| 1 | //====----- OutlineShapeComputation.cpp -----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 10 | #include "mlir/Dialect/Shape/Analysis/ShapeMappingAnalysis.h" |
| 11 | #include "mlir/Dialect/Shape/IR/Shape.h" |
| 12 | #include "mlir/Dialect/Shape/Transforms/Passes.h" |
| 13 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 14 | #include "mlir/IR/IRMapping.h" |
| 15 | #include "mlir/IR/Matchers.h" |
| 16 | #include "mlir/Pass/Pass.h" |
| 17 | #include "mlir/Transforms/DialectConversion.h" |
| 18 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 19 | #include "llvm/ADT/DenseSet.h" |
| 20 | #include "llvm/Support/Debug.h" |
| 21 | #include <queue> |
| 22 | #include <unordered_set> |
| 23 | #include <vector> |
| 24 | |
| 25 | namespace mlir { |
| 26 | #define GEN_PASS_DEF_OUTLINESHAPECOMPUTATIONPASS |
| 27 | #include "mlir/Dialect/Shape/Transforms/Passes.h.inc" |
| 28 | } // namespace mlir |
| 29 | |
| 30 | #define DEBUG_TYPE "outline-shape-computation" |
| 31 | |
| 32 | using namespace mlir; |
| 33 | |
| 34 | namespace { |
| 35 | |
| 36 | // A Value is an input of the cluster if it is an operand of an operation in the |
| 37 | // cluster and its defining operation is not in the cluster. |
| 38 | SmallVector<Value, 4> |
| 39 | getInputsOfCluster(const llvm::SmallVector<Operation *, 8> &cluster) { |
| 40 | SmallVector<Value, 4> inputs; |
| 41 | llvm::SmallDenseSet<Value> inputSet; |
| 42 | llvm::SmallDenseSet<Operation *> opSet; |
| 43 | for (Operation *op : cluster) { |
| 44 | bool inserted = opSet.insert(op).second; |
| 45 | (void)inserted; |
| 46 | assert(inserted && "cluster contains duplicate operations" ); |
| 47 | } |
| 48 | |
| 49 | for (Operation *op : cluster) { |
| 50 | for (Value operand : op->getOperands()) { |
| 51 | Operation *operandOp = operand.getDefiningOp(); |
| 52 | if (opSet.contains(operandOp)) { |
| 53 | // Skip if defining op is in the cluster. |
| 54 | continue; |
| 55 | } |
| 56 | if (inputSet.insert(operand).second) |
| 57 | inputs.push_back(operand); |
| 58 | } |
| 59 | } |
| 60 | return inputs; |
| 61 | } |
| 62 | |
| 63 | // Create a shape.func representing the shape computation for `shape`. |
| 64 | std::pair<shape::FuncOp, SmallVector<Value>> |
| 65 | createFuncFromCluster(OpBuilder &b, const SmallVector<Operation *, 8> &cluster, |
| 66 | Value shape, StringRef fnName, Location loc) { |
| 67 | SmallVector<Value, 4> inputs = getInputsOfCluster(cluster); |
| 68 | auto fnType = |
| 69 | cluster.empty() |
| 70 | ? b.getFunctionType(shape.getType(), shape.getType()) |
| 71 | : b.getFunctionType(ValueRange(inputs).getTypes(), shape.getType()); |
| 72 | shape::FuncOp fnOp = b.create<shape::FuncOp>(loc, fnName, fnType); |
| 73 | Block *block = fnOp.addEntryBlock(); |
| 74 | b.setInsertionPointToEnd(block); |
| 75 | IRMapping bvm; |
| 76 | if (cluster.empty()) { |
| 77 | bvm.map(shape, fnOp.getArgument(0)); |
| 78 | } else { |
| 79 | for (auto inputAndArg : llvm::zip(inputs, fnOp.getArguments())) |
| 80 | bvm.map(std::get<0>(inputAndArg), std::get<1>(inputAndArg)); |
| 81 | } |
| 82 | |
| 83 | for (Operation *op : cluster) |
| 84 | b.clone(*op, bvm); |
| 85 | llvm::SmallVector<Value, 4> fnReturns; |
| 86 | fnReturns.push_back(bvm.lookupOrDefault(shape)); |
| 87 | |
| 88 | b.create<shape::ReturnOp>(loc, fnReturns); |
| 89 | fnOp.setPrivate(); |
| 90 | return std::make_pair(fnOp, inputs); |
| 91 | } |
| 92 | |
| 93 | // The operations in the cluster might be unsorted, which could be inconvenient |
| 94 | // when creating shape.func op. |
| 95 | DenseMap<Value, SmallVector<Operation *, 8>> |
| 96 | getOrderedClusters(const DenseMap<Value, DenseSet<Operation *>> &clusters, |
| 97 | func::FuncOp funcOp) { |
| 98 | // Compute all clusters that each operation is in |
| 99 | DenseMap<Operation *, SmallVector<Value>> op2Shapes; |
| 100 | for (const auto &it : clusters) { |
| 101 | Value shape = it.first; |
| 102 | const DenseSet<Operation *> &cluster = it.second; |
| 103 | for (Operation *cOp : cluster) |
| 104 | op2Shapes[cOp].push_back(shape); |
| 105 | } |
| 106 | |
| 107 | // Iterate through all operations in order. Get all the clusters `cOp` belongs |
| 108 | // to and construct the new ordered cluster as it traverses. |
| 109 | DenseMap<Value, SmallVector<Operation *, 8>> orderedClusters; |
| 110 | funcOp.walk([&](Operation *op) { |
| 111 | auto it = op2Shapes.find(op); |
| 112 | if (it != op2Shapes.end()) { |
| 113 | Operation *cOp = it->first; |
| 114 | for (Value shape : it->second) |
| 115 | orderedClusters[shape].push_back(cOp); |
| 116 | } |
| 117 | }); |
| 118 | |
| 119 | return orderedClusters; |
| 120 | } |
| 121 | |
| 122 | void constructShapeFunc( |
| 123 | const std::vector<shape::WithOp> &allWithOps, MLIRContext *context, |
| 124 | DenseMap<Value, SmallVector<Operation *, 8>> &clusters, |
| 125 | SymbolTable &symbolTable, |
| 126 | DenseMap<Value, shape::ShapeMappingValue> &dynShape2ShapeFunc, |
| 127 | func::FuncOp funcOp, shape::ShapeMappingAnalysis &shapeMappingAnalysis) { |
| 128 | std::string shapeCalculationNamePrefix = "shape_cal_" ; |
| 129 | int shapeCalculationNameIdx = 0; |
| 130 | OpBuilder builder(context); |
| 131 | |
| 132 | // Construct a shape function |
| 133 | for (shape::WithOp withOp : allWithOps) { |
| 134 | Value value = withOp.getOperand(); |
| 135 | Value shape = withOp.getShape(); |
| 136 | RankedTensorType rankedType = dyn_cast<RankedTensorType>(value.getType()); |
| 137 | if (rankedType == nullptr) |
| 138 | continue; |
| 139 | |
| 140 | const SmallVector<Operation *, 8> &cluster = clusters[shape]; |
| 141 | shape::ShapeMappingValue shapeMappingValue; |
| 142 | auto it = dynShape2ShapeFunc.find(shape); |
| 143 | if (it == dynShape2ShapeFunc.end()) { |
| 144 | std::string name = shapeCalculationNamePrefix + |
| 145 | std::to_string(shapeCalculationNameIdx++); |
| 146 | Location loc = value.getLoc(); |
| 147 | builder.setInsertionPointAfter(funcOp); |
| 148 | auto pair = createFuncFromCluster(builder, cluster, shape, name, loc); |
| 149 | const SmallVector<Value> &inputs = pair.second; |
| 150 | shape::FuncOp shapeFuncOp = pair.first; |
| 151 | StringAttr insertedName = symbolTable.insert(shapeFuncOp); |
| 152 | auto symbol = FlatSymbolRefAttr::get(context, insertedName); |
| 153 | |
| 154 | shapeMappingValue.funcSymbol = symbol; |
| 155 | shapeMappingValue.inputs = inputs; |
| 156 | } else { |
| 157 | shapeMappingValue = it->second; |
| 158 | } |
| 159 | dynShape2ShapeFunc[shape] = shapeMappingValue; |
| 160 | shapeMappingAnalysis.shapeMapping.insert( |
| 161 | std::make_pair(value, shapeMappingValue)); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | struct OutlineShapeComputationPass |
| 166 | : public impl::OutlineShapeComputationPassBase< |
| 167 | OutlineShapeComputationPass> { |
| 168 | |
| 169 | void runOnOperation() override; |
| 170 | |
| 171 | private: |
| 172 | bool calOnlyUsedByWithShapesRecursively(Operation *op, Value prevOutput); |
| 173 | |
| 174 | void getClusterFromValue(Value shape, |
| 175 | DenseMap<Value, DenseSet<Operation *>> &clusters); |
| 176 | |
| 177 | DenseMap<Value, SmallVector<Operation *, 8>> |
| 178 | constructClustersForEachShape(const std::vector<shape::WithOp> &allWithOps, |
| 179 | func::FuncOp funcOp); |
| 180 | |
| 181 | DenseSet<Operation *> onlyUsedByWithShapes; |
| 182 | }; |
| 183 | |
| 184 | class TensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> { |
| 185 | using OpRewritePattern<tensor::DimOp>::OpRewritePattern; |
| 186 | |
| 187 | LogicalResult matchAndRewrite(tensor::DimOp op, |
| 188 | PatternRewriter &rewriter) const override { |
| 189 | auto shapeOf = |
| 190 | rewriter.create<shape::ShapeOfOp>(op.getLoc(), op.getSource()); |
| 191 | rewriter.replaceOpWithNewOp<shape::GetExtentOp>(op, op.getType(), shapeOf, |
| 192 | op.getIndex()); |
| 193 | return success(); |
| 194 | } |
| 195 | }; |
| 196 | |
| 197 | void OutlineShapeComputationPass::runOnOperation() { |
| 198 | ModuleOp moduleOp = getOperation(); |
| 199 | SymbolTable symbolTable(moduleOp); |
| 200 | DenseMap<Value, shape::ShapeMappingValue> dynShape2ShapeFunc; |
| 201 | auto &shapeMappingAnalysis = getAnalysis<shape::ShapeMappingAnalysis>(); |
| 202 | // TODO: This is as we populate this analysis during a pass that mutates. This |
| 203 | // pass currently requires 1 single module being compiled. |
| 204 | shapeMappingAnalysis.shapeMapping.clear(); |
| 205 | markAnalysesPreserved<shape::ShapeMappingAnalysis>(); |
| 206 | |
| 207 | moduleOp.walk([&](func::FuncOp funcOp) { |
| 208 | MLIRContext *context = funcOp.getContext(); |
| 209 | RewritePatternSet prevPatterns(context); |
| 210 | prevPatterns.insert<TensorDimOpRewriter>(context); |
| 211 | if (failed(applyPatternsGreedily(funcOp, std::move(prevPatterns)))) |
| 212 | return signalPassFailure(); |
| 213 | |
| 214 | // initialize class member `onlyUsedByWithShapes` |
| 215 | onlyUsedByWithShapes.clear(); |
| 216 | funcOp.walk([&](Operation *op) { |
| 217 | calOnlyUsedByWithShapesRecursively(op, /*prevOutput=*/nullptr); |
| 218 | }); |
| 219 | LLVM_DEBUG({ |
| 220 | llvm::dbgs() << "onlyUsedByWithShapes table: \n" ; |
| 221 | for (auto it : onlyUsedByWithShapes) |
| 222 | llvm::dbgs() << *it << "\n" ; |
| 223 | }); |
| 224 | |
| 225 | // collect all the shape.with_shape ops. |
| 226 | std::vector<shape::WithOp> allWithOps; |
| 227 | funcOp.walk([&](shape::WithOp withOp) { allWithOps.push_back(withOp); }); |
| 228 | |
| 229 | DenseMap<Value, SmallVector<Operation *, 8>> clusters = |
| 230 | constructClustersForEachShape(allWithOps, funcOp); |
| 231 | constructShapeFunc(allWithOps, context, clusters, symbolTable, |
| 232 | dynShape2ShapeFunc, funcOp, shapeMappingAnalysis); |
| 233 | |
| 234 | for (shape::WithOp withOp : allWithOps) { |
| 235 | Value value = withOp.getOperand(); |
| 236 | for (Operation *user : |
| 237 | llvm::make_early_inc_range(withOp.getResult().getUsers())) { |
| 238 | if (auto valueOf = llvm::dyn_cast<shape::ValueOfOp>(user)) { |
| 239 | // For pattern like |
| 240 | // %1 = shape.with_shape %arg1, %0 |
| 241 | // %2 = shape.value_of %1 |
| 242 | // because shape.value doesn't care the shape, the shape.with_shape is |
| 243 | // redundant. |
| 244 | // If type of %arg1 and %2 has same type, just |
| 245 | // replaced %2 with %arg1. |
| 246 | // If type of %arg1 has different type like !shape.value_shape, |
| 247 | // transform into |
| 248 | // %2 = shape.value_of %arg1 |
| 249 | if (valueOf.getType() == value.getType()) |
| 250 | valueOf.replaceAllUsesWith(value); |
| 251 | else |
| 252 | valueOf.setOperand(value); |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // Apply patterns, note this also performs DCE. |
| 258 | if (failed(applyPatternsGreedily(funcOp, {}))) |
| 259 | return signalPassFailure(); |
| 260 | }); |
| 261 | } |
| 262 | |
| 263 | DenseMap<Value, SmallVector<Operation *, 8>> |
| 264 | OutlineShapeComputationPass::constructClustersForEachShape( |
| 265 | const std::vector<shape::WithOp> &allWithOps, func::FuncOp funcOp) { |
| 266 | DenseMap<Value, DenseSet<Operation *>> clusters; |
| 267 | for (shape::WithOp withOp : allWithOps) { |
| 268 | Value shape = withOp.getShape(); |
| 269 | if (clusters.count(shape) == 0) |
| 270 | getClusterFromValue(shape, clusters); |
| 271 | } |
| 272 | return getOrderedClusters(clusters, funcOp); |
| 273 | } |
| 274 | |
| 275 | // The output of a cluster is the `shape`, and the inputs are the outputs of |
| 276 | // operations who are not in `onlyUsedByWithShapes` |
| 277 | void OutlineShapeComputationPass::getClusterFromValue( |
| 278 | Value shape, DenseMap<Value, DenseSet<Operation *>> &clusters) { |
| 279 | DenseSet<Operation *> cluster; |
| 280 | |
| 281 | DenseSet<Operation *> visited; |
| 282 | std::queue<Operation *> queue; |
| 283 | |
| 284 | // defOp == nullptr means shape is the argument of the func op |
| 285 | if (Operation *defOp = shape.getDefiningOp()) { |
| 286 | visited.insert(defOp); |
| 287 | queue.push(defOp); |
| 288 | } |
| 289 | while (!queue.empty()) { |
| 290 | Operation *op = queue.front(); |
| 291 | queue.pop(); |
| 292 | if (onlyUsedByWithShapes.contains(op)) { |
| 293 | cluster.insert(op); |
| 294 | for (Value inp : op->getOperands()) { |
| 295 | Operation *inpDefOp = inp.getDefiningOp(); |
| 296 | if (nullptr != inpDefOp && visited.insert(inpDefOp).second) |
| 297 | queue.push(inpDefOp); |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | clusters[shape] = std::move(cluster); |
| 303 | } |
| 304 | |
| 305 | // Returns whether `op` is a shape.with_shape, or all the users' of `op` |
| 306 | // eventually point to the shape operand of shape.with_shape ops |
| 307 | bool OutlineShapeComputationPass::calOnlyUsedByWithShapesRecursively( |
| 308 | Operation *op, Value prevOutput) { |
| 309 | if (onlyUsedByWithShapes.contains(op)) |
| 310 | return true; |
| 311 | |
| 312 | if (auto withOp = llvm::dyn_cast<shape::WithOp>(op)) |
| 313 | return withOp.getShape() == prevOutput; |
| 314 | |
| 315 | if (op->use_empty()) |
| 316 | return false; |
| 317 | |
| 318 | for (Value oup : op->getResults()) |
| 319 | for (Operation *user : oup.getUsers()) |
| 320 | if (!calOnlyUsedByWithShapesRecursively(user, oup)) |
| 321 | return false; |
| 322 | |
| 323 | onlyUsedByWithShapes.insert(op); |
| 324 | return true; |
| 325 | } |
| 326 | |
| 327 | } // namespace |
| 328 | |