| 1 | //===- TosaCanonicalizations.cpp - Canonicalization patterns & folders ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // \file |
| 10 | // TOSA canonicalization patterns and folders. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/Dialect/Quant/IR/Quant.h" |
| 15 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 16 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| 17 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
| 18 | #include "mlir/Dialect/Tosa/Utils/QuantUtils.h" |
| 19 | #include "mlir/Dialect/Tosa/Utils/ShapeUtils.h" |
| 20 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
| 21 | #include "mlir/IR/BuiltinTypes.h" |
| 22 | #include "mlir/IR/DialectImplementation.h" |
| 23 | #include "mlir/IR/Matchers.h" |
| 24 | #include "mlir/IR/PatternMatch.h" |
| 25 | #include "mlir/Transforms/FoldUtils.h" |
| 26 | #include "mlir/Transforms/InliningUtils.h" |
| 27 | #include "mlir/Transforms/RegionUtils.h" |
| 28 | #include "llvm/ADT/APFloat.h" |
| 29 | #include "llvm/ADT/APInt.h" |
| 30 | #include "llvm/ADT/DenseMap.h" |
| 31 | #include "llvm/ADT/TypeSwitch.h" |
| 32 | |
| 33 | #include <functional> |
| 34 | |
| 35 | using namespace mlir; |
| 36 | using namespace mlir::tosa; |
| 37 | |
| 38 | //===----------------------------------------------------------------------===// |
| 39 | // Operator Canonicalizers. |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | //===----------------------------------------------------------------------===// |
| 43 | // Tensor Data Engine Operators. |
| 44 | //===----------------------------------------------------------------------===// |
| 45 | |
| 46 | // Check that the zero point of the tensor and padding operations are aligned. |
| 47 | bool checkMatchingPadConstAndZp(Value padConst, Value zp) { |
| 48 | // Check that padConst is a constant value and a scalar tensor |
| 49 | DenseElementsAttr padConstAttr; |
| 50 | if (!matchPattern(value: padConst, pattern: m_Constant(bind_value: &padConstAttr)) || |
| 51 | (padConstAttr.size() != 1)) { |
| 52 | return false; |
| 53 | } |
| 54 | |
| 55 | // Check that floating point pad is zero |
| 56 | if (auto padConstFpAttr = mlir::dyn_cast<DenseFPElementsAttr>(padConstAttr)) { |
| 57 | float padConstVal = (*padConstFpAttr.begin()).convertToFloat(); |
| 58 | return padConstVal == 0.0f; |
| 59 | } |
| 60 | |
| 61 | // Check that the zp and padConst align for the integer (quantized) case |
| 62 | if (auto padConstIntAttr = |
| 63 | mlir::dyn_cast<DenseIntElementsAttr>(padConstAttr)) { |
| 64 | DenseIntElementsAttr zpAttr; |
| 65 | // Check that zp is a constant value and a scalar tensor |
| 66 | if (!matchPattern(value: zp, pattern: m_Constant(bind_value: &zpAttr)) || (padConstAttr.size() != 1)) { |
| 67 | return false; |
| 68 | } |
| 69 | |
| 70 | // Check equality |
| 71 | int64_t zpVal = (*zpAttr.begin()).getSExtValue(); |
| 72 | int64_t padConstVal = (*padConstIntAttr.begin()).getSExtValue(); |
| 73 | return zpVal == padConstVal; |
| 74 | } |
| 75 | |
| 76 | // Bail-out on unsupported type |
| 77 | return false; |
| 78 | } |
| 79 | |
| 80 | namespace { |
| 81 | template <typename OpTy> |
| 82 | struct PoolPadFoldAdaptor; |
| 83 | |
| 84 | template <> |
| 85 | struct PoolPadFoldAdaptor<tosa::AvgPool2dOp> { |
| 86 | using OpTy = tosa::AvgPool2dOp; |
| 87 | static bool checkKernelCompliance(OpTy op, const ArrayRef<int64_t> newPad) { |
| 88 | const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
| 89 | if (newPad[2] >= kernel[1] || newPad[3] >= kernel[1] || |
| 90 | newPad[0] >= kernel[0] || newPad[1] >= kernel[0]) |
| 91 | return false; |
| 92 | return true; |
| 93 | } |
| 94 | static bool checkPadConstCompliance(OpTy op, Value padConst) { |
| 95 | return checkMatchingPadConstAndZp(padConst, op.getInputZp()); |
| 96 | } |
| 97 | static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
| 98 | Value padInput, ArrayRef<int64_t> newPad) { |
| 99 | rewriter.replaceOpWithNewOp<tosa::AvgPool2dOp>( |
| 100 | op, op.getType(), padInput, op.getInputZp(), op.getOutputZp(), |
| 101 | op.getKernel(), op.getStride(), rewriter.getDenseI64ArrayAttr(newPad), |
| 102 | op.getAccType()); |
| 103 | } |
| 104 | }; |
| 105 | |
| 106 | template <> |
| 107 | struct PoolPadFoldAdaptor<tosa::MaxPool2dOp> { |
| 108 | using OpTy = tosa::MaxPool2dOp; |
| 109 | static bool checkKernelCompliance(OpTy op, const ArrayRef<int64_t> newPad) { |
| 110 | const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
| 111 | if (newPad[2] >= kernel[1] || newPad[3] >= kernel[1] || |
| 112 | newPad[0] >= kernel[0] || newPad[1] >= kernel[0]) |
| 113 | return false; |
| 114 | return true; |
| 115 | } |
| 116 | static bool checkPadConstCompliance(OpTy, Value padConst) { |
| 117 | // Check that padConst is a constant value and a scalar tensor |
| 118 | DenseElementsAttr padConstAttr; |
| 119 | if (!matchPattern(padConst, m_Constant(&padConstAttr)) || |
| 120 | padConstAttr.size() != 1) { |
| 121 | return false; |
| 122 | } |
| 123 | |
| 124 | // Pad needs to be in the minimum value to be able to merge |
| 125 | if (auto padConstFpAttr = |
| 126 | mlir::dyn_cast<DenseFPElementsAttr>(padConstAttr)) { |
| 127 | const APFloat padConstVal = *padConstFpAttr.begin(); |
| 128 | const APFloat lowestVal = |
| 129 | APFloat::getLargest(padConstVal.getSemantics(), true); |
| 130 | return padConstVal == lowestVal; |
| 131 | } else if (auto padConstIntAttr = |
| 132 | mlir::dyn_cast<DenseIntElementsAttr>(padConstAttr)) { |
| 133 | const APInt padConstVal = *padConstIntAttr.begin(); |
| 134 | const unsigned int bitWidth = padConstVal.getBitWidth(); |
| 135 | const APInt lowestVal = |
| 136 | padConstIntAttr.getElementType().isUnsignedInteger() |
| 137 | ? APInt::getZero(bitWidth) |
| 138 | : APInt::getSignedMinValue(bitWidth); |
| 139 | return padConstVal == lowestVal; |
| 140 | } |
| 141 | |
| 142 | // Bail-out on unsupported type |
| 143 | return false; |
| 144 | } |
| 145 | static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
| 146 | Value padInput, ArrayRef<int64_t> newPad) { |
| 147 | rewriter.replaceOpWithNewOp<tosa::MaxPool2dOp>( |
| 148 | op, op.getType(), padInput, op.getKernel(), op.getStride(), |
| 149 | rewriter.getDenseI64ArrayAttr(newPad), op.getNanMode()); |
| 150 | } |
| 151 | }; |
| 152 | |
| 153 | template <typename OpTy> |
| 154 | struct ConvPadFoldAdaptor { |
| 155 | static bool checkKernelCompliance(OpTy, const ArrayRef<int64_t>) { |
| 156 | return true; |
| 157 | } |
| 158 | static bool checkPadConstCompliance(OpTy op, Value padConst) { |
| 159 | return checkMatchingPadConstAndZp(padConst, op.getInputZp()); |
| 160 | } |
| 161 | static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
| 162 | Value padInput, ArrayRef<int64_t> newPad) { |
| 163 | rewriter.replaceOpWithNewOp<OpTy>( |
| 164 | op, op.getResult().getType(), padInput, op.getWeight(), op.getBias(), |
| 165 | op.getInputZp(), op.getWeightZp(), newPad, op.getStrideAttr(), |
| 166 | op.getDilationAttr(), op.getAccType(), op.getLocalBound()); |
| 167 | } |
| 168 | }; |
| 169 | |
| 170 | // Pattern attempts to fold a `tosa.pad` operator to a following tensor |
| 171 | // operation like `tosa.conv2d` by merging the padding associated with the |
| 172 | // pad operator directly to the implicit padding of the tensor operation. |
| 173 | // This helps eliminate the explicit padding operator if unused. |
| 174 | template <typename OpTy, typename AdaptorTy> |
| 175 | struct FoldPadToTensorOp : public OpRewritePattern<OpTy> { |
| 176 | using OpRewritePattern<OpTy>::OpRewritePattern; |
| 177 | |
| 178 | LogicalResult matchAndRewrite(OpTy tensorOp, |
| 179 | PatternRewriter &rewriter) const override { |
| 180 | // Check producer is a tosa::PadOp |
| 181 | auto padOp = tensorOp.getInput().template getDefiningOp<tosa::PadOp>(); |
| 182 | if (!padOp) |
| 183 | return rewriter.notifyMatchFailure(tensorOp, |
| 184 | "Producer must be a tosa::PadOp." ); |
| 185 | |
| 186 | // Validate that tensor operation has sane padding |
| 187 | const std::vector<int64_t> &tensorOpPad = tensorOp.getPad().vec(); |
| 188 | if (tensorOpPad.size() != 4) // pad_top, pad_bottom, pad_left, pad_right |
| 189 | return rewriter.notifyMatchFailure( |
| 190 | tensorOp, "Tensor operation padding shall have 4 elements." ); |
| 191 | |
| 192 | // Validate tosa::PadOp padding |
| 193 | DenseIntElementsAttr padOpPadding; |
| 194 | if (!matchPattern(padOp.getPadding(), m_Constant(bind_value: &padOpPadding))) { |
| 195 | return rewriter.notifyMatchFailure( |
| 196 | tensorOp, |
| 197 | "The `padding` input specified on the tosa::PadOp must be constant." ); |
| 198 | } |
| 199 | // N_before, N_after, H_before, H_after, W_before, W_after, C_before, |
| 200 | // C_after |
| 201 | if (padOpPadding.size() != 8) |
| 202 | return rewriter.notifyMatchFailure(tensorOp, |
| 203 | "Pad padding should have 8 elements." ); |
| 204 | int64_t padNBefore = (*(padOpPadding.begin() + 0)).getLimitedValue(); |
| 205 | int64_t padNAfter = (*(padOpPadding.begin() + 1)).getLimitedValue(); |
| 206 | int64_t padHBefore = (*(padOpPadding.begin() + 2)).getLimitedValue(); |
| 207 | int64_t padHAfter = (*(padOpPadding.begin() + 3)).getLimitedValue(); |
| 208 | int64_t padWBefore = (*(padOpPadding.begin() + 4)).getLimitedValue(); |
| 209 | int64_t padWAfter = (*(padOpPadding.begin() + 5)).getLimitedValue(); |
| 210 | int64_t padCBefore = (*(padOpPadding.begin() + 6)).getLimitedValue(); |
| 211 | int64_t padCAfter = (*(padOpPadding.begin() + 7)).getLimitedValue(); |
| 212 | |
| 213 | if (padNBefore != 0 || padNAfter != 0 || padCBefore != 0 || padCAfter != 0) |
| 214 | return rewriter.notifyMatchFailure( |
| 215 | tensorOp, "Folding padding in N or C dimensions is not supported." ); |
| 216 | |
| 217 | // Fold padding from Pad into the tensor operation |
| 218 | // 4 elements - pad_top, pad_bottom, pad_left, pad_right |
| 219 | SmallVector<int64_t> foldedPad(tensorOpPad.size()); |
| 220 | foldedPad[0] = padHBefore + tensorOpPad[0]; |
| 221 | foldedPad[1] = padHAfter + tensorOpPad[1]; |
| 222 | foldedPad[2] = padWBefore + tensorOpPad[2]; |
| 223 | foldedPad[3] = padWAfter + tensorOpPad[3]; |
| 224 | |
| 225 | // Check kernel related restrictions |
| 226 | if (!AdaptorTy::checkKernelCompliance(tensorOp, foldedPad)) { |
| 227 | return rewriter.notifyMatchFailure( |
| 228 | tensorOp, "Padding size not aligned with kernel restrictions." ); |
| 229 | } |
| 230 | |
| 231 | // Check padding constant restrictions |
| 232 | if (!AdaptorTy::checkPadConstCompliance(tensorOp, padOp.getPadConst())) { |
| 233 | return rewriter.notifyMatchFailure( |
| 234 | tensorOp, |
| 235 | "Padding constant is not aligned with operator zero-point." ); |
| 236 | } |
| 237 | |
| 238 | // Check that padding doesn't grow more than 8K level (8192) for now |
| 239 | if (llvm::any_of(foldedPad, [](int64_t padVal) { return padVal > 8192; })) { |
| 240 | return rewriter.notifyMatchFailure( |
| 241 | tensorOp, "Padding size more than the 8K level limit." ); |
| 242 | } |
| 243 | |
| 244 | // Create operator |
| 245 | AdaptorTy::replaceOpWithNewPad(rewriter, tensorOp, padOp.getInput1(), |
| 246 | foldedPad); |
| 247 | |
| 248 | return success(); |
| 249 | } |
| 250 | }; |
| 251 | } // namespace |
| 252 | |
| 253 | void AvgPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 254 | MLIRContext *context) { |
| 255 | results.add<FoldPadToTensorOp<tosa::AvgPool2dOp, |
| 256 | PoolPadFoldAdaptor<tosa::AvgPool2dOp>>>( |
| 257 | context); |
| 258 | } |
| 259 | |
| 260 | void Conv2DOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 261 | MLIRContext *context) { |
| 262 | results.add< |
| 263 | FoldPadToTensorOp<tosa::Conv2DOp, ConvPadFoldAdaptor<tosa::Conv2DOp>>>( |
| 264 | context); |
| 265 | } |
| 266 | |
| 267 | void DepthwiseConv2DOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 268 | MLIRContext *context) { |
| 269 | results.add<FoldPadToTensorOp<tosa::DepthwiseConv2DOp, |
| 270 | ConvPadFoldAdaptor<tosa::DepthwiseConv2DOp>>>( |
| 271 | context); |
| 272 | } |
| 273 | |
| 274 | struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> { |
| 275 | using OpRewritePattern::OpRewritePattern; |
| 276 | |
| 277 | LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, |
| 278 | PatternRewriter &rewriter) const override { |
| 279 | Value input = op.getInput(); |
| 280 | Value output = op.getOutput(); |
| 281 | ShapedType inputType = llvm::cast<ShapedType>(input.getType()); |
| 282 | ShapedType outputType = llvm::cast<ShapedType>(output.getType()); |
| 283 | |
| 284 | if (!inputType.hasStaticShape() || !outputType.hasStaticShape()) { |
| 285 | return failure(); |
| 286 | } |
| 287 | |
| 288 | // If the output and input shapes are 1x1, then this is a no op. |
| 289 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
| 290 | if (outputShape[1] != 1 || outputShape[2] != 1) { |
| 291 | return failure(); |
| 292 | } |
| 293 | |
| 294 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 295 | if (inputShape[1] != 1 || inputShape[2] != 1) { |
| 296 | return failure(); |
| 297 | } |
| 298 | |
| 299 | rewriter.replaceOp(op, input); |
| 300 | return success(); |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | void MaxPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 305 | MLIRContext *context) { |
| 306 | results.add<MaxPool2dIsNoOp, |
| 307 | FoldPadToTensorOp<tosa::MaxPool2dOp, |
| 308 | PoolPadFoldAdaptor<tosa::MaxPool2dOp>>>( |
| 309 | context); |
| 310 | } |
| 311 | |
| 312 | //===----------------------------------------------------------------------===// |
| 313 | // Data Layout / Memory Reinterpretation. |
| 314 | //===----------------------------------------------------------------------===// |
| 315 | |
| 316 | struct ConcatOptimization : public OpRewritePattern<tosa::ConcatOp> { |
| 317 | using OpRewritePattern<tosa::ConcatOp>::OpRewritePattern; |
| 318 | |
| 319 | LogicalResult matchAndRewrite(tosa::ConcatOp op, |
| 320 | PatternRewriter &rewriter) const override { |
| 321 | if (op.getInput1().size() != 1) |
| 322 | return failure(); |
| 323 | if (op.getInput1().front().getType() != op.getType()) { |
| 324 | rewriter |
| 325 | .replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), |
| 326 | op.getInput1().front()) |
| 327 | .getResult(); |
| 328 | return success(); |
| 329 | } |
| 330 | |
| 331 | rewriter.replaceOp(op, op.getInput1().front()); |
| 332 | return success(); |
| 333 | } |
| 334 | }; |
| 335 | |
| 336 | void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 337 | MLIRContext *context) { |
| 338 | results.add<ConcatOptimization>(context); |
| 339 | } |
| 340 | |
| 341 | LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) { |
| 342 | auto notOp = op.getInput1().getDefiningOp<tosa::LogicalNotOp>(); |
| 343 | if (!notOp) |
| 344 | return failure(); |
| 345 | rewriter.modifyOpInPlace(op, [&]() { |
| 346 | op.getOperation()->setOperands( |
| 347 | {notOp.getInput1(), op.getInput3(), op.getInput2()}); |
| 348 | }); |
| 349 | return success(); |
| 350 | } |
| 351 | |
| 352 | struct ConsolidateTransposeOptimization |
| 353 | : public OpRewritePattern<tosa::TransposeOp> { |
| 354 | using OpRewritePattern::OpRewritePattern; |
| 355 | |
| 356 | LogicalResult matchAndRewrite(tosa::TransposeOp transposeOp, |
| 357 | PatternRewriter &rewriter) const override { |
| 358 | // Input is also TransposeOp - transpose(transpose(A)). |
| 359 | auto innerTranspose = |
| 360 | transposeOp.getInput1().getDefiningOp<tosa::TransposeOp>(); |
| 361 | if (!innerTranspose) |
| 362 | return rewriter.notifyMatchFailure(transposeOp, |
| 363 | "input must be transpose operation" ); |
| 364 | |
| 365 | const llvm::ArrayRef<int32_t> transposePerms = transposeOp.getPerms(); |
| 366 | const llvm::ArrayRef<int32_t> innerTransposePerms = |
| 367 | innerTranspose.getPerms(); |
| 368 | |
| 369 | if (transposePerms.size() != innerTransposePerms.size()) |
| 370 | return rewriter.notifyMatchFailure( |
| 371 | transposeOp, |
| 372 | "transpose and inner transpose perms sizes must be equal" ); |
| 373 | if (transposePerms.empty()) |
| 374 | return rewriter.notifyMatchFailure( |
| 375 | transposeOp, "transpose perms sizes must be positive" ); |
| 376 | |
| 377 | // Consolidate transposes into one transpose. |
| 378 | SmallVector<int32_t> perms(transposePerms.size()); |
| 379 | for (int i = 0, s = transposePerms.size(); i < s; ++i) |
| 380 | perms[i] = innerTransposePerms[transposePerms[i]]; |
| 381 | |
| 382 | rewriter.replaceOpWithNewOp<tosa::TransposeOp>( |
| 383 | transposeOp, transposeOp.getResult().getType(), |
| 384 | innerTranspose.getInput1(), rewriter.getDenseI32ArrayAttr(perms)); |
| 385 | |
| 386 | return success(); |
| 387 | } |
| 388 | }; |
| 389 | |
| 390 | // Determines the case when tosa.transpose is a tosa.reshape operation. |
| 391 | struct TransposeIsReshape : public OpRewritePattern<tosa::TransposeOp> { |
| 392 | using OpRewritePattern::OpRewritePattern; |
| 393 | |
| 394 | LogicalResult matchAndRewrite(tosa::TransposeOp op, |
| 395 | PatternRewriter &rewriter) const override { |
| 396 | if (op.getInput1().getDefiningOp<tosa::TransposeOp>()) |
| 397 | return rewriter.notifyMatchFailure( |
| 398 | op, "Src is from transpose, can compose transposes" ); |
| 399 | |
| 400 | Value result = op.getResult(); |
| 401 | for (Operation *subop : result.getUsers()) { |
| 402 | if (isa_and_nonnull<tosa::TransposeOp>(subop)) |
| 403 | return rewriter.notifyMatchFailure( |
| 404 | op, "Dest is used by transpose, can compose transposes" ); |
| 405 | } |
| 406 | |
| 407 | auto input = op.getInput1(); |
| 408 | auto inputTy = llvm::cast<ShapedType>(input.getType()); |
| 409 | if (!inputTy.hasRank()) |
| 410 | return rewriter.notifyMatchFailure(op, "Unranked input." ); |
| 411 | |
| 412 | int64_t numDynDims = 0; |
| 413 | for (int i = 0; i < inputTy.getRank(); ++i) |
| 414 | if (inputTy.isDynamicDim(i)) |
| 415 | numDynDims++; |
| 416 | |
| 417 | if (numDynDims > 1) |
| 418 | return rewriter.notifyMatchFailure(op, "Has more than one dynamic dim." ); |
| 419 | |
| 420 | const llvm::ArrayRef<int32_t> permValues = op.getPerms(); |
| 421 | |
| 422 | SmallVector<int64_t> nonZeroPerms; |
| 423 | nonZeroPerms.reserve(N: permValues.size()); |
| 424 | for (auto idx : permValues) { |
| 425 | auto sz = inputTy.getDimSize(idx); |
| 426 | if (sz != 1) |
| 427 | nonZeroPerms.push_back(idx); |
| 428 | } |
| 429 | |
| 430 | for (int i = 1, s = nonZeroPerms.size(); i < s; ++i) |
| 431 | if (nonZeroPerms[i - 1] > nonZeroPerms[i]) |
| 432 | return rewriter.notifyMatchFailure(op, |
| 433 | "Transpose changes memory layout." ); |
| 434 | |
| 435 | SmallVector<int64_t> newShape; |
| 436 | newShape.reserve(N: inputTy.getRank()); |
| 437 | for (int i = 0, s = inputTy.getRank(); i < s; ++i) |
| 438 | newShape.push_back(Elt: inputTy.getDimSize(permValues[i])); |
| 439 | |
| 440 | rewriter.replaceOpWithNewOp<tosa::ReshapeOp>( |
| 441 | op, op.getType(), op.getInput1(), |
| 442 | getTosaConstShape(rewriter, op.getLoc(), newShape)); |
| 443 | return success(); |
| 444 | } |
| 445 | }; |
| 446 | |
| 447 | void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 448 | MLIRContext *context) { |
| 449 | results.add<ConsolidateTransposeOptimization, TransposeIsReshape>(context); |
| 450 | } |
| 451 | |
| 452 | struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> { |
| 453 | using OpRewritePattern::OpRewritePattern; |
| 454 | |
| 455 | LogicalResult matchAndRewrite(tosa::ClampOp op, |
| 456 | PatternRewriter &rewriter) const override { |
| 457 | Value input = op.getInput(); |
| 458 | auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
| 459 | auto inputElementType = inputType.getElementType(); |
| 460 | |
| 461 | if (!inputType.hasStaticShape()) { |
| 462 | return failure(); |
| 463 | } |
| 464 | |
| 465 | if (isa<FloatType>(inputElementType)) { |
| 466 | // Unlike integer types, floating point types can represent infinity. |
| 467 | auto minClamp = |
| 468 | llvm::cast<mlir::FloatAttr>(op.getMinValAttr()).getValue(); |
| 469 | auto maxClamp = |
| 470 | llvm::cast<mlir::FloatAttr>(op.getMaxValAttr()).getValue(); |
| 471 | bool isMin = minClamp.isNegInfinity(); |
| 472 | bool isMax = maxClamp.isInfinity(); |
| 473 | |
| 474 | if (isMin && isMax) { |
| 475 | rewriter.replaceOp(op, input); |
| 476 | return success(); |
| 477 | } |
| 478 | return failure(); |
| 479 | } |
| 480 | |
| 481 | if (inputElementType.isUnsignedInteger()) { |
| 482 | int64_t minClamp = |
| 483 | llvm::cast<mlir::IntegerAttr>(op.getMinValAttr()).getUInt(); |
| 484 | int64_t maxClamp = |
| 485 | llvm::cast<mlir::IntegerAttr>(op.getMaxValAttr()).getUInt(); |
| 486 | |
| 487 | int64_t intMin = |
| 488 | APInt::getMinValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
| 489 | .getZExtValue(); |
| 490 | int64_t intMax = |
| 491 | APInt::getMaxValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
| 492 | .getZExtValue(); |
| 493 | |
| 494 | if (minClamp <= intMin && maxClamp >= intMax) { |
| 495 | rewriter.replaceOp(op, input); |
| 496 | return success(); |
| 497 | } |
| 498 | return failure(); |
| 499 | } |
| 500 | |
| 501 | if (llvm::isa<IntegerType>(inputElementType)) { |
| 502 | int64_t minClamp = |
| 503 | llvm::cast<mlir::IntegerAttr>(op.getMinValAttr()).getInt(); |
| 504 | int64_t maxClamp = |
| 505 | llvm::cast<mlir::IntegerAttr>(op.getMaxValAttr()).getInt(); |
| 506 | |
| 507 | int64_t intMin = |
| 508 | APInt::getSignedMinValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
| 509 | .getSExtValue(); |
| 510 | int64_t intMax = |
| 511 | APInt::getSignedMaxValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
| 512 | .getSExtValue(); |
| 513 | |
| 514 | if (minClamp <= intMin && maxClamp >= intMax) { |
| 515 | rewriter.replaceOp(op, input); |
| 516 | return success(); |
| 517 | } |
| 518 | return failure(); |
| 519 | } |
| 520 | |
| 521 | return failure(); |
| 522 | } |
| 523 | }; |
| 524 | |
| 525 | // Attempts the following transformation: |
| 526 | // |
| 527 | // For integers a, b, a', and b' such that [a, b] ∩ [a', b'] ≠∅ and input |
| 528 | // tensor X the following identity holds: |
| 529 | // |
| 530 | // CLAMP(CLAMP(X, a, b), a', b') = CLAMP(X, max(a, a'), min(b, b')) |
| 531 | // |
| 532 | // subject to the following valid NaN propagation semantics: |
| 533 | // -------------------------------------------- |
| 534 | // | OUTER CLAMP | INNER CLAMP | RESULT MODE | |
| 535 | // |-------------|--------------|-------------| |
| 536 | // | PROPAGATE | PROPAGATE | PROPAGATE | |
| 537 | // | PROPAGATE | IGNORE | IGNORE | |
| 538 | // | IGNORE | PROPAGATE | INVALID | |
| 539 | // | IGNORE | IGNORE | IGNORE | |
| 540 | // |------------------------------------------| |
| 541 | |
| 542 | struct ClampClampOptimization : public OpRewritePattern<tosa::ClampOp> { |
| 543 | using OpRewritePattern<tosa::ClampOp>::OpRewritePattern; |
| 544 | |
| 545 | // Helper structure to describe the range of a clamp operation. |
| 546 | template <typename T> |
| 547 | struct ClampRange { |
| 548 | ClampRange(const T &start, const T &end) : start(start), end(end) {} |
| 549 | T start; |
| 550 | T end; |
| 551 | |
| 552 | // Helper function to determine if two Clamp ranges intersect. |
| 553 | bool intersects(const ClampRange<T> &otherRange) { |
| 554 | return start < otherRange.end && otherRange.start < end; |
| 555 | } |
| 556 | }; |
| 557 | |
| 558 | LogicalResult matchAndRewrite(tosa::ClampOp op, |
| 559 | PatternRewriter &rewriter) const override { |
| 560 | Value input = op.getInput(); |
| 561 | |
| 562 | // Check the input to the CLAMP op is itself a CLAMP. |
| 563 | auto clampOp = dyn_cast_if_present<tosa::ClampOp>(input.getDefiningOp()); |
| 564 | if (!clampOp) |
| 565 | return failure(); |
| 566 | |
| 567 | // Check we have a valid NaN propagation combination. |
| 568 | const auto opNanMode = op.getNanMode(); |
| 569 | const auto clampNanMode = clampOp.getNanMode(); |
| 570 | if (opNanMode == "IGNORE" && clampNanMode == "PROPAGATE" ) |
| 571 | return failure(); |
| 572 | |
| 573 | auto maxValAttr = op.getMaxValAttr(); |
| 574 | auto minValAttr = op.getMinValAttr(); |
| 575 | auto clampOpMaxValAttr = clampOp.getMaxValAttr(); |
| 576 | auto clampOpMinValAttr = clampOp.getMinValAttr(); |
| 577 | |
| 578 | auto inputEType = llvm::cast<ShapedType>(input.getType()).getElementType(); |
| 579 | if (auto quantType = |
| 580 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputEType)) { |
| 581 | inputEType = quantType.getStorageType(); |
| 582 | } |
| 583 | |
| 584 | Attribute newMinValAttr, newMaxValAttr; |
| 585 | if (mlir::isa<FloatType>(inputEType)) { |
| 586 | auto floatMaxValAttr = cast<mlir::FloatAttr>(maxValAttr); |
| 587 | auto floatMinValAttr = cast<mlir::FloatAttr>(minValAttr); |
| 588 | auto clampOpFloatMaxValAttr = cast<mlir::FloatAttr>(clampOpMaxValAttr); |
| 589 | auto clampOpFloatMinValAttr = cast<mlir::FloatAttr>(clampOpMinValAttr); |
| 590 | |
| 591 | // Check we have intersecting ranges. |
| 592 | const auto opMinFloat = floatMinValAttr.getValue(); |
| 593 | const auto opMaxFloat = floatMaxValAttr.getValue(); |
| 594 | const auto clampOpMinFloat = clampOpFloatMinValAttr.getValue(); |
| 595 | const auto clampOpMaxFloat = clampOpFloatMaxValAttr.getValue(); |
| 596 | ClampRange<APFloat> opRangeFloatRange(opMinFloat, opMaxFloat); |
| 597 | ClampRange<APFloat> clampRangeFloatRange(clampOpMinFloat, |
| 598 | clampOpMaxFloat); |
| 599 | if (!opRangeFloatRange.intersects(otherRange: clampRangeFloatRange)) |
| 600 | return failure(); |
| 601 | |
| 602 | // Run the transformation. |
| 603 | auto newMinVal = std::max(opMinFloat, clampOpMinFloat); |
| 604 | auto newMaxVal = std::min(opMaxFloat, clampOpMaxFloat); |
| 605 | newMinValAttr = rewriter.getFloatAttr(inputEType, newMinVal); |
| 606 | newMaxValAttr = rewriter.getFloatAttr(inputEType, newMaxVal); |
| 607 | } else { |
| 608 | assert(mlir::isa<IntegerType>(inputEType)); |
| 609 | auto intMaxValAttr = cast<mlir::IntegerAttr>(maxValAttr); |
| 610 | auto intMinValAttr = cast<mlir::IntegerAttr>(minValAttr); |
| 611 | auto clampOpIntMaxValAttr = cast<mlir::IntegerAttr>(clampOpMaxValAttr); |
| 612 | auto clampOpIntMinValAttr = cast<mlir::IntegerAttr>(clampOpMinValAttr); |
| 613 | |
| 614 | if (inputEType.isUnsignedInteger()) { |
| 615 | // Check we have intersecting ranges. |
| 616 | const auto opMinInt = intMinValAttr.getUInt(); |
| 617 | const auto opMaxInt = intMaxValAttr.getUInt(); |
| 618 | const auto clampOpMinInt = clampOpIntMinValAttr.getUInt(); |
| 619 | const auto clampOpMaxInt = clampOpIntMaxValAttr.getUInt(); |
| 620 | ClampRange<std::uint64_t> opRangeIntRange(opMinInt, opMaxInt); |
| 621 | ClampRange<std::uint64_t> clampRangeIntRange(clampOpMinInt, |
| 622 | clampOpMaxInt); |
| 623 | if (!opRangeIntRange.intersects(otherRange: clampRangeIntRange)) |
| 624 | return failure(); |
| 625 | |
| 626 | // Run the transformation. |
| 627 | auto newMinVal = std::max(opMinInt, clampOpMinInt); |
| 628 | auto newMaxVal = std::min(opMaxInt, clampOpMaxInt); |
| 629 | newMinValAttr = rewriter.getIntegerAttr(inputEType, newMinVal); |
| 630 | newMaxValAttr = rewriter.getIntegerAttr(inputEType, newMaxVal); |
| 631 | } else { |
| 632 | // Check we have intersecting ranges. |
| 633 | const auto opMinInt = intMinValAttr.getInt(); |
| 634 | const auto opMaxInt = intMaxValAttr.getInt(); |
| 635 | const auto clampOpMinInt = clampOpIntMinValAttr.getInt(); |
| 636 | const auto clampOpMaxInt = clampOpIntMaxValAttr.getInt(); |
| 637 | ClampRange<std::int64_t> opRangeIntRange(opMinInt, opMaxInt); |
| 638 | ClampRange<std::int64_t> clampRangeIntRange(clampOpMinInt, |
| 639 | clampOpMaxInt); |
| 640 | if (!opRangeIntRange.intersects(otherRange: clampRangeIntRange)) |
| 641 | return failure(); |
| 642 | |
| 643 | // Run the transformation. |
| 644 | auto newMinVal = std::max(opMinInt, clampOpMinInt); |
| 645 | auto newMaxVal = std::min(opMaxInt, clampOpMaxInt); |
| 646 | newMinValAttr = rewriter.getIntegerAttr(inputEType, newMinVal); |
| 647 | newMaxValAttr = rewriter.getIntegerAttr(inputEType, newMaxVal); |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | rewriter.replaceOpWithNewOp<tosa::ClampOp>( |
| 652 | op, op.getType(), clampOp.getInput(), newMinValAttr, newMaxValAttr, |
| 653 | rewriter.getStringAttr((opNanMode != clampNanMode) ? "IGNORE" |
| 654 | : opNanMode)); |
| 655 | return success(); |
| 656 | } |
| 657 | }; |
| 658 | |
| 659 | void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 660 | MLIRContext *context) { |
| 661 | results.add<ClampIsNoOp>(context); |
| 662 | results.add<ClampClampOptimization>(context); |
| 663 | } |
| 664 | |
| 665 | struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> { |
| 666 | using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
| 667 | |
| 668 | LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
| 669 | PatternRewriter &rewriter) const override { |
| 670 | Value sliceInput = sliceOp.getInput1(); |
| 671 | auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>(); |
| 672 | if (!concatOp) |
| 673 | return rewriter.notifyMatchFailure( |
| 674 | sliceOp, "slice input must be concat operation" ); |
| 675 | |
| 676 | OperandRange inputs = concatOp.getInput1(); |
| 677 | auto concatType = dyn_cast<RankedTensorType>(concatOp.getType()); |
| 678 | if (!concatType || !concatType.hasStaticShape()) |
| 679 | return rewriter.notifyMatchFailure( |
| 680 | sliceOp, "slice input must be a static ranked tensor" ); |
| 681 | int32_t axis = concatOp.getAxis(); |
| 682 | |
| 683 | DenseElementsAttr startElems; |
| 684 | DenseElementsAttr sizeElems; |
| 685 | |
| 686 | if (!matchPattern(sliceOp.getStart(), m_Constant(bind_value: &startElems))) |
| 687 | return rewriter.notifyMatchFailure( |
| 688 | sliceOp, "start of slice must be a static ranked shape" ); |
| 689 | |
| 690 | if (!matchPattern(sliceOp.getSize(), m_Constant(bind_value: &sizeElems))) |
| 691 | return rewriter.notifyMatchFailure( |
| 692 | sliceOp, "size of slice must be a static ranked shape" ); |
| 693 | |
| 694 | llvm::SmallVector<int64_t> sliceStarts = |
| 695 | llvm::to_vector(startElems.getValues<int64_t>()); |
| 696 | llvm::SmallVector<int64_t> sliceSizes = |
| 697 | llvm::to_vector(sizeElems.getValues<int64_t>()); |
| 698 | |
| 699 | // Validate slice on the concatenated axis. Slicing along this |
| 700 | // axis should span only one of the inputs to the concatenate |
| 701 | // operation. |
| 702 | std::optional<Value> replaceWithSlice; |
| 703 | for (auto input : inputs) { |
| 704 | auto inputType = dyn_cast<RankedTensorType>(input.getType()); |
| 705 | if (!inputType || !inputType.hasStaticShape()) |
| 706 | return rewriter.notifyMatchFailure( |
| 707 | sliceOp, "concat input must be a static ranked tensor" ); |
| 708 | |
| 709 | if (sliceStarts[axis] >= 0 && (sliceStarts[axis] + sliceSizes[axis]) <= |
| 710 | inputType.getDimSize(axis)) { |
| 711 | auto start_op = |
| 712 | getTosaConstShape(rewriter, sliceOp.getLoc(), sliceStarts); |
| 713 | auto size_op = |
| 714 | getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes); |
| 715 | replaceWithSlice = |
| 716 | rewriter |
| 717 | .create<tosa::SliceOp>(sliceOp.getLoc(), sliceOp.getType(), |
| 718 | input, start_op, size_op) |
| 719 | .getResult(); |
| 720 | break; |
| 721 | } |
| 722 | sliceStarts[axis] -= inputType.getDimSize(axis); |
| 723 | } |
| 724 | |
| 725 | if (!replaceWithSlice) |
| 726 | return rewriter.notifyMatchFailure( |
| 727 | sliceOp, "corresponding concat input not found for slice" ); |
| 728 | |
| 729 | rewriter.replaceOp(sliceOp, replaceWithSlice.value()); |
| 730 | return success(); |
| 731 | } |
| 732 | }; |
| 733 | |
| 734 | struct PadSliceOptimization : public OpRewritePattern<tosa::SliceOp> { |
| 735 | using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
| 736 | |
| 737 | LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
| 738 | PatternRewriter &rewriter) const override { |
| 739 | Value sliceInput = sliceOp.getInput1(); |
| 740 | |
| 741 | // Check if producer is a PadOp |
| 742 | auto padOp = sliceInput.getDefiningOp<tosa::PadOp>(); |
| 743 | if (!padOp) |
| 744 | return rewriter.notifyMatchFailure(sliceOp, |
| 745 | "slice input must be a pad operation" ); |
| 746 | |
| 747 | // Check PadOp has a single consumer |
| 748 | if (!padOp->hasOneUse()) |
| 749 | return rewriter.notifyMatchFailure(sliceOp, |
| 750 | "pad shall have a single consumer" ); |
| 751 | |
| 752 | // Check input is statically ranked |
| 753 | auto inputTy = dyn_cast<RankedTensorType>(padOp.getInput1().getType()); |
| 754 | auto padTy = dyn_cast<RankedTensorType>(padOp.getType()); |
| 755 | if (!inputTy || !padTy || !inputTy.hasRank()) |
| 756 | return rewriter.notifyMatchFailure(sliceOp, |
| 757 | "slice input must be a ranked tensor" ); |
| 758 | |
| 759 | // Validate and extract tosa::PadOp padding |
| 760 | DenseIntElementsAttr paddingElems; |
| 761 | if (!matchPattern(padOp.getPadding(), m_Constant(bind_value: &paddingElems))) { |
| 762 | return rewriter.notifyMatchFailure( |
| 763 | sliceOp, |
| 764 | "`padding` input specified on the tosa::PadOp must be constant." ); |
| 765 | } |
| 766 | llvm::SmallVector<int64_t> padPaddings = |
| 767 | llvm::to_vector(paddingElems.getValues<int64_t>()); |
| 768 | |
| 769 | // Extract slice parameters |
| 770 | DenseElementsAttr startElems; |
| 771 | if (!matchPattern(sliceOp.getStart(), m_Constant(bind_value: &startElems))) |
| 772 | return rewriter.notifyMatchFailure( |
| 773 | sliceOp, "start of slice must be a static ranked shape" ); |
| 774 | llvm::SmallVector<int64_t> sliceStarts = |
| 775 | llvm::to_vector(startElems.getValues<int64_t>()); |
| 776 | |
| 777 | DenseElementsAttr sizeElems; |
| 778 | if (!matchPattern(sliceOp.getSize(), m_Constant(bind_value: &sizeElems))) |
| 779 | return rewriter.notifyMatchFailure( |
| 780 | sliceOp, "size of slice must be a static ranked shape" ); |
| 781 | llvm::SmallVector<int64_t> sliceSizes = |
| 782 | llvm::to_vector(sizeElems.getValues<int64_t>()); |
| 783 | |
| 784 | // Check if dynamic dimensions are sliced |
| 785 | const int64_t rank = inputTy.getRank(); |
| 786 | if (llvm::any_of(Range: llvm::seq<int64_t>(Begin: 0, End: rank), P: [&](int64_t i) { |
| 787 | const bool isDimDynamic = inputTy.isDynamicDim(i); |
| 788 | const bool isDimSliced = |
| 789 | (sliceStarts[i] != 0) || (sliceSizes[i] != -1); |
| 790 | |
| 791 | return isDimDynamic && isDimSliced; |
| 792 | })) { |
| 793 | return rewriter.notifyMatchFailure( |
| 794 | sliceOp, "axis that are sliced shall be statically known." ); |
| 795 | } |
| 796 | |
| 797 | // Update the parameters |
| 798 | llvm::SmallVector<int64_t> newSliceStarts(rank, 0); |
| 799 | llvm::SmallVector<int64_t> newPadPaddings(2 * rank, 0); |
| 800 | llvm::SmallVector<int64_t> newPadShape(rank, ShapedType::kDynamic); |
| 801 | bool updated = false; |
| 802 | |
| 803 | for (int64_t i = 0; i < rank; ++i) { |
| 804 | const int64_t padLo = padPaddings[i * 2]; |
| 805 | const int64_t padHi = padPaddings[i * 2 + 1]; |
| 806 | const int64_t sliceStart = sliceStarts[i]; |
| 807 | const int64_t sliceSize = sliceSizes[i]; |
| 808 | const int64_t sliceEnd = sliceStart + sliceSize; |
| 809 | |
| 810 | // If dimension is dynamic pass-through |
| 811 | if (inputTy.isDynamicDim(i)) { |
| 812 | newPadPaddings[i * 2] = padLo; |
| 813 | newPadPaddings[i * 2 + 1] = padHi; |
| 814 | newSliceStarts[i] = sliceStart; |
| 815 | continue; |
| 816 | } |
| 817 | |
| 818 | // Handle static dimensions |
| 819 | const int64_t dimSize = inputTy.getShape()[i]; |
| 820 | const int64_t dimTotal = padLo + dimSize + padHi; |
| 821 | |
| 822 | // Check slice within bounds |
| 823 | if (sliceStart < 0 || sliceEnd > dimTotal) |
| 824 | return rewriter.notifyMatchFailure(sliceOp, "slice is out-of-bounds" ); |
| 825 | |
| 826 | // Compute updated slice start parameter |
| 827 | const int64_t newSliceStart = std::max<int64_t>(a: sliceStart - padLo, b: 0); |
| 828 | newSliceStarts[i] = newSliceStart; |
| 829 | updated |= newSliceStart != sliceStart; |
| 830 | |
| 831 | // Compute updated pad parameters |
| 832 | const int64_t newPadLo = std::max<int64_t>(a: padLo - sliceStart, b: 0); |
| 833 | const int64_t newPadHi = |
| 834 | std::max<int64_t>(a: sliceEnd - (padLo + dimSize), b: 0); |
| 835 | newPadPaddings[i * 2] = newPadLo; |
| 836 | newPadPaddings[i * 2 + 1] = newPadHi; |
| 837 | updated |= (newPadLo != padLo) || (newPadHi != padHi); |
| 838 | |
| 839 | // Calculate new pad output shape |
| 840 | newPadShape[i] = |
| 841 | newPadPaddings[i * 2] + dimSize + newPadPaddings[i * 2 + 1]; |
| 842 | } |
| 843 | |
| 844 | // Check that we actually need to proceed with the rewrite |
| 845 | if (!updated) |
| 846 | return rewriter.notifyMatchFailure( |
| 847 | sliceOp, "terminate condition; nothing to rewrite" ); |
| 848 | |
| 849 | // Create a PadOp with updated padding |
| 850 | auto newPaddingsOp = |
| 851 | getTosaConstShape(rewriter, sliceOp.getLoc(), newPadPaddings); |
| 852 | auto newPadTy = |
| 853 | RankedTensorType::get(newPadShape, inputTy.getElementType()); |
| 854 | auto newPadOp = rewriter.create<tosa::PadOp>( |
| 855 | padOp.getLoc(), newPadTy, padOp.getInput1(), newPaddingsOp, |
| 856 | padOp.getPadConst()); |
| 857 | |
| 858 | // Update SliceOp and point to new PadOp |
| 859 | auto newStartOp = |
| 860 | getTosaConstShape(rewriter, sliceOp.getLoc(), newSliceStarts); |
| 861 | rewriter.replaceOpWithNewOp<tosa::SliceOp>(sliceOp, sliceOp.getType(), |
| 862 | newPadOp.getResult(), newStartOp, |
| 863 | sliceOp.getSize()); |
| 864 | |
| 865 | return success(); |
| 866 | } |
| 867 | }; |
| 868 | |
| 869 | // Update size operand of tosa.slice if size has dynamic dims but corresponding |
| 870 | // output dim is static |
| 871 | struct SliceDynamicSizeCanonicalization |
| 872 | : public OpRewritePattern<tosa::SliceOp> { |
| 873 | using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
| 874 | |
| 875 | LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
| 876 | PatternRewriter &rewriter) const override { |
| 877 | ShapedType resultType = cast<ShapedType>(sliceOp.getType()); |
| 878 | |
| 879 | ElementsAttr sizeElems; |
| 880 | if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems))) { |
| 881 | return rewriter.notifyMatchFailure( |
| 882 | sliceOp, "size of slice must be a static ranked shape" ); |
| 883 | } |
| 884 | |
| 885 | llvm::SmallVector<int64_t> sliceSizes = |
| 886 | llvm::to_vector(sizeElems.getValues<int64_t>()); |
| 887 | |
| 888 | bool replaceSliceSize{false}; |
| 889 | // if size op has -1 indicating dynamic shape but corresponding dim on the |
| 890 | // output is statically known, update size to match with known output dim |
| 891 | // shape |
| 892 | for (const auto &[index, size] : llvm::enumerate(sliceSizes)) { |
| 893 | if (size == -1 && !resultType.isDynamicDim(index)) { |
| 894 | sliceSizes[index] = resultType.getDimSize(index); |
| 895 | replaceSliceSize = true; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | if (!replaceSliceSize) { |
| 900 | return rewriter.notifyMatchFailure( |
| 901 | sliceOp, "no dimension of size of slice is dynamic that resolves " |
| 902 | "to static output shape" ); |
| 903 | } |
| 904 | |
| 905 | auto size_op = getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes); |
| 906 | auto newSliceOp = rewriter.create<tosa::SliceOp>( |
| 907 | sliceOp.getLoc(), sliceOp.getType(), sliceOp.getInput1(), |
| 908 | sliceOp.getStart(), size_op); |
| 909 | |
| 910 | rewriter.replaceOp(sliceOp, newSliceOp.getResult()); |
| 911 | return success(); |
| 912 | } |
| 913 | }; |
| 914 | |
| 915 | void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results, |
| 916 | MLIRContext *context) { |
| 917 | results.add<ConcatSliceOptimization, PadSliceOptimization, |
| 918 | SliceDynamicSizeCanonicalization>(context); |
| 919 | } |
| 920 | |
| 921 | //===----------------------------------------------------------------------===// |
| 922 | // Operator Folders. |
| 923 | //===----------------------------------------------------------------------===// |
| 924 | |
| 925 | template <typename IntFolder, typename FloatFolder> |
| 926 | DenseElementsAttr binaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs, |
| 927 | RankedTensorType returnTy) { |
| 928 | if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) { |
| 929 | auto lETy = llvm::cast<ShapedType>(lhs.getType()).getElementType(); |
| 930 | auto rETy = llvm::cast<ShapedType>(rhs.getType()).getElementType(); |
| 931 | if (lETy != rETy) |
| 932 | return {}; |
| 933 | |
| 934 | if (llvm::isa<IntegerType>(lETy)) { |
| 935 | APInt l = lhs.getSplatValue<APInt>(); |
| 936 | APInt r = rhs.getSplatValue<APInt>(); |
| 937 | auto result = IntFolder()(l, r); |
| 938 | return DenseElementsAttr::get(returnTy, result); |
| 939 | } |
| 940 | |
| 941 | if (llvm::isa<FloatType>(lETy)) { |
| 942 | APFloat l = lhs.getSplatValue<APFloat>(); |
| 943 | APFloat r = rhs.getSplatValue<APFloat>(); |
| 944 | auto result = FloatFolder()(l, r); |
| 945 | return DenseElementsAttr::get(returnTy, result); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | return {}; |
| 950 | } |
| 951 | |
| 952 | static bool isSplatZero(Type elemType, DenseElementsAttr val) { |
| 953 | if (llvm::isa<FloatType>(Val: elemType)) |
| 954 | return val && val.isSplat() && val.getSplatValue<APFloat>().isZero(); |
| 955 | if (llvm::isa<IntegerType>(Val: elemType)) |
| 956 | return val && val.isSplat() && val.getSplatValue<APInt>().isZero(); |
| 957 | return false; |
| 958 | } |
| 959 | |
| 960 | static bool isSplatOne(Type elemType, DenseElementsAttr val, int64_t shift) { |
| 961 | if (llvm::isa<FloatType>(Val: elemType)) |
| 962 | return val && val.isSplat() && |
| 963 | val.getSplatValue<APFloat>().isExactlyValue(V: 1.0); |
| 964 | if (llvm::isa<IntegerType>(Val: elemType)) { |
| 965 | const int64_t shifted = 1LL << shift; |
| 966 | return val && val.isSplat() && |
| 967 | val.getSplatValue<APInt>().getSExtValue() == shifted; |
| 968 | } |
| 969 | return false; |
| 970 | } |
| 971 | |
| 972 | OpFoldResult AddOp::fold(FoldAdaptor adaptor) { |
| 973 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| 974 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
| 975 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 976 | if (!lhsTy || !rhsTy || !resultTy) |
| 977 | return {}; |
| 978 | |
| 979 | // Cannot create an ElementsAttr from non-int/float/index types |
| 980 | if (!lhsTy.getElementType().isIntOrIndexOrFloat() || |
| 981 | !rhsTy.getElementType().isIntOrIndexOrFloat()) |
| 982 | return {}; |
| 983 | |
| 984 | auto resultETy = resultTy.getElementType(); |
| 985 | auto lhsAttr = |
| 986 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 987 | auto rhsAttr = |
| 988 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 989 | |
| 990 | if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr)) |
| 991 | return getInput1(); |
| 992 | if (rhsTy == resultTy && isSplatZero(resultETy, lhsAttr)) |
| 993 | return getInput2(); |
| 994 | |
| 995 | if (!lhsAttr || !rhsAttr) |
| 996 | return {}; |
| 997 | |
| 998 | return binaryFolder<std::plus<APInt>, std::plus<APFloat>>(lhsAttr, rhsAttr, |
| 999 | resultTy); |
| 1000 | } |
| 1001 | |
| 1002 | OpFoldResult ArgMaxOp::fold(FoldAdaptor adaptor) { |
| 1003 | auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType()); |
| 1004 | auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1005 | if (!inputTy || !outputTy || !inputTy.hasStaticShape() || |
| 1006 | !outputTy.hasStaticShape()) |
| 1007 | return {}; |
| 1008 | |
| 1009 | if (inputTy.getDimSize(getAxis()) == 1) |
| 1010 | return DenseElementsAttr::get(outputTy, 0); |
| 1011 | |
| 1012 | return {}; |
| 1013 | } |
| 1014 | |
| 1015 | OpFoldResult IntDivOp::fold(FoldAdaptor adaptor) { |
| 1016 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| 1017 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
| 1018 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1019 | if (!lhsTy || !rhsTy || !resultTy) |
| 1020 | return {}; |
| 1021 | if (lhsTy != rhsTy) |
| 1022 | return {}; |
| 1023 | |
| 1024 | // IntDivOp inputs must be integer type, no need to check for quantized type |
| 1025 | auto resultETy = resultTy.getElementType(); |
| 1026 | auto lhsAttr = |
| 1027 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 1028 | auto rhsAttr = |
| 1029 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 1030 | if (lhsAttr && lhsAttr.isSplat()) { |
| 1031 | if (llvm::isa<IntegerType>(resultETy) && |
| 1032 | lhsAttr.getSplatValue<APInt>().isZero()) |
| 1033 | return lhsAttr; |
| 1034 | } |
| 1035 | |
| 1036 | if (rhsAttr && rhsAttr.isSplat()) { |
| 1037 | if (llvm::isa<IntegerType>(resultETy) && |
| 1038 | rhsAttr.getSplatValue<APInt>().isOne()) |
| 1039 | return getInput1(); |
| 1040 | } |
| 1041 | |
| 1042 | if (rhsAttr && lhsAttr && rhsAttr.isSplat() && lhsAttr.isSplat() && |
| 1043 | llvm::isa<IntegerType>(resultETy)) { |
| 1044 | APInt l = lhsAttr.getSplatValue<APInt>(); |
| 1045 | APInt r = rhsAttr.getSplatValue<APInt>(); |
| 1046 | if (!r.isZero()) { |
| 1047 | APInt result = l.sdiv(r); |
| 1048 | return DenseElementsAttr::get(resultTy, result); |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | return {}; |
| 1053 | } |
| 1054 | |
| 1055 | namespace { |
| 1056 | // calculate lhs * rhs >> shift according to TOSA Spec |
| 1057 | // return nullopt if result is not in range of int32_t when shift > 0 |
| 1058 | std::optional<APInt> mulInt(APInt lhs, APInt rhs, int32_t shift, |
| 1059 | unsigned bitwidth) { |
| 1060 | APInt result = lhs.sext(width: 64) * rhs.sext(width: 64); |
| 1061 | |
| 1062 | if (shift > 0) { |
| 1063 | auto round = APInt(64, 1) << (shift - 1); |
| 1064 | result += round; |
| 1065 | result.ashrInPlace(ShiftAmt: shift); |
| 1066 | // REQUIRE(product >= minimum_s<i32_t>() && product <= maximum_s<i32_t>()) |
| 1067 | if (!(result.getSExtValue() >= INT32_MIN && |
| 1068 | result.getSExtValue() <= INT32_MAX)) { |
| 1069 | // REQUIRE failed |
| 1070 | return std::nullopt; |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | return result.trunc(width: bitwidth); |
| 1075 | } |
| 1076 | |
| 1077 | DenseElementsAttr mulBinaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs, |
| 1078 | RankedTensorType ty, int32_t shift) { |
| 1079 | if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) { |
| 1080 | if (llvm::isa<IntegerType>(ty.getElementType())) { |
| 1081 | APInt l = lhs.getSplatValue<APInt>(); |
| 1082 | APInt r = rhs.getSplatValue<APInt>(); |
| 1083 | |
| 1084 | if (shift == 0) { |
| 1085 | return DenseElementsAttr::get(ty, l * r); |
| 1086 | } |
| 1087 | |
| 1088 | auto bitwidth = ty.getElementType().getIntOrFloatBitWidth(); |
| 1089 | const std::optional<APInt> result = mulInt(l, r, shift, bitwidth); |
| 1090 | if (!result) |
| 1091 | return {}; |
| 1092 | return DenseElementsAttr::get(ty, result.value()); |
| 1093 | } |
| 1094 | |
| 1095 | if (llvm::isa<FloatType>(ty.getElementType())) { |
| 1096 | APFloat l = lhs.getSplatValue<APFloat>(); |
| 1097 | APFloat r = rhs.getSplatValue<APFloat>(); |
| 1098 | APFloat result = l * r; |
| 1099 | return DenseElementsAttr::get(ty, result); |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | return {}; |
| 1104 | } |
| 1105 | } // namespace |
| 1106 | |
| 1107 | OpFoldResult MulOp::fold(FoldAdaptor adaptor) { |
| 1108 | auto lhs = getInput1(); |
| 1109 | auto rhs = getInput2(); |
| 1110 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(lhs.getType()); |
| 1111 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(rhs.getType()); |
| 1112 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1113 | if (!lhsTy || !rhsTy || !resultTy) |
| 1114 | return {}; |
| 1115 | |
| 1116 | auto resultETy = resultTy.getElementType(); |
| 1117 | auto lhsAttr = |
| 1118 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 1119 | auto rhsAttr = |
| 1120 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 1121 | |
| 1122 | // Result right shift on i32_t data type only. For simplification, synthesize |
| 1123 | // a zero shift for other data type. |
| 1124 | int32_t shift = 0; |
| 1125 | if (resultETy.isInteger(32)) { |
| 1126 | ElementsAttr shift_elem; |
| 1127 | if (getShift().getImpl()) { |
| 1128 | if (!matchPattern(getShift(), m_Constant(&shift_elem))) |
| 1129 | // cannot be folded when the shift value is unknown. |
| 1130 | return {}; |
| 1131 | shift = shift_elem.getValues<IntegerAttr>()[0].getInt(); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | if (rhsTy == resultTy) { |
| 1136 | if (isSplatZero(resultETy, lhsAttr)) |
| 1137 | return lhsAttr.resizeSplat(resultTy); |
| 1138 | if (isSplatOne(resultETy, lhsAttr, shift)) |
| 1139 | return rhs; |
| 1140 | } |
| 1141 | if (lhsTy == resultTy) { |
| 1142 | if (isSplatZero(resultETy, rhsAttr)) |
| 1143 | return rhsAttr.resizeSplat(resultTy); |
| 1144 | if (isSplatOne(resultETy, rhsAttr, shift)) |
| 1145 | return lhs; |
| 1146 | } |
| 1147 | |
| 1148 | return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, shift); |
| 1149 | } |
| 1150 | |
| 1151 | OpFoldResult SubOp::fold(FoldAdaptor adaptor) { |
| 1152 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| 1153 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
| 1154 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1155 | if (!lhsTy || !rhsTy || !resultTy) |
| 1156 | return {}; |
| 1157 | |
| 1158 | // Cannot create an ElementsAttr from non-int/float/index types |
| 1159 | if (!lhsTy.getElementType().isIntOrIndexOrFloat() || |
| 1160 | !rhsTy.getElementType().isIntOrIndexOrFloat()) |
| 1161 | return {}; |
| 1162 | |
| 1163 | auto resultETy = resultTy.getElementType(); |
| 1164 | auto lhsAttr = |
| 1165 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 1166 | auto rhsAttr = |
| 1167 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 1168 | |
| 1169 | if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr)) |
| 1170 | return getInput1(); |
| 1171 | |
| 1172 | if (!lhsAttr || !rhsAttr) |
| 1173 | return {}; |
| 1174 | |
| 1175 | return binaryFolder<std::minus<APInt>, std::minus<APFloat>>(lhsAttr, rhsAttr, |
| 1176 | resultTy); |
| 1177 | } |
| 1178 | |
| 1179 | namespace { |
| 1180 | template <typename Cmp> |
| 1181 | struct ComparisonFold { |
| 1182 | ComparisonFold() = default; |
| 1183 | APInt operator()(const APInt &l, const APInt &r) { |
| 1184 | return APInt(1, Cmp()(l, r)); |
| 1185 | } |
| 1186 | |
| 1187 | APInt operator()(const APFloat &l, const APFloat &r) { |
| 1188 | return APInt(1, Cmp()(l, r)); |
| 1189 | } |
| 1190 | }; |
| 1191 | |
| 1192 | struct APIntFoldGreater { |
| 1193 | APIntFoldGreater() = default; |
| 1194 | APInt operator()(const APInt &l, const APInt &r) { |
| 1195 | return APInt(1, l.sgt(RHS: r)); |
| 1196 | } |
| 1197 | }; |
| 1198 | |
| 1199 | struct APIntFoldGreaterEqual { |
| 1200 | APIntFoldGreaterEqual() = default; |
| 1201 | APInt operator()(const APInt &l, const APInt &r) { |
| 1202 | return APInt(1, l.sge(RHS: r)); |
| 1203 | } |
| 1204 | }; |
| 1205 | } // namespace |
| 1206 | |
| 1207 | OpFoldResult GreaterOp::fold(FoldAdaptor adaptor) { |
| 1208 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1209 | auto lhsAttr = |
| 1210 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 1211 | auto rhsAttr = |
| 1212 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 1213 | |
| 1214 | if (!lhsAttr || !rhsAttr) |
| 1215 | return {}; |
| 1216 | |
| 1217 | return binaryFolder<APIntFoldGreater, ComparisonFold<std::greater<APFloat>>>( |
| 1218 | lhsAttr, rhsAttr, resultTy); |
| 1219 | } |
| 1220 | |
| 1221 | OpFoldResult GreaterEqualOp::fold(FoldAdaptor adaptor) { |
| 1222 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1223 | auto lhsAttr = |
| 1224 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 1225 | auto rhsAttr = |
| 1226 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 1227 | |
| 1228 | if (!lhsAttr || !rhsAttr) |
| 1229 | return {}; |
| 1230 | |
| 1231 | return binaryFolder<APIntFoldGreaterEqual, |
| 1232 | ComparisonFold<std::greater_equal<APFloat>>>( |
| 1233 | lhsAttr, rhsAttr, resultTy); |
| 1234 | } |
| 1235 | |
| 1236 | OpFoldResult EqualOp::fold(FoldAdaptor adaptor) { |
| 1237 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1238 | auto lhsAttr = |
| 1239 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
| 1240 | auto rhsAttr = |
| 1241 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
| 1242 | Value lhs = getInput1(); |
| 1243 | Value rhs = getInput2(); |
| 1244 | auto lhsTy = llvm::cast<ShapedType>(lhs.getType()); |
| 1245 | |
| 1246 | // If we are comparing an integer value to itself it is always true. We can |
| 1247 | // not do this with float due to float values. |
| 1248 | if (llvm::isa<IntegerType>(lhsTy.getElementType()) && resultTy && |
| 1249 | resultTy.hasStaticShape() && lhs == rhs) { |
| 1250 | return DenseElementsAttr::get(resultTy, true); |
| 1251 | } |
| 1252 | |
| 1253 | if (!lhsAttr || !rhsAttr) |
| 1254 | return {}; |
| 1255 | |
| 1256 | return binaryFolder<ComparisonFold<std::equal_to<APInt>>, |
| 1257 | ComparisonFold<std::equal_to<APFloat>>>(lhsAttr, rhsAttr, |
| 1258 | resultTy); |
| 1259 | } |
| 1260 | |
| 1261 | OpFoldResult CastOp::fold(FoldAdaptor adaptor) { |
| 1262 | if (getInput().getType() == getType()) |
| 1263 | return getInput(); |
| 1264 | |
| 1265 | auto operand = llvm::dyn_cast_if_present<ElementsAttr>(adaptor.getInput()); |
| 1266 | if (!operand) |
| 1267 | return {}; |
| 1268 | |
| 1269 | auto inTy = llvm::cast<ShapedType>(getInput().getType()); |
| 1270 | auto outTy = llvm::cast<ShapedType>(getType()); |
| 1271 | auto inETy = inTy.getElementType(); |
| 1272 | auto outETy = outTy.getElementType(); |
| 1273 | |
| 1274 | if (operand.isSplat()) { |
| 1275 | if (llvm::isa<FloatType>(inETy) && llvm::isa<FloatType>(outETy)) { |
| 1276 | bool overflow; |
| 1277 | auto splatVal = operand.getSplatValue<APFloat>(); |
| 1278 | auto &semantics = llvm::cast<FloatType>(outETy).getFloatSemantics(); |
| 1279 | splatVal.convert(semantics, llvm::RoundingMode::NearestTiesToEven, |
| 1280 | &overflow); |
| 1281 | return SplatElementsAttr::get(outTy, splatVal); |
| 1282 | } |
| 1283 | |
| 1284 | if (llvm::isa<IntegerType>(inETy) && llvm::isa<FloatType>(outETy)) { |
| 1285 | auto unsign = llvm::cast<IntegerType>(inETy).isUnsignedInteger(); |
| 1286 | APFloat splatVal(llvm::cast<FloatType>(outETy).getFloatSemantics()); |
| 1287 | splatVal.convertFromAPInt(operand.getSplatValue<APInt>(), !unsign, |
| 1288 | llvm::RoundingMode::NearestTiesToEven); |
| 1289 | return SplatElementsAttr::get(outTy, splatVal); |
| 1290 | } |
| 1291 | |
| 1292 | if (llvm::isa<FloatType>(inETy) && llvm::isa<IntegerType>(outETy)) { |
| 1293 | auto unsign = llvm::cast<IntegerType>(outETy).isUnsignedInteger(); |
| 1294 | auto intVal = APSInt( |
| 1295 | llvm::cast<IntegerType>(outETy).getIntOrFloatBitWidth(), unsign); |
| 1296 | auto floatVal = operand.getSplatValue<APFloat>(); |
| 1297 | bool exact; |
| 1298 | floatVal.convertToInteger(intVal, llvm::RoundingMode::NearestTiesToEven, |
| 1299 | &exact); |
| 1300 | return SplatElementsAttr::get(outTy, intVal); |
| 1301 | } |
| 1302 | |
| 1303 | if (llvm::isa<IntegerType>(inETy) && llvm::isa<IntegerType>(outETy)) { |
| 1304 | auto unsignIn = llvm::cast<IntegerType>(inETy).isUnsignedInteger(); |
| 1305 | bool trunc = |
| 1306 | inETy.getIntOrFloatBitWidth() > outETy.getIntOrFloatBitWidth(); |
| 1307 | auto intVal = operand.getSplatValue<APInt>(); |
| 1308 | auto bitwidth = outETy.getIntOrFloatBitWidth(); |
| 1309 | |
| 1310 | if (trunc) { |
| 1311 | intVal = intVal.trunc(bitwidth); |
| 1312 | } else if (unsignIn) { |
| 1313 | intVal = intVal.zext(bitwidth); |
| 1314 | } else { |
| 1315 | intVal = intVal.sext(bitwidth); |
| 1316 | } |
| 1317 | |
| 1318 | return SplatElementsAttr::get(outTy, intVal); |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | return {}; |
| 1323 | } |
| 1324 | |
| 1325 | OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); } |
| 1326 | |
| 1327 | OpFoldResult ConstShapeOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); } |
| 1328 | |
| 1329 | #define REDUCE_FOLDER(OP) \ |
| 1330 | OpFoldResult OP::fold(FoldAdaptor adaptor) { \ |
| 1331 | ShapedType inputTy = llvm::cast<ShapedType>(getInput().getType()); \ |
| 1332 | if (!inputTy.hasRank()) \ |
| 1333 | return {}; \ |
| 1334 | if (inputTy != getType()) \ |
| 1335 | return {}; \ |
| 1336 | if (inputTy.getRank() == 0 || inputTy.getDimSize(getAxis()) == 1) \ |
| 1337 | return getInput(); \ |
| 1338 | return {}; \ |
| 1339 | } |
| 1340 | |
| 1341 | REDUCE_FOLDER(ReduceAllOp) |
| 1342 | REDUCE_FOLDER(ReduceAnyOp) |
| 1343 | REDUCE_FOLDER(ReduceMaxOp) |
| 1344 | REDUCE_FOLDER(ReduceMinOp) |
| 1345 | REDUCE_FOLDER(ReduceProductOp) |
| 1346 | REDUCE_FOLDER(ReduceSumOp) |
| 1347 | #undef REDUCE_FOLDER |
| 1348 | |
| 1349 | OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) { |
| 1350 | auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| 1351 | auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1352 | |
| 1353 | if (!inputTy || !outputTy) |
| 1354 | return {}; |
| 1355 | |
| 1356 | // Fold when the input and output types are the same. This is only safe when |
| 1357 | // there is at most 1 dynamic dimension. For 2 or more dynamic dimensions, |
| 1358 | // there may still be a productive reshape. |
| 1359 | if (inputTy == outputTy && inputTy.getNumDynamicDims() < 2) |
| 1360 | return getInput1(); |
| 1361 | |
| 1362 | // reshape(reshape(x)) -> reshape(x) |
| 1363 | if (auto reshapeOp = llvm::dyn_cast_if_present<tosa::ReshapeOp>( |
| 1364 | getInput1().getDefiningOp())) { |
| 1365 | getInput1Mutable().assign(reshapeOp.getInput1()); |
| 1366 | return getResult(); |
| 1367 | } |
| 1368 | |
| 1369 | // Cannot create an ElementsAttr from non-int/float/index types |
| 1370 | if (!inputTy.getElementType().isIntOrIndexOrFloat()) |
| 1371 | return {}; |
| 1372 | |
| 1373 | // reshape(const(x)) -> const(reshape-attr(x)) |
| 1374 | if (auto operand = |
| 1375 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) { |
| 1376 | // Constants must have static shape. |
| 1377 | if (!outputTy.hasStaticShape()) |
| 1378 | return {}; |
| 1379 | |
| 1380 | // Okay to duplicate splat constants. |
| 1381 | if (operand.isSplat()) |
| 1382 | return SplatElementsAttr::get(outputTy, |
| 1383 | operand.getSplatValue<Attribute>()); |
| 1384 | |
| 1385 | // Don't duplicate other constants. |
| 1386 | if (!getInput1().hasOneUse()) |
| 1387 | return {}; |
| 1388 | |
| 1389 | llvm::SmallVector<int64_t> shapeVec; |
| 1390 | if (!tosa::getConstShapeValues(getShape().getDefiningOp(), shapeVec)) |
| 1391 | return {}; |
| 1392 | |
| 1393 | return operand.reshape( |
| 1394 | llvm::cast<ShapedType>(operand.getType()).clone(shapeVec)); |
| 1395 | } |
| 1396 | |
| 1397 | return {}; |
| 1398 | } |
| 1399 | |
| 1400 | OpFoldResult PadOp::fold(FoldAdaptor adaptor) { |
| 1401 | // If the pad is all zeros we can fold this operation away. |
| 1402 | if (adaptor.getPadding() && getInput1().getType() == getType()) { |
| 1403 | auto densePad = llvm::dyn_cast<DenseElementsAttr>(adaptor.getPadding()); |
| 1404 | if (densePad && densePad.isSplat() && |
| 1405 | densePad.getSplatValue<APInt>().isZero()) { |
| 1406 | return getInput1(); |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | return {}; |
| 1411 | } |
| 1412 | |
| 1413 | // Fold away cases where a tosa.resize operation returns a copy |
| 1414 | // of the input image. |
| 1415 | OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) { |
| 1416 | auto scaleAttr = |
| 1417 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getScale()); |
| 1418 | auto offsetAttr = |
| 1419 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getOffset()); |
| 1420 | auto borderAttr = |
| 1421 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getBorder()); |
| 1422 | if (!scaleAttr || !offsetAttr || !borderAttr) { |
| 1423 | return {}; |
| 1424 | } |
| 1425 | |
| 1426 | auto scale = tosa::convertFromIntAttr(scaleAttr, /* rank = */ 4); |
| 1427 | auto offset = tosa::convertFromIntAttr(offsetAttr, /* rank = */ 2); |
| 1428 | auto border = tosa::convertFromIntAttr(borderAttr, /* rank = */ 2); |
| 1429 | if (scale.size() != 4 || offset.size() != 2 || border.size() != 2) { |
| 1430 | return {}; |
| 1431 | } |
| 1432 | |
| 1433 | // Check unit scaling. |
| 1434 | if (scale[0] != scale[1] || scale[2] != scale[3]) { |
| 1435 | return {}; |
| 1436 | } |
| 1437 | |
| 1438 | // There should be no offset. |
| 1439 | if (offset[0] != 0 || offset[1] != 0) { |
| 1440 | return {}; |
| 1441 | } |
| 1442 | |
| 1443 | // There should be no border. |
| 1444 | if (border[0] != 0 || border[1] != 0) { |
| 1445 | return {}; |
| 1446 | } |
| 1447 | |
| 1448 | auto input = getInput(); |
| 1449 | auto inputTy = llvm::cast<RankedTensorType>(input.getType()); |
| 1450 | auto resultTy = llvm::cast<RankedTensorType>(getType()); |
| 1451 | if (inputTy != resultTy) |
| 1452 | return {}; |
| 1453 | |
| 1454 | return input; |
| 1455 | } |
| 1456 | |
| 1457 | OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) { |
| 1458 | auto operand = getInput1(); |
| 1459 | auto operandTy = llvm::cast<ShapedType>(operand.getType()); |
| 1460 | auto axis = getAxis(); |
| 1461 | auto operandAttr = |
| 1462 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput1()); |
| 1463 | if (operandAttr) |
| 1464 | return operandAttr; |
| 1465 | |
| 1466 | // If the dim-length is 1, tosa.reverse is a no-op. |
| 1467 | if (operandTy.hasRank() && |
| 1468 | (operandTy.getRank() == 0 || operandTy.getDimSize(axis) == 1)) |
| 1469 | return operand; |
| 1470 | |
| 1471 | return {}; |
| 1472 | } |
| 1473 | |
| 1474 | OpFoldResult SliceOp::fold(FoldAdaptor adaptor) { |
| 1475 | auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| 1476 | auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
| 1477 | |
| 1478 | if (!inputTy || !outputTy) |
| 1479 | return {}; |
| 1480 | |
| 1481 | if (inputTy == outputTy && inputTy.hasStaticShape()) |
| 1482 | return getInput1(); |
| 1483 | |
| 1484 | if (!adaptor.getInput1()) |
| 1485 | return {}; |
| 1486 | |
| 1487 | // Cannot create an ElementsAttr from non-int/float/index types |
| 1488 | if (!inputTy.getElementType().isIntOrIndexOrFloat() || |
| 1489 | !outputTy.getElementType().isIntOrIndexOrFloat()) |
| 1490 | return {}; |
| 1491 | |
| 1492 | auto operand = llvm::cast<ElementsAttr>(adaptor.getInput1()); |
| 1493 | if (operand.isSplat() && outputTy.hasStaticShape()) { |
| 1494 | return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>()); |
| 1495 | } |
| 1496 | |
| 1497 | if (inputTy.hasStaticShape() && outputTy.hasStaticShape() && |
| 1498 | outputTy.getNumElements() == 1) { |
| 1499 | DenseElementsAttr startElems; |
| 1500 | if (!matchPattern(getStart(), m_Constant(&startElems))) |
| 1501 | return {}; |
| 1502 | |
| 1503 | llvm::SmallVector<uint64_t> indices = |
| 1504 | llvm::to_vector(startElems.getValues<uint64_t>()); |
| 1505 | auto value = operand.getValues<Attribute>()[indices]; |
| 1506 | return SplatElementsAttr::get(outputTy, value); |
| 1507 | } |
| 1508 | |
| 1509 | return {}; |
| 1510 | } |
| 1511 | |
| 1512 | OpFoldResult tosa::SelectOp::fold(FoldAdaptor adaptor) { |
| 1513 | if (getInput2() == getInput3()) |
| 1514 | return getInput2(); |
| 1515 | |
| 1516 | auto predicate = |
| 1517 | llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getInput1()); |
| 1518 | if (!predicate) |
| 1519 | return {}; |
| 1520 | |
| 1521 | if (!predicate.isSplat()) |
| 1522 | return {}; |
| 1523 | return predicate.getSplatValue<APInt>().getBoolValue() ? getInput2() |
| 1524 | : getInput3(); |
| 1525 | } |
| 1526 | |
| 1527 | OpFoldResult TileOp::fold(FoldAdaptor adaptor) { |
| 1528 | if (getInput1().getType() == getType()) { |
| 1529 | if (auto multiples = llvm::dyn_cast_if_present<DenseElementsAttr>( |
| 1530 | adaptor.getMultiples())) { |
| 1531 | if (multiples.isSplat() && |
| 1532 | multiples.getSplatValue<APInt>().getSExtValue() == 1) |
| 1533 | return getInput1(); |
| 1534 | if (auto int_array_attr = |
| 1535 | llvm::dyn_cast<DenseIntElementsAttr>(multiples)) { |
| 1536 | if (llvm::all_of(int_array_attr.getValues<APInt>(), |
| 1537 | [](APInt v) { return v.getSExtValue() == 1; })) |
| 1538 | return getInput1(); |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | return {}; |
| 1543 | } |
| 1544 | |
| 1545 | OpFoldResult TransposeOp::fold(FoldAdaptor adaptor) { |
| 1546 | auto resultTy = llvm::cast<ShapedType>(getType()); |
| 1547 | |
| 1548 | // Transposing splat values just means reshaping. |
| 1549 | if (auto input = |
| 1550 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) { |
| 1551 | if (input.isSplat() && resultTy.hasStaticShape() && |
| 1552 | input.getType().getElementType() == resultTy.getElementType()) |
| 1553 | return input.reshape(resultTy); |
| 1554 | } |
| 1555 | |
| 1556 | // Transpose is not the identity transpose. |
| 1557 | const llvm::ArrayRef<int32_t> perms = getPerms(); |
| 1558 | |
| 1559 | if (!llvm::equal(llvm::seq<int32_t>(0, perms.size()), perms)) |
| 1560 | return {}; |
| 1561 | |
| 1562 | return getInput1(); |
| 1563 | } |
| 1564 | |
| 1565 | OpFoldResult tosa::LogOp::fold(FoldAdaptor adaptor) { |
| 1566 | auto input = getInput1(); |
| 1567 | // Element-wise log(exp(x)) = x |
| 1568 | if (auto op = input.getDefiningOp<tosa::ExpOp>()) { |
| 1569 | return op.getInput1(); |
| 1570 | } |
| 1571 | |
| 1572 | return {}; |
| 1573 | } |
| 1574 | |
| 1575 | OpFoldResult tosa::ExpOp::fold(FoldAdaptor adaptor) { |
| 1576 | auto input = getInput1(); |
| 1577 | // Element-wise exp(log(x)) = x |
| 1578 | if (auto op = input.getDefiningOp<tosa::LogOp>()) { |
| 1579 | return op.getInput1(); |
| 1580 | } |
| 1581 | |
| 1582 | return {}; |
| 1583 | } |
| 1584 | |
| 1585 | OpFoldResult tosa::NegateOp::fold(FoldAdaptor adaptor) { |
| 1586 | // Element-wise negate(negate(x)) = x |
| 1587 | // iff all zero points are constant 0 |
| 1588 | auto definingOp = getInput1().getDefiningOp<tosa::NegateOp>(); |
| 1589 | if (!definingOp) { |
| 1590 | // defining op of input1 is not a negate, cannot fold |
| 1591 | return {}; |
| 1592 | } |
| 1593 | |
| 1594 | if (FailureOr<int64_t> maybeIZp = getInput1ZeroPoint(); |
| 1595 | failed(maybeIZp) || *maybeIZp != 0) { |
| 1596 | // input1 zero point is not constant 0, cannot fold |
| 1597 | return {}; |
| 1598 | } |
| 1599 | if (FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
| 1600 | failed(maybeOZp) || *maybeOZp != 0) { |
| 1601 | // output zero point is not constant 0, cannot fold |
| 1602 | return {}; |
| 1603 | } |
| 1604 | if (FailureOr<int64_t> maybeIZp = definingOp.getInput1ZeroPoint(); |
| 1605 | failed(maybeIZp) || *maybeIZp != 0) { |
| 1606 | // definingOp's input1 zero point is not constant 0, cannot fold |
| 1607 | return {}; |
| 1608 | } |
| 1609 | if (FailureOr<int64_t> maybeOZp = definingOp.getOutputZeroPoint(); |
| 1610 | failed(maybeOZp) || *maybeOZp != 0) { |
| 1611 | // definingOp's output zero point is not constant 0, cannot fold |
| 1612 | return {}; |
| 1613 | } |
| 1614 | |
| 1615 | return definingOp.getInput1(); |
| 1616 | } |
| 1617 | |
| 1618 | OpFoldResult tosa::AbsOp::fold(FoldAdaptor adaptor) { |
| 1619 | auto input = getInput1(); |
| 1620 | // Element-wise abs(abs(x)) = abs(x) |
| 1621 | if (auto op = input.getDefiningOp<tosa::AbsOp>()) { |
| 1622 | return input; |
| 1623 | } |
| 1624 | |
| 1625 | return {}; |
| 1626 | } |
| 1627 | |
| 1628 | OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) { |
| 1629 | // Fold consecutive concats on the same axis into a single op. |
| 1630 | // Keep track of the operands so we are able to construct a new concat |
| 1631 | // later. Conservatively assume that we double the number of operands when |
| 1632 | // folding |
| 1633 | SmallVector<Value, 8> concatOperands; |
| 1634 | concatOperands.reserve(2 * getNumOperands()); |
| 1635 | |
| 1636 | // Find all operands that are foldable concats |
| 1637 | bool foundFoldableConcat = false; |
| 1638 | for (Value operand : getOperands()) { |
| 1639 | concatOperands.emplace_back(operand); |
| 1640 | |
| 1641 | auto producer = dyn_cast_or_null<ConcatOp>(operand.getDefiningOp()); |
| 1642 | if (!producer) |
| 1643 | continue; |
| 1644 | |
| 1645 | // Not foldable if axes are not the same |
| 1646 | if (getAxis() != producer.getAxis()) |
| 1647 | continue; |
| 1648 | |
| 1649 | // Replace the original operand with all incoming operands |
| 1650 | foundFoldableConcat = true; |
| 1651 | concatOperands.pop_back(); |
| 1652 | llvm::append_range(concatOperands, producer->getOperands()); |
| 1653 | } |
| 1654 | |
| 1655 | if (!foundFoldableConcat) |
| 1656 | return {}; |
| 1657 | |
| 1658 | getOperation()->setOperands(concatOperands); |
| 1659 | return getResult(); |
| 1660 | } |
| 1661 | |
| 1662 | OpFoldResult tosa::ReciprocalOp::fold(FoldAdaptor adaptor) { |
| 1663 | auto input = adaptor.getInput1(); |
| 1664 | |
| 1665 | auto inputAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(input); |
| 1666 | // Fold splat inputs only. |
| 1667 | if (!inputAttr || !inputAttr.isSplat()) |
| 1668 | return {}; |
| 1669 | |
| 1670 | auto shapeType = llvm::cast<ShapedType>(getType()); |
| 1671 | if (auto floatType = llvm::dyn_cast<FloatType>(inputAttr.getElementType())) { |
| 1672 | auto floatVal = inputAttr.getSplatValue<APFloat>(); |
| 1673 | return DenseElementsAttr::get(shapeType, |
| 1674 | ReciprocalOp::calcOneElement(floatVal)); |
| 1675 | } |
| 1676 | |
| 1677 | return {}; |
| 1678 | } |
| 1679 | |