| 1 | //===- SparseTensorIterator.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "SparseTensorIterator.h" |
| 10 | #include "CodegenUtils.h" |
| 11 | |
| 12 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 13 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 14 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 15 | |
| 16 | using namespace mlir; |
| 17 | using namespace mlir::sparse_tensor; |
| 18 | using ValuePair = std::pair<Value, Value>; |
| 19 | using ValueTuple = std::tuple<Value, Value, Value>; |
| 20 | |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | // File local helper functions/macros. |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | #define CMPI(p, lhs, rhs) \ |
| 25 | (b.create<arith::CmpIOp>(l, arith::CmpIPredicate::p, (lhs), (rhs)) \ |
| 26 | .getResult()) |
| 27 | |
| 28 | #define C_FALSE (constantI1(b, l, false)) |
| 29 | #define C_TRUE (constantI1(b, l, true)) |
| 30 | #define C_IDX(v) (constantIndex(b, l, (v))) |
| 31 | #define YIELD(vs) (b.create<scf::YieldOp>(l, (vs))) |
| 32 | #define ADDI(lhs, rhs) (b.create<arith::AddIOp>(l, (lhs), (rhs)).getResult()) |
| 33 | #define ORI(lhs, rhs) (b.create<arith::OrIOp>(l, (lhs), (rhs)).getResult()) |
| 34 | #define ANDI(lhs, rhs) (b.create<arith::AndIOp>(l, (lhs), (rhs)).getResult()) |
| 35 | #define SUBI(lhs, rhs) (b.create<arith::SubIOp>(l, (lhs), (rhs)).getResult()) |
| 36 | #define MULI(lhs, rhs) (b.create<arith::MulIOp>(l, (lhs), (rhs)).getResult()) |
| 37 | #define MINUI(lhs, rhs) (b.create<arith::MinUIOp>(l, (lhs), (rhs)).getResult()) |
| 38 | #define REMUI(lhs, rhs) (b.create<arith::RemUIOp>(l, (lhs), (rhs)).getResult()) |
| 39 | #define DIVUI(lhs, rhs) (b.create<arith::DivUIOp>(l, (lhs), (rhs)).getResult()) |
| 40 | #define SELECT(c, lhs, rhs) \ |
| 41 | (b.create<arith::SelectOp>(l, (c), (lhs), (rhs)).getResult()) |
| 42 | |
| 43 | //===----------------------------------------------------------------------===// |
| 44 | // SparseTensorLevel derived classes. |
| 45 | //===----------------------------------------------------------------------===// |
| 46 | |
| 47 | namespace { |
| 48 | |
| 49 | template <bool hasPosBuffer> |
| 50 | class SparseLevel : public SparseTensorLevel { |
| 51 | // It is either an array of size 2 or size 1 depending on whether the sparse |
| 52 | // level requires a position array. |
| 53 | using BufferT = std::conditional_t<hasPosBuffer, std::array<Value, 2>, |
| 54 | std::array<Value, 1>>; |
| 55 | |
| 56 | public: |
| 57 | SparseLevel(unsigned tid, Level lvl, LevelType lt, Value lvlSize, |
| 58 | BufferT buffers) |
| 59 | : SparseTensorLevel(tid, lvl, lt, lvlSize), buffers(buffers) {} |
| 60 | |
| 61 | ValueRange getLvlBuffers() const override { return buffers; } |
| 62 | |
| 63 | Value peekCrdAt(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 64 | Value iv) const override { |
| 65 | SmallVector<Value> memCrd(batchPrefix); |
| 66 | memCrd.push_back(Elt: iv); |
| 67 | return genIndexLoad(b, l, getCrdBuf(), memCrd); |
| 68 | } |
| 69 | |
| 70 | protected: |
| 71 | template <typename T = void, typename = std::enable_if_t<hasPosBuffer, T>> |
| 72 | Value getPosBuf() const { |
| 73 | return buffers[0]; |
| 74 | } |
| 75 | |
| 76 | Value getCrdBuf() const { |
| 77 | if constexpr (hasPosBuffer) |
| 78 | return buffers[1]; |
| 79 | else |
| 80 | return buffers[0]; |
| 81 | } |
| 82 | |
| 83 | const BufferT buffers; |
| 84 | }; |
| 85 | |
| 86 | class DenseLevel : public SparseTensorLevel { |
| 87 | public: |
| 88 | DenseLevel(unsigned tid, Level lvl, Value lvlSize) |
| 89 | : SparseTensorLevel(tid, lvl, LevelFormat::Dense, lvlSize) {} |
| 90 | |
| 91 | Value peekCrdAt(OpBuilder &, Location, ValueRange, Value) const override { |
| 92 | llvm_unreachable("locate random-accessible level instead" ); |
| 93 | } |
| 94 | |
| 95 | ValueRange getLvlBuffers() const override { return {}; } |
| 96 | |
| 97 | ValuePair peekRangeAt(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 98 | ValueRange parentPos, Value inPadZone) const override { |
| 99 | assert(parentPos.size() == 1 && "Dense level can not be non-unique." ); |
| 100 | assert(!inPadZone && "Not implemented" ); |
| 101 | Value p = parentPos.front(); |
| 102 | Value posLo = MULI(p, lvlSize); |
| 103 | return {posLo, lvlSize}; |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | class BatchLevel : public SparseTensorLevel { |
| 108 | public: |
| 109 | BatchLevel(unsigned tid, Level lvl, Value lvlSize) |
| 110 | : SparseTensorLevel(tid, lvl, LevelFormat::Batch, lvlSize) {} |
| 111 | |
| 112 | Value peekCrdAt(OpBuilder &, Location, ValueRange, Value) const override { |
| 113 | llvm_unreachable("locate random-accessible level instead" ); |
| 114 | } |
| 115 | |
| 116 | ValueRange getLvlBuffers() const override { return {}; } |
| 117 | |
| 118 | ValuePair peekRangeAt(OpBuilder &b, Location l, ValueRange, |
| 119 | ValueRange parentPos, Value inPadZone) const override { |
| 120 | assert(!inPadZone && "Not implemented" ); |
| 121 | assert(parentPos.size() == 1 && "Dense level can not be non-unique." ); |
| 122 | // No need to linearize the position for non-annotated tensors. |
| 123 | return {C_IDX(0), lvlSize}; |
| 124 | } |
| 125 | }; |
| 126 | |
| 127 | class CompressedLevel : public SparseLevel</*hasPosBuf=*/true> { |
| 128 | public: |
| 129 | CompressedLevel(unsigned tid, Level lvl, LevelType lt, Value lvlSize, |
| 130 | Value posBuffer, Value crdBuffer) |
| 131 | : SparseLevel(tid, lvl, lt, lvlSize, {posBuffer, crdBuffer}) {} |
| 132 | |
| 133 | ValuePair peekRangeAt(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 134 | ValueRange parentPos, Value inPadZone) const override { |
| 135 | |
| 136 | assert(parentPos.size() == 1 && |
| 137 | "compressed level must be the first non-unique level." ); |
| 138 | |
| 139 | auto loadRange = [&b, l, parentPos, batchPrefix, this]() -> ValuePair { |
| 140 | Value p = parentPos.front(); |
| 141 | SmallVector<Value> memCrd(batchPrefix); |
| 142 | memCrd.push_back(Elt: p); |
| 143 | Value pLo = genIndexLoad(builder&: b, loc: l, mem: getPosBuf(), s: memCrd); |
| 144 | memCrd.back() = ADDI(p, C_IDX(1)); |
| 145 | Value pHi = genIndexLoad(builder&: b, loc: l, mem: getPosBuf(), s: memCrd); |
| 146 | return {pLo, pHi}; |
| 147 | }; |
| 148 | |
| 149 | if (inPadZone == nullptr) |
| 150 | return loadRange(); |
| 151 | |
| 152 | SmallVector<Type, 2> types{b.getIndexType(), b.getIndexType()}; |
| 153 | scf::IfOp posRangeIf = b.create<scf::IfOp>(l, types, inPadZone, true); |
| 154 | // True branch, returns a "fake" empty range [0, 0) if parent |
| 155 | // iterator is in pad zone. |
| 156 | b.setInsertionPointToStart(posRangeIf.thenBlock()); |
| 157 | |
| 158 | SmallVector<Value, 2> emptyRange{C_IDX(0), C_IDX(0)}; |
| 159 | b.create<scf::YieldOp>(l, emptyRange); |
| 160 | |
| 161 | // False branch, returns the actual range. |
| 162 | b.setInsertionPointToStart(posRangeIf.elseBlock()); |
| 163 | auto [pLo, pHi] = loadRange(); |
| 164 | SmallVector<Value, 2> loadedRange{pLo, pHi}; |
| 165 | b.create<scf::YieldOp>(l, loadedRange); |
| 166 | |
| 167 | b.setInsertionPointAfter(posRangeIf); |
| 168 | ValueRange posRange = posRangeIf.getResults(); |
| 169 | return {posRange.front(), posRange.back()}; |
| 170 | } |
| 171 | }; // namespace |
| 172 | |
| 173 | class LooseCompressedLevel : public SparseLevel</*hasPosBuf=*/true> { |
| 174 | public: |
| 175 | LooseCompressedLevel(unsigned tid, Level lvl, LevelType lt, Value lvlSize, |
| 176 | Value posBuffer, Value crdBuffer) |
| 177 | : SparseLevel(tid, lvl, lt, lvlSize, {posBuffer, crdBuffer}) {} |
| 178 | |
| 179 | ValuePair peekRangeAt(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 180 | ValueRange parentPos, Value inPadZone) const override { |
| 181 | assert(parentPos.size() == 1 && |
| 182 | "loose-compressed level must be the first non-unique level." ); |
| 183 | assert(!inPadZone && "Not implemented" ); |
| 184 | SmallVector<Value> memCrd(batchPrefix); |
| 185 | Value p = parentPos.front(); |
| 186 | p = MULI(p, C_IDX(2)); |
| 187 | memCrd.push_back(Elt: p); |
| 188 | Value pLo = genIndexLoad(builder&: b, loc: l, mem: getPosBuf(), s: memCrd); |
| 189 | memCrd.back() = ADDI(p, C_IDX(1)); |
| 190 | Value pHi = genIndexLoad(builder&: b, loc: l, mem: getPosBuf(), s: memCrd); |
| 191 | return {pLo, pHi}; |
| 192 | } |
| 193 | }; // namespace |
| 194 | |
| 195 | class SingletonLevel : public SparseLevel</*hasPosBuf=*/false> { |
| 196 | public: |
| 197 | SingletonLevel(unsigned tid, Level lvl, LevelType lt, Value lvlSize, |
| 198 | Value crdBuffer) |
| 199 | : SparseLevel(tid, lvl, lt, lvlSize, {crdBuffer}) {} |
| 200 | |
| 201 | ValuePair peekRangeAt(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 202 | ValueRange parentPos, Value inPadZone) const override { |
| 203 | assert(parentPos.size() == 1 || parentPos.size() == 2); |
| 204 | assert(!inPadZone && "Not implemented" ); |
| 205 | Value p = parentPos.front(); |
| 206 | Value segHi = parentPos.size() == 2 ? parentPos.back() : nullptr; |
| 207 | |
| 208 | if (segHi == nullptr) |
| 209 | return {p, ADDI(p, C_IDX(1))}; |
| 210 | // Use the segHi as the loop upper bound. |
| 211 | return {p, segHi}; |
| 212 | } |
| 213 | |
| 214 | ValuePair |
| 215 | collapseRangeBetween(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 216 | std::pair<Value, Value> parentRange) const override { |
| 217 | // Singleton level keeps the same range after collapsing. |
| 218 | return parentRange; |
| 219 | }; |
| 220 | }; |
| 221 | |
| 222 | class NOutOfMLevel : public SparseLevel</*hasPosBuf=*/false> { |
| 223 | public: |
| 224 | NOutOfMLevel(unsigned tid, Level lvl, LevelType lt, Value lvlSize, |
| 225 | Value crdBuffer) |
| 226 | : SparseLevel(tid, lvl, lt, lvlSize, {crdBuffer}) {} |
| 227 | |
| 228 | ValuePair peekRangeAt(OpBuilder &b, Location l, ValueRange batchPrefix, |
| 229 | ValueRange parentPos, Value inPadZone) const override { |
| 230 | assert(parentPos.size() == 1 && isUnique() && |
| 231 | "n:m level can not be non-unique." ); |
| 232 | assert(!inPadZone && "Not implemented" ); |
| 233 | // Each n:m blk has exactly n specified elements. |
| 234 | auto n = getN(lt); |
| 235 | Value posLo = MULI(parentPos.front(), C_IDX(n)); |
| 236 | return {posLo, ADDI(posLo, C_IDX(n))}; |
| 237 | } |
| 238 | }; |
| 239 | |
| 240 | } // namespace |
| 241 | |
| 242 | //===----------------------------------------------------------------------===// |
| 243 | // File local helpers |
| 244 | //===----------------------------------------------------------------------===// |
| 245 | |
| 246 | static scf::ValueVector genWhenInBound( |
| 247 | OpBuilder &b, Location l, SparseIterator &it, ValueRange elseRet, |
| 248 | llvm::function_ref<scf::ValueVector(OpBuilder &, Location, Value)> |
| 249 | builder) { |
| 250 | TypeRange ifRetTypes = elseRet.getTypes(); |
| 251 | auto ifOp = b.create<scf::IfOp>(l, ifRetTypes, it.genNotEnd(b, l), true); |
| 252 | |
| 253 | b.setInsertionPointToStart(ifOp.thenBlock()); |
| 254 | Value crd = it.deref(b, l); |
| 255 | scf::ValueVector ret = builder(b, l, crd); |
| 256 | YIELD(ret); |
| 257 | |
| 258 | b.setInsertionPointToStart(ifOp.elseBlock()); |
| 259 | YIELD(elseRet); |
| 260 | |
| 261 | b.setInsertionPointAfter(ifOp); |
| 262 | return ifOp.getResults(); |
| 263 | } |
| 264 | |
| 265 | /// Generates code to compute the *absolute* offset of the slice based on the |
| 266 | /// provide minimum coordinates in the slice. |
| 267 | /// E.g., when reducing d0 + d1 + d2, we need two slices to fully reduced the |
| 268 | /// expression, i,e, s1 = slice(T, d0), s2 = slice(s1, d1). The *absolute* |
| 269 | /// offset is the offset computed relative to the initial tensors T. |
| 270 | /// |
| 271 | /// When isNonEmpty == true, the computed offset is meaningless and should not |
| 272 | /// be used during runtime, the method generates code to return 0 currently in |
| 273 | /// that case. |
| 274 | /// |
| 275 | /// offset = minCrd >= size ? minCrd - size + 1 : 0; |
| 276 | static Value offsetFromMinCrd(OpBuilder &b, Location l, Value minCrd, |
| 277 | Value size) { |
| 278 | Value geSize = CMPI(uge, minCrd, size); |
| 279 | // Compute minCrd - size + 1. |
| 280 | Value mms = SUBI(ADDI(minCrd, C_IDX(1)), size); |
| 281 | // This is the absolute offset related to the actual tensor. |
| 282 | return SELECT(geSize, mms, C_IDX(0)); |
| 283 | } |
| 284 | |
| 285 | //===----------------------------------------------------------------------===// |
| 286 | // SparseIterator derived classes. |
| 287 | //===----------------------------------------------------------------------===// |
| 288 | |
| 289 | namespace { |
| 290 | |
| 291 | // The iterator that traverses a concrete sparse tensor levels. High-level |
| 292 | // abstract iterators wrap it to achieve more complex goals (such as collapsing |
| 293 | // several levels). It also holds the common storage to hold the mlir::Values |
| 294 | // for itself as well as for wrappers. |
| 295 | class ConcreteIterator : public SparseIterator { |
| 296 | protected: |
| 297 | ConcreteIterator(const SparseTensorLevel &stl, IterKind kind, |
| 298 | unsigned cursorValCnt) |
| 299 | : SparseIterator(kind, stl.tid, stl.lvl, cursorValCnt, cursorValsStorage), |
| 300 | stl(stl), cursorValsStorage(cursorValCnt, nullptr) { |
| 301 | assert(getCursor().size() == cursorValCnt); |
| 302 | }; |
| 303 | |
| 304 | public: |
| 305 | // For LLVM-style RTTI. |
| 306 | static bool classof(const SparseIterator *from) { |
| 307 | return from->kind == IterKind::kTrivial; |
| 308 | } |
| 309 | |
| 310 | bool isBatchIterator() const override { |
| 311 | return stl.getLT().isa<LevelFormat::Batch>(); |
| 312 | } |
| 313 | bool randomAccessible() const override { |
| 314 | return stl.getLT().hasDenseSemantic(); |
| 315 | }; |
| 316 | bool iteratableByFor() const override { return kind != IterKind::kDedup; }; |
| 317 | Value upperBound(OpBuilder &b, Location l) const override { |
| 318 | return stl.getSize(); |
| 319 | }; |
| 320 | |
| 321 | protected: |
| 322 | const SparseTensorLevel &stl; |
| 323 | // Owner of the storage, all wrappers build on top of a concrete iterator |
| 324 | // share the same storage such that the iterator values are always |
| 325 | // synchronized. |
| 326 | SmallVector<Value> cursorValsStorage; |
| 327 | }; |
| 328 | |
| 329 | class TrivialIterator : public ConcreteIterator { |
| 330 | public: |
| 331 | TrivialIterator(const SparseTensorLevel &stl) |
| 332 | : ConcreteIterator(stl, IterKind::kTrivial, /*itValCnt=*/1) {} |
| 333 | |
| 334 | TrivialIterator(OpBuilder &b, Location l, const SparseTensorLevel &stl, |
| 335 | Value posLo, Value posHi) |
| 336 | : ConcreteIterator(stl, IterKind::kTrivial, /*itValCnt=*/1), posLo(posLo), |
| 337 | posHi(posHi) { |
| 338 | seek(vals: posLo); |
| 339 | } |
| 340 | |
| 341 | std::string getDebugInterfacePrefix() const override { |
| 342 | return std::string("trivial<" ) + stl.toString() + ">" ; |
| 343 | } |
| 344 | SmallVector<Type> getCursorValTypes(OpBuilder &b) const override { |
| 345 | return {b.getIndexType()}; |
| 346 | } |
| 347 | |
| 348 | SmallVector<Value> serialize() const override { |
| 349 | SmallVector<Value> ret; |
| 350 | ret.push_back(Elt: getItPos()); |
| 351 | if (randomAccessible()) { |
| 352 | // Loop high is implicit (defined by `upperBound()`) for random-access |
| 353 | // iterator, but we need to memorize posLo for linearization. |
| 354 | ret.push_back(Elt: posLo); |
| 355 | } else { |
| 356 | ret.push_back(Elt: posHi); |
| 357 | } |
| 358 | return ret; |
| 359 | }; |
| 360 | |
| 361 | void deserialize(ValueRange vs) override { |
| 362 | assert(vs.size() == 2); |
| 363 | seek(vals: vs.front()); |
| 364 | if (randomAccessible()) |
| 365 | posLo = vs.back(); |
| 366 | else |
| 367 | posHi = vs.back(); |
| 368 | }; |
| 369 | |
| 370 | void genInitImpl(OpBuilder &b, Location l, |
| 371 | const SparseIterator *parent) override; |
| 372 | |
| 373 | ValuePair genForCond(OpBuilder &b, Location l) override { |
| 374 | if (randomAccessible()) |
| 375 | return {deref(b, l), upperBound(b, l)}; |
| 376 | return std::make_pair(x: getItPos(), y&: posHi); |
| 377 | } |
| 378 | |
| 379 | Value genNotEndImpl(OpBuilder &b, Location l) override { |
| 380 | // We used the first level bound as the bound the collapsed set of levels. |
| 381 | return CMPI(ult, getItPos(), posHi); |
| 382 | } |
| 383 | |
| 384 | Value derefImpl(OpBuilder &b, Location l) override { |
| 385 | if (randomAccessible()) { |
| 386 | updateCrd(SUBI(getItPos(), posLo)); |
| 387 | } else { |
| 388 | updateCrd(crd: stl.peekCrdAt(b, l, batchPrefix: getBatchCrds(), iv: getItPos())); |
| 389 | } |
| 390 | return getCrd(); |
| 391 | }; |
| 392 | |
| 393 | ValueRange forwardImpl(OpBuilder &b, Location l) override { |
| 394 | seek(ADDI(getItPos(), C_IDX(1))); |
| 395 | return getCursor(); |
| 396 | } |
| 397 | |
| 398 | ValueRange forwardIf(OpBuilder &b, Location l, Value cond) override { |
| 399 | Value curPos = getCursor().front(); |
| 400 | Value nxPos = forward(b, l).front(); |
| 401 | seek(SELECT(cond, nxPos, curPos)); |
| 402 | return getCursor(); |
| 403 | } |
| 404 | |
| 405 | void locateImpl(OpBuilder &b, Location l, Value crd) override { |
| 406 | assert(randomAccessible()); |
| 407 | // Seek to the linearized position. |
| 408 | seek(ADDI(crd, posLo)); |
| 409 | updateCrd(crd); |
| 410 | if (isBatchIterator()) { |
| 411 | // If this is a batch iterator, also update the batch coordinate. |
| 412 | assert(batchCrds.size() > lvl); |
| 413 | batchCrds[lvl] = crd; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | Value getItPos() const { return getCursor().front(); } |
| 418 | Value posLo, posHi; |
| 419 | }; |
| 420 | |
| 421 | class DedupIterator : public ConcreteIterator { |
| 422 | private: |
| 423 | Value genSegmentHigh(OpBuilder &b, Location l, Value pos); |
| 424 | |
| 425 | public: |
| 426 | DedupIterator(const SparseTensorLevel &stl) |
| 427 | : ConcreteIterator(stl, IterKind::kDedup, /*itValCnt=*/2) { |
| 428 | assert(!stl.isUnique()); |
| 429 | } |
| 430 | |
| 431 | DedupIterator(OpBuilder &b, Location l, const SparseTensorLevel &stl, |
| 432 | Value posLo, Value posHi) |
| 433 | : ConcreteIterator(stl, IterKind::kDedup, /*itValCnt=*/2), posHi(posHi) { |
| 434 | assert(!stl.isUnique()); |
| 435 | seek(vals: {posLo, genSegmentHigh(b, l, pos: posLo)}); |
| 436 | } |
| 437 | |
| 438 | // For LLVM-style RTTI. |
| 439 | static bool classof(const SparseIterator *from) { |
| 440 | return from->kind == IterKind::kDedup; |
| 441 | } |
| 442 | |
| 443 | std::string getDebugInterfacePrefix() const override { |
| 444 | return std::string("dedup<" ) + stl.toString() + ">" ; |
| 445 | } |
| 446 | SmallVector<Type> getCursorValTypes(OpBuilder &b) const override { |
| 447 | return {b.getIndexType(), b.getIndexType()}; |
| 448 | } |
| 449 | |
| 450 | void genInitImpl(OpBuilder &b, Location l, |
| 451 | const SparseIterator *parent) override { |
| 452 | Value c0 = C_IDX(0); |
| 453 | ValueRange pPos = c0; |
| 454 | |
| 455 | // If the parent iterator is a batch iterator, we also start from 0 (but |
| 456 | // on a different batch). |
| 457 | if (parent && !parent->isBatchIterator()) |
| 458 | pPos = parent->getCurPosition(); |
| 459 | |
| 460 | Value posLo; |
| 461 | ValueRange batchPrefix = parent ? parent->getBatchCrds() : ValueRange{}; |
| 462 | std::tie(args&: posLo, args&: posHi) = stl.peekRangeAt(b, l, batchPrefix, parentPos: pPos); |
| 463 | |
| 464 | seek(vals: {posLo, genSegmentHigh(b, l, pos: posLo)}); |
| 465 | } |
| 466 | |
| 467 | SmallVector<Value> serialize() const override { |
| 468 | SmallVector<Value> ret; |
| 469 | ret.append(in_start: getCursor().begin(), in_end: getCursor().end()); |
| 470 | ret.push_back(Elt: posHi); |
| 471 | return ret; |
| 472 | }; |
| 473 | void deserialize(ValueRange vs) override { |
| 474 | assert(vs.size() == 3); |
| 475 | seek(vals: vs.take_front(n: getCursor().size())); |
| 476 | posHi = vs.back(); |
| 477 | }; |
| 478 | |
| 479 | Value genNotEndImpl(OpBuilder &b, Location l) override { |
| 480 | return CMPI(ult, getPos(), posHi); |
| 481 | } |
| 482 | |
| 483 | Value derefImpl(OpBuilder &b, Location l) override { |
| 484 | updateCrd(crd: stl.peekCrdAt(b, l, batchPrefix: getBatchCrds(), iv: getPos())); |
| 485 | return getCrd(); |
| 486 | }; |
| 487 | |
| 488 | ValueRange forwardImpl(OpBuilder &b, Location l) override { |
| 489 | Value nxPos = getSegHi(); // forward the position to the next segment. |
| 490 | seek(vals: {nxPos, genSegmentHigh(b, l, pos: nxPos)}); |
| 491 | return getCursor(); |
| 492 | } |
| 493 | |
| 494 | Value getPos() const { return getCursor()[0]; } |
| 495 | Value getSegHi() const { return getCursor()[1]; } |
| 496 | |
| 497 | Value posHi; |
| 498 | }; |
| 499 | |
| 500 | // A util base-iterator that delegates all methods to the wrapped iterator. |
| 501 | class SimpleWrapIterator : public SparseIterator { |
| 502 | public: |
| 503 | SimpleWrapIterator(std::unique_ptr<SparseIterator> &&wrap, IterKind kind, |
| 504 | unsigned = 0) |
| 505 | : SparseIterator(kind, *wrap, extraCursorVal), wrap(std::move(wrap)) {} |
| 506 | |
| 507 | SmallVector<Type> getCursorValTypes(OpBuilder &b) const override { |
| 508 | return wrap->getCursorValTypes(b); |
| 509 | } |
| 510 | bool isBatchIterator() const override { return wrap->isBatchIterator(); } |
| 511 | bool randomAccessible() const override { return wrap->randomAccessible(); }; |
| 512 | bool iteratableByFor() const override { return wrap->iteratableByFor(); }; |
| 513 | |
| 514 | SmallVector<Value> serialize() const override { return wrap->serialize(); }; |
| 515 | void deserialize(ValueRange vs) override { wrap->deserialize(vs); }; |
| 516 | ValueRange getCurPosition() const override { return wrap->getCurPosition(); } |
| 517 | void genInitImpl(OpBuilder &b, Location l, |
| 518 | const SparseIterator *parent) override { |
| 519 | wrap->genInit(b, l, p: parent); |
| 520 | } |
| 521 | Value genNotEndImpl(OpBuilder &b, Location l) override { |
| 522 | return wrap->genNotEndImpl(b, l); |
| 523 | } |
| 524 | ValueRange forwardImpl(OpBuilder &b, Location l) override { |
| 525 | return wrap->forward(b, l); |
| 526 | }; |
| 527 | Value upperBound(OpBuilder &b, Location l) const override { |
| 528 | return wrap->upperBound(b, l); |
| 529 | }; |
| 530 | |
| 531 | Value derefImpl(OpBuilder &b, Location l) override { |
| 532 | return wrap->derefImpl(b, l); |
| 533 | } |
| 534 | |
| 535 | void locateImpl(OpBuilder &b, Location l, Value crd) override { |
| 536 | return wrap->locate(b, l, crd); |
| 537 | } |
| 538 | |
| 539 | SparseIterator &getWrappedIterator() const { return *wrap; } |
| 540 | |
| 541 | protected: |
| 542 | std::unique_ptr<SparseIterator> wrap; |
| 543 | }; |
| 544 | |
| 545 | // |
| 546 | // A filter iterator wrapped from another iterator. The filter iterator update |
| 547 | // the wrapped iterator *in-place*. |
| 548 | // |
| 549 | class FilterIterator : public SimpleWrapIterator { |
| 550 | // Coorindate translation between crd loaded from the wrap iterator and the |
| 551 | // filter iterator. |
| 552 | Value fromWrapCrd(OpBuilder &b, Location l, Value wrapCrd) const { |
| 553 | // crd = (wrapCrd - offset) / stride |
| 554 | return DIVUI(SUBI(wrapCrd, offset), stride); |
| 555 | } |
| 556 | Value toWrapCrd(OpBuilder &b, Location l, Value crd) const { |
| 557 | // wrapCrd = crd * stride + offset |
| 558 | return ADDI(MULI(crd, stride), offset); |
| 559 | } |
| 560 | |
| 561 | Value genCrdNotLegitPredicate(OpBuilder &b, Location l, Value wrapCrd); |
| 562 | |
| 563 | Value genShouldFilter(OpBuilder &b, Location l); |
| 564 | |
| 565 | public: |
| 566 | // TODO: avoid unnessary check when offset == 0 and/or when stride == 1 and/or |
| 567 | // when crd always < size. |
| 568 | FilterIterator(std::unique_ptr<SparseIterator> &&wrap, Value offset, |
| 569 | Value stride, Value size) |
| 570 | : SimpleWrapIterator(std::move(wrap), IterKind::kFilter), offset(offset), |
| 571 | stride(stride), size(size) {} |
| 572 | |
| 573 | // For LLVM-style RTTI. |
| 574 | static bool classof(const SparseIterator *from) { |
| 575 | return from->kind == IterKind::kFilter; |
| 576 | } |
| 577 | |
| 578 | std::string getDebugInterfacePrefix() const override { |
| 579 | return std::string("filter<" ) + wrap->getDebugInterfacePrefix() + ">" ; |
| 580 | } |
| 581 | |
| 582 | bool iteratableByFor() const override { return randomAccessible(); }; |
| 583 | Value upperBound(OpBuilder &b, Location l) const override { return size; }; |
| 584 | |
| 585 | void genInitImpl(OpBuilder &b, Location l, |
| 586 | const SparseIterator *parent) override { |
| 587 | wrap->genInit(b, l, p: parent); |
| 588 | if (!randomAccessible()) { |
| 589 | // TODO: we can skip this when stride == 1 and offset == 0, we can also |
| 590 | // use binary search here. |
| 591 | forwardIf(b, l, cond: genShouldFilter(b, l)); |
| 592 | } else { |
| 593 | // Else, locate to the slice.offset, which is the first coordinate |
| 594 | // included by the slice. |
| 595 | wrap->locate(b, l, crd: offset); |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | Value genNotEndImpl(OpBuilder &b, Location l) override; |
| 600 | |
| 601 | Value derefImpl(OpBuilder &b, Location l) override { |
| 602 | updateCrd(crd: fromWrapCrd(b, l, wrapCrd: wrap->deref(b, l))); |
| 603 | return getCrd(); |
| 604 | } |
| 605 | |
| 606 | void locateImpl(OpBuilder &b, Location l, Value crd) override { |
| 607 | assert(randomAccessible()); |
| 608 | wrap->locate(b, l, crd: toWrapCrd(b, l, crd)); |
| 609 | updateCrd(crd); |
| 610 | } |
| 611 | |
| 612 | ValueRange forwardImpl(OpBuilder &b, Location l) override; |
| 613 | |
| 614 | Value offset, stride, size; |
| 615 | }; |
| 616 | |
| 617 | // |
| 618 | // A pad iterator wrapped from another iterator. The pad iterator updates |
| 619 | // the wrapped iterator *in-place*. |
| 620 | // |
| 621 | class PadIterator : public SimpleWrapIterator { |
| 622 | |
| 623 | public: |
| 624 | PadIterator(std::unique_ptr<SparseIterator> &&wrap, Value padLow, |
| 625 | Value padHigh) |
| 626 | : SimpleWrapIterator(std::move(wrap), IterKind::kPad, |
| 627 | wrap->randomAccessible() ? 1 : 0), |
| 628 | padLow(padLow), padHigh(padHigh) {} |
| 629 | |
| 630 | // For LLVM-style RTTI. |
| 631 | static bool classof(const SparseIterator *from) { |
| 632 | return from->kind == IterKind::kPad; |
| 633 | } |
| 634 | |
| 635 | std::string getDebugInterfacePrefix() const override { |
| 636 | return std::string("pad<" ) + wrap->getDebugInterfacePrefix() + ">" ; |
| 637 | } |
| 638 | |
| 639 | // Returns a pair of values for *upper*, *lower* bound respectively. |
| 640 | ValuePair genForCond(OpBuilder &b, Location l) override { |
| 641 | if (randomAccessible()) |
| 642 | return {getCrd(), upperBound(b, l)}; |
| 643 | return wrap->genForCond(b, l); |
| 644 | } |
| 645 | |
| 646 | // For padded dense iterator, we append a `inPadZone: bool` in addition to |
| 647 | // values used by the wrapped iterator. |
| 648 | ValueRange getCurPosition() const override { return getCursor(); } |
| 649 | |
| 650 | SmallVector<Type> getCursorValTypes(OpBuilder &b) const override { |
| 651 | SmallVector<Type> ret = wrap->getCursorValTypes(b); |
| 652 | // Need an extra boolean value `inPadZone` for padded dense iterator. |
| 653 | if (randomAccessible()) |
| 654 | ret.push_back(b.getI1Type()); |
| 655 | |
| 656 | return ret; |
| 657 | } |
| 658 | |
| 659 | // The upper bound after padding becomes `size + padLow + padHigh`. |
| 660 | Value upperBound(OpBuilder &b, Location l) const override { |
| 661 | return ADDI(ADDI(wrap->upperBound(b, l), padLow), padHigh); |
| 662 | }; |
| 663 | |
| 664 | // The pad_coord = coord + pad_lo |
| 665 | Value derefImpl(OpBuilder &b, Location l) override { |
| 666 | updateCrd(ADDI(wrap->deref(b, l), padLow)); |
| 667 | return getCrd(); |
| 668 | } |
| 669 | |
| 670 | void locateImpl(OpBuilder &b, Location l, Value crd) override { |
| 671 | assert(randomAccessible()); |
| 672 | wrap->locate(b, l, SUBI(crd, padLow)); |
| 673 | |
| 674 | // inPadZone = crd < padLow || crd >= size + padLow. |
| 675 | Value inPadLow = CMPI(ult, crd, padLow); |
| 676 | Value inPadHigh = CMPI(uge, crd, ADDI(wrap->upperBound(b, l), padLow)); |
| 677 | getMutCursorVals().back() = ORI(inPadLow, inPadHigh); |
| 678 | |
| 679 | updateCrd(crd); |
| 680 | } |
| 681 | |
| 682 | Value padLow, padHigh; |
| 683 | }; |
| 684 | |
| 685 | class NonEmptySubSectIterator : public SparseIterator { |
| 686 | public: |
| 687 | using TraverseBuilder = llvm::function_ref<scf::ValueVector( |
| 688 | OpBuilder &, Location, const SparseIterator *, ValueRange)>; |
| 689 | |
| 690 | NonEmptySubSectIterator(OpBuilder &b, Location l, |
| 691 | const SparseIterator *parent, |
| 692 | std::unique_ptr<SparseIterator> &&delegate, |
| 693 | Value subSectSz) |
| 694 | : SparseIterator(IterKind::kNonEmptySubSect, 3, subSectMeta, *delegate), |
| 695 | parent(parent), delegate(std::move(delegate)), |
| 696 | tupleSz(this->delegate->serialize().size()), subSectSz(subSectSz) { |
| 697 | auto *p = dyn_cast_or_null<NonEmptySubSectIterator>(Val: parent); |
| 698 | if (p == nullptr) { |
| 699 | // Extract subsections along the root level. |
| 700 | maxTupleCnt = C_IDX(1); |
| 701 | } else if (p->lvl == lvl) { |
| 702 | // Extract subsections along the same level. |
| 703 | maxTupleCnt = p->maxTupleCnt; |
| 704 | assert(false && "Not implemented." ); |
| 705 | } else { |
| 706 | // Extract subsections along the previous level. |
| 707 | assert(p->lvl + 1 == lvl); |
| 708 | maxTupleCnt = MULI(p->maxTupleCnt, p->subSectSz); |
| 709 | } |
| 710 | // We don't need an extra buffer to find subsections on random-accessible |
| 711 | // levels. |
| 712 | if (randomAccessible()) |
| 713 | return; |
| 714 | subSectPosBuf = allocSubSectPosBuf(b, l); |
| 715 | } |
| 716 | |
| 717 | // For LLVM-style RTTI. |
| 718 | static bool classof(const SparseIterator *from) { |
| 719 | return from->kind == IterKind::kNonEmptySubSect; |
| 720 | } |
| 721 | |
| 722 | std::string getDebugInterfacePrefix() const override { |
| 723 | return std::string("ne_sub<" ) + delegate->getDebugInterfacePrefix() + ">" ; |
| 724 | } |
| 725 | SmallVector<Type> getCursorValTypes(OpBuilder &b) const override { |
| 726 | // minCrd, absolute offset, notEnd |
| 727 | return {b.getIndexType(), b.getIndexType(), b.getI1Type()}; |
| 728 | } |
| 729 | |
| 730 | // The sliced pointer buffer is organized as: |
| 731 | // [[itVal0, itVal1, ..., pNx0], |
| 732 | // [itVal0, itVal1, ..., pNx0], |
| 733 | // ...] |
| 734 | Value allocSubSectPosBuf(OpBuilder &b, Location l) { |
| 735 | return b.create<memref::AllocaOp>( |
| 736 | l, |
| 737 | MemRefType::get({ShapedType::kDynamic, tupleSz + 1}, b.getIndexType()), |
| 738 | maxTupleCnt); |
| 739 | } |
| 740 | |
| 741 | void storeNxLvlStart(OpBuilder &b, Location l, Value tupleId, |
| 742 | Value start) const { |
| 743 | b.create<memref::StoreOp>(l, start, subSectPosBuf, |
| 744 | ValueRange{tupleId, C_IDX(tupleSz)}); |
| 745 | } |
| 746 | |
| 747 | Value loadNxLvlStart(OpBuilder &b, Location l, Value tupleId) const { |
| 748 | return b.create<memref::LoadOp>(l, subSectPosBuf, |
| 749 | ValueRange{tupleId, C_IDX(tupleSz)}); |
| 750 | } |
| 751 | |
| 752 | void storeCursorVals(OpBuilder &b, Location l, Value tupleId, |
| 753 | ValueRange itVals) const { |
| 754 | assert(itVals.size() == tupleSz); |
| 755 | for (unsigned i = 0; i < tupleSz; i++) { |
| 756 | b.create<memref::StoreOp>(l, itVals[i], subSectPosBuf, |
| 757 | ValueRange{tupleId, C_IDX(i)}); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | SmallVector<Value> loadCursorVals(OpBuilder &b, Location l, |
| 762 | Value tupleId) const { |
| 763 | SmallVector<Value> ret; |
| 764 | for (unsigned i = 0; i < tupleSz; i++) { |
| 765 | Value v = b.create<memref::LoadOp>(l, subSectPosBuf, |
| 766 | ValueRange{tupleId, C_IDX(i)}); |
| 767 | ret.push_back(Elt: v); |
| 768 | } |
| 769 | return ret; |
| 770 | } |
| 771 | |
| 772 | bool isSubSectRoot() const { |
| 773 | return !parent || !llvm::isa<NonEmptySubSectIterator>(Val: parent); |
| 774 | } |
| 775 | |
| 776 | // Generate code that inflate the current subsection tree till the current |
| 777 | // level such that every leaf node is visited. |
| 778 | ValueRange inflateSubSectTree(OpBuilder &b, Location l, ValueRange reduc, |
| 779 | TraverseBuilder builder) const; |
| 780 | |
| 781 | bool isBatchIterator() const override { return delegate->isBatchIterator(); } |
| 782 | bool randomAccessible() const override { |
| 783 | return delegate->randomAccessible(); |
| 784 | }; |
| 785 | bool iteratableByFor() const override { return randomAccessible(); }; |
| 786 | Value upperBound(OpBuilder &b, Location l) const override { |
| 787 | auto *p = dyn_cast_or_null<NonEmptySubSectIterator>(Val: parent); |
| 788 | Value parentUB = |
| 789 | p && p->lvl == lvl ? p->upperBound(b, l) : delegate->upperBound(b, l); |
| 790 | return ADDI(SUBI(parentUB, subSectSz), C_IDX(1)); |
| 791 | }; |
| 792 | |
| 793 | void genInitImpl(OpBuilder &b, Location l, const SparseIterator *) override; |
| 794 | |
| 795 | void locateImpl(OpBuilder &b, Location l, Value crd) override { |
| 796 | Value absOff = crd; |
| 797 | |
| 798 | if (isSubSectRoot()) |
| 799 | delegate->locate(b, l, crd: absOff); |
| 800 | else |
| 801 | assert(parent->lvl + 1 == lvl); |
| 802 | |
| 803 | seek(vals: ValueRange{absOff, absOff, C_TRUE}); |
| 804 | updateCrd(crd); |
| 805 | } |
| 806 | |
| 807 | Value toSubSectCrd(OpBuilder &b, Location l, Value wrapCrd) const { |
| 808 | return SUBI(wrapCrd, getAbsOff()); |
| 809 | } |
| 810 | |
| 811 | Value genNotEndImpl(OpBuilder &b, Location l) override { |
| 812 | return getNotEnd(); |
| 813 | }; |
| 814 | |
| 815 | Value derefImpl(OpBuilder &b, Location l) override { |
| 816 | // Use the relative offset to coiterate. |
| 817 | Value crd; |
| 818 | auto *p = dyn_cast_or_null<NonEmptySubSectIterator>(Val: parent); |
| 819 | if (p && p->lvl == lvl) |
| 820 | crd = SUBI(getAbsOff(), p->getAbsOff()); |
| 821 | crd = getAbsOff(); |
| 822 | |
| 823 | updateCrd(crd); |
| 824 | return crd; |
| 825 | }; |
| 826 | |
| 827 | ValueRange forwardImpl(OpBuilder &b, Location l) override; |
| 828 | |
| 829 | Value getMinCrd() const { return subSectMeta[0]; } |
| 830 | Value getAbsOff() const { return subSectMeta[1]; } |
| 831 | Value getNotEnd() const { return subSectMeta[2]; } |
| 832 | |
| 833 | const SparseIterator *parent; |
| 834 | std::unique_ptr<SparseIterator> delegate; |
| 835 | |
| 836 | // Number of values required to serialize the wrapped iterator. |
| 837 | const unsigned tupleSz; |
| 838 | // Max number of tuples, and the actual number of tuple. |
| 839 | Value maxTupleCnt, tupleCnt; |
| 840 | // The memory used to cache the tuple serialized from the wrapped iterator. |
| 841 | Value subSectPosBuf; |
| 842 | |
| 843 | const Value subSectSz; |
| 844 | |
| 845 | // minCrd, absolute offset, notEnd |
| 846 | SmallVector<Value, 3> subSectMeta{nullptr, nullptr, nullptr}; |
| 847 | }; |
| 848 | |
| 849 | class SubSectIterator; |
| 850 | |
| 851 | // A wrapper that helps generating code to traverse a subsection, used |
| 852 | // by both `NonEmptySubSectIterator`and `SubSectIterator`. |
| 853 | struct SubSectIterHelper { |
| 854 | explicit SubSectIterHelper(const SubSectIterator &iter); |
| 855 | explicit SubSectIterHelper(const NonEmptySubSectIterator &subSect); |
| 856 | |
| 857 | // Delegate methods. |
| 858 | void deserializeFromTupleId(OpBuilder &b, Location l, Value tupleId); |
| 859 | void locate(OpBuilder &b, Location l, Value crd); |
| 860 | Value genNotEnd(OpBuilder &b, Location l); |
| 861 | Value deref(OpBuilder &b, Location l); |
| 862 | ValueRange forward(OpBuilder &b, Location l); |
| 863 | |
| 864 | const NonEmptySubSectIterator &subSect; |
| 865 | SparseIterator &wrap; |
| 866 | }; |
| 867 | |
| 868 | class SubSectIterator : public SparseIterator { |
| 869 | public: |
| 870 | SubSectIterator(const NonEmptySubSectIterator &subSect, |
| 871 | const SparseIterator &parent, |
| 872 | std::unique_ptr<SparseIterator> &&wrap) |
| 873 | : SparseIterator(IterKind::kSubSect, *wrap, |
| 874 | /*extraCursorCnt=*/wrap->randomAccessible() ? 0 : 1), |
| 875 | subSect(subSect), wrap(std::move(wrap)), parent(parent), helper(*this) { |
| 876 | assert(subSect.tid == tid && subSect.lvl == lvl); |
| 877 | assert(parent.kind != IterKind::kSubSect || parent.lvl + 1 == lvl); |
| 878 | }; |
| 879 | |
| 880 | // For LLVM-style RTTI. |
| 881 | static bool classof(const SparseIterator *from) { |
| 882 | return from->kind == IterKind::kSubSect; |
| 883 | } |
| 884 | |
| 885 | std::string getDebugInterfacePrefix() const override { |
| 886 | return std::string("subsect<" ) + wrap->getDebugInterfacePrefix() + ">" ; |
| 887 | } |
| 888 | SmallVector<Type> getCursorValTypes(OpBuilder &b) const override { |
| 889 | SmallVector<Type> ret = wrap->getCursorValTypes(b); |
| 890 | if (!randomAccessible()) |
| 891 | ret.push_back(b.getIndexType()); // The extra counter. |
| 892 | return ret; |
| 893 | } |
| 894 | |
| 895 | bool isBatchIterator() const override { return wrap->isBatchIterator(); } |
| 896 | bool randomAccessible() const override { return wrap->randomAccessible(); }; |
| 897 | bool iteratableByFor() const override { return randomAccessible(); }; |
| 898 | Value upperBound(OpBuilder &b, Location l) const override { |
| 899 | return subSect.subSectSz; |
| 900 | } |
| 901 | |
| 902 | ValueRange getCurPosition() const override { return wrap->getCurPosition(); }; |
| 903 | |
| 904 | Value getNxLvlTupleId(OpBuilder &b, Location l) const { |
| 905 | if (randomAccessible()) { |
| 906 | return ADDI(getCrd(), nxLvlTupleStart); |
| 907 | }; |
| 908 | return ADDI(getCursor().back(), nxLvlTupleStart); |
| 909 | } |
| 910 | |
| 911 | void genInitImpl(OpBuilder &b, Location l, const SparseIterator *) override { |
| 912 | if (randomAccessible()) { |
| 913 | if (auto *p = llvm::dyn_cast<SubSectIterator>(Val: &parent)) { |
| 914 | assert(p->lvl + 1 == lvl); |
| 915 | wrap->genInit(b, l, p); |
| 916 | // Linearize the dense subsection index. |
| 917 | nxLvlTupleStart = MULI(subSect.subSectSz, p->getNxLvlTupleId(b, l)); |
| 918 | } else { |
| 919 | assert(subSect.lvl == lvl && subSect.isSubSectRoot()); |
| 920 | wrap->deserialize(vs: subSect.delegate->serialize()); |
| 921 | nxLvlTupleStart = C_IDX(0); |
| 922 | } |
| 923 | return; |
| 924 | } |
| 925 | assert(!randomAccessible()); |
| 926 | assert(getCursor().size() == wrap->getCursor().size() + 1); |
| 927 | // Extra counter that counts the number of actually visited coordinates in |
| 928 | // the sparse subsection. |
| 929 | getMutCursorVals().back() = C_IDX(0); |
| 930 | Value tupleId; |
| 931 | if (auto *p = llvm::dyn_cast<SubSectIterator>(Val: &parent)) { |
| 932 | assert(p->lvl + 1 == lvl); |
| 933 | tupleId = p->getNxLvlTupleId(b, l); |
| 934 | } else { |
| 935 | assert(subSect.lvl == lvl && subSect.isSubSectRoot()); |
| 936 | tupleId = C_IDX(0); |
| 937 | } |
| 938 | nxLvlTupleStart = subSect.loadNxLvlStart(b, l, tupleId); |
| 939 | helper.deserializeFromTupleId(b, l, tupleId); |
| 940 | } |
| 941 | |
| 942 | void locateImpl(OpBuilder &b, Location l, Value crd) override { |
| 943 | helper.locate(b, l, crd); |
| 944 | updateCrd(crd); |
| 945 | } |
| 946 | |
| 947 | Value genNotEndImpl(OpBuilder &b, Location l) override { |
| 948 | return helper.genNotEnd(b, l); |
| 949 | } |
| 950 | |
| 951 | Value derefImpl(OpBuilder &b, Location l) override { |
| 952 | Value crd = helper.deref(b, l); |
| 953 | updateCrd(crd); |
| 954 | return crd; |
| 955 | }; |
| 956 | |
| 957 | ValueRange forwardImpl(OpBuilder &b, Location l) override { |
| 958 | helper.forward(b, l); |
| 959 | assert(!randomAccessible()); |
| 960 | assert(getCursor().size() == wrap->getCursor().size() + 1); |
| 961 | getMutCursorVals().back() = ADDI(getCursor().back(), C_IDX(1)); |
| 962 | return getCursor(); |
| 963 | }; |
| 964 | |
| 965 | Value nxLvlTupleStart; |
| 966 | |
| 967 | const NonEmptySubSectIterator &subSect; |
| 968 | std::unique_ptr<SparseIterator> wrap; |
| 969 | const SparseIterator &parent; |
| 970 | |
| 971 | SubSectIterHelper helper; |
| 972 | }; |
| 973 | |
| 974 | } // namespace |
| 975 | |
| 976 | //===----------------------------------------------------------------------===// |
| 977 | // SparseIterator derived classes implementation. |
| 978 | //===----------------------------------------------------------------------===// |
| 979 | |
| 980 | void SparseIterator::genInit(OpBuilder &b, Location l, |
| 981 | const SparseIterator *p) { |
| 982 | if (emitStrategy == SparseEmitStrategy::kDebugInterface) { |
| 983 | std::string prefix = getDebugInterfacePrefix(); |
| 984 | Operation *begin = b.create(l, b.getStringAttr(prefix + ".begin" ), {}, |
| 985 | getCursorValTypes(b)); |
| 986 | seek(vals: begin->getResults()); |
| 987 | return; |
| 988 | } |
| 989 | // Inherent batch coordinates from parents. |
| 990 | if (p) |
| 991 | inherentBatch(parent: *p); |
| 992 | // TODO: support lowering to function call. |
| 993 | return genInitImpl(b, l, p); |
| 994 | } |
| 995 | |
| 996 | Value SparseIterator::genNotEnd(OpBuilder &b, Location l) { |
| 997 | if (emitStrategy == SparseEmitStrategy::kDebugInterface) { |
| 998 | std::string prefix = getDebugInterfacePrefix(); |
| 999 | Operation *notEnd = b.create(l, b.getStringAttr(prefix + ".not_end" ), |
| 1000 | getCursor(), b.getI1Type()); |
| 1001 | return notEnd->getResult(idx: 0); |
| 1002 | } |
| 1003 | // TODO: support lowering to function call. |
| 1004 | return genNotEndImpl(b, l); |
| 1005 | } |
| 1006 | |
| 1007 | void SparseIterator::locate(OpBuilder &b, Location l, Value crd) { |
| 1008 | if (emitStrategy == SparseEmitStrategy::kDebugInterface) { |
| 1009 | std::string prefix = getDebugInterfacePrefix(); |
| 1010 | SmallVector<Value> args = getCursor(); |
| 1011 | args.push_back(Elt: crd); |
| 1012 | Operation *locate = b.create(l, b.getStringAttr(prefix + ".locate" ), args, |
| 1013 | getCursorValTypes(b)); |
| 1014 | seek(vals: locate->getResults()); |
| 1015 | updateCrd(crd); |
| 1016 | return; |
| 1017 | } |
| 1018 | return locateImpl(b, l, crd); |
| 1019 | } |
| 1020 | |
| 1021 | Value SparseIterator::deref(OpBuilder &b, Location l) { |
| 1022 | if (emitStrategy == SparseEmitStrategy::kDebugInterface) { |
| 1023 | std::string prefix = getDebugInterfacePrefix(); |
| 1024 | SmallVector<Value> args = getCursor(); |
| 1025 | Operation *deref = b.create(l, b.getStringAttr(prefix + ".deref" ), |
| 1026 | getCursor(), b.getIndexType()); |
| 1027 | updateCrd(crd: deref->getResult(idx: 0)); |
| 1028 | return getCrd(); |
| 1029 | } |
| 1030 | return derefImpl(b, l); |
| 1031 | } |
| 1032 | |
| 1033 | ValueRange SparseIterator::forward(OpBuilder &b, Location l) { |
| 1034 | assert(!randomAccessible()); |
| 1035 | if (emitStrategy == SparseEmitStrategy::kDebugInterface) { |
| 1036 | std::string prefix = getDebugInterfacePrefix(); |
| 1037 | Operation *next = b.create(l, b.getStringAttr(prefix + ".next" ), |
| 1038 | getCursor(), getCursorValTypes(b)); |
| 1039 | seek(vals: next->getResults()); |
| 1040 | return getCursor(); |
| 1041 | } |
| 1042 | return forwardImpl(b, l); |
| 1043 | } |
| 1044 | |
| 1045 | ValueRange SparseIterator::forwardIf(OpBuilder &b, Location l, Value cond) { |
| 1046 | auto ifOp = b.create<scf::IfOp>(l, getCursor().getTypes(), cond, true); |
| 1047 | // Generate else branch first, otherwise iterator values will be updated by |
| 1048 | // `forward()`. |
| 1049 | b.setInsertionPointToStart(ifOp.elseBlock()); |
| 1050 | YIELD(getCursor()); |
| 1051 | |
| 1052 | b.setInsertionPointToStart(ifOp.thenBlock()); |
| 1053 | YIELD(forward(b, l)); |
| 1054 | |
| 1055 | b.setInsertionPointAfter(ifOp); |
| 1056 | seek(vals: ifOp.getResults()); |
| 1057 | return getCursor(); |
| 1058 | } |
| 1059 | |
| 1060 | Value DedupIterator::genSegmentHigh(OpBuilder &b, Location l, Value pos) { |
| 1061 | auto whileOp = b.create<scf::WhileOp>( |
| 1062 | l, pos.getType(), pos, |
| 1063 | /*beforeBuilder=*/ |
| 1064 | [this, pos](OpBuilder &b, Location l, ValueRange ivs) { |
| 1065 | Value inBound = CMPI(ult, ivs.front(), posHi); |
| 1066 | auto ifInBound = b.create<scf::IfOp>(l, b.getI1Type(), inBound, true); |
| 1067 | { |
| 1068 | OpBuilder::InsertionGuard guard(b); |
| 1069 | // If in bound, load the next coordinates and check duplication. |
| 1070 | b.setInsertionPointToStart(ifInBound.thenBlock()); |
| 1071 | Value headCrd = stl.peekCrdAt(b, l, getBatchCrds(), pos); |
| 1072 | Value tailCrd = stl.peekCrdAt(b, l, getBatchCrds(), ivs.front()); |
| 1073 | Value isDup = CMPI(eq, headCrd, tailCrd); |
| 1074 | YIELD(isDup); |
| 1075 | // Else, the position is out of bound, yield false. |
| 1076 | b.setInsertionPointToStart(ifInBound.elseBlock()); |
| 1077 | YIELD(constantI1(b, l, false)); |
| 1078 | } |
| 1079 | b.create<scf::ConditionOp>(l, ifInBound.getResults()[0], ivs); |
| 1080 | }, |
| 1081 | /*afterBuilder=*/ |
| 1082 | [](OpBuilder &b, Location l, ValueRange ivs) { |
| 1083 | Value nxPos = ADDI(ivs[0], C_IDX(1)); |
| 1084 | YIELD(nxPos); |
| 1085 | }); |
| 1086 | // Return the segment high. |
| 1087 | return whileOp.getResult(0); |
| 1088 | } |
| 1089 | |
| 1090 | Value FilterIterator::genCrdNotLegitPredicate(OpBuilder &b, Location l, |
| 1091 | Value wrapCrd) { |
| 1092 | Value crd = fromWrapCrd(b, l, wrapCrd); |
| 1093 | // Test whether the coordinate is on stride. |
| 1094 | Value notlegit = CMPI(ne, toWrapCrd(b, l, crd), wrapCrd); |
| 1095 | // Test wrapCrd < offset |
| 1096 | notlegit = ORI(CMPI(ult, wrapCrd, offset), notlegit); |
| 1097 | // Test crd >= length |
| 1098 | notlegit = ORI(CMPI(uge, crd, size), notlegit); |
| 1099 | return notlegit; |
| 1100 | } |
| 1101 | |
| 1102 | Value FilterIterator::genShouldFilter(OpBuilder &b, Location l) { |
| 1103 | auto r = genWhenInBound( |
| 1104 | b, l, it&: *wrap, C_FALSE, |
| 1105 | builder: [this](OpBuilder &b, Location l, Value wrapCrd) -> scf::ValueVector { |
| 1106 | Value notLegit = genCrdNotLegitPredicate(b, l, wrapCrd); |
| 1107 | return {notLegit}; |
| 1108 | }); |
| 1109 | return llvm::getSingleElement(C&: r); |
| 1110 | } |
| 1111 | |
| 1112 | Value FilterIterator::genNotEndImpl(OpBuilder &b, Location l) { |
| 1113 | assert(!wrap->randomAccessible()); |
| 1114 | auto r = genWhenInBound( |
| 1115 | b, l, it&: *wrap, C_FALSE, |
| 1116 | builder: [this](OpBuilder &b, Location l, Value wrapCrd) -> scf::ValueVector { |
| 1117 | Value crd = fromWrapCrd(b, l, wrapCrd); |
| 1118 | // crd < size |
| 1119 | return {CMPI(ult, crd, size)}; |
| 1120 | }); |
| 1121 | return llvm::getSingleElement(C&: r); |
| 1122 | } |
| 1123 | |
| 1124 | ValueRange FilterIterator::forwardImpl(OpBuilder &b, Location l) { |
| 1125 | assert(!randomAccessible()); |
| 1126 | // Generates |
| 1127 | // |
| 1128 | // bool isFirst = true; |
| 1129 | // while !it.end() && (!legit(*it) || isFirst) |
| 1130 | // wrap ++; |
| 1131 | // isFirst = false; |
| 1132 | // |
| 1133 | // We do not hoist the first `wrap++` outside the loop but use a `isFirst` |
| 1134 | // flag here because `wrap++` might have a complex implementation (e.g., to |
| 1135 | // forward a subsection). |
| 1136 | Value isFirst = constantI1(builder&: b, loc: l, b: true); |
| 1137 | |
| 1138 | SmallVector<Value> whileArgs(getCursor().begin(), getCursor().end()); |
| 1139 | whileArgs.push_back(Elt: isFirst); |
| 1140 | auto whileOp = b.create<scf::WhileOp>( |
| 1141 | l, ValueRange(whileArgs).getTypes(), whileArgs, |
| 1142 | /*beforeBuilder=*/ |
| 1143 | [this](OpBuilder &b, Location l, ValueRange ivs) { |
| 1144 | ValueRange isFirst = linkNewScope(ivs); |
| 1145 | scf::ValueVector cont = |
| 1146 | genWhenInBound(b, l, *wrap, C_FALSE, |
| 1147 | [this, isFirst](OpBuilder &b, Location l, |
| 1148 | Value wrapCrd) -> scf::ValueVector { |
| 1149 | // crd < size && !legit(); |
| 1150 | Value notLegit = |
| 1151 | genCrdNotLegitPredicate(b, l, wrapCrd); |
| 1152 | Value crd = fromWrapCrd(b, l, wrapCrd); |
| 1153 | Value ret = ANDI(CMPI(ult, crd, size), notLegit); |
| 1154 | ret = ORI(ret, llvm::getSingleElement(isFirst)); |
| 1155 | return {ret}; |
| 1156 | }); |
| 1157 | b.create<scf::ConditionOp>(l, cont.front(), ivs); |
| 1158 | }, |
| 1159 | /*afterBuilder=*/ |
| 1160 | [this](OpBuilder &b, Location l, ValueRange ivs) { |
| 1161 | linkNewScope(ivs); |
| 1162 | wrap->forward(b, l); |
| 1163 | SmallVector<Value> yieldVals(getCursor().begin(), getCursor().end()); |
| 1164 | yieldVals.push_back(constantI1(b, l, false)); |
| 1165 | YIELD(yieldVals); |
| 1166 | }); |
| 1167 | |
| 1168 | b.setInsertionPointAfter(whileOp); |
| 1169 | linkNewScope(pos: whileOp.getResults()); |
| 1170 | return getCursor(); |
| 1171 | } |
| 1172 | |
| 1173 | SubSectIterHelper::SubSectIterHelper(const NonEmptySubSectIterator &subSect) |
| 1174 | : subSect(subSect), wrap(*subSect.delegate) {} |
| 1175 | |
| 1176 | SubSectIterHelper::SubSectIterHelper(const SubSectIterator &iter) |
| 1177 | : subSect(iter.subSect), wrap(*iter.wrap) {} |
| 1178 | |
| 1179 | void SubSectIterHelper::deserializeFromTupleId(OpBuilder &b, Location l, |
| 1180 | Value tupleId) { |
| 1181 | assert(!subSect.randomAccessible()); |
| 1182 | wrap.deserialize(vs: subSect.loadCursorVals(b, l, tupleId)); |
| 1183 | } |
| 1184 | |
| 1185 | void SubSectIterHelper::locate(OpBuilder &b, Location l, Value crd) { |
| 1186 | Value absCrd = ADDI(crd, subSect.getAbsOff()); |
| 1187 | wrap.locate(b, l, crd: absCrd); |
| 1188 | } |
| 1189 | |
| 1190 | Value SubSectIterHelper::genNotEnd(OpBuilder &b, Location l) { |
| 1191 | assert(!wrap.randomAccessible()); |
| 1192 | auto r = genWhenInBound( |
| 1193 | b, l, it&: wrap, C_FALSE, |
| 1194 | builder: [this](OpBuilder &b, Location l, Value wrapCrd) -> scf::ValueVector { |
| 1195 | Value crd = SUBI(wrapCrd, subSect.getAbsOff()); |
| 1196 | // crd < size |
| 1197 | return {CMPI(ult, crd, subSect.subSectSz)}; |
| 1198 | }); |
| 1199 | return llvm::getSingleElement(C&: r); |
| 1200 | } |
| 1201 | |
| 1202 | Value SubSectIterHelper::deref(OpBuilder &b, Location l) { |
| 1203 | Value wrapCrd = wrap.deref(b, l); |
| 1204 | Value crd = subSect.toSubSectCrd(b, l, wrapCrd); |
| 1205 | return crd; |
| 1206 | } |
| 1207 | |
| 1208 | ValueRange SubSectIterHelper::forward(OpBuilder &b, Location l) { |
| 1209 | return wrap.forward(b, l); |
| 1210 | } |
| 1211 | |
| 1212 | ValueRange NonEmptySubSectIterator::inflateSubSectTree( |
| 1213 | OpBuilder &b, Location l, ValueRange reduc, TraverseBuilder builder) const { |
| 1214 | // Set up the helper to help traverse a sparse subsection. |
| 1215 | SubSectIterHelper helper(*this); |
| 1216 | if (!randomAccessible()) { |
| 1217 | // The subsection tree have been expanded till the level and cached, |
| 1218 | // traverse all the leaves and expanded to the next level. |
| 1219 | SmallVector<Value> iterArgs; |
| 1220 | iterArgs.push_back(C_IDX(0)); |
| 1221 | iterArgs.append(in_start: reduc.begin(), in_end: reduc.end()); |
| 1222 | auto forEachLeaf = b.create<scf::ForOp>( |
| 1223 | l, /*lb=*/C_IDX(0), /*ub=*/tupleCnt, /*step=*/C_IDX(1), iterArgs, |
| 1224 | [&helper, &builder](OpBuilder &b, Location l, Value tupleId, |
| 1225 | ValueRange iterArgs) { |
| 1226 | // Deserialize the iterator at the cached position (tupleId). |
| 1227 | helper.deserializeFromTupleId(b, l, tupleId); |
| 1228 | |
| 1229 | Value cnt = iterArgs.front(); |
| 1230 | // Record the number of leaf nodes included in the subsection. |
| 1231 | // The number indicates the starting tupleId for the next level that |
| 1232 | // is corresponding to the current node. |
| 1233 | helper.subSect.storeNxLvlStart(b, l, tupleId, cnt); |
| 1234 | |
| 1235 | SmallVector<Value> whileArgs(helper.wrap.getCursor()); |
| 1236 | whileArgs.append(iterArgs.begin(), iterArgs.end()); |
| 1237 | |
| 1238 | auto whileOp = b.create<scf::WhileOp>( |
| 1239 | l, ValueRange(whileArgs).getTypes(), whileArgs, |
| 1240 | /*beforeBuilder=*/ |
| 1241 | [&helper](OpBuilder &b, Location l, ValueRange ivs) { |
| 1242 | helper.wrap.linkNewScope(ivs); |
| 1243 | b.create<scf::ConditionOp>(l, helper.genNotEnd(b, l), ivs); |
| 1244 | }, |
| 1245 | /*afterBuilder=*/ |
| 1246 | [&helper, &builder](OpBuilder &b, Location l, ValueRange ivs) { |
| 1247 | ValueRange remIter = helper.wrap.linkNewScope(ivs); |
| 1248 | Value cnt = remIter.front(); |
| 1249 | ValueRange userIter = remIter.drop_front(); |
| 1250 | scf::ValueVector userNx = builder(b, l, &helper.wrap, userIter); |
| 1251 | |
| 1252 | SmallVector<Value> nxIter = helper.forward(b, l); |
| 1253 | nxIter.push_back(ADDI(cnt, C_IDX(1))); |
| 1254 | nxIter.append(userNx.begin(), userNx.end()); |
| 1255 | YIELD(nxIter); |
| 1256 | }); |
| 1257 | ValueRange res = helper.wrap.linkNewScope(whileOp.getResults()); |
| 1258 | YIELD(res); |
| 1259 | }); |
| 1260 | return forEachLeaf.getResults().drop_front(); |
| 1261 | } |
| 1262 | |
| 1263 | assert(randomAccessible()); |
| 1264 | // Helper lambda that traverse the current dense subsection range. |
| 1265 | auto visitDenseSubSect = [&, this](OpBuilder &b, Location l, |
| 1266 | const SparseIterator *parent, |
| 1267 | ValueRange reduc) { |
| 1268 | assert(!parent || parent->lvl + 1 == lvl); |
| 1269 | delegate->genInit(b, l, p: parent); |
| 1270 | auto forOp = b.create<scf::ForOp>( |
| 1271 | l, /*lb=*/C_IDX(0), /*ub=*/subSectSz, /*step=*/C_IDX(1), reduc, |
| 1272 | [&](OpBuilder &b, Location l, Value crd, ValueRange iterArgs) { |
| 1273 | helper.locate(b, l, crd); |
| 1274 | scf::ValueVector nx = builder(b, l, &helper.wrap, iterArgs); |
| 1275 | YIELD(nx); |
| 1276 | }); |
| 1277 | return forOp.getResults(); |
| 1278 | }; |
| 1279 | |
| 1280 | if (isSubSectRoot()) { |
| 1281 | return visitDenseSubSect(b, l, parent, reduc); |
| 1282 | } |
| 1283 | // Else, this is not the root, recurse until root. |
| 1284 | auto *p = llvm::cast<NonEmptySubSectIterator>(Val: parent); |
| 1285 | assert(p->lvl + 1 == lvl); |
| 1286 | return p->inflateSubSectTree(b, l, reduc, visitDenseSubSect); |
| 1287 | } |
| 1288 | |
| 1289 | void TrivialIterator::genInitImpl(OpBuilder &b, Location l, |
| 1290 | const SparseIterator *parent) { |
| 1291 | |
| 1292 | if (isBatchIterator() && batchCrds.size() <= stl.lvl) |
| 1293 | batchCrds.resize(N: stl.lvl + 1, NV: nullptr); |
| 1294 | |
| 1295 | Value c0 = C_IDX(0); |
| 1296 | ValueRange pPos = c0; |
| 1297 | Value inPadZone = nullptr; |
| 1298 | // If the parent iterator is a batch iterator, we also start from 0 (but |
| 1299 | // on a different batch). |
| 1300 | if (parent && !parent->isBatchIterator()) { |
| 1301 | pPos = parent->getCurPosition(); |
| 1302 | if (llvm::isa<PadIterator>(Val: parent) && parent->randomAccessible()) { |
| 1303 | // A padded dense iterator create "sparse" padded zone, which need to be |
| 1304 | // handled specially. |
| 1305 | inPadZone = pPos.back(); |
| 1306 | pPos = pPos.drop_back(); |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | ValueRange batchPrefix = parent ? parent->getBatchCrds() : ValueRange{}; |
| 1311 | std::tie(args&: posLo, args&: posHi) = stl.peekRangeAt(b, l, batchPrefix, parentPos: pPos, inPadZone); |
| 1312 | // Seek to the lowest position. |
| 1313 | seek(vals: posLo); |
| 1314 | } |
| 1315 | |
| 1316 | void NonEmptySubSectIterator::genInitImpl(OpBuilder &b, Location l, |
| 1317 | const SparseIterator *) { |
| 1318 | Value c0 = C_IDX(0); |
| 1319 | if (!isSubSectRoot()) { |
| 1320 | assert(parent->lvl + 1 == lvl); |
| 1321 | if (randomAccessible()) { |
| 1322 | // We can not call wrap->genInit() here to initialize the wrapped |
| 1323 | // iterator, because the parent of the curent iterator is still |
| 1324 | // unresolved. |
| 1325 | seek(vals: {/*minCrd=*/c0, /*offset=*/c0, /*notEnd=*/C_TRUE}); |
| 1326 | return; |
| 1327 | } |
| 1328 | |
| 1329 | auto *p = cast<NonEmptySubSectIterator>(Val: parent); |
| 1330 | SmallVector<Value, 3> reduc = { |
| 1331 | C_IDX(-1), // minCrd (max signless integer) |
| 1332 | c0, // tupleId |
| 1333 | }; |
| 1334 | |
| 1335 | // Expand the subsection tree from the parent level to the current level. |
| 1336 | ValueRange result = p->inflateSubSectTree( |
| 1337 | b, l, reduc, |
| 1338 | builder: [this](OpBuilder &b, Location l, const SparseIterator *parent, |
| 1339 | ValueRange reduc) -> scf::ValueVector { |
| 1340 | assert(parent->lvl + 1 == lvl && reduc.size() == 2); |
| 1341 | Value minCrd = reduc.front(); |
| 1342 | Value tupleId = reduc.back(); |
| 1343 | |
| 1344 | // Initialize the subsection range. |
| 1345 | SubSectIterHelper helper(*this); |
| 1346 | helper.wrap.genInit(b, l, p: parent); |
| 1347 | |
| 1348 | // Update minCrd. |
| 1349 | minCrd = genWhenInBound(b, l, it&: helper.wrap, elseRet: minCrd, |
| 1350 | builder: [minCrd](OpBuilder &b, Location l, |
| 1351 | Value crd) -> scf::ValueVector { |
| 1352 | Value min = MINUI(crd, minCrd); |
| 1353 | return {min}; |
| 1354 | }) |
| 1355 | .front(); |
| 1356 | |
| 1357 | // Cache the sparse range. |
| 1358 | storeCursorVals(b, l, tupleId, itVals: helper.wrap.serialize()); |
| 1359 | tupleId = ADDI(tupleId, C_IDX(1)); |
| 1360 | return {minCrd, tupleId}; |
| 1361 | }); |
| 1362 | assert(result.size() == 2); |
| 1363 | tupleCnt = result.back(); |
| 1364 | |
| 1365 | Value minCrd = result.front(); |
| 1366 | Value absOff = offsetFromMinCrd(b, l, minCrd, size: subSectSz); |
| 1367 | Value notEnd = CMPI(ne, minCrd, C_IDX(-1)); |
| 1368 | seek(vals: {minCrd, absOff, notEnd}); |
| 1369 | return; |
| 1370 | } |
| 1371 | |
| 1372 | // This is the root level of the subsection, which means that it is resolved |
| 1373 | // to one node. |
| 1374 | assert(isSubSectRoot()); |
| 1375 | |
| 1376 | // Initialize the position, the position marks the *lower bound* of the |
| 1377 | // subRange. The higher bound is determined by the size of the subsection. |
| 1378 | delegate->genInit(b, l, p: parent); |
| 1379 | if (randomAccessible()) { |
| 1380 | seek(vals: {/*minCrd=*/c0, /*offset=*/c0, /*notEnd=*/C_TRUE}); |
| 1381 | return; |
| 1382 | } |
| 1383 | |
| 1384 | // Only have one root node. |
| 1385 | tupleCnt = C_IDX(1); |
| 1386 | // Cache the sparse range. |
| 1387 | storeCursorVals(b, l, tupleId: c0, itVals: delegate->serialize()); |
| 1388 | SmallVector<Value> elseRet{c0, c0, /*notEnd=*/C_FALSE}; |
| 1389 | auto meta = genWhenInBound( |
| 1390 | b, l, it&: *delegate, elseRet, |
| 1391 | builder: [this](OpBuilder &b, Location l, Value crd) -> scf::ValueVector { |
| 1392 | Value offset = offsetFromMinCrd(b, l, minCrd: crd, size: subSectSz); |
| 1393 | return {crd, offset, C_TRUE}; |
| 1394 | }); |
| 1395 | |
| 1396 | seek(vals: meta); |
| 1397 | } |
| 1398 | |
| 1399 | ValueRange NonEmptySubSectIterator::forwardImpl(OpBuilder &b, Location l) { |
| 1400 | assert(!randomAccessible()); |
| 1401 | Value c0 = C_IDX(0), c1 = C_IDX(1); |
| 1402 | // Forward to the next non empty slice by generating |
| 1403 | // |
| 1404 | // if (minCrd > offset) { |
| 1405 | // offset += 1 |
| 1406 | // } else { |
| 1407 | // minCrd = nextMinInSlice(); |
| 1408 | // offset = minCrd - size + 1; |
| 1409 | // } |
| 1410 | // |
| 1411 | // if (offset + size > parents.size) |
| 1412 | // isNonEmpty = false; |
| 1413 | Value fastPathP = CMPI(ugt, getMinCrd(), getAbsOff()); |
| 1414 | auto ifOp = b.create<scf::IfOp>(l, getCursor().getTypes(), fastPathP, true); |
| 1415 | { |
| 1416 | OpBuilder::InsertionGuard guard(b); |
| 1417 | // Take the fast path |
| 1418 | // if (minCrd > offset) |
| 1419 | // offset += 1 |
| 1420 | b.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 1421 | Value nxOffset = ADDI(getAbsOff(), c1); |
| 1422 | YIELD((ValueRange{getMinCrd(), nxOffset, getNotEnd()})); |
| 1423 | |
| 1424 | // else /*minCrd == offset*/ { |
| 1425 | // for (i = 0; i < tupleCnt; i++) { |
| 1426 | // wrap->deserialize(pos[i]); |
| 1427 | // minCrd=min(minCrd, *wrap); |
| 1428 | // } |
| 1429 | // offset = minCrd - size + 1; |
| 1430 | // } |
| 1431 | b.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 1432 | SmallVector<Value, 2> loopArgs{C_IDX(-1), // nextMinCrd |
| 1433 | C_FALSE}; // isNotEnd |
| 1434 | auto loopNest = scf::buildLoopNest( |
| 1435 | builder&: b, loc: l, lbs: c0, ubs: tupleCnt, steps: c1, iterArgs: loopArgs, |
| 1436 | bodyBuilder: [this](OpBuilder &b, Location l, ValueRange ivs, |
| 1437 | ValueRange iterArgs) -> scf::ValueVector { |
| 1438 | Value tupleId = ivs.front(); |
| 1439 | SubSectIterHelper helper(*this); |
| 1440 | helper.deserializeFromTupleId(b, l, tupleId); |
| 1441 | |
| 1442 | return genWhenInBound( |
| 1443 | b, l, it&: *delegate, /*elseRet=*/iterArgs, |
| 1444 | builder: [this, iterArgs, tupleId](OpBuilder &b, Location l, |
| 1445 | Value crd) -> scf::ValueVector { |
| 1446 | // if coord == minCrd |
| 1447 | // wrap->forward(); |
| 1448 | Value isMin = CMPI(eq, crd, getMinCrd()); |
| 1449 | delegate->forwardIf(b, l, cond: isMin); |
| 1450 | // Update the forwarded iterator values if needed. |
| 1451 | auto ifIsMin = b.create<scf::IfOp>(l, isMin, false); |
| 1452 | b.setInsertionPointToStart(&ifIsMin.getThenRegion().front()); |
| 1453 | storeCursorVals(b, l, tupleId, itVals: delegate->serialize()); |
| 1454 | b.setInsertionPointAfter(ifIsMin); |
| 1455 | // if (!wrap.end()) |
| 1456 | // yield(min(nxMinCrd, *wrap), true) |
| 1457 | Value nxMin = iterArgs[0]; |
| 1458 | return genWhenInBound(b, l, it&: *delegate, /*elseRet=*/iterArgs, |
| 1459 | builder: [nxMin](OpBuilder &b, Location l, |
| 1460 | Value crd) -> scf::ValueVector { |
| 1461 | Value nx = b.create<arith::MinUIOp>( |
| 1462 | l, crd, nxMin); |
| 1463 | return {nx, C_TRUE}; |
| 1464 | }); |
| 1465 | }); |
| 1466 | }); |
| 1467 | |
| 1468 | scf::ForOp forOp = loopNest.loops.front(); |
| 1469 | b.setInsertionPointAfter(forOp); |
| 1470 | |
| 1471 | Value nxMinCrd = forOp.getResult(0); |
| 1472 | Value nxNotEnd = forOp.getResult(1); |
| 1473 | Value nxAbsOff = offsetFromMinCrd(b, l, minCrd: nxMinCrd, size: subSectSz); |
| 1474 | YIELD((ValueRange{nxMinCrd, nxAbsOff, nxNotEnd})); |
| 1475 | } |
| 1476 | |
| 1477 | Value nxMinCrd = ifOp.getResult(0); |
| 1478 | Value nxAbsOff = ifOp.getResult(1); |
| 1479 | Value nxNotEnd = ifOp.getResult(2); |
| 1480 | |
| 1481 | // We should at least forward the offset by one. |
| 1482 | Value minAbsOff = ADDI(getAbsOff(), c1); |
| 1483 | nxAbsOff = b.create<arith::MaxUIOp>(l, minAbsOff, nxAbsOff); |
| 1484 | |
| 1485 | seek(vals: ValueRange{nxMinCrd, nxAbsOff, nxNotEnd}); |
| 1486 | // The coordinate should not exceeds the space upper bound. |
| 1487 | Value crd = deref(b, l); |
| 1488 | nxNotEnd = ANDI(nxNotEnd, CMPI(ult, crd, upperBound(b, l))); |
| 1489 | |
| 1490 | seek(vals: ValueRange{nxMinCrd, nxAbsOff, nxNotEnd}); |
| 1491 | return getCursor(); |
| 1492 | } |
| 1493 | |
| 1494 | //===----------------------------------------------------------------------===// |
| 1495 | // SparseIterationSpace Implementation |
| 1496 | //===----------------------------------------------------------------------===// |
| 1497 | |
| 1498 | mlir::sparse_tensor::SparseIterationSpace::SparseIterationSpace( |
| 1499 | Location l, OpBuilder &b, Value t, unsigned tid, |
| 1500 | std::pair<Level, Level> lvlRange, ValueRange parentPos) |
| 1501 | : lvls() { |
| 1502 | auto [lvlLo, lvlHi] = lvlRange; |
| 1503 | |
| 1504 | Value c0 = C_IDX(0); |
| 1505 | if (parentPos.empty()) |
| 1506 | parentPos = c0; |
| 1507 | |
| 1508 | for (Level lvl = lvlLo; lvl < lvlHi; lvl++) |
| 1509 | lvls.emplace_back(Args: makeSparseTensorLevel(b, l, t, tid, lvl)); |
| 1510 | |
| 1511 | bound = lvls.front()->peekRangeAt(b, l, /*batchPrefix=*/{}, parentPos); |
| 1512 | for (auto &lvl : getLvlRef().drop_front()) |
| 1513 | bound = lvl->collapseRangeBetween(b, l, /*batchPrefix=*/{}, parentRange: bound); |
| 1514 | } |
| 1515 | |
| 1516 | SparseIterationSpace mlir::sparse_tensor::SparseIterationSpace::fromValues( |
| 1517 | IterSpaceType dstTp, ValueRange values, unsigned int tid) { |
| 1518 | // Reconstruct every sparse tensor level. |
| 1519 | SparseIterationSpace space; |
| 1520 | for (auto [i, lt] : llvm::enumerate(dstTp.getLvlTypes())) { |
| 1521 | unsigned bufferCnt = 0; |
| 1522 | if (lt.isWithPosLT()) |
| 1523 | bufferCnt++; |
| 1524 | if (lt.isWithCrdLT()) |
| 1525 | bufferCnt++; |
| 1526 | // Sparse tensor buffers. |
| 1527 | ValueRange buffers = values.take_front(bufferCnt); |
| 1528 | values = values.drop_front(bufferCnt); |
| 1529 | |
| 1530 | // Level size. |
| 1531 | Value sz = values.front(); |
| 1532 | values = values.drop_front(); |
| 1533 | space.lvls.push_back( |
| 1534 | makeSparseTensorLevel(lt, sz, buffers, tid, i + dstTp.getLoLvl())); |
| 1535 | } |
| 1536 | // Two bounds. |
| 1537 | space.bound = std::make_pair(x: values[0], y: values[1]); |
| 1538 | values = values.drop_front(n: 2); |
| 1539 | |
| 1540 | // Must have consumed all values. |
| 1541 | assert(values.empty()); |
| 1542 | return space; |
| 1543 | } |
| 1544 | |
| 1545 | std::unique_ptr<SparseIterator> |
| 1546 | SparseIterationSpace::(OpBuilder &b, Location l) const { |
| 1547 | return makeSimpleIterator(b, l, iterSpace: *this); |
| 1548 | } |
| 1549 | |
| 1550 | //===----------------------------------------------------------------------===// |
| 1551 | // SparseIterator factory functions. |
| 1552 | //===----------------------------------------------------------------------===// |
| 1553 | |
| 1554 | /// Helper function to create a TensorLevel object from given `tensor`. |
| 1555 | std::unique_ptr<SparseTensorLevel> |
| 1556 | sparse_tensor::makeSparseTensorLevel(LevelType lt, Value sz, ValueRange b, |
| 1557 | unsigned t, Level l) { |
| 1558 | assert(lt.getNumBuffer() == b.size()); |
| 1559 | switch (lt.getLvlFmt()) { |
| 1560 | case LevelFormat::Dense: |
| 1561 | return std::make_unique<DenseLevel>(args&: t, args&: l, args&: sz); |
| 1562 | case LevelFormat::Batch: |
| 1563 | return std::make_unique<BatchLevel>(args&: t, args&: l, args&: sz); |
| 1564 | case LevelFormat::Compressed: |
| 1565 | return std::make_unique<CompressedLevel>(args&: t, args&: l, args&: lt, args&: sz, args: b[0], args: b[1]); |
| 1566 | case LevelFormat::LooseCompressed: |
| 1567 | return std::make_unique<LooseCompressedLevel>(args&: t, args&: l, args&: lt, args&: sz, args: b[0], args: b[1]); |
| 1568 | case LevelFormat::Singleton: |
| 1569 | return std::make_unique<SingletonLevel>(args&: t, args&: l, args&: lt, args&: sz, args: b[0]); |
| 1570 | case LevelFormat::NOutOfM: |
| 1571 | return std::make_unique<NOutOfMLevel>(args&: t, args&: l, args&: lt, args&: sz, args: b[0]); |
| 1572 | case LevelFormat::Undef: |
| 1573 | llvm_unreachable("undefined level format" ); |
| 1574 | } |
| 1575 | llvm_unreachable("unrecognizable level format" ); |
| 1576 | } |
| 1577 | |
| 1578 | std::unique_ptr<SparseTensorLevel> |
| 1579 | sparse_tensor::makeSparseTensorLevel(OpBuilder &b, Location l, Value t, |
| 1580 | unsigned tid, Level lvl) { |
| 1581 | auto stt = getSparseTensorType(val: t); |
| 1582 | |
| 1583 | LevelType lt = stt.getLvlType(l: lvl); |
| 1584 | Value sz = stt.hasEncoding() ? b.create<LvlOp>(l, t, lvl).getResult() |
| 1585 | : b.create<tensor::DimOp>(l, t, lvl).getResult(); |
| 1586 | |
| 1587 | SmallVector<Value, 2> buffers; |
| 1588 | if (lt.isWithPosLT()) { |
| 1589 | Value pos = b.create<ToPositionsOp>(l, t, lvl); |
| 1590 | buffers.push_back(Elt: pos); |
| 1591 | } |
| 1592 | if (lt.isWithCrdLT()) { |
| 1593 | Value pos = b.create<ToCoordinatesOp>(l, t, lvl); |
| 1594 | buffers.push_back(Elt: pos); |
| 1595 | } |
| 1596 | return makeSparseTensorLevel(lt, sz, b: buffers, t: tid, l: lvl); |
| 1597 | } |
| 1598 | |
| 1599 | std::pair<std::unique_ptr<SparseTensorLevel>, std::unique_ptr<SparseIterator>> |
| 1600 | sparse_tensor::makeSynLevelAndIterator(Value sz, unsigned tid, unsigned lvl, |
| 1601 | SparseEmitStrategy strategy) { |
| 1602 | auto stl = std::make_unique<BatchLevel>(args&: tid, args&: lvl, args&: sz); |
| 1603 | auto it = std::make_unique<TrivialIterator>(args&: *stl); |
| 1604 | it->setSparseEmitStrategy(strategy); |
| 1605 | return std::make_pair(x: std::move(stl), y: std::move(it)); |
| 1606 | } |
| 1607 | |
| 1608 | std::unique_ptr<SparseIterator> |
| 1609 | sparse_tensor::makeSimpleIterator(OpBuilder &b, Location l, |
| 1610 | const SparseIterationSpace &iterSpace) { |
| 1611 | // assert(iterSpace.getSpaceDim() == 1); |
| 1612 | std::unique_ptr<SparseIterator> ret; |
| 1613 | if (!iterSpace.isUnique()) { |
| 1614 | // We always dedupliate the non-unique level, but we should optimize it away |
| 1615 | // if possible. |
| 1616 | ret = std::make_unique<DedupIterator>(args&: b, args&: l, args: iterSpace.getLastLvl(), |
| 1617 | args: iterSpace.getBoundLo(), |
| 1618 | args: iterSpace.getBoundHi()); |
| 1619 | } else { |
| 1620 | ret = std::make_unique<TrivialIterator>(args&: b, args&: l, args: iterSpace.getLastLvl(), |
| 1621 | args: iterSpace.getBoundLo(), |
| 1622 | args: iterSpace.getBoundHi()); |
| 1623 | } |
| 1624 | ret->setSparseEmitStrategy(SparseEmitStrategy::kFunctional); |
| 1625 | return ret; |
| 1626 | } |
| 1627 | |
| 1628 | std::unique_ptr<SparseIterator> |
| 1629 | sparse_tensor::makeSimpleIterator(const SparseTensorLevel &stl, |
| 1630 | SparseEmitStrategy strategy) { |
| 1631 | std::unique_ptr<SparseIterator> ret; |
| 1632 | if (!isUniqueLT(lt: stl.getLT())) { |
| 1633 | // We always dedupliate the non-unique level, but we should optimize it away |
| 1634 | // if possible. |
| 1635 | ret = std::make_unique<DedupIterator>(args: stl); |
| 1636 | } else { |
| 1637 | ret = std::make_unique<TrivialIterator>(args: stl); |
| 1638 | } |
| 1639 | ret->setSparseEmitStrategy(strategy); |
| 1640 | return ret; |
| 1641 | } |
| 1642 | |
| 1643 | std::unique_ptr<SparseIterator> |
| 1644 | sparse_tensor::makeSlicedLevelIterator(std::unique_ptr<SparseIterator> &&sit, |
| 1645 | Value offset, Value stride, Value size, |
| 1646 | SparseEmitStrategy strategy) { |
| 1647 | |
| 1648 | auto ret = |
| 1649 | std::make_unique<FilterIterator>(args: std::move(sit), args&: offset, args&: stride, args&: size); |
| 1650 | ret->setSparseEmitStrategy(strategy); |
| 1651 | return ret; |
| 1652 | } |
| 1653 | |
| 1654 | std::unique_ptr<SparseIterator> |
| 1655 | sparse_tensor::makePaddedIterator(std::unique_ptr<SparseIterator> &&sit, |
| 1656 | Value padLow, Value padHigh, |
| 1657 | SparseEmitStrategy strategy) { |
| 1658 | auto ret = std::make_unique<PadIterator>(args: std::move(sit), args&: padLow, args&: padHigh); |
| 1659 | ret->setSparseEmitStrategy(strategy); |
| 1660 | return ret; |
| 1661 | } |
| 1662 | |
| 1663 | static const SparseIterator *tryUnwrapFilter(const SparseIterator *it) { |
| 1664 | auto *filter = llvm::dyn_cast_or_null<FilterIterator>(Val: it); |
| 1665 | if (filter) |
| 1666 | return &filter->getWrappedIterator(); |
| 1667 | return it; |
| 1668 | } |
| 1669 | |
| 1670 | std::unique_ptr<SparseIterator> sparse_tensor::makeNonEmptySubSectIterator( |
| 1671 | OpBuilder &b, Location l, const SparseIterator *parent, Value loopBound, |
| 1672 | std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride, |
| 1673 | SparseEmitStrategy strategy) { |
| 1674 | |
| 1675 | // Try unwrap the NonEmptySubSectIterator from a filter parent. |
| 1676 | parent = tryUnwrapFilter(it: parent); |
| 1677 | std::unique_ptr<SparseIterator> it = |
| 1678 | std::make_unique<NonEmptySubSectIterator>(args&: b, args&: l, args&: parent, |
| 1679 | args: std::move(delegate), args&: size); |
| 1680 | |
| 1681 | if (stride != 1) { |
| 1682 | // TODO: We can safely skip bound checking on sparse levels, but for dense |
| 1683 | // iteration space, we need the bound to infer the dense loop range. |
| 1684 | it = std::make_unique<FilterIterator>(args: std::move(it), /*offset=*/C_IDX(0), |
| 1685 | C_IDX(stride), /*size=*/args&: loopBound); |
| 1686 | } |
| 1687 | it->setSparseEmitStrategy(strategy); |
| 1688 | return it; |
| 1689 | } |
| 1690 | |
| 1691 | std::unique_ptr<SparseIterator> sparse_tensor::makeTraverseSubSectIterator( |
| 1692 | OpBuilder &b, Location l, const SparseIterator &subSectIter, |
| 1693 | const SparseIterator &parent, std::unique_ptr<SparseIterator> &&wrap, |
| 1694 | Value loopBound, unsigned stride, SparseEmitStrategy strategy) { |
| 1695 | |
| 1696 | // This must be a subsection iterator or a filtered subsection iterator. |
| 1697 | auto &subSect = |
| 1698 | llvm::cast<NonEmptySubSectIterator>(Val: *tryUnwrapFilter(it: &subSectIter)); |
| 1699 | |
| 1700 | std::unique_ptr<SparseIterator> it = std::make_unique<SubSectIterator>( |
| 1701 | args: subSect, args: *tryUnwrapFilter(it: &parent), args: std::move(wrap)); |
| 1702 | |
| 1703 | if (stride != 1) { |
| 1704 | it = std::make_unique<FilterIterator>(args: std::move(it), /*offset=*/C_IDX(0), |
| 1705 | C_IDX(stride), /*size=*/args&: loopBound); |
| 1706 | } |
| 1707 | it->setSparseEmitStrategy(strategy); |
| 1708 | return it; |
| 1709 | } |
| 1710 | |
| 1711 | #undef CMPI |
| 1712 | #undef C_IDX |
| 1713 | #undef YIELD |
| 1714 | #undef ADDI |
| 1715 | #undef ANDI |
| 1716 | #undef SUBI |
| 1717 | #undef MULI |
| 1718 | #undef SELECT |
| 1719 | |