1 | //===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements utilities used to lower to SPIR-V dialect. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h" |
14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
15 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
16 | #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h" |
17 | #include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h" |
18 | #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" |
19 | #include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h" |
20 | #include "mlir/Dialect/SPIRV/IR/TargetAndABI.h" |
21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
22 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
23 | #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
24 | #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
25 | #include "mlir/IR/BuiltinTypes.h" |
26 | #include "mlir/IR/Operation.h" |
27 | #include "mlir/IR/PatternMatch.h" |
28 | #include "mlir/Pass/Pass.h" |
29 | #include "mlir/Support/LLVM.h" |
30 | #include "mlir/Transforms/DialectConversion.h" |
31 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
32 | #include "llvm/ADT/STLExtras.h" |
33 | #include "llvm/ADT/SmallVector.h" |
34 | #include "llvm/ADT/StringExtras.h" |
35 | #include "llvm/Support/Debug.h" |
36 | #include "llvm/Support/LogicalResult.h" |
37 | #include "llvm/Support/MathExtras.h" |
38 | |
39 | #include <functional> |
40 | #include <optional> |
41 | |
42 | #define DEBUG_TYPE "mlir-spirv-conversion" |
43 | |
44 | using namespace mlir; |
45 | |
46 | namespace { |
47 | |
48 | //===----------------------------------------------------------------------===// |
49 | // Utility functions |
50 | //===----------------------------------------------------------------------===// |
51 | |
52 | static std::optional<SmallVector<int64_t>> getTargetShape(VectorType vecType) { |
53 | LLVM_DEBUG(llvm::dbgs() << "Get target shape\n"); |
54 | if (vecType.isScalable()) { |
55 | LLVM_DEBUG(llvm::dbgs() |
56 | << "--scalable vectors are not supported -> BAIL\n"); |
57 | return std::nullopt; |
58 | } |
59 | SmallVector<int64_t> unrollShape = llvm::to_vector<4>(vecType.getShape()); |
60 | std::optional<SmallVector<int64_t>> targetShape = SmallVector<int64_t>( |
61 | 1, mlir::spirv::getComputeVectorSize(size: vecType.getShape().back())); |
62 | if (!targetShape) { |
63 | LLVM_DEBUG(llvm::dbgs() << "--no unrolling target shape defined\n"); |
64 | return std::nullopt; |
65 | } |
66 | auto maybeShapeRatio = computeShapeRatio(shape: unrollShape, subShape: *targetShape); |
67 | if (!maybeShapeRatio) { |
68 | LLVM_DEBUG(llvm::dbgs() |
69 | << "--could not compute integral shape ratio -> BAIL\n"); |
70 | return std::nullopt; |
71 | } |
72 | if (llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; })) { |
73 | LLVM_DEBUG(llvm::dbgs() << "--no unrolling needed -> SKIP\n"); |
74 | return std::nullopt; |
75 | } |
76 | LLVM_DEBUG(llvm::dbgs() |
77 | << "--found an integral shape ratio to unroll to -> SUCCESS\n"); |
78 | return targetShape; |
79 | } |
80 | |
81 | /// Checks that `candidates` extension requirements are possible to be satisfied |
82 | /// with the given `targetEnv`. |
83 | /// |
84 | /// `candidates` is a vector of vector for extension requirements following |
85 | /// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D)) |
86 | /// convention. |
87 | template <typename LabelT> |
88 | static LogicalResult checkExtensionRequirements( |
89 | LabelT label, const spirv::TargetEnv &targetEnv, |
90 | const spirv::SPIRVType::ExtensionArrayRefVector &candidates) { |
91 | for (const auto &ors : candidates) { |
92 | if (targetEnv.allows(ors)) |
93 | continue; |
94 | |
95 | LLVM_DEBUG({ |
96 | SmallVector<StringRef> extStrings; |
97 | for (spirv::Extension ext : ors) |
98 | extStrings.push_back(spirv::stringifyExtension(ext)); |
99 | |
100 | llvm::dbgs() << label << " illegal: requires at least one extension in [" |
101 | << llvm::join(extStrings, ", ") |
102 | << "] but none allowed in target environment\n"; |
103 | }); |
104 | return failure(); |
105 | } |
106 | return success(); |
107 | } |
108 | |
109 | /// Checks that `candidates`capability requirements are possible to be satisfied |
110 | /// with the given `isAllowedFn`. |
111 | /// |
112 | /// `candidates` is a vector of vector for capability requirements following |
113 | /// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D)) |
114 | /// convention. |
115 | template <typename LabelT> |
116 | static LogicalResult checkCapabilityRequirements( |
117 | LabelT label, const spirv::TargetEnv &targetEnv, |
118 | const spirv::SPIRVType::CapabilityArrayRefVector &candidates) { |
119 | for (const auto &ors : candidates) { |
120 | if (targetEnv.allows(ors)) |
121 | continue; |
122 | |
123 | LLVM_DEBUG({ |
124 | SmallVector<StringRef> capStrings; |
125 | for (spirv::Capability cap : ors) |
126 | capStrings.push_back(spirv::stringifyCapability(cap)); |
127 | |
128 | llvm::dbgs() << label << " illegal: requires at least one capability in [" |
129 | << llvm::join(capStrings, ", ") |
130 | << "] but none allowed in target environment\n"; |
131 | }); |
132 | return failure(); |
133 | } |
134 | return success(); |
135 | } |
136 | |
137 | /// Returns true if the given `storageClass` needs explicit layout when used in |
138 | /// Shader environments. |
139 | static bool needsExplicitLayout(spirv::StorageClass storageClass) { |
140 | switch (storageClass) { |
141 | case spirv::StorageClass::PhysicalStorageBuffer: |
142 | case spirv::StorageClass::PushConstant: |
143 | case spirv::StorageClass::StorageBuffer: |
144 | case spirv::StorageClass::Uniform: |
145 | return true; |
146 | default: |
147 | return false; |
148 | } |
149 | } |
150 | |
151 | /// Wraps the given `elementType` in a struct and gets the pointer to the |
152 | /// struct. This is used to satisfy Vulkan interface requirements. |
153 | static spirv::PointerType |
154 | wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) { |
155 | auto structType = needsExplicitLayout(storageClass) |
156 | ? spirv::StructType::get(memberTypes: elementType, /*offsetInfo=*/0) |
157 | : spirv::StructType::get(memberTypes: elementType); |
158 | return spirv::PointerType::get(structType, storageClass); |
159 | } |
160 | |
161 | //===----------------------------------------------------------------------===// |
162 | // Type Conversion |
163 | //===----------------------------------------------------------------------===// |
164 | |
165 | static spirv::ScalarType getIndexType(MLIRContext *ctx, |
166 | const SPIRVConversionOptions &options) { |
167 | return cast<spirv::ScalarType>( |
168 | IntegerType::get(ctx, options.use64bitIndex ? 64 : 32)); |
169 | } |
170 | |
171 | // TODO: This is a utility function that should probably be exposed by the |
172 | // SPIR-V dialect. Keeping it local till the use case arises. |
173 | static std::optional<int64_t> |
174 | getTypeNumBytes(const SPIRVConversionOptions &options, Type type) { |
175 | if (isa<spirv::ScalarType>(Val: type)) { |
176 | auto bitWidth = type.getIntOrFloatBitWidth(); |
177 | // According to the SPIR-V spec: |
178 | // "There is no physical size or bit pattern defined for values with boolean |
179 | // type. If they are stored (in conjunction with OpVariable), they can only |
180 | // be used with logical addressing operations, not physical, and only with |
181 | // non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup, |
182 | // Private, Function, Input, and Output." |
183 | if (bitWidth == 1) |
184 | return std::nullopt; |
185 | return bitWidth / 8; |
186 | } |
187 | |
188 | if (auto complexType = dyn_cast<ComplexType>(type)) { |
189 | auto elementSize = getTypeNumBytes(options, complexType.getElementType()); |
190 | if (!elementSize) |
191 | return std::nullopt; |
192 | return 2 * *elementSize; |
193 | } |
194 | |
195 | if (auto vecType = dyn_cast<VectorType>(type)) { |
196 | auto elementSize = getTypeNumBytes(options, vecType.getElementType()); |
197 | if (!elementSize) |
198 | return std::nullopt; |
199 | return vecType.getNumElements() * *elementSize; |
200 | } |
201 | |
202 | if (auto memRefType = dyn_cast<MemRefType>(type)) { |
203 | // TODO: Layout should also be controlled by the ABI attributes. For now |
204 | // using the layout from MemRef. |
205 | int64_t offset; |
206 | SmallVector<int64_t, 4> strides; |
207 | if (!memRefType.hasStaticShape() || |
208 | failed(memRefType.getStridesAndOffset(strides, offset))) |
209 | return std::nullopt; |
210 | |
211 | // To get the size of the memref object in memory, the total size is the |
212 | // max(stride * dimension-size) computed for all dimensions times the size |
213 | // of the element. |
214 | auto elementSize = getTypeNumBytes(options, memRefType.getElementType()); |
215 | if (!elementSize) |
216 | return std::nullopt; |
217 | |
218 | if (memRefType.getRank() == 0) |
219 | return elementSize; |
220 | |
221 | auto dims = memRefType.getShape(); |
222 | if (llvm::is_contained(dims, ShapedType::kDynamic) || |
223 | ShapedType::isDynamic(offset) || |
224 | llvm::is_contained(strides, ShapedType::kDynamic)) |
225 | return std::nullopt; |
226 | |
227 | int64_t memrefSize = -1; |
228 | for (const auto &shape : enumerate(dims)) |
229 | memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]); |
230 | |
231 | return (offset + memrefSize) * *elementSize; |
232 | } |
233 | |
234 | if (auto tensorType = dyn_cast<TensorType>(Val&: type)) { |
235 | if (!tensorType.hasStaticShape()) |
236 | return std::nullopt; |
237 | |
238 | auto elementSize = getTypeNumBytes(options, type: tensorType.getElementType()); |
239 | if (!elementSize) |
240 | return std::nullopt; |
241 | |
242 | int64_t size = *elementSize; |
243 | for (auto shape : tensorType.getShape()) |
244 | size *= shape; |
245 | |
246 | return size; |
247 | } |
248 | |
249 | // TODO: Add size computation for other types. |
250 | return std::nullopt; |
251 | } |
252 | |
253 | /// Converts a scalar `type` to a suitable type under the given `targetEnv`. |
254 | static Type |
255 | convertScalarType(const spirv::TargetEnv &targetEnv, |
256 | const SPIRVConversionOptions &options, spirv::ScalarType type, |
257 | std::optional<spirv::StorageClass> storageClass = {}) { |
258 | // Get extension and capability requirements for the given type. |
259 | SmallVector<ArrayRef<spirv::Extension>, 1> extensions; |
260 | SmallVector<ArrayRef<spirv::Capability>, 2> capabilities; |
261 | type.getExtensions(extensions, storageClass); |
262 | type.getCapabilities(capabilities, storageClass); |
263 | |
264 | // If all requirements are met, then we can accept this type as-is. |
265 | if (succeeded(Result: checkCapabilityRequirements(label: type, targetEnv, candidates: capabilities)) && |
266 | succeeded(Result: checkExtensionRequirements(label: type, targetEnv, candidates: extensions))) |
267 | return type; |
268 | |
269 | // Otherwise we need to adjust the type, which really means adjusting the |
270 | // bitwidth given this is a scalar type. |
271 | if (!options.emulateLT32BitScalarTypes) |
272 | return nullptr; |
273 | |
274 | // We only emulate narrower scalar types here and do not truncate results. |
275 | if (type.getIntOrFloatBitWidth() > 32) { |
276 | LLVM_DEBUG(llvm::dbgs() |
277 | << type |
278 | << " not converted to 32-bit for SPIR-V to avoid truncation\n"); |
279 | return nullptr; |
280 | } |
281 | |
282 | if (auto floatType = dyn_cast<FloatType>(type)) { |
283 | LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n"); |
284 | return Builder(targetEnv.getContext()).getF32Type(); |
285 | } |
286 | |
287 | auto intType = cast<IntegerType>(type); |
288 | LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n"); |
289 | return IntegerType::get(targetEnv.getContext(), /*width=*/32, |
290 | intType.getSignedness()); |
291 | } |
292 | |
293 | /// Converts a sub-byte integer `type` to i32 regardless of target environment. |
294 | /// Returns a nullptr for unsupported integer types, including non sub-byte |
295 | /// types. |
296 | /// |
297 | /// Note that we don't recognize sub-byte types in `spirv::ScalarType` and use |
298 | /// the above given that these sub-byte types are not supported at all in |
299 | /// SPIR-V; there are no compute/storage capability for them like other |
300 | /// supported integer types. |
301 | static Type convertSubByteIntegerType(const SPIRVConversionOptions &options, |
302 | IntegerType type) { |
303 | if (type.getWidth() > 8) { |
304 | LLVM_DEBUG(llvm::dbgs() << "not a subbyte type\n"); |
305 | return nullptr; |
306 | } |
307 | if (options.subByteTypeStorage != SPIRVSubByteTypeStorage::Packed) { |
308 | LLVM_DEBUG(llvm::dbgs() << "unsupported sub-byte storage kind\n"); |
309 | return nullptr; |
310 | } |
311 | |
312 | if (!llvm::isPowerOf2_32(Value: type.getWidth())) { |
313 | LLVM_DEBUG(llvm::dbgs() |
314 | << "unsupported non-power-of-two bitwidth in sub-byte"<< type |
315 | << "\n"); |
316 | return nullptr; |
317 | } |
318 | |
319 | LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n"); |
320 | return IntegerType::get(type.getContext(), /*width=*/32, |
321 | type.getSignedness()); |
322 | } |
323 | |
324 | /// Returns a type with the same shape but with any index element type converted |
325 | /// to the matching integer type. This is a noop when the element type is not |
326 | /// the index type. |
327 | static ShapedType |
328 | convertIndexElementType(ShapedType type, |
329 | const SPIRVConversionOptions &options) { |
330 | Type indexType = dyn_cast<IndexType>(type.getElementType()); |
331 | if (!indexType) |
332 | return type; |
333 | |
334 | return type.clone(getIndexType(type.getContext(), options)); |
335 | } |
336 | |
337 | /// Converts a vector `type` to a suitable type under the given `targetEnv`. |
338 | static Type |
339 | convertVectorType(const spirv::TargetEnv &targetEnv, |
340 | const SPIRVConversionOptions &options, VectorType type, |
341 | std::optional<spirv::StorageClass> storageClass = {}) { |
342 | type = cast<VectorType>(convertIndexElementType(type, options)); |
343 | auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType()); |
344 | if (!scalarType) { |
345 | // If this is not a spec allowed scalar type, try to handle sub-byte integer |
346 | // types. |
347 | auto intType = dyn_cast<IntegerType>(type.getElementType()); |
348 | if (!intType) { |
349 | LLVM_DEBUG(llvm::dbgs() |
350 | << type |
351 | << " illegal: cannot convert non-scalar element type\n"); |
352 | return nullptr; |
353 | } |
354 | |
355 | Type elementType = convertSubByteIntegerType(options, intType); |
356 | if (!elementType) |
357 | return nullptr; |
358 | |
359 | if (type.getRank() <= 1 && type.getNumElements() == 1) |
360 | return elementType; |
361 | |
362 | if (type.getNumElements() > 4) { |
363 | LLVM_DEBUG(llvm::dbgs() |
364 | << type << " illegal: > 4-element unimplemented\n"); |
365 | return nullptr; |
366 | } |
367 | |
368 | return VectorType::get(type.getShape(), elementType); |
369 | } |
370 | |
371 | if (type.getRank() <= 1 && type.getNumElements() == 1) |
372 | return convertScalarType(targetEnv, options, scalarType, storageClass); |
373 | |
374 | if (!spirv::CompositeType::isValid(type)) { |
375 | LLVM_DEBUG(llvm::dbgs() |
376 | << type << " illegal: not a valid composite type\n"); |
377 | return nullptr; |
378 | } |
379 | |
380 | // Get extension and capability requirements for the given type. |
381 | SmallVector<ArrayRef<spirv::Extension>, 1> extensions; |
382 | SmallVector<ArrayRef<spirv::Capability>, 2> capabilities; |
383 | cast<spirv::CompositeType>(type).getExtensions(extensions, storageClass); |
384 | cast<spirv::CompositeType>(type).getCapabilities(capabilities, storageClass); |
385 | |
386 | // If all requirements are met, then we can accept this type as-is. |
387 | if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) && |
388 | succeeded(checkExtensionRequirements(type, targetEnv, extensions))) |
389 | return type; |
390 | |
391 | auto elementType = |
392 | convertScalarType(targetEnv, options, scalarType, storageClass); |
393 | if (elementType) |
394 | return VectorType::get(type.getShape(), elementType); |
395 | return nullptr; |
396 | } |
397 | |
398 | static Type |
399 | convertComplexType(const spirv::TargetEnv &targetEnv, |
400 | const SPIRVConversionOptions &options, ComplexType type, |
401 | std::optional<spirv::StorageClass> storageClass = {}) { |
402 | auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType()); |
403 | if (!scalarType) { |
404 | LLVM_DEBUG(llvm::dbgs() |
405 | << type << " illegal: cannot convert non-scalar element type\n"); |
406 | return nullptr; |
407 | } |
408 | |
409 | auto elementType = |
410 | convertScalarType(targetEnv, options, scalarType, storageClass); |
411 | if (!elementType) |
412 | return nullptr; |
413 | if (elementType != type.getElementType()) { |
414 | LLVM_DEBUG(llvm::dbgs() |
415 | << type << " illegal: complex type emulation unsupported\n"); |
416 | return nullptr; |
417 | } |
418 | |
419 | return VectorType::get(2, elementType); |
420 | } |
421 | |
422 | /// Converts a tensor `type` to a suitable type under the given `targetEnv`. |
423 | /// |
424 | /// Note that this is mainly for lowering constant tensors. In SPIR-V one can |
425 | /// create composite constants with OpConstantComposite to embed relative large |
426 | /// constant values and use OpCompositeExtract and OpCompositeInsert to |
427 | /// manipulate, like what we do for vectors. |
428 | static Type convertTensorType(const spirv::TargetEnv &targetEnv, |
429 | const SPIRVConversionOptions &options, |
430 | TensorType type) { |
431 | // TODO: Handle dynamic shapes. |
432 | if (!type.hasStaticShape()) { |
433 | LLVM_DEBUG(llvm::dbgs() |
434 | << type << " illegal: dynamic shape unimplemented\n"); |
435 | return nullptr; |
436 | } |
437 | |
438 | type = cast<TensorType>(convertIndexElementType(type, options)); |
439 | auto scalarType = dyn_cast_or_null<spirv::ScalarType>(Val: type.getElementType()); |
440 | if (!scalarType) { |
441 | LLVM_DEBUG(llvm::dbgs() |
442 | << type << " illegal: cannot convert non-scalar element type\n"); |
443 | return nullptr; |
444 | } |
445 | |
446 | std::optional<int64_t> scalarSize = getTypeNumBytes(options, type: scalarType); |
447 | std::optional<int64_t> tensorSize = getTypeNumBytes(options, type); |
448 | if (!scalarSize || !tensorSize) { |
449 | LLVM_DEBUG(llvm::dbgs() |
450 | << type << " illegal: cannot deduce element count\n"); |
451 | return nullptr; |
452 | } |
453 | |
454 | int64_t arrayElemCount = *tensorSize / *scalarSize; |
455 | if (arrayElemCount == 0) { |
456 | LLVM_DEBUG(llvm::dbgs() |
457 | << type << " illegal: cannot handle zero-element tensors\n"); |
458 | return nullptr; |
459 | } |
460 | |
461 | Type arrayElemType = convertScalarType(targetEnv, options, type: scalarType); |
462 | if (!arrayElemType) |
463 | return nullptr; |
464 | std::optional<int64_t> arrayElemSize = |
465 | getTypeNumBytes(options, type: arrayElemType); |
466 | if (!arrayElemSize) { |
467 | LLVM_DEBUG(llvm::dbgs() |
468 | << type << " illegal: cannot deduce converted element size\n"); |
469 | return nullptr; |
470 | } |
471 | |
472 | return spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount); |
473 | } |
474 | |
475 | static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv, |
476 | const SPIRVConversionOptions &options, |
477 | MemRefType type, |
478 | spirv::StorageClass storageClass) { |
479 | unsigned numBoolBits = options.boolNumBits; |
480 | if (numBoolBits != 8) { |
481 | LLVM_DEBUG(llvm::dbgs() |
482 | << "using non-8-bit storage for bool types unimplemented"); |
483 | return nullptr; |
484 | } |
485 | auto elementType = dyn_cast<spirv::ScalarType>( |
486 | IntegerType::get(type.getContext(), numBoolBits)); |
487 | if (!elementType) |
488 | return nullptr; |
489 | Type arrayElemType = |
490 | convertScalarType(targetEnv, options, elementType, storageClass); |
491 | if (!arrayElemType) |
492 | return nullptr; |
493 | std::optional<int64_t> arrayElemSize = |
494 | getTypeNumBytes(options, type: arrayElemType); |
495 | if (!arrayElemSize) { |
496 | LLVM_DEBUG(llvm::dbgs() |
497 | << type << " illegal: cannot deduce converted element size\n"); |
498 | return nullptr; |
499 | } |
500 | |
501 | if (!type.hasStaticShape()) { |
502 | // For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing |
503 | // to the element. |
504 | if (targetEnv.allows(spirv::Capability::Kernel)) |
505 | return spirv::PointerType::get(arrayElemType, storageClass); |
506 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
507 | auto arrayType = spirv::RuntimeArrayType::get(elementType: arrayElemType, stride); |
508 | // For Vulkan we need extra wrapping struct and array to satisfy interface |
509 | // needs. |
510 | return wrapInStructAndGetPointer(arrayType, storageClass); |
511 | } |
512 | |
513 | if (type.getNumElements() == 0) { |
514 | LLVM_DEBUG(llvm::dbgs() |
515 | << type << " illegal: zero-element memrefs are not supported\n"); |
516 | return nullptr; |
517 | } |
518 | |
519 | int64_t memrefSize = llvm::divideCeil(type.getNumElements() * numBoolBits, 8); |
520 | int64_t arrayElemCount = llvm::divideCeil(Numerator: memrefSize, Denominator: *arrayElemSize); |
521 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
522 | auto arrayType = spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount, stride); |
523 | if (targetEnv.allows(spirv::Capability::Kernel)) |
524 | return spirv::PointerType::get(arrayType, storageClass); |
525 | return wrapInStructAndGetPointer(arrayType, storageClass); |
526 | } |
527 | |
528 | static Type convertSubByteMemrefType(const spirv::TargetEnv &targetEnv, |
529 | const SPIRVConversionOptions &options, |
530 | MemRefType type, |
531 | spirv::StorageClass storageClass) { |
532 | IntegerType elementType = cast<IntegerType>(type.getElementType()); |
533 | Type arrayElemType = convertSubByteIntegerType(options, elementType); |
534 | if (!arrayElemType) |
535 | return nullptr; |
536 | int64_t arrayElemSize = *getTypeNumBytes(options, type: arrayElemType); |
537 | |
538 | if (!type.hasStaticShape()) { |
539 | // For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing |
540 | // to the element. |
541 | if (targetEnv.allows(spirv::Capability::Kernel)) |
542 | return spirv::PointerType::get(arrayElemType, storageClass); |
543 | int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0; |
544 | auto arrayType = spirv::RuntimeArrayType::get(elementType: arrayElemType, stride); |
545 | // For Vulkan we need extra wrapping struct and array to satisfy interface |
546 | // needs. |
547 | return wrapInStructAndGetPointer(arrayType, storageClass); |
548 | } |
549 | |
550 | if (type.getNumElements() == 0) { |
551 | LLVM_DEBUG(llvm::dbgs() |
552 | << type << " illegal: zero-element memrefs are not supported\n"); |
553 | return nullptr; |
554 | } |
555 | |
556 | int64_t memrefSize = |
557 | llvm::divideCeil(type.getNumElements() * elementType.getWidth(), 8); |
558 | int64_t arrayElemCount = llvm::divideCeil(Numerator: memrefSize, Denominator: arrayElemSize); |
559 | int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0; |
560 | auto arrayType = spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount, stride); |
561 | if (targetEnv.allows(spirv::Capability::Kernel)) |
562 | return spirv::PointerType::get(arrayType, storageClass); |
563 | return wrapInStructAndGetPointer(arrayType, storageClass); |
564 | } |
565 | |
566 | static Type convertMemrefType(const spirv::TargetEnv &targetEnv, |
567 | const SPIRVConversionOptions &options, |
568 | MemRefType type) { |
569 | auto attr = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace()); |
570 | if (!attr) { |
571 | LLVM_DEBUG( |
572 | llvm::dbgs() |
573 | << type |
574 | << " illegal: expected memory space to be a SPIR-V storage class " |
575 | "attribute; please use MemorySpaceToStorageClassConverter to map " |
576 | "numeric memory spaces beforehand\n"); |
577 | return nullptr; |
578 | } |
579 | spirv::StorageClass storageClass = attr.getValue(); |
580 | |
581 | if (isa<IntegerType>(type.getElementType())) { |
582 | if (type.getElementTypeBitWidth() == 1) |
583 | return convertBoolMemrefType(targetEnv, options, type, storageClass); |
584 | if (type.getElementTypeBitWidth() < 8) |
585 | return convertSubByteMemrefType(targetEnv, options, type, storageClass); |
586 | } |
587 | |
588 | Type arrayElemType; |
589 | Type elementType = type.getElementType(); |
590 | if (auto vecType = dyn_cast<VectorType>(elementType)) { |
591 | arrayElemType = |
592 | convertVectorType(targetEnv, options, vecType, storageClass); |
593 | } else if (auto complexType = dyn_cast<ComplexType>(elementType)) { |
594 | arrayElemType = |
595 | convertComplexType(targetEnv, options, complexType, storageClass); |
596 | } else if (auto scalarType = dyn_cast<spirv::ScalarType>(elementType)) { |
597 | arrayElemType = |
598 | convertScalarType(targetEnv, options, scalarType, storageClass); |
599 | } else if (auto indexType = dyn_cast<IndexType>(elementType)) { |
600 | type = cast<MemRefType>(convertIndexElementType(type, options)); |
601 | arrayElemType = type.getElementType(); |
602 | } else { |
603 | LLVM_DEBUG( |
604 | llvm::dbgs() |
605 | << type |
606 | << " unhandled: can only convert scalar or vector element type\n"); |
607 | return nullptr; |
608 | } |
609 | if (!arrayElemType) |
610 | return nullptr; |
611 | |
612 | std::optional<int64_t> arrayElemSize = |
613 | getTypeNumBytes(options, type: arrayElemType); |
614 | if (!arrayElemSize) { |
615 | LLVM_DEBUG(llvm::dbgs() |
616 | << type << " illegal: cannot deduce converted element size\n"); |
617 | return nullptr; |
618 | } |
619 | |
620 | if (!type.hasStaticShape()) { |
621 | // For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing |
622 | // to the element. |
623 | if (targetEnv.allows(spirv::Capability::Kernel)) |
624 | return spirv::PointerType::get(arrayElemType, storageClass); |
625 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
626 | auto arrayType = spirv::RuntimeArrayType::get(elementType: arrayElemType, stride); |
627 | // For Vulkan we need extra wrapping struct and array to satisfy interface |
628 | // needs. |
629 | return wrapInStructAndGetPointer(arrayType, storageClass); |
630 | } |
631 | |
632 | std::optional<int64_t> memrefSize = getTypeNumBytes(options, type); |
633 | if (!memrefSize) { |
634 | LLVM_DEBUG(llvm::dbgs() |
635 | << type << " illegal: cannot deduce element count\n"); |
636 | return nullptr; |
637 | } |
638 | |
639 | if (*memrefSize == 0) { |
640 | LLVM_DEBUG(llvm::dbgs() |
641 | << type << " illegal: zero-element memrefs are not supported\n"); |
642 | return nullptr; |
643 | } |
644 | |
645 | int64_t arrayElemCount = llvm::divideCeil(Numerator: *memrefSize, Denominator: *arrayElemSize); |
646 | int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0; |
647 | auto arrayType = spirv::ArrayType::get(elementType: arrayElemType, elementCount: arrayElemCount, stride); |
648 | if (targetEnv.allows(spirv::Capability::Kernel)) |
649 | return spirv::PointerType::get(arrayType, storageClass); |
650 | return wrapInStructAndGetPointer(arrayType, storageClass); |
651 | } |
652 | |
653 | //===----------------------------------------------------------------------===// |
654 | // Type casting materialization |
655 | //===----------------------------------------------------------------------===// |
656 | |
657 | /// Converts the given `inputs` to the original source `type` considering the |
658 | /// `targetEnv`'s capabilities. |
659 | /// |
660 | /// This function is meant to be used for source materialization in type |
661 | /// converters. When the type converter needs to materialize a cast op back |
662 | /// to some original source type, we need to check whether the original source |
663 | /// type is supported in the target environment. If so, we can insert legal |
664 | /// SPIR-V cast ops accordingly. |
665 | /// |
666 | /// Note that in SPIR-V the capabilities for storage and compute are separate. |
667 | /// This function is meant to handle the **compute** side; so it does not |
668 | /// involve storage classes in its logic. The storage side is expected to be |
669 | /// handled by MemRef conversion logic. |
670 | static Value castToSourceType(const spirv::TargetEnv &targetEnv, |
671 | OpBuilder &builder, Type type, ValueRange inputs, |
672 | Location loc) { |
673 | // We can only cast one value in SPIR-V. |
674 | if (inputs.size() != 1) { |
675 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
676 | return castOp.getResult(0); |
677 | } |
678 | Value input = inputs.front(); |
679 | |
680 | // Only support integer types for now. Floating point types to be implemented. |
681 | if (!isa<IntegerType>(Val: type)) { |
682 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
683 | return castOp.getResult(0); |
684 | } |
685 | auto inputType = cast<IntegerType>(input.getType()); |
686 | |
687 | auto scalarType = dyn_cast<spirv::ScalarType>(Val&: type); |
688 | if (!scalarType) { |
689 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
690 | return castOp.getResult(0); |
691 | } |
692 | |
693 | // Only support source type with a smaller bitwidth. This would mean we are |
694 | // truncating to go back so we don't need to worry about the signedness. |
695 | // For extension, we cannot have enough signal here to decide which op to use. |
696 | if (inputType.getIntOrFloatBitWidth() < scalarType.getIntOrFloatBitWidth()) { |
697 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
698 | return castOp.getResult(0); |
699 | } |
700 | |
701 | // Boolean values would need to use different ops than normal integer values. |
702 | if (type.isInteger(width: 1)) { |
703 | Value one = spirv::ConstantOp::getOne(inputType, loc, builder); |
704 | return builder.create<spirv::IEqualOp>(loc, input, one); |
705 | } |
706 | |
707 | // Check that the source integer type is supported by the environment. |
708 | SmallVector<ArrayRef<spirv::Extension>, 1> exts; |
709 | SmallVector<ArrayRef<spirv::Capability>, 2> caps; |
710 | scalarType.getExtensions(exts); |
711 | scalarType.getCapabilities(caps); |
712 | if (failed(Result: checkCapabilityRequirements(label: type, targetEnv, candidates: caps)) || |
713 | failed(Result: checkExtensionRequirements(label: type, targetEnv, candidates: exts))) { |
714 | auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
715 | return castOp.getResult(0); |
716 | } |
717 | |
718 | // We've already made sure this is truncating previously, so we don't need to |
719 | // care about signedness here. Still try to use a corresponding op for better |
720 | // consistency though. |
721 | if (type.isSignedInteger()) { |
722 | return builder.create<spirv::SConvertOp>(loc, type, input); |
723 | } |
724 | return builder.create<spirv::UConvertOp>(loc, type, input); |
725 | } |
726 | |
727 | //===----------------------------------------------------------------------===// |
728 | // Builtin Variables |
729 | //===----------------------------------------------------------------------===// |
730 | |
731 | static spirv::GlobalVariableOp getBuiltinVariable(Block &body, |
732 | spirv::BuiltIn builtin) { |
733 | // Look through all global variables in the given `body` block and check if |
734 | // there is a spirv.GlobalVariable that has the same `builtin` attribute. |
735 | for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) { |
736 | if (auto builtinAttr = varOp->getAttrOfType<StringAttr>( |
737 | spirv::SPIRVDialect::getAttributeName( |
738 | spirv::Decoration::BuiltIn))) { |
739 | auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue()); |
740 | if (varBuiltIn && *varBuiltIn == builtin) { |
741 | return varOp; |
742 | } |
743 | } |
744 | } |
745 | return nullptr; |
746 | } |
747 | |
748 | /// Gets name of global variable for a builtin. |
749 | std::string getBuiltinVarName(spirv::BuiltIn builtin, StringRef prefix, |
750 | StringRef suffix) { |
751 | return Twine(prefix).concat(stringifyBuiltIn(builtin)).concat(suffix).str(); |
752 | } |
753 | |
754 | /// Gets or inserts a global variable for a builtin within `body` block. |
755 | static spirv::GlobalVariableOp |
756 | getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin, |
757 | Type integerType, OpBuilder &builder, |
758 | StringRef prefix, StringRef suffix) { |
759 | if (auto varOp = getBuiltinVariable(body, builtin)) |
760 | return varOp; |
761 | |
762 | OpBuilder::InsertionGuard guard(builder); |
763 | builder.setInsertionPointToStart(&body); |
764 | |
765 | spirv::GlobalVariableOp newVarOp; |
766 | switch (builtin) { |
767 | case spirv::BuiltIn::NumWorkgroups: |
768 | case spirv::BuiltIn::WorkgroupSize: |
769 | case spirv::BuiltIn::WorkgroupId: |
770 | case spirv::BuiltIn::LocalInvocationId: |
771 | case spirv::BuiltIn::GlobalInvocationId: { |
772 | auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType), |
773 | spirv::StorageClass::Input); |
774 | std::string name = getBuiltinVarName(builtin, prefix, suffix); |
775 | newVarOp = |
776 | builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin); |
777 | break; |
778 | } |
779 | case spirv::BuiltIn::SubgroupId: |
780 | case spirv::BuiltIn::NumSubgroups: |
781 | case spirv::BuiltIn::SubgroupSize: |
782 | case spirv::BuiltIn::SubgroupLocalInvocationId: { |
783 | auto ptrType = |
784 | spirv::PointerType::get(integerType, spirv::StorageClass::Input); |
785 | std::string name = getBuiltinVarName(builtin, prefix, suffix); |
786 | newVarOp = |
787 | builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin); |
788 | break; |
789 | } |
790 | default: |
791 | emitError(loc, message: "unimplemented builtin variable generation for ") |
792 | << stringifyBuiltIn(builtin); |
793 | } |
794 | return newVarOp; |
795 | } |
796 | |
797 | //===----------------------------------------------------------------------===// |
798 | // Push constant storage |
799 | //===----------------------------------------------------------------------===// |
800 | |
801 | /// Returns the pointer type for the push constant storage containing |
802 | /// `elementCount` 32-bit integer values. |
803 | static spirv::PointerType getPushConstantStorageType(unsigned elementCount, |
804 | Builder &builder, |
805 | Type indexType) { |
806 | auto arrayType = spirv::ArrayType::get(elementType: indexType, elementCount, |
807 | /*stride=*/4); |
808 | auto structType = spirv::StructType::get(memberTypes: {arrayType}, /*offsetInfo=*/0); |
809 | return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant); |
810 | } |
811 | |
812 | /// Returns the push constant varible containing `elementCount` 32-bit integer |
813 | /// values in `body`. Returns null op if such an op does not exit. |
814 | static spirv::GlobalVariableOp getPushConstantVariable(Block &body, |
815 | unsigned elementCount) { |
816 | for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) { |
817 | auto ptrType = dyn_cast<spirv::PointerType>(varOp.getType()); |
818 | if (!ptrType) |
819 | continue; |
820 | |
821 | // Note that Vulkan requires "There must be no more than one push constant |
822 | // block statically used per shader entry point." So we should always reuse |
823 | // the existing one. |
824 | if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) { |
825 | auto numElements = cast<spirv::ArrayType>( |
826 | cast<spirv::StructType>(ptrType.getPointeeType()) |
827 | .getElementType(0)) |
828 | .getNumElements(); |
829 | if (numElements == elementCount) |
830 | return varOp; |
831 | } |
832 | } |
833 | return nullptr; |
834 | } |
835 | |
836 | /// Gets or inserts a global variable for push constant storage containing |
837 | /// `elementCount` 32-bit integer values in `block`. |
838 | static spirv::GlobalVariableOp |
839 | getOrInsertPushConstantVariable(Location loc, Block &block, |
840 | unsigned elementCount, OpBuilder &b, |
841 | Type indexType) { |
842 | if (auto varOp = getPushConstantVariable(block, elementCount)) |
843 | return varOp; |
844 | |
845 | auto builder = OpBuilder::atBlockBegin(block: &block, listener: b.getListener()); |
846 | auto type = getPushConstantStorageType(elementCount, builder, indexType); |
847 | const char *name = "__push_constant_var__"; |
848 | return builder.create<spirv::GlobalVariableOp>(loc, type, name, |
849 | /*initializer=*/nullptr); |
850 | } |
851 | |
852 | //===----------------------------------------------------------------------===// |
853 | // func::FuncOp Conversion Patterns |
854 | //===----------------------------------------------------------------------===// |
855 | |
856 | /// A pattern for rewriting function signature to convert arguments of functions |
857 | /// to be of valid SPIR-V types. |
858 | struct FuncOpConversion final : OpConversionPattern<func::FuncOp> { |
859 | using OpConversionPattern<func::FuncOp>::OpConversionPattern; |
860 | |
861 | LogicalResult |
862 | matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, |
863 | ConversionPatternRewriter &rewriter) const override { |
864 | FunctionType fnType = funcOp.getFunctionType(); |
865 | if (fnType.getNumResults() > 1) |
866 | return failure(); |
867 | |
868 | TypeConverter::SignatureConversion signatureConverter( |
869 | fnType.getNumInputs()); |
870 | for (const auto &argType : enumerate(fnType.getInputs())) { |
871 | auto convertedType = getTypeConverter()->convertType(argType.value()); |
872 | if (!convertedType) |
873 | return failure(); |
874 | signatureConverter.addInputs(argType.index(), convertedType); |
875 | } |
876 | |
877 | Type resultType; |
878 | if (fnType.getNumResults() == 1) { |
879 | resultType = getTypeConverter()->convertType(fnType.getResult(0)); |
880 | if (!resultType) |
881 | return failure(); |
882 | } |
883 | |
884 | // Create the converted spirv.func op. |
885 | auto newFuncOp = rewriter.create<spirv::FuncOp>( |
886 | funcOp.getLoc(), funcOp.getName(), |
887 | rewriter.getFunctionType(signatureConverter.getConvertedTypes(), |
888 | resultType ? TypeRange(resultType) |
889 | : TypeRange())); |
890 | |
891 | // Copy over all attributes other than the function name and type. |
892 | for (const auto &namedAttr : funcOp->getAttrs()) { |
893 | if (namedAttr.getName() != funcOp.getFunctionTypeAttrName() && |
894 | namedAttr.getName() != SymbolTable::getSymbolAttrName()) |
895 | newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue()); |
896 | } |
897 | |
898 | rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), |
899 | newFuncOp.end()); |
900 | if (failed(rewriter.convertRegionTypes( |
901 | region: &newFuncOp.getBody(), converter: *getTypeConverter(), entryConversion: &signatureConverter))) |
902 | return failure(); |
903 | rewriter.eraseOp(op: funcOp); |
904 | return success(); |
905 | } |
906 | }; |
907 | |
908 | /// A pattern for rewriting function signature to convert vector arguments of |
909 | /// functions to be of valid types |
910 | struct FuncOpVectorUnroll final : OpRewritePattern<func::FuncOp> { |
911 | using OpRewritePattern::OpRewritePattern; |
912 | |
913 | LogicalResult matchAndRewrite(func::FuncOp funcOp, |
914 | PatternRewriter &rewriter) const override { |
915 | FunctionType fnType = funcOp.getFunctionType(); |
916 | |
917 | // TODO: Handle declarations. |
918 | if (funcOp.isDeclaration()) { |
919 | LLVM_DEBUG(llvm::dbgs() |
920 | << fnType << " illegal: declarations are unsupported\n"); |
921 | return failure(); |
922 | } |
923 | |
924 | // Create a new func op with the original type and copy the function body. |
925 | auto newFuncOp = rewriter.create<func::FuncOp>(funcOp.getLoc(), |
926 | funcOp.getName(), fnType); |
927 | rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), |
928 | newFuncOp.end()); |
929 | |
930 | Location loc = newFuncOp.getBody().getLoc(); |
931 | |
932 | Block &entryBlock = newFuncOp.getBlocks().front(); |
933 | OpBuilder::InsertionGuard guard(rewriter); |
934 | rewriter.setInsertionPointToStart(&entryBlock); |
935 | |
936 | TypeConverter::SignatureConversion oneToNTypeMapping( |
937 | fnType.getInputs().size()); |
938 | |
939 | // For arguments that are of illegal types and require unrolling. |
940 | // `unrolledInputNums` stores the indices of arguments that result from |
941 | // unrolling in the new function signature. `newInputNo` is a counter. |
942 | SmallVector<size_t> unrolledInputNums; |
943 | size_t newInputNo = 0; |
944 | |
945 | // For arguments that are of legal types and do not require unrolling. |
946 | // `tmpOps` stores a mapping from temporary operations that serve as |
947 | // placeholders for new arguments that will be added later. These operations |
948 | // will be erased once the entry block's argument list is updated. |
949 | llvm::SmallDenseMap<Operation *, size_t> tmpOps; |
950 | |
951 | // This counts the number of new operations created. |
952 | size_t newOpCount = 0; |
953 | |
954 | // Enumerate through the arguments. |
955 | for (auto [origInputNo, origType] : enumerate(fnType.getInputs())) { |
956 | // Check whether the argument is of vector type. |
957 | auto origVecType = dyn_cast<VectorType>(origType); |
958 | if (!origVecType) { |
959 | // We need a placeholder for the old argument that will be erased later. |
960 | Value result = rewriter.create<arith::ConstantOp>( |
961 | loc, origType, rewriter.getZeroAttr(origType)); |
962 | rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result); |
963 | tmpOps.insert({result.getDefiningOp(), newInputNo}); |
964 | oneToNTypeMapping.addInputs(origInputNo, origType); |
965 | ++newInputNo; |
966 | ++newOpCount; |
967 | continue; |
968 | } |
969 | // Check whether the vector needs unrolling. |
970 | auto targetShape = getTargetShape(origVecType); |
971 | if (!targetShape) { |
972 | // We need a placeholder for the old argument that will be erased later. |
973 | Value result = rewriter.create<arith::ConstantOp>( |
974 | loc, origType, rewriter.getZeroAttr(origType)); |
975 | rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result); |
976 | tmpOps.insert({result.getDefiningOp(), newInputNo}); |
977 | oneToNTypeMapping.addInputs(origInputNo, origType); |
978 | ++newInputNo; |
979 | ++newOpCount; |
980 | continue; |
981 | } |
982 | VectorType unrolledType = |
983 | VectorType::get(*targetShape, origVecType.getElementType()); |
984 | auto originalShape = |
985 | llvm::to_vector_of<int64_t, 4>(origVecType.getShape()); |
986 | |
987 | // Prepare the result vector. |
988 | Value result = rewriter.create<arith::ConstantOp>( |
989 | loc, origVecType, rewriter.getZeroAttr(origVecType)); |
990 | ++newOpCount; |
991 | // Prepare the placeholder for the new arguments that will be added later. |
992 | Value dummy = rewriter.create<arith::ConstantOp>( |
993 | loc, unrolledType, rewriter.getZeroAttr(unrolledType)); |
994 | ++newOpCount; |
995 | |
996 | // Create the `vector.insert_strided_slice` ops. |
997 | SmallVector<int64_t> strides(targetShape->size(), 1); |
998 | SmallVector<Type> newTypes; |
999 | for (SmallVector<int64_t> offsets : |
1000 | StaticTileOffsetRange(originalShape, *targetShape)) { |
1001 | result = rewriter.create<vector::InsertStridedSliceOp>( |
1002 | loc, dummy, result, offsets, strides); |
1003 | newTypes.push_back(unrolledType); |
1004 | unrolledInputNums.push_back(newInputNo); |
1005 | ++newInputNo; |
1006 | ++newOpCount; |
1007 | } |
1008 | rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result); |
1009 | oneToNTypeMapping.addInputs(origInputNo, newTypes); |
1010 | } |
1011 | |
1012 | // Change the function signature. |
1013 | auto convertedTypes = oneToNTypeMapping.getConvertedTypes(); |
1014 | auto newFnType = fnType.clone(convertedTypes, fnType.getResults()); |
1015 | rewriter.modifyOpInPlace(newFuncOp, |
1016 | [&] { newFuncOp.setFunctionType(newFnType); }); |
1017 | |
1018 | // Update the arguments in the entry block. |
1019 | entryBlock.eraseArguments(0, fnType.getNumInputs()); |
1020 | SmallVector<Location> locs(convertedTypes.size(), newFuncOp.getLoc()); |
1021 | entryBlock.addArguments(types: convertedTypes, locs); |
1022 | |
1023 | // Replace the placeholder values with the new arguments. We assume there is |
1024 | // only one block for now. |
1025 | size_t unrolledInputIdx = 0; |
1026 | for (auto [count, op] : enumerate(entryBlock.getOperations())) { |
1027 | // We first look for operands that are placeholders for initially legal |
1028 | // arguments. |
1029 | Operation &curOp = op; |
1030 | for (auto [operandIdx, operandVal] : llvm::enumerate(op.getOperands())) { |
1031 | Operation *operandOp = operandVal.getDefiningOp(); |
1032 | if (auto it = tmpOps.find(operandOp); it != tmpOps.end()) { |
1033 | size_t idx = operandIdx; |
1034 | rewriter.modifyOpInPlace(&curOp, [&curOp, &newFuncOp, it, idx] { |
1035 | curOp.setOperand(idx, newFuncOp.getArgument(it->second)); |
1036 | }); |
1037 | } |
1038 | } |
1039 | // Since all newly created operations are in the beginning, reaching the |
1040 | // end of them means that any later `vector.insert_strided_slice` should |
1041 | // not be touched. |
1042 | if (count >= newOpCount) |
1043 | continue; |
1044 | if (auto vecOp = dyn_cast<vector::InsertStridedSliceOp>(op)) { |
1045 | size_t unrolledInputNo = unrolledInputNums[unrolledInputIdx]; |
1046 | rewriter.modifyOpInPlace(&curOp, [&] { |
1047 | curOp.setOperand(0, newFuncOp.getArgument(unrolledInputNo)); |
1048 | }); |
1049 | ++unrolledInputIdx; |
1050 | } |
1051 | } |
1052 | |
1053 | // Erase the original funcOp. The `tmpOps` do not need to be erased since |
1054 | // they have no uses and will be handled by dead-code elimination. |
1055 | rewriter.eraseOp(op: funcOp); |
1056 | return success(); |
1057 | } |
1058 | }; |
1059 | |
1060 | //===----------------------------------------------------------------------===// |
1061 | // func::ReturnOp Conversion Patterns |
1062 | //===----------------------------------------------------------------------===// |
1063 | |
1064 | /// A pattern for rewriting function signature and the return op to convert |
1065 | /// vectors to be of valid types. |
1066 | struct ReturnOpVectorUnroll final : OpRewritePattern<func::ReturnOp> { |
1067 | using OpRewritePattern::OpRewritePattern; |
1068 | |
1069 | LogicalResult matchAndRewrite(func::ReturnOp returnOp, |
1070 | PatternRewriter &rewriter) const override { |
1071 | // Check whether the parent funcOp is valid. |
1072 | auto funcOp = dyn_cast<func::FuncOp>(returnOp->getParentOp()); |
1073 | if (!funcOp) |
1074 | return failure(); |
1075 | |
1076 | FunctionType fnType = funcOp.getFunctionType(); |
1077 | TypeConverter::SignatureConversion oneToNTypeMapping( |
1078 | fnType.getResults().size()); |
1079 | Location loc = returnOp.getLoc(); |
1080 | |
1081 | // For the new return op. |
1082 | SmallVector<Value> newOperands; |
1083 | |
1084 | // Enumerate through the results. |
1085 | for (auto [origResultNo, origType] : enumerate(fnType.getResults())) { |
1086 | // Check whether the argument is of vector type. |
1087 | auto origVecType = dyn_cast<VectorType>(origType); |
1088 | if (!origVecType) { |
1089 | oneToNTypeMapping.addInputs(origResultNo, origType); |
1090 | newOperands.push_back(returnOp.getOperand(origResultNo)); |
1091 | continue; |
1092 | } |
1093 | // Check whether the vector needs unrolling. |
1094 | auto targetShape = getTargetShape(origVecType); |
1095 | if (!targetShape) { |
1096 | // The original argument can be used. |
1097 | oneToNTypeMapping.addInputs(origResultNo, origType); |
1098 | newOperands.push_back(returnOp.getOperand(origResultNo)); |
1099 | continue; |
1100 | } |
1101 | VectorType unrolledType = |
1102 | VectorType::get(*targetShape, origVecType.getElementType()); |
1103 | |
1104 | // Create `vector.extract_strided_slice` ops to form legal vectors from |
1105 | // the original operand of illegal type. |
1106 | auto originalShape = |
1107 | llvm::to_vector_of<int64_t, 4>(origVecType.getShape()); |
1108 | SmallVector<int64_t> strides(originalShape.size(), 1); |
1109 | SmallVector<int64_t> extractShape(originalShape.size(), 1); |
1110 | extractShape.back() = targetShape->back(); |
1111 | SmallVector<Type> newTypes; |
1112 | Value returnValue = returnOp.getOperand(origResultNo); |
1113 | for (SmallVector<int64_t> offsets : |
1114 | StaticTileOffsetRange(originalShape, *targetShape)) { |
1115 | Value result = rewriter.create<vector::ExtractStridedSliceOp>( |
1116 | loc, returnValue, offsets, extractShape, strides); |
1117 | if (originalShape.size() > 1) { |
1118 | SmallVector<int64_t> extractIndices(originalShape.size() - 1, 0); |
1119 | result = |
1120 | rewriter.create<vector::ExtractOp>(loc, result, extractIndices); |
1121 | } |
1122 | newOperands.push_back(result); |
1123 | newTypes.push_back(unrolledType); |
1124 | } |
1125 | oneToNTypeMapping.addInputs(origResultNo, newTypes); |
1126 | } |
1127 | |
1128 | // Change the function signature. |
1129 | auto newFnType = |
1130 | FunctionType::get(rewriter.getContext(), TypeRange(fnType.getInputs()), |
1131 | TypeRange(oneToNTypeMapping.getConvertedTypes())); |
1132 | rewriter.modifyOpInPlace(funcOp, |
1133 | [&] { funcOp.setFunctionType(newFnType); }); |
1134 | |
1135 | // Replace the return op using the new operands. This will automatically |
1136 | // update the entry block as well. |
1137 | rewriter.replaceOp(returnOp, |
1138 | rewriter.create<func::ReturnOp>(loc, newOperands)); |
1139 | |
1140 | return success(); |
1141 | } |
1142 | }; |
1143 | |
1144 | } // namespace |
1145 | |
1146 | //===----------------------------------------------------------------------===// |
1147 | // Public function for builtin variables |
1148 | //===----------------------------------------------------------------------===// |
1149 | |
1150 | Value mlir::spirv::getBuiltinVariableValue(Operation *op, |
1151 | spirv::BuiltIn builtin, |
1152 | Type integerType, OpBuilder &builder, |
1153 | StringRef prefix, StringRef suffix) { |
1154 | Operation *parent = SymbolTable::getNearestSymbolTable(from: op->getParentOp()); |
1155 | if (!parent) { |
1156 | op->emitError(message: "expected operation to be within a module-like op"); |
1157 | return nullptr; |
1158 | } |
1159 | |
1160 | spirv::GlobalVariableOp varOp = |
1161 | getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(), |
1162 | builtin, integerType, builder, prefix, suffix); |
1163 | Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp); |
1164 | return builder.create<spirv::LoadOp>(op->getLoc(), ptr); |
1165 | } |
1166 | |
1167 | //===----------------------------------------------------------------------===// |
1168 | // Public function for pushing constant storage |
1169 | //===----------------------------------------------------------------------===// |
1170 | |
1171 | Value spirv::getPushConstantValue(Operation *op, unsigned elementCount, |
1172 | unsigned offset, Type integerType, |
1173 | OpBuilder &builder) { |
1174 | Location loc = op->getLoc(); |
1175 | Operation *parent = SymbolTable::getNearestSymbolTable(from: op->getParentOp()); |
1176 | if (!parent) { |
1177 | op->emitError(message: "expected operation to be within a module-like op"); |
1178 | return nullptr; |
1179 | } |
1180 | |
1181 | spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable( |
1182 | loc, parent->getRegion(0).front(), elementCount, builder, integerType); |
1183 | |
1184 | Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder); |
1185 | Value offsetOp = builder.create<spirv::ConstantOp>( |
1186 | loc, integerType, builder.getI32IntegerAttr(offset)); |
1187 | auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp); |
1188 | auto acOp = builder.create<spirv::AccessChainOp>( |
1189 | loc, addrOp, llvm::ArrayRef({zeroOp, offsetOp})); |
1190 | return builder.create<spirv::LoadOp>(loc, acOp); |
1191 | } |
1192 | |
1193 | //===----------------------------------------------------------------------===// |
1194 | // Public functions for index calculation |
1195 | //===----------------------------------------------------------------------===// |
1196 | |
1197 | Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides, |
1198 | int64_t offset, Type integerType, |
1199 | Location loc, OpBuilder &builder) { |
1200 | assert(indices.size() == strides.size() && |
1201 | "must provide indices for all dimensions"); |
1202 | |
1203 | // TODO: Consider moving to use affine.apply and patterns converting |
1204 | // affine.apply to standard ops. This needs converting to SPIR-V passes to be |
1205 | // broken down into progressive small steps so we can have intermediate steps |
1206 | // using other dialects. At the moment SPIR-V is the final sink. |
1207 | |
1208 | Value linearizedIndex = builder.createOrFold<spirv::ConstantOp>( |
1209 | loc, integerType, IntegerAttr::get(integerType, offset)); |
1210 | for (const auto &index : llvm::enumerate(First&: indices)) { |
1211 | Value strideVal = builder.createOrFold<spirv::ConstantOp>( |
1212 | loc, integerType, |
1213 | IntegerAttr::get(integerType, strides[index.index()])); |
1214 | Value update = |
1215 | builder.createOrFold<spirv::IMulOp>(loc, index.value(), strideVal); |
1216 | linearizedIndex = |
1217 | builder.createOrFold<spirv::IAddOp>(loc, update, linearizedIndex); |
1218 | } |
1219 | return linearizedIndex; |
1220 | } |
1221 | |
1222 | Value mlir::spirv::getVulkanElementPtr(const SPIRVTypeConverter &typeConverter, |
1223 | MemRefType baseType, Value basePtr, |
1224 | ValueRange indices, Location loc, |
1225 | OpBuilder &builder) { |
1226 | // Get base and offset of the MemRefType and verify they are static. |
1227 | |
1228 | int64_t offset; |
1229 | SmallVector<int64_t, 4> strides; |
1230 | if (failed(baseType.getStridesAndOffset(strides, offset)) || |
1231 | llvm::is_contained(strides, ShapedType::kDynamic) || |
1232 | ShapedType::isDynamic(offset)) { |
1233 | return nullptr; |
1234 | } |
1235 | |
1236 | auto indexType = typeConverter.getIndexType(); |
1237 | |
1238 | SmallVector<Value, 2> linearizedIndices; |
1239 | auto zero = spirv::ConstantOp::getZero(indexType, loc, builder); |
1240 | |
1241 | // Add a '0' at the start to index into the struct. |
1242 | linearizedIndices.push_back(Elt: zero); |
1243 | |
1244 | if (baseType.getRank() == 0) { |
1245 | linearizedIndices.push_back(Elt: zero); |
1246 | } else { |
1247 | linearizedIndices.push_back( |
1248 | Elt: linearizeIndex(indices, strides, offset, integerType: indexType, loc, builder)); |
1249 | } |
1250 | return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices); |
1251 | } |
1252 | |
1253 | Value mlir::spirv::getOpenCLElementPtr(const SPIRVTypeConverter &typeConverter, |
1254 | MemRefType baseType, Value basePtr, |
1255 | ValueRange indices, Location loc, |
1256 | OpBuilder &builder) { |
1257 | // Get base and offset of the MemRefType and verify they are static. |
1258 | |
1259 | int64_t offset; |
1260 | SmallVector<int64_t, 4> strides; |
1261 | if (failed(baseType.getStridesAndOffset(strides, offset)) || |
1262 | llvm::is_contained(strides, ShapedType::kDynamic) || |
1263 | ShapedType::isDynamic(offset)) { |
1264 | return nullptr; |
1265 | } |
1266 | |
1267 | auto indexType = typeConverter.getIndexType(); |
1268 | |
1269 | SmallVector<Value, 2> linearizedIndices; |
1270 | Value linearIndex; |
1271 | if (baseType.getRank() == 0) { |
1272 | linearIndex = spirv::ConstantOp::getZero(indexType, loc, builder); |
1273 | } else { |
1274 | linearIndex = |
1275 | linearizeIndex(indices, strides, offset, integerType: indexType, loc, builder); |
1276 | } |
1277 | Type pointeeType = |
1278 | cast<spirv::PointerType>(Val: basePtr.getType()).getPointeeType(); |
1279 | if (isa<spirv::ArrayType>(Val: pointeeType)) { |
1280 | linearizedIndices.push_back(Elt: linearIndex); |
1281 | return builder.create<spirv::AccessChainOp>(loc, basePtr, |
1282 | linearizedIndices); |
1283 | } |
1284 | return builder.create<spirv::PtrAccessChainOp>(loc, basePtr, linearIndex, |
1285 | linearizedIndices); |
1286 | } |
1287 | |
1288 | Value mlir::spirv::getElementPtr(const SPIRVTypeConverter &typeConverter, |
1289 | MemRefType baseType, Value basePtr, |
1290 | ValueRange indices, Location loc, |
1291 | OpBuilder &builder) { |
1292 | |
1293 | if (typeConverter.allows(spirv::Capability::Kernel)) { |
1294 | return getOpenCLElementPtr(typeConverter, baseType, basePtr, indices, loc, |
1295 | builder); |
1296 | } |
1297 | |
1298 | return getVulkanElementPtr(typeConverter, baseType, basePtr, indices, loc, |
1299 | builder); |
1300 | } |
1301 | |
1302 | //===----------------------------------------------------------------------===// |
1303 | // Public functions for vector unrolling |
1304 | //===----------------------------------------------------------------------===// |
1305 | |
1306 | int mlir::spirv::getComputeVectorSize(int64_t size) { |
1307 | for (int i : {4, 3, 2}) { |
1308 | if (size % i == 0) |
1309 | return i; |
1310 | } |
1311 | return 1; |
1312 | } |
1313 | |
1314 | SmallVector<int64_t> |
1315 | mlir::spirv::getNativeVectorShapeImpl(vector::ReductionOp op) { |
1316 | VectorType srcVectorType = op.getSourceVectorType(); |
1317 | assert(srcVectorType.getRank() == 1); // Guaranteed by semantics |
1318 | int64_t vectorSize = |
1319 | mlir::spirv::getComputeVectorSize(size: srcVectorType.getDimSize(0)); |
1320 | return {vectorSize}; |
1321 | } |
1322 | |
1323 | SmallVector<int64_t> |
1324 | mlir::spirv::getNativeVectorShapeImpl(vector::TransposeOp op) { |
1325 | VectorType vectorType = op.getResultVectorType(); |
1326 | SmallVector<int64_t> nativeSize(vectorType.getRank(), 1); |
1327 | nativeSize.back() = |
1328 | mlir::spirv::getComputeVectorSize(size: vectorType.getShape().back()); |
1329 | return nativeSize; |
1330 | } |
1331 | |
1332 | std::optional<SmallVector<int64_t>> |
1333 | mlir::spirv::getNativeVectorShape(Operation *op) { |
1334 | if (OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1) { |
1335 | if (auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0])) { |
1336 | SmallVector<int64_t> nativeSize(vecType.getRank(), 1); |
1337 | nativeSize.back() = |
1338 | mlir::spirv::getComputeVectorSize(size: vecType.getShape().back()); |
1339 | return nativeSize; |
1340 | } |
1341 | } |
1342 | |
1343 | return TypeSwitch<Operation *, std::optional<SmallVector<int64_t>>>(op) |
1344 | .Case<vector::ReductionOp, vector::TransposeOp>( |
1345 | [](auto typedOp) { return getNativeVectorShapeImpl(typedOp); }) |
1346 | .Default([](Operation *) { return std::nullopt; }); |
1347 | } |
1348 | |
1349 | LogicalResult mlir::spirv::unrollVectorsInSignatures(Operation *op) { |
1350 | MLIRContext *context = op->getContext(); |
1351 | RewritePatternSet patterns(context); |
1352 | populateFuncOpVectorRewritePatterns(patterns); |
1353 | populateReturnOpVectorRewritePatterns(patterns); |
1354 | // We only want to apply signature conversion once to the existing func ops. |
1355 | // Without specifying strictMode, the greedy pattern rewriter will keep |
1356 | // looking for newly created func ops. |
1357 | return applyPatternsGreedily(op, std::move(patterns), |
1358 | GreedyRewriteConfig().setStrictness( |
1359 | GreedyRewriteStrictness::ExistingOps)); |
1360 | } |
1361 | |
1362 | LogicalResult mlir::spirv::unrollVectorsInFuncBodies(Operation *op) { |
1363 | MLIRContext *context = op->getContext(); |
1364 | |
1365 | // Unroll vectors in function bodies to native vector size. |
1366 | { |
1367 | RewritePatternSet patterns(context); |
1368 | auto options = vector::UnrollVectorOptions().setNativeShapeFn( |
1369 | [](auto op) { return mlir::spirv::getNativeVectorShape(op); }); |
1370 | populateVectorUnrollPatterns(patterns, options); |
1371 | if (failed(applyPatternsGreedily(op, std::move(patterns)))) |
1372 | return failure(); |
1373 | } |
1374 | |
1375 | // Convert transpose ops into extract and insert pairs, in preparation of |
1376 | // further transformations to canonicalize/cancel. |
1377 | { |
1378 | RewritePatternSet patterns(context); |
1379 | vector::populateVectorTransposeLoweringPatterns( |
1380 | patterns, vector::VectorTransposeLowering::EltWise); |
1381 | vector::populateVectorShapeCastLoweringPatterns(patterns); |
1382 | if (failed(applyPatternsGreedily(op, std::move(patterns)))) |
1383 | return failure(); |
1384 | } |
1385 | |
1386 | // Run canonicalization to cast away leading size-1 dimensions. |
1387 | { |
1388 | RewritePatternSet patterns(context); |
1389 | |
1390 | // We need to pull in casting way leading one dims. |
1391 | vector::populateCastAwayVectorLeadingOneDimPatterns(patterns); |
1392 | vector::ReductionOp::getCanonicalizationPatterns(patterns, context); |
1393 | vector::TransposeOp::getCanonicalizationPatterns(patterns, context); |
1394 | |
1395 | // Decompose different rank insert_strided_slice and n-D |
1396 | // extract_slided_slice. |
1397 | vector::populateVectorInsertExtractStridedSliceDecompositionPatterns( |
1398 | patterns); |
1399 | vector::InsertOp::getCanonicalizationPatterns(patterns, context); |
1400 | vector::ExtractOp::getCanonicalizationPatterns(patterns, context); |
1401 | |
1402 | // Trimming leading unit dims may generate broadcast/shape_cast ops. Clean |
1403 | // them up. |
1404 | vector::BroadcastOp::getCanonicalizationPatterns(patterns, context); |
1405 | vector::ShapeCastOp::getCanonicalizationPatterns(patterns, context); |
1406 | |
1407 | if (failed(applyPatternsGreedily(op, std::move(patterns)))) |
1408 | return failure(); |
1409 | } |
1410 | return success(); |
1411 | } |
1412 | |
1413 | //===----------------------------------------------------------------------===// |
1414 | // SPIR-V TypeConverter |
1415 | //===----------------------------------------------------------------------===// |
1416 | |
1417 | SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr, |
1418 | const SPIRVConversionOptions &options) |
1419 | : targetEnv(targetAttr), options(options) { |
1420 | // Add conversions. The order matters here: later ones will be tried earlier. |
1421 | |
1422 | // Allow all SPIR-V dialect specific types. This assumes all builtin types |
1423 | // adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType) |
1424 | // were tried before. |
1425 | // |
1426 | // TODO: This assumes that the SPIR-V types are valid to use in the given |
1427 | // target environment, which should be the case if the whole pipeline is |
1428 | // driven by the same target environment. Still, we probably still want to |
1429 | // validate and convert to be safe. |
1430 | addConversion(callback: [](spirv::SPIRVType type) { return type; }); |
1431 | |
1432 | addConversion(callback: [this](IndexType /*indexType*/) { return getIndexType(); }); |
1433 | |
1434 | addConversion(callback: [this](IntegerType intType) -> std::optional<Type> { |
1435 | if (auto scalarType = dyn_cast<spirv::ScalarType>(intType)) |
1436 | return convertScalarType(this->targetEnv, this->options, scalarType); |
1437 | if (intType.getWidth() < 8) |
1438 | return convertSubByteIntegerType(this->options, intType); |
1439 | return Type(); |
1440 | }); |
1441 | |
1442 | addConversion(callback: [this](FloatType floatType) -> std::optional<Type> { |
1443 | if (auto scalarType = dyn_cast<spirv::ScalarType>(floatType)) |
1444 | return convertScalarType(this->targetEnv, this->options, scalarType); |
1445 | return Type(); |
1446 | }); |
1447 | |
1448 | addConversion(callback: [this](ComplexType complexType) { |
1449 | return convertComplexType(this->targetEnv, this->options, complexType); |
1450 | }); |
1451 | |
1452 | addConversion([this](VectorType vectorType) { |
1453 | return convertVectorType(this->targetEnv, this->options, vectorType); |
1454 | }); |
1455 | |
1456 | addConversion(callback: [this](TensorType tensorType) { |
1457 | return convertTensorType(targetEnv: this->targetEnv, options: this->options, type: tensorType); |
1458 | }); |
1459 | |
1460 | addConversion([this](MemRefType memRefType) { |
1461 | return convertMemrefType(this->targetEnv, this->options, memRefType); |
1462 | }); |
1463 | |
1464 | // Register some last line of defense casting logic. |
1465 | addSourceMaterialization( |
1466 | callback: [this](OpBuilder &builder, Type type, ValueRange inputs, Location loc) { |
1467 | return castToSourceType(targetEnv: this->targetEnv, builder, type, inputs, loc); |
1468 | }); |
1469 | addTargetMaterialization([](OpBuilder &builder, Type type, ValueRange inputs, |
1470 | Location loc) { |
1471 | auto cast = builder.create<UnrealizedConversionCastOp>(loc, type, inputs); |
1472 | return cast.getResult(0); |
1473 | }); |
1474 | } |
1475 | |
1476 | Type SPIRVTypeConverter::getIndexType() const { |
1477 | return ::getIndexType(ctx: getContext(), options); |
1478 | } |
1479 | |
1480 | MLIRContext *SPIRVTypeConverter::getContext() const { |
1481 | return targetEnv.getAttr().getContext(); |
1482 | } |
1483 | |
1484 | bool SPIRVTypeConverter::allows(spirv::Capability capability) const { |
1485 | return targetEnv.allows(capability); |
1486 | } |
1487 | |
1488 | //===----------------------------------------------------------------------===// |
1489 | // SPIR-V ConversionTarget |
1490 | //===----------------------------------------------------------------------===// |
1491 | |
1492 | std::unique_ptr<SPIRVConversionTarget> |
1493 | SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) { |
1494 | std::unique_ptr<SPIRVConversionTarget> target( |
1495 | // std::make_unique does not work here because the constructor is private. |
1496 | new SPIRVConversionTarget(targetAttr)); |
1497 | SPIRVConversionTarget *targetPtr = target.get(); |
1498 | target->addDynamicallyLegalDialect<spirv::SPIRVDialect>( |
1499 | // We need to capture the raw pointer here because it is stable: |
1500 | // target will be destroyed once this function is returned. |
1501 | [targetPtr](Operation *op) { return targetPtr->isLegalOp(op); }); |
1502 | return target; |
1503 | } |
1504 | |
1505 | SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr) |
1506 | : ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {} |
1507 | |
1508 | bool SPIRVConversionTarget::isLegalOp(Operation *op) { |
1509 | // Make sure this op is available at the given version. Ops not implementing |
1510 | // QueryMinVersionInterface/QueryMaxVersionInterface are available to all |
1511 | // SPIR-V versions. |
1512 | if (auto minVersionIfx = dyn_cast<spirv::QueryMinVersionInterface>(op)) { |
1513 | std::optional<spirv::Version> minVersion = minVersionIfx.getMinVersion(); |
1514 | if (minVersion && *minVersion > this->targetEnv.getVersion()) { |
1515 | LLVM_DEBUG(llvm::dbgs() |
1516 | << op->getName() << " illegal: requiring min version " |
1517 | << spirv::stringifyVersion(*minVersion) << "\n"); |
1518 | return false; |
1519 | } |
1520 | } |
1521 | if (auto maxVersionIfx = dyn_cast<spirv::QueryMaxVersionInterface>(op)) { |
1522 | std::optional<spirv::Version> maxVersion = maxVersionIfx.getMaxVersion(); |
1523 | if (maxVersion && *maxVersion < this->targetEnv.getVersion()) { |
1524 | LLVM_DEBUG(llvm::dbgs() |
1525 | << op->getName() << " illegal: requiring max version " |
1526 | << spirv::stringifyVersion(*maxVersion) << "\n"); |
1527 | return false; |
1528 | } |
1529 | } |
1530 | |
1531 | // Make sure this op's required extensions are allowed to use. Ops not |
1532 | // implementing QueryExtensionInterface do not require extensions to be |
1533 | // available. |
1534 | if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op)) |
1535 | if (failed(checkExtensionRequirements(op->getName(), this->targetEnv, |
1536 | extensions.getExtensions()))) |
1537 | return false; |
1538 | |
1539 | // Make sure this op's required extensions are allowed to use. Ops not |
1540 | // implementing QueryCapabilityInterface do not require capabilities to be |
1541 | // available. |
1542 | if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op)) |
1543 | if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv, |
1544 | capabilities.getCapabilities()))) |
1545 | return false; |
1546 | |
1547 | SmallVector<Type, 4> valueTypes; |
1548 | valueTypes.append(in_start: op->operand_type_begin(), in_end: op->operand_type_end()); |
1549 | valueTypes.append(in_start: op->result_type_begin(), in_end: op->result_type_end()); |
1550 | |
1551 | // Ensure that all types have been converted to SPIRV types. |
1552 | if (llvm::any_of(Range&: valueTypes, |
1553 | P: [](Type t) { return !isa<spirv::SPIRVType>(Val: t); })) |
1554 | return false; |
1555 | |
1556 | // Special treatment for global variables, whose type requirements are |
1557 | // conveyed by type attributes. |
1558 | if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op)) |
1559 | valueTypes.push_back(Elt: globalVar.getType()); |
1560 | |
1561 | // Make sure the op's operands/results use types that are allowed by the |
1562 | // target environment. |
1563 | SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions; |
1564 | SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities; |
1565 | for (Type valueType : valueTypes) { |
1566 | typeExtensions.clear(); |
1567 | cast<spirv::SPIRVType>(Val&: valueType).getExtensions(typeExtensions); |
1568 | if (failed(Result: checkExtensionRequirements(label: op->getName(), targetEnv: this->targetEnv, |
1569 | candidates: typeExtensions))) |
1570 | return false; |
1571 | |
1572 | typeCapabilities.clear(); |
1573 | cast<spirv::SPIRVType>(Val&: valueType).getCapabilities(typeCapabilities); |
1574 | if (failed(Result: checkCapabilityRequirements(label: op->getName(), targetEnv: this->targetEnv, |
1575 | candidates: typeCapabilities))) |
1576 | return false; |
1577 | } |
1578 | |
1579 | return true; |
1580 | } |
1581 | |
1582 | //===----------------------------------------------------------------------===// |
1583 | // Public functions for populating patterns |
1584 | //===----------------------------------------------------------------------===// |
1585 | |
1586 | void mlir::populateBuiltinFuncToSPIRVPatterns( |
1587 | const SPIRVTypeConverter &typeConverter, RewritePatternSet &patterns) { |
1588 | patterns.add<FuncOpConversion>(arg: typeConverter, args: patterns.getContext()); |
1589 | } |
1590 | |
1591 | void mlir::populateFuncOpVectorRewritePatterns(RewritePatternSet &patterns) { |
1592 | patterns.add<FuncOpVectorUnroll>(arg: patterns.getContext()); |
1593 | } |
1594 | |
1595 | void mlir::populateReturnOpVectorRewritePatterns(RewritePatternSet &patterns) { |
1596 | patterns.add<ReturnOpVectorUnroll>(arg: patterns.getContext()); |
1597 | } |
1598 |
Definitions
- getTargetShape
- checkExtensionRequirements
- checkCapabilityRequirements
- needsExplicitLayout
- wrapInStructAndGetPointer
- getIndexType
- getTypeNumBytes
- convertScalarType
- convertSubByteIntegerType
- convertIndexElementType
- convertVectorType
- convertComplexType
- convertTensorType
- convertBoolMemrefType
- convertSubByteMemrefType
- convertMemrefType
- castToSourceType
- getBuiltinVariable
- getBuiltinVarName
- getOrInsertBuiltinVariable
- getPushConstantStorageType
- getPushConstantVariable
- getOrInsertPushConstantVariable
- FuncOpConversion
- matchAndRewrite
- FuncOpVectorUnroll
- matchAndRewrite
- ReturnOpVectorUnroll
- matchAndRewrite
- getBuiltinVariableValue
- getPushConstantValue
- linearizeIndex
- getVulkanElementPtr
- getOpenCLElementPtr
- getElementPtr
- getComputeVectorSize
- getNativeVectorShapeImpl
- getNativeVectorShapeImpl
- getNativeVectorShape
- unrollVectorsInSignatures
- unrollVectorsInFuncBodies
- SPIRVTypeConverter
- getIndexType
- getContext
- allows
- get
- SPIRVConversionTarget
- isLegalOp
- populateBuiltinFuncToSPIRVPatterns
- populateFuncOpVectorRewritePatterns
Learn to use CMake with our Intro Training
Find out more