementType(type, options)); |
| 601 | arrayElemType = type.getElementType(); |
| 602 | } else { |
| 603 | LLVM_DEBUG( |
| 604 | llvm::dbgs() |
| 605 | << type |
| 606 | << " unhandled: can only convert scalar or vector element type\n" ); |
| 607 | return nullptr; |
| 608 | } |
| 609 | if (!arrayElemType) |
| 610 | return nullptr; |
| 611 | |
| 612 | std::optional<int64_t> arrayElemSize = |
| 613 | getTypeNumBytes(options, type: arrayElemType); |
| 614 | if (!arrayElemSize) { |
| 615 | LLVM_DEBUG(llvm::dbgs() |
| 616 | << type << " illegal: cannot deduce converted element size\n" ); |
| 617 | return nullptr; |
| 618 | } |
| 619 | |
| 620 | if (!type.hasStaticShape()) { |
| 621 | // For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing |
| 622 | // to the element. |
| 623 | if (targetEnv.allows(spirv::Capability::Kernel)) |
| 624 | return spirv::PointerType::get(arrayElemType, storageClass); |
| 625 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
| 626 | auto arrayType = spirv::RuntimeArrayType::get(elementType: arrayElemType, stride); |
| 627 | // For Vulkan we need extra wrapping struct and array to satisfy interface |
| 628 | // needs. |
| 629 | return wrapInStructAndGetPointer(arrayType, storageClass); |
| 630 | } |
| 631 | |
| 632 | std::optional<int64_t> memrefSize = getTypeNumBytes(options, type); |
| 633 | if (!memrefSize) { |
| 634 | LLVM_DEBUG(llvm::dbgs() |
| 635 | << type << " illegal: cannot deduce element count\n" ); |
| 636 | return nullptr; |
| 637 | } |
| 638 | |
| 639 | if (*memrefSize == 0) { |
| 640 | LLVM_DEBUG(llvm::dbgs() |
| 641 | << type << " illegal: zero-element memrefs are not supported\n" ); |
| 642 | return nullptr; |
| 643 | } |
| 644 | |
| 645 | int64_t arrayElemCount = llvm::divideCeil(Numerator: *memrefSize, Denominator: *arrayElemSize); |
| 646 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
| 647 | auto arrayType = spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount, stride); |
| 648 | if (targetEnv.allows(spirv::Capability::Kernel)) |
| 649 | return spirv::PointerType::get(arrayType, storageClass); |
| 650 | return wrapInStructAndGetPointer(arrayType, storageClass); |
| 651 | } |
| 652 | |
| 653 | //===----------------------------------------------------------------------===// |
| 654 | // Type casting materialization |
| 655 | //===----------------------------------------------------------------------===// |
| 656 | |
| 657 | /// Converts the given `inputs` to the original source `type` considering the |
| 658 | /// `targetEnv`'s capabilities. |
| 659 | /// |
| 660 | /// This function is meant to be used for source materialization in type |
| 661 | /// converters. When the type converter needs to materialize a cast op back |
| 662 | /// to some original source type, we need to check whether the original source |
| 663 | /// type is supported in the target environment. If so, we can insert legal |
| 664 | /// SPIR-V cast ops accordingly. |
| 665 | /// |
| 666 | /// Note that in SPIR-V the capabilities for storage and compute are separate. |
| 667 | /// This function is meant to handle the **compute** side; so it does not |
| 668 | /// involve storage classes in its logic. The storage side is expected to be |
| 669 | /// handled by MemRef conversion logic. |
| 670 | static Value castToSourceType(const spirv::TargetEnv &targetEnv, |
| 671 | OpBuilder &builder, Type type, ValueRange inputs, |
| 672 | Location loc) { |
| 673 | // We can only cast one value in SPIR-V. |
| 674 | if (inputs.size() != 1) { |
| 675 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
| 676 | return castOp.getResult(0); |
| 677 | } |
| 678 | Value input = inputs.front(); |
| 679 | |
| 680 | // Only support integer types for now. Floating point types to be implemented. |
| 681 | if (!isa<IntegerType>(Val: type)) { |
| 682 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
| 683 | return castOp.getResult(0); |
| 684 | } |
| 685 | auto inputType = cast<IntegerType>(input.getType()); |
| 686 | |
| 687 | auto scalarType = dyn_cast<spirv::ScalarType>(Val&: type); |
| 688 | if (!scalarType) { |
| 689 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
| 690 | return castOp.getResult(0); |
| 691 | } |
| 692 | |
| 693 | // Only support source type with a smaller bitwidth. This would mean we are |
| 694 | // truncating to go back so we don't need to worry about the signedness. |
| 695 | // For extension, we cannot have enough signal here to decide which op to use. |
| 696 | if (inputType.getIntOrFloatBitWidth() < scalarType.getIntOrFloatBitWidth()) { |
| 697 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
| 698 | return castOp.getResult(0); |
| 699 | } |
| 700 | |
| 701 | // Boolean values would need to use different ops than normal integer values. |
| 702 | if (type.isInteger(width: 1)) { |
| 703 | Value one = spirv::ConstantOp::getOne(inputType, loc, builder); |
| 704 | return builder.create<spirv::IEqualOp>(loc, input, one); |
| 705 | } |
| 706 | |
| 707 | // Check that the source integer type is supported by the environment. |
| 708 | SmallVector<ArrayRef<spirv::Extension>, 1> exts; |
| 709 | SmallVector<ArrayRef<spirv::Capability>, 2> caps; |
| 710 | scalarType.getExtensions(exts); |
| 711 | scalarType.getCapabilities(caps); |
| 712 | if (failed(Result: checkCapabilityRequirements(label: type, targetEnv, candidates: caps)) || |
| 713 | failed(Result: checkExtensionRequirements(label: type, targetEnv, candidates: exts))) { |
| 714 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
| 715 | return castOp.getResult(0); |
| 716 | } |
| 717 | |
| 718 | // We've already made sure this is truncating previously, so we don't need to |
| 719 | // care about signedness here. Still try to use a corresponding op for better |
| 720 | // consistency though. |
| 721 | if (type.isSignedInteger()) { |
| 722 | return builder.create<spirv::SConvertOp>(loc, type, input); |
| 723 | } |
| 724 | return builder.create<spirv::UConvertOp>(loc, type, input); |
| 725 | } |
| 726 | |
| 727 | //===----------------------------------------------------------------------===// |
| 728 | // Builtin Variables |
| 729 | //===----------------------------------------------------------------------===// |
| 730 | |
| 731 | static spirv::GlobalVariableOp getBuiltinVariable(Block &body, |
| 732 | spirv::BuiltIn builtin) { |
| 733 | // Look through all global variables in the given `body` block and check if |
| 734 | // there is a spirv.GlobalVariable that has the same `builtin` attribute. |
| 735 | for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) { |
| 736 | if (auto builtinAttr = varOp->getAttrOfType<StringAttr>( |
| 737 | spirv::SPIRVDialect::getAttributeName( |
| 738 | spirv::Decoration::BuiltIn))) { |
| 739 | auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue()); |
| 740 | if (varBuiltIn && *varBuiltIn == builtin) { |
| 741 | return varOp; |
| 742 | } |
| 743 | } |
| 744 | } |
| 745 | return nullptr; |
| 746 | } |
| 747 | |
| 748 | /// Gets name of global variable for a builtin. |
| 749 | std::string getBuiltinVarName(spirv::BuiltIn builtin, StringRef prefix, |
| 750 | StringRef suffix) { |
| 751 | return Twine(prefix).concat(stringifyBuiltIn(builtin)).concat(suffix).str(); |
| 752 | } |
| 753 | |
| 754 | /// Gets or inserts a global variable for a builtin within `body` block. |
| 755 | static spirv::GlobalVariableOp |
| 756 | getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin, |
| 757 | Type integerType, OpBuilder &builder, |
| 758 | StringRef prefix, StringRef suffix) { |
| 759 | if (auto varOp = getBuiltinVariable(body, builtin)) |
| 760 | return varOp; |
| 761 | |
| 762 | OpBuilder::InsertionGuard guard(builder); |
| 763 | builder.setInsertionPointToStart(&body); |
| 764 | |
| 765 | spirv::GlobalVariableOp newVarOp; |
| 766 | switch (builtin) { |
| 767 | case spirv::BuiltIn::NumWorkgroups: |
| 768 | case spirv::BuiltIn::WorkgroupSize: |
| 769 | case spirv::BuiltIn::WorkgroupId: |
| 770 | case spirv::BuiltIn::LocalInvocationId: |
| 771 | case spirv::BuiltIn::GlobalInvocationId: { |
| 772 | auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType), |
| 773 | spirv::StorageClass::Input); |
| 774 | std::string name = getBuiltinVarName(builtin, prefix, suffix); |
| 775 | newVarOp = |
| 776 | builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin); |
| 777 | break; |
| 778 | } |
| 779 | case spirv::BuiltIn::SubgroupId: |
| 780 | case spirv::BuiltIn::NumSubgroups: |
| 781 | case spirv::BuiltIn::SubgroupSize: |
| 782 | case spirv::BuiltIn::SubgroupLocalInvocationId: { |
| 783 | auto ptrType = |
| 784 | spirv::PointerType::get(integerType, spirv::StorageClass::Input); |
| 785 | std::string name = getBuiltinVarName(builtin, prefix, suffix); |
| 786 | newVarOp = |
| 787 | builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin); |
| 788 | break; |
| 789 | } |
| 790 | default: |
| 791 | emitError(loc, message: "unimplemented builtin variable generation for " ) |
| 792 | << stringifyBuiltIn(builtin); |
| 793 | } |
| 794 | return newVarOp; |
| 795 | } |
| 796 | |
| 797 | //===----------------------------------------------------------------------===// |
| 798 | // Push constant storage |
| 799 | //===----------------------------------------------------------------------===// |
| 800 | |
| 801 | /// Returns the pointer type for the push constant storage containing |
| 802 | /// `elementCount` 32-bit integer values. |
| 803 | static spirv::PointerType getPushConstantStorageType(unsigned elementCount, |
| 804 | Builder &builder, |
| 805 | Type indexType) { |
| 806 | auto arrayType = spirv::ArrayType::get(elementType: indexType, elementCount, |
| 807 | /*stride=*/4); |
| 808 | auto structType = spirv::StructType::get(memberTypes: {arrayType}, /*offsetInfo=*/0); |
| 809 | return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant); |
| 810 | } |
| 811 | |
| 812 | /// Returns the push constant varible containing `elementCount` 32-bit integer |
| 813 | /// values in `body`. Returns null op if such an op does not exit. |
| 814 | static spirv::GlobalVariableOp getPushConstantVariable(Block &body, |
| 815 | unsigned elementCount) { |
| 816 | for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) { |
| 817 | auto ptrType = dyn_cast<spirv::PointerType>(varOp.getType()); |
| 818 | if (!ptrType) |
| 819 | continue; |
| 820 | |
| 821 | // Note that Vulkan requires "There must be no more than one push constant |
| 822 | // block statically used per shader entry point." So we should always reuse |
| 823 | // the existing one. |
| 824 | if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) { |
| 825 | auto numElements = cast<spirv::ArrayType>( |
| 826 | cast<spirv::StructType>(ptrType.getPointeeType()) |
| 827 | .getElementType(0)) |
| 828 | .getNumElements(); |
| 829 | if (numElements == elementCount) |
| 830 | return varOp; |
| 831 | } |
| 832 | } |
| 833 | return nullptr; |
| 834 | } |
| 835 | |
| 836 | /// Gets or inserts a global variable for push constant storage containing |
| 837 | /// `elementCount` 32-bit integer values in `block`. |
| 838 | static spirv::GlobalVariableOp |
| 839 | getOrInsertPushConstantVariable(Location loc, Block &block, |
| 840 | unsigned elementCount, OpBuilder &b, |
| 841 | Type indexType) { |
| 842 | if (auto varOp = getPushConstantVariable(block, elementCount)) |
| 843 | return varOp; |
| 844 | |
| 845 | auto builder = OpBuilder::atBlockBegin(block: &block, listener: b.getListener()); |
| 846 | auto type = getPushConstantStorageType(elementCount, builder, indexType); |
| 847 | const char *name = "__push_constant_var__" ; |
| 848 | return builder.create<spirv::GlobalVariableOp>(loc, type, name, |
| 849 | /*initializer=*/nullptr); |
| 850 | } |
| 851 | |
| 852 | //===----------------------------------------------------------------------===// |
| 853 | // func::FuncOp Conversion Patterns |
| 854 | //===----------------------------------------------------------------------===// |
| 855 | |
| 856 | /// A pattern for rewriting function signature to convert arguments of functions |
| 857 | /// to be of valid SPIR-V types. |
| 858 | struct FuncOpConversion final : OpConversionPattern<func::FuncOp> { |
| 859 | using OpConversionPattern<func::FuncOp>::OpConversionPattern; |
| 860 | |
| 861 | LogicalResult |
| 862 | matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, |
| 863 | ConversionPatternRewriter &rewriter) const override { |
| 864 | FunctionType fnType = funcOp.getFunctionType(); |
| 865 | if (fnType.getNumResults() > 1) |
| 866 | return failure(); |
| 867 | |
| 868 | TypeConverter::SignatureConversion signatureConverter( |
| 869 | fnType.getNumInputs()); |
| 870 | for (const auto &argType : enumerate(fnType.getInputs())) { |
| 871 | auto convertedType = getTypeConverter()->convertType(argType.value()); |
| 872 | if (!convertedType) |
| 873 | return failure(); |
| 874 | signatureConverter.addInputs(argType.index(), convertedType); |
| 875 | } |
| 876 | |
| 877 | Type resultType; |
| 878 | if (fnType.getNumResults() == 1) { |
| 879 | resultType = getTypeConverter()->convertType(fnType.getResult(0)); |
| 880 | if (!resultType) |
| 881 | return failure(); |
| 882 | } |
| 883 | |
| 884 | // Create the converted spirv.func op. |
| 885 | auto newFuncOp = rewriter.create<spirv::FuncOp>( |
| 886 | funcOp.getLoc(), funcOp.getName(), |
| 887 | rewriter.getFunctionType(signatureConverter.getConvertedTypes(), |
| 888 | resultType ? TypeRange(resultType) |
| 889 | : TypeRange())); |
| 890 | |
| 891 | // Copy over all attributes other than the function name and type. |
| 892 | for (const auto &namedAttr : funcOp->getAttrs()) { |
| 893 | if (namedAttr.getName() != funcOp.getFunctionTypeAttrName() && |
| 894 | namedAttr.getName() != SymbolTable::getSymbolAttrName()) |
| 895 | newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue()); |
| 896 | } |
| 897 | |
| 898 | rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), |
| 899 | newFuncOp.end()); |
| 900 | if (failed(rewriter.convertRegionTypes( |
| 901 | region: &newFuncOp.getBody(), converter: *getTypeConverter(), entryConversion: &signatureConverter))) |
| 902 | return failure(); |
| 903 | rewriter.eraseOp(op: funcOp); |
| 904 | return success(); |
| 905 | } |
| 906 | }; |
| 907 | |
| 908 | /// A pattern for rewriting function signature to convert vector arguments of |
| 909 | /// functions to be of valid types |
| 910 | struct FuncOpVectorUnroll final : OpRewritePattern<func::FuncOp> { |
| 911 | using OpRewritePattern::OpRewritePattern; |
| 912 | |
| 913 | LogicalResult matchAndRewrite(func::FuncOp funcOp, |
| 914 | PatternRewriter &rewriter) const override { |
| 915 | FunctionType fnType = funcOp.getFunctionType(); |
| 916 | |
| 917 | // TODO: Handle declarations. |
| 918 | if (funcOp.isDeclaration()) { |
| 919 | LLVM_DEBUG(llvm::dbgs() |
| 920 | << fnType << " illegal: declarations are unsupported\n" ); |
| 921 | return failure(); |
| 922 | } |
| 923 | |
| 924 | // Create a new func op with the original type and copy the function body. |
| 925 | auto newFuncOp = rewriter.create<func::FuncOp>(funcOp.getLoc(), |
| 926 | funcOp.getName(), fnType); |
| 927 | rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), |
| 928 | newFuncOp.end()); |
| 929 | |
| 930 | Location loc = newFuncOp.getBody().getLoc(); |
| 931 | |
| 932 | Block &entryBlock = newFuncOp.getBlocks().front(); |
| 933 | OpBuilder::InsertionGuard guard(rewriter); |
| 934 | rewriter.setInsertionPointToStart(&entryBlock); |
| 935 | |
| 936 | TypeConverter::SignatureConversion oneToNTypeMapping( |
| 937 | fnType.getInputs().size()); |
| 938 | |
| 939 | // For arguments that are of illegal types and require unrolling. |
| 940 | // `unrolledInputNums` stores the indices of arguments that result from |
| 941 | // unrolling in the new function signature. `newInputNo` is a counter. |
| 942 | SmallVector<size_t> unrolledInputNums; |
| 943 | size_t newInputNo = 0; |
| 944 | |
| 945 | // For arguments that are of legal types and do not require unrolling. |
| 946 | // `tmpOps` stores a mapping from temporary operations that serve as |
| 947 | // placeholders for new arguments that will be added later. These operations |
| 948 | // will be erased once the entry block's argument list is updated. |
| 949 | llvm::SmallDenseMap<Operation *, size_t> tmpOps; |
| 950 | |
| 951 | // This counts the number of new operations created. |
| 952 | size_t newOpCount = 0; |
| 953 | |
| 954 | // Enumerate through the arguments. |
| 955 | for (auto [origInputNo, origType] : enumerate(fnType.getInputs())) { |
| 956 | // Check whether the argument is of vector type. |
| 957 | auto origVecType = dyn_cast<VectorType>(origType); |
| 958 | if (!origVecType) { |
| 959 | // We need a placeholder for the old argument that will be erased later. |
| 960 | Value result = rewriter.create<arith::ConstantOp>( |
| 961 | loc, origType, rewriter.getZeroAttr(origType)); |
| 962 | rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result); |
| 963 | tmpOps.insert({result.getDefiningOp(), newInputNo}); |
| 964 | oneToNTypeMapping.addInputs(origInputNo, origType); |
| 965 | ++newInputNo; |
| 966 | ++newOpCount; |
| 967 | continue; |
| 968 | } |
| 969 | // Check whether the vector needs unrolling. |
| 970 | auto targetShape = getTargetShape(origVecType); |
| 971 | if (!targetShape) { |
| 972 | // We need a placeholder for the old argument that will be erased later. |
| 973 | Value result = rewriter.create<arith::ConstantOp>( |
| 974 | loc, origType, rewriter.getZeroAttr(origType)); |
| 975 | rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result); |
| 976 | tmpOps.insert({result.getDefiningOp(), newInputNo}); |
| 977 | oneToNTypeMapping.addInputs(origInputNo, origType); |
| 978 | ++newInputNo; |
| 979 | ++newOpCount; |
| 980 | continue; |
| 981 | } |
| 982 | VectorType unrolledType = |
| 983 | VectorType::get(*targetShape, origVecType.getElementType()); |
| 984 | auto originalShape = |
| 985 | llvm::to_vector_of<int64_t, 4>(origVecType.getShape()); |
| 986 | |
| 987 | // Prepare the result vector. |
| 988 | Value result = rewriter.create<arith::ConstantOp>( |
| 989 | loc, origVecType, rewriter.getZeroAttr(origVecType)); |
| 990 | ++newOpCount; |
| 991 | // Prepare the placeholder for the new arguments that will be added later. |
| 992 | Value dummy = rewriter.create<arith::ConstantOp>( |
| 993 | loc, unrolledType, rewriter.getZeroAttr(unrolledType)); |
| 994 | ++newOpCount; |
| 995 | |
| 996 | // Create the `vector.insert_strided_slice` ops. |
| 997 | SmallVector<int64_t> strides(targetShape->size(), 1); |
| 998 | SmallVector<Type> newTypes; |
| 999 | for (SmallVector<int64_t> offsets : |
| 1000 | StaticTileOffsetRange(originalShape, *targetShape)) { |
| 1001 | result = rewriter.create<vector::InsertStridedSliceOp>( |
| 1002 | loc, dummy, result, offsets, strides); |
| 1003 | newTypes.push_back(unrolledType); |
| 1004 | unrolledInputNums.push_back(newInputNo); |
| 1005 | ++newInputNo; |
| 1006 | ++newOpCount; |
| 1007 | } |
| 1008 | rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result); |
| 1009 | oneToNTypeMapping.addInputs(origInputNo, newTypes); |
| 1010 | } |
| 1011 | |
| 1012 | // Change the function signature. |
| 1013 | auto convertedTypes = oneToNTypeMapping.getConvertedTypes(); |
| 1014 | auto newFnType = fnType.clone(convertedTypes, fnType.getResults()); |
| 1015 | rewriter.modifyOpInPlace(newFuncOp, |
| 1016 | [&] { newFuncOp.setFunctionType(newFnType); }); |
| 1017 | |
| 1018 | // Update the arguments in the entry block. |
| 1019 | entryBlock.eraseArguments(0, fnType.getNumInputs()); |
| 1020 | SmallVector<Location> locs(convertedTypes.size(), newFuncOp.getLoc()); |
| 1021 | entryBlock.addArguments(types: convertedTypes, locs); |
| 1022 | |
| 1023 | // Replace the placeholder values with the new arguments. We assume there is |
| 1024 | // only one block for now. |
| 1025 | size_t unrolledInputIdx = 0; |
| 1026 | for (auto [count, op] : enumerate(entryBlock.getOperations())) { |
| 1027 | // We first look for operands that are placeholders for initially legal |
| 1028 | // arguments. |
| 1029 | Operation &curOp = op; |
| 1030 | for (auto [operandIdx, operandVal] : llvm::enumerate(op.getOperands())) { |
| 1031 | Operation *operandOp = operandVal.getDefiningOp(); |
| 1032 | if (auto it = tmpOps.find(operandOp); it != tmpOps.end()) { |
| 1033 | size_t idx = operandIdx; |
| 1034 | rewriter.modifyOpInPlace(&curOp, [&curOp, &newFuncOp, it, idx] { |
| 1035 | curOp.setOperand(idx, newFuncOp.getArgument(it->second)); |
| 1036 | }); |
| 1037 | } |
| 1038 | } |
| 1039 | // Since all newly created operations are in the beginning, reaching the |
| 1040 | // end of them means that any later `vector.insert_strided_slice` should |
| 1041 | // not be touched. |
| 1042 | if (count >= newOpCount) |
| 1043 | continue; |
| 1044 | if (auto vecOp = dyn_cast<vector::InsertStridedSliceOp>(op)) { |
| 1045 | size_t unrolledInputNo = unrolledInputNums[unrolledInputIdx]; |
| 1046 | rewriter.modifyOpInPlace(&curOp, [&] { |
| 1047 | curOp.setOperand(0, newFuncOp.getArgument(unrolledInputNo)); |
| 1048 | }); |
| 1049 | ++unrolledInputIdx; |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | // Erase the original funcOp. The `tmpOps` do not need to be erased since |
| 1054 | // they have no uses and will be handled by dead-code elimination. |
| 1055 | rewriter.eraseOp(op: funcOp); |
| 1056 | return success(); |
| 1057 | } |
| 1058 | }; |
| 1059 | |
| 1060 | //===----------------------------------------------------------------------===// |
| 1061 | // func::ReturnOp Conversion Patterns |
| 1062 | //===----------------------------------------------------------------------===// |
| 1063 | |
| 1064 | /// A pattern for rewriting function signature and the return op to convert |
| 1065 | /// vectors to be of valid types. |
| 1066 | struct ReturnOpVectorUnroll final : OpRewritePattern<func::ReturnOp> { |
| 1067 | using OpRewritePattern::OpRewritePattern; |
| 1068 | |
| 1069 | LogicalResult matchAndRewrite(func::ReturnOp returnOp, |
| 1070 | PatternRewriter &rewriter) const override { |
| 1071 | // Check whether the parent funcOp is valid. |
| 1072 | auto funcOp = dyn_cast<func::FuncOp>(returnOp->getParentOp()); |
| 1073 | if (!funcOp) |
| 1074 | return failure(); |
| 1075 | |
| 1076 | FunctionType fnType = funcOp.getFunctionType(); |
| 1077 | TypeConverter::SignatureConversion oneToNTypeMapping( |
| 1078 | fnType.getResults().size()); |
| 1079 | Location loc = returnOp.getLoc(); |
| 1080 | |
| 1081 | // For the new return op. |
| 1082 | SmallVector<Value> newOperands; |
| 1083 | |
| 1084 | // Enumerate through the results. |
| 1085 | for (auto [origResultNo, origType] : enumerate(fnType.getResults())) { |
| 1086 | // Check whether the argument is of vector type. |
| 1087 | auto origVecType = dyn_cast<VectorType>(origType); |
| 1088 | if (!origVecType) { |
| 1089 | oneToNTypeMapping.addInputs(origResultNo, origType); |
| 1090 | newOperands.push_back(returnOp.getOperand(origResultNo)); |
| 1091 | continue; |
| 1092 | } |
| 1093 | // Check whether the vector needs unrolling. |
| 1094 | auto targetShape = getTargetShape(origVecType); |
| 1095 | if (!targetShape) { |
| 1096 | // The original argument can be used. |
| 1097 | oneToNTypeMapping.addInputs(origResultNo, origType); |
| 1098 | newOperands.push_back(returnOp.getOperand(origResultNo)); |
| 1099 | continue; |
| 1100 | } |
| 1101 | VectorType unrolledType = |
| 1102 | VectorType::get(*targetShape, origVecType.getElementType()); |
| 1103 | |
| 1104 | // Create `vector.extract_strided_slice` ops to form legal vectors from |
| 1105 | // the original operand of illegal type. |
| 1106 | auto originalShape = |
| 1107 | llvm::to_vector_of<int64_t, 4>(origVecType.getShape()); |
| 1108 | SmallVector<int64_t> strides(originalShape.size(), 1); |
| 1109 | SmallVector<int64_t> extractShape(originalShape.size(), 1); |
| 1110 | extractShape.back() = targetShape->back(); |
| 1111 | SmallVector<Type> newTypes; |
| 1112 | Value returnValue = returnOp.getOperand(origResultNo); |
| 1113 | for (SmallVector<int64_t> offsets : |
| 1114 | StaticTileOffsetRange(originalShape, *targetShape)) { |
| 1115 | Value result = rewriter.create<vector::ExtractStridedSliceOp>( |
| 1116 | loc, returnValue, offsets, extractShape, strides); |
| 1117 | if (originalShape.size() > 1) { |
| 1118 | SmallVector<int64_t> extractIndices(originalShape.size() - 1, 0); |
| 1119 | result = |
| 1120 | rewriter.create<vector::ExtractOp>(loc, result, extractIndices); |
| 1121 | } |
| 1122 | newOperands.push_back(result); |
| 1123 | newTypes.push_back(unrolledType); |
| 1124 | } |
| 1125 | oneToNTypeMapping.addInputs(origResultNo, newTypes); |
| 1126 | } |
| 1127 | |
| 1128 | // Change the function signature. |
| 1129 | auto newFnType = |
| 1130 | FunctionType::get(rewriter.getContext(), TypeRange(fnType.getInputs()), |
| 1131 | TypeRange(oneToNTypeMapping.getConvertedTypes())); |
| 1132 | rewriter.modifyOpInPlace(funcOp, |
| 1133 | [&] { funcOp.setFunctionType(newFnType); }); |
| 1134 | |
| 1135 | // Replace the return op using the new operands. This will automatically |
| 1136 | // update the entry block as well. |
| 1137 | rewriter.replaceOp(returnOp, |
| 1138 | rewriter.create<func::ReturnOp>(loc, newOperands)); |
| 1139 | |
| 1140 | return success(); |
| 1141 | } |
| 1142 | }; |
| 1143 | |
| 1144 | } // namespace |
| 1145 | |
| 1146 | //===----------------------------------------------------------------------===// |
| 1147 | // Public function for builtin variables |
| 1148 | //===----------------------------------------------------------------------===// |
| 1149 | |
| 1150 | Value mlir::spirv::getBuiltinVariableValue(Operation *op, |
| 1151 | spirv::BuiltIn builtin, |
| 1152 | Type integerType, OpBuilder &builder, |
| 1153 | StringRef prefix, StringRef suffix) { |
| 1154 | Operation *parent = SymbolTable::getNearestSymbolTable(from: op->getParentOp()); |
| 1155 | if (!parent) { |
| 1156 | op->emitError(message: "expected operation to be within a module-like op" ); |
| 1157 | return nullptr; |
| 1158 | } |
| 1159 | |
| 1160 | spirv::GlobalVariableOp varOp = |
| 1161 | getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(), |
| 1162 | builtin, integerType, builder, prefix, suffix); |
| 1163 | Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp); |
| 1164 | return builder.create<spirv::LoadOp>(op->getLoc(), ptr); |
| 1165 | } |
| 1166 | |
| 1167 | //===----------------------------------------------------------------------===// |
| 1168 | // Public function for pushing constant storage |
| 1169 | //===----------------------------------------------------------------------===// |
| 1170 | |
| 1171 | Value spirv::getPushConstantValue(Operation *op, unsigned elementCount, |
| 1172 | unsigned offset, Type integerType, |
| 1173 | OpBuilder &builder) { |
| 1174 | Location loc = op->getLoc(); |
| 1175 | Operation *parent = SymbolTable::getNearestSymbolTable(from: op->getParentOp()); |
| 1176 | if (!parent) { |
| 1177 | op->emitError(message: "expected operation to be within a module-like op" ); |
| 1178 | return nullptr; |
| 1179 | } |
| 1180 | |
| 1181 | spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable( |
| 1182 | loc, parent->getRegion(0).front(), elementCount, builder, integerType); |
| 1183 | |
| 1184 | Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder); |
| 1185 | Value offsetOp = builder.create<spirv::ConstantOp>( |
| 1186 | loc, integerType, builder.getI32IntegerAttr(offset)); |
| 1187 | auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp); |
| 1188 | auto acOp = builder.create<spirv::AccessChainOp>( |
| 1189 | loc, addrOp, llvm::ArrayRef({zeroOp, offsetOp})); |
| 1190 | return builder.create<spirv::LoadOp>(loc, acOp); |
| 1191 | } |
| 1192 | |
| 1193 | //===----------------------------------------------------------------------===// |
| 1194 | // Public functions for index calculation |
| 1195 | //===----------------------------------------------------------------------===// |
| 1196 | |
| 1197 | Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides, |
| 1198 | int64_t offset, Type integerType, |
| 1199 | Location loc, OpBuilder &builder) { |
| 1200 | assert(indices.size() == strides.size() && |
| 1201 | "must provide indices for all dimensions" ); |
| 1202 | |
| 1203 | // TODO: Consider moving to use affine.apply and patterns converting |
| 1204 | // affine.apply to standard ops. This needs converting to SPIR-V passes to be |
| 1205 | // broken down into progressive small steps so we can have intermediate steps |
| 1206 | // using other dialects. At the moment SPIR-V is the final sink. |
| 1207 | |
| 1208 | Value linearizedIndex = builder.createOrFold<spirv::ConstantOp>( |
| 1209 | loc, integerType, IntegerAttr::get(integerType, offset)); |
| 1210 | for (const auto &index : llvm::enumerate(First&: indices)) { |
| 1211 | Value strideVal = builder.createOrFold<spirv::ConstantOp>( |
| 1212 | loc, integerType, |
| 1213 | IntegerAttr::get(integerType, strides[index.index()])); |
| 1214 | Value update = |
| 1215 | builder.createOrFold<spirv::IMulOp>(loc, index.value(), strideVal); |
| 1216 | linearizedIndex = |
| 1217 | builder.createOrFold<spirv::IAddOp>(loc, update, linearizedIndex); |
| 1218 | } |
| 1219 | return linearizedIndex; |
| 1220 | } |
| 1221 | |
| 1222 | Value mlir::spirv::getVulkanElementPtr(const SPIRVTypeConverter &typeConverter, |
| 1223 | MemRefType baseType, Value basePtr, |
| 1224 | ValueRange indices, Location loc, |
| 1225 | OpBuilder &builder) { |
| 1226 | // Get base and offset of the MemRefType and verify they are static. |
| 1227 | |
| 1228 | int64_t offset; |
| 1229 | SmallVector<int64_t, 4> strides; |
| 1230 | if (failed(baseType.getStridesAndOffset(strides, offset)) || |
| 1231 | llvm::is_contained(strides, ShapedType::kDynamic) || |
| 1232 | ShapedType::isDynamic(offset)) { |
| 1233 | return nullptr; |
| 1234 | } |
| 1235 | |
| 1236 | auto indexType = typeConverter.getIndexType(); |
| 1237 | |
| 1238 | SmallVector<Value, 2> linearizedIndices; |
| 1239 | auto zero = spirv::ConstantOp::getZero(indexType, loc, builder); |
| 1240 | |
| 1241 | // Add a '0' at the start to index into the struct. |
| 1242 | linearizedIndices.push_back(Elt: zero); |
| 1243 | |
| 1244 | if (baseType.getRank() == 0) { |
| 1245 | linearizedIndices.push_back(Elt: zero); |
| 1246 | } else { |
| 1247 | linearizedIndices.push_back( |
| 1248 | Elt: linearizeIndex(indices, strides, offset, integerType: indexType, loc, builder)); |
| 1249 | } |
| 1250 | return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices); |
| 1251 | } |
| 1252 | |
| 1253 | Value mlir::spirv::getOpenCLElementPtr(const SPIRVTypeConverter &typeConverter, |
| 1254 | MemRefType baseType, Value basePtr, |
| 1255 | ValueRange indices, Location loc, |
| 1256 | OpBuilder &builder) { |
| 1257 | // Get base and offset of the MemRefType and verify they are static. |
| 1258 | |
| 1259 | int64_t offset; |
| 1260 | SmallVector<int64_t, 4> strides; |
| 1261 | if (failed(baseType.getStridesAndOffset(strides, offset)) || |
| 1262 | llvm::is_contained(strides, ShapedType::kDynamic) || |
| 1263 | ShapedType::isDynamic(offset)) { |
| 1264 | return nullptr; |
| 1265 | } |
| 1266 | |
| 1267 | auto indexType = typeConverter.getIndexType(); |
| 1268 | |
| 1269 | SmallVector<Value, 2> linearizedIndices; |
| 1270 | Value linearIndex; |
| 1271 | if (baseType.getRank() == 0) { |
| 1272 | linearIndex = spirv::ConstantOp::getZero(indexType, loc, builder); |
| 1273 | } else { |
| 1274 | linearIndex = |
| 1275 | linearizeIndex(indices, strides, offset, integerType: indexType, loc, builder); |
| 1276 | } |
| 1277 | Type pointeeType = |
| 1278 | cast<spirv::PointerType>(Val: basePtr.getType()).getPointeeType(); |
| 1279 | if (isa<spirv::ArrayType>(Val: pointeeType)) { |
| 1280 | linearizedIndices.push_back(Elt: linearIndex); |
| 1281 | return builder.create<spirv::AccessChainOp>(loc, basePtr, |
| 1282 | linearizedIndices); |
| 1283 | } |
| 1284 | return builder.create<spirv::PtrAccessChainOp>(loc, basePtr, linearIndex, |
| 1285 | linearizedIndices); |
| 1286 | } |
| 1287 | |
| 1288 | Value mlir::spirv::getElementPtr(const SPIRVTypeConverter &typeConverter, |
| 1289 | MemRefType baseType, Value basePtr, |
| 1290 | ValueRange indices, Location loc, |
| 1291 | OpBuilder &builder) { |
| 1292 | |
| 1293 | if (typeConverter.allows(spirv::Capability::Kernel)) { |
| 1294 | return getOpenCLElementPtr(typeConverter, baseType, basePtr, indices, loc, |
| 1295 | builder); |
| 1296 | } |
| 1297 | |
| 1298 | return getVulkanElementPtr(typeConverter, baseType, basePtr, indices, loc, |
| 1299 | builder); |
| 1300 | } |
| 1301 | |
| 1302 | //===----------------------------------------------------------------------===// |
| 1303 | // Public functions for vector unrolling |
| 1304 | //===----------------------------------------------------------------------===// |
| 1305 | |
| 1306 | int mlir::spirv::getComputeVectorSize(int64_t size) { |
| 1307 | for (int i : {4, 3, 2}) { |
| 1308 | if (size % i == 0) |
| 1309 | return i; |
| 1310 | } |
| 1311 | return 1; |
| 1312 | } |
| 1313 | |
| 1314 | SmallVector<int64_t> |
| 1315 | mlir::spirv::getNativeVectorShapeImpl(vector::ReductionOp op) { |
| 1316 | VectorType srcVectorType = op.getSourceVectorType(); |
| 1317 | assert(srcVectorType.getRank() == 1); // Guaranteed by semantics |
| 1318 | int64_t vectorSize = |
| 1319 | mlir::spirv::getComputeVectorSize(size: srcVectorType.getDimSize(0)); |
| 1320 | return {vectorSize}; |
| 1321 | } |
| 1322 | |
| 1323 | SmallVector<int64_t> |
| 1324 | mlir::spirv::getNativeVectorShapeImpl(vector::TransposeOp op) { |
| 1325 | VectorType vectorType = op.getResultVectorType(); |
| 1326 | SmallVector<int64_t> nativeSize(vectorType.getRank(), 1); |
| 1327 | nativeSize.back() = |
| 1328 | mlir::spirv::getComputeVectorSize(size: vectorType.getShape().back()); |
| 1329 | return nativeSize; |
| 1330 | } |
| 1331 | |
| 1332 | std::optional<SmallVector<int64_t>> |
| 1333 | mlir::spirv::getNativeVectorShape(Operation *op) { |
| 1334 | if (OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1) { |
| 1335 | if (auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0])) { |
| 1336 | SmallVector<int64_t> nativeSize(vecType.getRank(), 1); |
| 1337 | nativeSize.back() = |
| 1338 | mlir::spirv::getComputeVectorSize(size: vecType.getShape().back()); |
| 1339 | return nativeSize; |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | return TypeSwitch<Operation *, std::optional<SmallVector<int64_t>>>(op) |
| 1344 | .Case<vector::ReductionOp, vector::TransposeOp>( |
| 1345 | [](auto typedOp) { return getNativeVectorShapeImpl(typedOp); }) |
| 1346 | .Default([](Operation *) { return std::nullopt; }); |
| 1347 | } |
| 1348 | |
| 1349 | LogicalResult mlir::spirv::unrollVectorsInSignatures(Operation *op) { |
| 1350 | MLIRContext *context = op->getContext(); |
| 1351 | RewritePatternSet patterns(context); |
| 1352 | populateFuncOpVectorRewritePatterns(patterns); |
| 1353 | populateReturnOpVectorRewritePatterns(patterns); |
| 1354 | // We only want to apply signature conversion once to the existing func ops. |
| 1355 | // Without specifying strictMode, the greedy pattern rewriter will keep |
| 1356 | // looking for newly created func ops. |
| 1357 | return applyPatternsGreedily(op, std::move(patterns), |
| 1358 | GreedyRewriteConfig().setStrictness( |
| 1359 | GreedyRewriteStrictness::ExistingOps)); |
| 1360 | } |
| 1361 | |
| 1362 | LogicalResult mlir::spirv::unrollVectorsInFuncBodies(Operation *op) { |
| 1363 | MLIRContext *context = op->getContext(); |
| 1364 | |
| 1365 | // Unroll vectors in function bodies to native vector size. |
| 1366 | { |
| 1367 | RewritePatternSet patterns(context); |
| 1368 | auto options = vector::UnrollVectorOptions().setNativeShapeFn( |
| 1369 | [](auto op) { return mlir::spirv::getNativeVectorShape(op); }); |
| 1370 | populateVectorUnrollPatterns(patterns, options); |
| 1371 | if (failed(applyPatternsGreedily(op, std::move(patterns)))) |
| 1372 | return failure(); |
| 1373 | } |
| 1374 | |
| 1375 | // Convert transpose ops into extract and insert pairs, in preparation of |
| 1376 | // further transformations to canonicalize/cancel. |
| 1377 | { |
| 1378 | RewritePatternSet patterns(context); |
| 1379 | vector::populateVectorTransposeLoweringPatterns( |
| 1380 | patterns, vector::VectorTransposeLowering::EltWise); |
| 1381 | vector::populateVectorShapeCastLoweringPatterns(patterns); |
| 1382 | if (failed(applyPatternsGreedily(op, std::move(patterns)))) |
| 1383 | return failure(); |
| 1384 | } |
| 1385 | |
| 1386 | // Run canonicalization to cast away leading size-1 dimensions. |
| 1387 | { |
| 1388 | RewritePatternSet patterns(context); |
| 1389 | |
| 1390 | // We need to pull in casting way leading one dims. |
| 1391 | vector::populateCastAwayVectorLeadingOneDimPatterns(patterns); |
| 1392 | vector::ReductionOp::getCanonicalizationPatterns(patterns, context); |
| 1393 | vector::TransposeOp::getCanonicalizationPatterns(patterns, context); |
| 1394 | |
| 1395 | // Decompose different rank insert_strided_slice and n-D |
| 1396 | // extract_slided_slice. |
| 1397 | vector::populateVectorInsertExtractStridedSliceDecompositionPatterns( |
| 1398 | patterns); |
| 1399 | vector::InsertOp::getCanonicalizationPatterns(patterns, context); |
| 1400 | vector::ExtractOp::getCanonicalizationPatterns(patterns, context); |
| 1401 | |
| 1402 | // Trimming leading unit dims may generate broadcast/shape_cast ops. Clean |
| 1403 | // them up. |
| 1404 | vector::BroadcastOp::getCanonicalizationPatterns(patterns, context); |
| 1405 | vector::ShapeCastOp::getCanonicalizationPatterns(patterns, context); |
| 1406 | |
| 1407 | if (failed(applyPatternsGreedily(op, std::move(patterns)))) |
| 1408 | return failure(); |
| 1409 | } |
| 1410 | return success(); |
| 1411 | } |
| 1412 | |
| 1413 | //===----------------------------------------------------------------------===// |
| 1414 | // SPIR-V TypeConverter |
| 1415 | //===----------------------------------------------------------------------===// |
| 1416 | |
| 1417 | SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr, |
| 1418 | const SPIRVConversionOptions &options) |
| 1419 | : targetEnv(targetAttr), options(options) { |
| 1420 | // Add conversions. The order matters here: later ones will be tried earlier. |
| 1421 | |
| 1422 | // Allow all SPIR-V dialect specific types. This assumes all builtin types |
| 1423 | // adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType) |
| 1424 | // were tried before. |
| 1425 | // |
| 1426 | // TODO: This assumes that the SPIR-V types are valid to use in the given |
| 1427 | // target environment, which should be the case if the whole pipeline is |
| 1428 | // driven by the same target environment. Still, we probably still want to |
| 1429 | // validate and convert to be safe. |
| 1430 | addConversion(callback: [](spirv::SPIRVType type) { return type; }); |
| 1431 | |
| 1432 | addConversion(callback: [this](IndexType /*indexType*/) { return getIndexType(); }); |
| 1433 | |
| 1434 | addConversion(callback: [this](IntegerType intType) -> std::optional<Type> { |
| 1435 | if (auto scalarType = dyn_cast<spirv::ScalarType>(intType)) |
| 1436 | return convertScalarType(this->targetEnv, this->options, scalarType); |
| 1437 | if (intType.getWidth() < 8) |
| 1438 | return convertSubByteIntegerType(this->options, intType); |
| 1439 | return Type(); |
| 1440 | }); |
| 1441 | |
| 1442 | addConversion(callback: [this](FloatType floatType) -> std::optional<Type> { |
| 1443 | if (auto scalarType = dyn_cast<spirv::ScalarType>(floatType)) |
| 1444 | return convertScalarType(this->targetEnv, this->options, scalarType); |
| 1445 | return Type(); |
| 1446 | }); |
| 1447 | |
| 1448 | addConversion(callback: [this](ComplexType complexType) { |
| 1449 | return convertComplexType(this->targetEnv, this->options, complexType); |
| 1450 | }); |
| 1451 | |
| 1452 | addConversion([this](VectorType vectorType) { |
| 1453 | return convertVectorType(this->targetEnv, this->options, vectorType); |
| 1454 | }); |
| 1455 | |
| 1456 | addConversion(callback: [this](TensorType tensorType) { |
| 1457 | return convertTensorType(targetEnv: this->targetEnv, options: this->options, type: tensorType); |
| 1458 | }); |
| 1459 | |
| 1460 | addConversion([this](MemRefType memRefType) { |
| 1461 | return convertMemrefType(this->targetEnv, this->options, memRefType); |
| 1462 | }); |
| 1463 | |
| 1464 | // Register some last line of defense casting logic. |
| 1465 | addSourceMaterialization( |
| 1466 | callback: [this](OpBuilder &builder, Type type, ValueRange inputs, Location loc) { |
| 1467 | return castToSourceType(targetEnv: this->targetEnv, builder, type, inputs, loc); |
| 1468 | }); |
| 1469 | addTargetMaterialization([](OpBuilder &builder, Type type, ValueRange inputs, |
| 1470 | Location loc) { |
| 1471 | auto cast = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
| 1472 | return cast.getResult(0); |
| 1473 | }); |
| 1474 | } |
| 1475 | |
| 1476 | Type SPIRVTypeConverter::getIndexType() const { |
| 1477 | return ::getIndexType(ctx: getContext(), options); |
| 1478 | } |
| 1479 | |
| 1480 | MLIRContext *SPIRVTypeConverter::getContext() const { |
| 1481 | return targetEnv.getAttr().getContext(); |
| 1482 | } |
| 1483 | |
| 1484 | bool SPIRVTypeConverter::allows(spirv::Capability capability) const { |
| 1485 | return targetEnv.allows(capability); |
| 1486 | } |
| 1487 | |
| 1488 | //===----------------------------------------------------------------------===// |
| 1489 | // SPIR-V ConversionTarget |
| 1490 | //===----------------------------------------------------------------------===// |
| 1491 | |
| 1492 | std::unique_ptr<SPIRVConversionTarget> |
| 1493 | SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) { |
| 1494 | std::unique_ptr<SPIRVConversionTarget> target( |
| 1495 | // std::make_unique does not work here because the constructor is private. |
| 1496 | new SPIRVConversionTarget(targetAttr)); |
| 1497 | SPIRVConversionTarget *targetPtr = target.get(); |
| 1498 | target->addDynamicallyLegalDialect<spirv::SPIRVDialect>( |
| 1499 | // We need to capture the raw pointer here because it is stable: |
| 1500 | // target will be destroyed once this function is returned. |
| 1501 | [targetPtr](Operation *op) { return targetPtr->isLegalOp(op); }); |
| 1502 | return target; |
| 1503 | } |
| 1504 | |
| 1505 | SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr) |
| 1506 | : ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {} |
| 1507 | |
| 1508 | bool SPIRVConversionTarget::isLegalOp(Operation *op) { |
| 1509 | // Make sure this op is available at the given version. Ops not implementing |
| 1510 | // QueryMinVersionInterface/QueryMaxVersionInterface are available to all |
| 1511 | // SPIR-V versions. |
| 1512 | if (auto minVersionIfx = dyn_cast<spirv::QueryMinVersionInterface>(op)) { |
| 1513 | std::optional<spirv::Version> minVersion = minVersionIfx.getMinVersion(); |
| 1514 | if (minVersion && *minVersion > this->targetEnv.getVersion()) { |
| 1515 | LLVM_DEBUG(llvm::dbgs() |
| 1516 | << op->getName() << " illegal: requiring min version " |
| 1517 | << spirv::stringifyVersion(*minVersion) << "\n" ); |
| 1518 | return false; |
| 1519 | } |
| 1520 | } |
| 1521 | if (auto maxVersionIfx = dyn_cast<spirv::QueryMaxVersionInterface>(op)) { |
| 1522 | std::optional<spirv::Version> maxVersion = maxVersionIfx.getMaxVersion(); |
| 1523 | if (maxVersion && *maxVersion < this->targetEnv.getVersion()) { |
| 1524 | LLVM_DEBUG(llvm::dbgs() |
| 1525 | << op->getName() << " illegal: requiring max version " |
| 1526 | << spirv::stringifyVersion(*maxVersion) << "\n" ); |
| 1527 | return false; |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | // Make sure this op's required extensions are allowed to use. Ops not |
| 1532 | // implementing QueryExtensionInterface do not require extensions to be |
| 1533 | // available. |
| 1534 | if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op)) |
| 1535 | if (failed(checkExtensionRequirements(op->getName(), this->targetEnv, |
| 1536 | extensions.getExtensions()))) |
| 1537 | return false; |
| 1538 | |
| 1539 | // Make sure this op's required extensions are allowed to use. Ops not |
| 1540 | // implementing QueryCapabilityInterface do not require capabilities to be |
| 1541 | // available. |
| 1542 | if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op)) |
| 1543 | if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv, |
| 1544 | capabilities.getCapabilities()))) |
| 1545 | return false; |
| 1546 | |
| 1547 | SmallVector<Type, 4> valueTypes; |
| 1548 | valueTypes.append(in_start: op->operand_type_begin(), in_end: op->operand_type_end()); |
| 1549 | valueTypes.append(in_start: op->result_type_begin(), in_end: op->result_type_end()); |
| 1550 | |
| 1551 | // Ensure that all types have been converted to SPIRV types. |
| 1552 | if (llvm::any_of(Range&: valueTypes, |
| 1553 | P: [](Type t) { return !isa<spirv::SPIRVType>(Val: t); })) |
| 1554 | return false; |
| 1555 | |
| 1556 | // Special treatment for global variables, whose type requirements are |
| 1557 | // conveyed by type attributes. |
| 1558 | if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op)) |
| 1559 | valueTypes.push_back(Elt: globalVar.getType()); |
| 1560 | |
| 1561 | // Make sure the op's operands/results use types that are allowed by the |
| 1562 | // target environment. |
| 1563 | SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions; |
| 1564 | SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities; |
| 1565 | for (Type valueType : valueTypes) { |
| 1566 | typeExtensions.clear(); |
| 1567 | cast<spirv::SPIRVType>(Val&: valueType).getExtensions(typeExtensions); |
| 1568 | if (failed(Result: checkExtensionRequirements(label: op->getName(), targetEnv: this->targetEnv, |
| 1569 | candidates: typeExtensions))) |
| 1570 | return false; |
| 1571 | |
| 1572 | typeCapabilities.clear(); |
| 1573 | cast<spirv::SPIRVType>(Val&: valueType).getCapabilities(typeCapabilities); |
| 1574 | if (failed(Result: checkCapabilityRequirements(label: op->getName(), targetEnv: this->targetEnv, |
| 1575 | candidates: typeCapabilities))) |
| 1576 | return false; |
| 1577 | } |
| 1578 | |
| 1579 | return true; |
| 1580 | } |
| 1581 | |
| 1582 | //===----------------------------------------------------------------------===// |
| 1583 | // Public functions for populating patterns |
| 1584 | //===----------------------------------------------------------------------===// |
| 1585 | |
| 1586 | void mlir::populateBuiltinFuncToSPIRVPatterns( |
| 1587 | const SPIRVTypeConverter &typeConverter, RewritePatternSet &patterns) { |
| 1588 | patterns.add<FuncOpConversion>(arg: typeConverter, args: patterns.getContext()); |
| 1589 | } |
| 1590 | |
| 1591 | void mlir::populateFuncOpVectorRewritePatterns(RewritePatternSet &patterns) { |
| 1592 | patterns.add<FuncOpVectorUnroll>(arg: patterns.getContext()); |
| 1593 | } |
| 1594 | |
| 1595 | void mlir::populateReturnOpVectorRewritePatterns(RewritePatternSet &patterns) { |
| 1596 | patterns.add<ReturnOpVectorUnroll>(arg: patterns.getContext()); |
| 1597 | } |
| 1598 | |