1 | //===- TosaCanonicalizations.cpp - Canonicalization patterns & folders ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // \file |
10 | // TOSA canonicalization patterns and folders. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/Dialect/Quant/IR/Quant.h" |
15 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
16 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
17 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
18 | #include "mlir/Dialect/Tosa/Utils/QuantUtils.h" |
19 | #include "mlir/Dialect/Tosa/Utils/ShapeUtils.h" |
20 | #include "mlir/IR/BuiltinTypeInterfaces.h" |
21 | #include "mlir/IR/BuiltinTypes.h" |
22 | #include "mlir/IR/DialectImplementation.h" |
23 | #include "mlir/IR/Matchers.h" |
24 | #include "mlir/IR/PatternMatch.h" |
25 | #include "mlir/Transforms/FoldUtils.h" |
26 | #include "mlir/Transforms/InliningUtils.h" |
27 | #include "mlir/Transforms/RegionUtils.h" |
28 | #include "llvm/ADT/APFloat.h" |
29 | #include "llvm/ADT/APInt.h" |
30 | #include "llvm/ADT/DenseMap.h" |
31 | #include "llvm/ADT/TypeSwitch.h" |
32 | |
33 | #include <functional> |
34 | |
35 | using namespace mlir; |
36 | using namespace mlir::tosa; |
37 | |
38 | //===----------------------------------------------------------------------===// |
39 | // Operator Canonicalizers. |
40 | //===----------------------------------------------------------------------===// |
41 | |
42 | //===----------------------------------------------------------------------===// |
43 | // Tensor Data Engine Operators. |
44 | //===----------------------------------------------------------------------===// |
45 | |
46 | // Check that the zero point of the tensor and padding operations are aligned. |
47 | bool checkMatchingPadConstAndZp(Value padConst, Value zp) { |
48 | // Check that padConst is a constant value and a scalar tensor |
49 | DenseElementsAttr padConstAttr; |
50 | if (!matchPattern(value: padConst, pattern: m_Constant(bind_value: &padConstAttr)) || |
51 | (padConstAttr.size() != 1)) { |
52 | return false; |
53 | } |
54 | |
55 | // Check that floating point pad is zero |
56 | if (auto padConstFpAttr = mlir::dyn_cast<DenseFPElementsAttr>(padConstAttr)) { |
57 | float padConstVal = (*padConstFpAttr.begin()).convertToFloat(); |
58 | return padConstVal == 0.0f; |
59 | } |
60 | |
61 | // Check that the zp and padConst align for the integer (quantized) case |
62 | if (auto padConstIntAttr = |
63 | mlir::dyn_cast<DenseIntElementsAttr>(padConstAttr)) { |
64 | DenseIntElementsAttr zpAttr; |
65 | // Check that zp is a constant value and a scalar tensor |
66 | if (!matchPattern(value: zp, pattern: m_Constant(bind_value: &zpAttr)) || (padConstAttr.size() != 1)) { |
67 | return false; |
68 | } |
69 | |
70 | // Check equality |
71 | int64_t zpVal = (*zpAttr.begin()).getSExtValue(); |
72 | int64_t padConstVal = (*padConstIntAttr.begin()).getSExtValue(); |
73 | return zpVal == padConstVal; |
74 | } |
75 | |
76 | // Bail-out on unsupported type |
77 | return false; |
78 | } |
79 | |
80 | namespace { |
81 | template <typename OpTy> |
82 | struct PoolPadFoldAdaptor; |
83 | |
84 | template <> |
85 | struct PoolPadFoldAdaptor<tosa::AvgPool2dOp> { |
86 | using OpTy = tosa::AvgPool2dOp; |
87 | static bool checkKernelCompliance(OpTy op, const ArrayRef<int64_t> newPad) { |
88 | const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
89 | if (newPad[2] >= kernel[1] || newPad[3] >= kernel[1] || |
90 | newPad[0] >= kernel[0] || newPad[1] >= kernel[0]) |
91 | return false; |
92 | return true; |
93 | } |
94 | static bool checkPadConstCompliance(OpTy op, Value padConst) { |
95 | return checkMatchingPadConstAndZp(padConst, op.getInputZp()); |
96 | } |
97 | static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
98 | Value padInput, ArrayRef<int64_t> newPad) { |
99 | rewriter.replaceOpWithNewOp<tosa::AvgPool2dOp>( |
100 | op, op.getType(), padInput, op.getInputZp(), op.getOutputZp(), |
101 | op.getKernel(), op.getStride(), rewriter.getDenseI64ArrayAttr(newPad), |
102 | op.getAccType()); |
103 | } |
104 | }; |
105 | |
106 | template <> |
107 | struct PoolPadFoldAdaptor<tosa::MaxPool2dOp> { |
108 | using OpTy = tosa::MaxPool2dOp; |
109 | static bool checkKernelCompliance(OpTy op, const ArrayRef<int64_t> newPad) { |
110 | const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
111 | if (newPad[2] >= kernel[1] || newPad[3] >= kernel[1] || |
112 | newPad[0] >= kernel[0] || newPad[1] >= kernel[0]) |
113 | return false; |
114 | return true; |
115 | } |
116 | static bool checkPadConstCompliance(OpTy, Value padConst) { |
117 | // Check that padConst is a constant value and a scalar tensor |
118 | DenseElementsAttr padConstAttr; |
119 | if (!matchPattern(padConst, m_Constant(&padConstAttr)) || |
120 | padConstAttr.size() != 1) { |
121 | return false; |
122 | } |
123 | |
124 | // Pad needs to be in the minimum value to be able to merge |
125 | if (auto padConstFpAttr = |
126 | mlir::dyn_cast<DenseFPElementsAttr>(padConstAttr)) { |
127 | const APFloat padConstVal = *padConstFpAttr.begin(); |
128 | const APFloat lowestVal = |
129 | APFloat::getLargest(padConstVal.getSemantics(), true); |
130 | return padConstVal == lowestVal; |
131 | } else if (auto padConstIntAttr = |
132 | mlir::dyn_cast<DenseIntElementsAttr>(padConstAttr)) { |
133 | const APInt padConstVal = *padConstIntAttr.begin(); |
134 | const unsigned int bitWidth = padConstVal.getBitWidth(); |
135 | const APInt lowestVal = |
136 | padConstIntAttr.getElementType().isUnsignedInteger() |
137 | ? APInt::getZero(bitWidth) |
138 | : APInt::getSignedMinValue(bitWidth); |
139 | return padConstVal == lowestVal; |
140 | } |
141 | |
142 | // Bail-out on unsupported type |
143 | return false; |
144 | } |
145 | static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
146 | Value padInput, ArrayRef<int64_t> newPad) { |
147 | rewriter.replaceOpWithNewOp<tosa::MaxPool2dOp>( |
148 | op, op.getType(), padInput, op.getKernel(), op.getStride(), |
149 | rewriter.getDenseI64ArrayAttr(newPad), op.getNanMode()); |
150 | } |
151 | }; |
152 | |
153 | template <typename OpTy> |
154 | struct ConvPadFoldAdaptor { |
155 | static bool checkKernelCompliance(OpTy, const ArrayRef<int64_t>) { |
156 | return true; |
157 | } |
158 | static bool checkPadConstCompliance(OpTy op, Value padConst) { |
159 | return checkMatchingPadConstAndZp(padConst, op.getInputZp()); |
160 | } |
161 | static void replaceOpWithNewPad(PatternRewriter &rewriter, OpTy op, |
162 | Value padInput, ArrayRef<int64_t> newPad) { |
163 | rewriter.replaceOpWithNewOp<OpTy>( |
164 | op, op.getResult().getType(), padInput, op.getWeight(), op.getBias(), |
165 | op.getInputZp(), op.getWeightZp(), newPad, op.getStrideAttr(), |
166 | op.getDilationAttr(), op.getAccType(), op.getLocalBound()); |
167 | } |
168 | }; |
169 | |
170 | // Pattern attempts to fold a `tosa.pad` operator to a following tensor |
171 | // operation like `tosa.conv2d` by merging the padding associated with the |
172 | // pad operator directly to the implicit padding of the tensor operation. |
173 | // This helps eliminate the explicit padding operator if unused. |
174 | template <typename OpTy, typename AdaptorTy> |
175 | struct FoldPadToTensorOp : public OpRewritePattern<OpTy> { |
176 | using OpRewritePattern<OpTy>::OpRewritePattern; |
177 | |
178 | LogicalResult matchAndRewrite(OpTy tensorOp, |
179 | PatternRewriter &rewriter) const override { |
180 | // Check producer is a tosa::PadOp |
181 | auto padOp = tensorOp.getInput().template getDefiningOp<tosa::PadOp>(); |
182 | if (!padOp) |
183 | return rewriter.notifyMatchFailure(tensorOp, |
184 | "Producer must be a tosa::PadOp." ); |
185 | |
186 | // Validate that tensor operation has sane padding |
187 | const std::vector<int64_t> &tensorOpPad = tensorOp.getPad().vec(); |
188 | if (tensorOpPad.size() != 4) // pad_top, pad_bottom, pad_left, pad_right |
189 | return rewriter.notifyMatchFailure( |
190 | tensorOp, "Tensor operation padding shall have 4 elements." ); |
191 | |
192 | // Validate tosa::PadOp padding |
193 | DenseIntElementsAttr padOpPadding; |
194 | if (!matchPattern(padOp.getPadding(), m_Constant(bind_value: &padOpPadding))) { |
195 | return rewriter.notifyMatchFailure( |
196 | tensorOp, |
197 | "The `padding` input specified on the tosa::PadOp must be constant." ); |
198 | } |
199 | // N_before, N_after, H_before, H_after, W_before, W_after, C_before, |
200 | // C_after |
201 | if (padOpPadding.size() != 8) |
202 | return rewriter.notifyMatchFailure(tensorOp, |
203 | "Pad padding should have 8 elements." ); |
204 | int64_t padNBefore = (*(padOpPadding.begin() + 0)).getLimitedValue(); |
205 | int64_t padNAfter = (*(padOpPadding.begin() + 1)).getLimitedValue(); |
206 | int64_t padHBefore = (*(padOpPadding.begin() + 2)).getLimitedValue(); |
207 | int64_t padHAfter = (*(padOpPadding.begin() + 3)).getLimitedValue(); |
208 | int64_t padWBefore = (*(padOpPadding.begin() + 4)).getLimitedValue(); |
209 | int64_t padWAfter = (*(padOpPadding.begin() + 5)).getLimitedValue(); |
210 | int64_t padCBefore = (*(padOpPadding.begin() + 6)).getLimitedValue(); |
211 | int64_t padCAfter = (*(padOpPadding.begin() + 7)).getLimitedValue(); |
212 | |
213 | if (padNBefore != 0 || padNAfter != 0 || padCBefore != 0 || padCAfter != 0) |
214 | return rewriter.notifyMatchFailure( |
215 | tensorOp, "Folding padding in N or C dimensions is not supported." ); |
216 | |
217 | // Fold padding from Pad into the tensor operation |
218 | // 4 elements - pad_top, pad_bottom, pad_left, pad_right |
219 | SmallVector<int64_t> foldedPad(tensorOpPad.size()); |
220 | foldedPad[0] = padHBefore + tensorOpPad[0]; |
221 | foldedPad[1] = padHAfter + tensorOpPad[1]; |
222 | foldedPad[2] = padWBefore + tensorOpPad[2]; |
223 | foldedPad[3] = padWAfter + tensorOpPad[3]; |
224 | |
225 | // Check kernel related restrictions |
226 | if (!AdaptorTy::checkKernelCompliance(tensorOp, foldedPad)) { |
227 | return rewriter.notifyMatchFailure( |
228 | tensorOp, "Padding size not aligned with kernel restrictions." ); |
229 | } |
230 | |
231 | // Check padding constant restrictions |
232 | if (!AdaptorTy::checkPadConstCompliance(tensorOp, padOp.getPadConst())) { |
233 | return rewriter.notifyMatchFailure( |
234 | tensorOp, |
235 | "Padding constant is not aligned with operator zero-point." ); |
236 | } |
237 | |
238 | // Check that padding doesn't grow more than 8K level (8192) for now |
239 | if (llvm::any_of(foldedPad, [](int64_t padVal) { return padVal > 8192; })) { |
240 | return rewriter.notifyMatchFailure( |
241 | tensorOp, "Padding size more than the 8K level limit." ); |
242 | } |
243 | |
244 | // Create operator |
245 | AdaptorTy::replaceOpWithNewPad(rewriter, tensorOp, padOp.getInput1(), |
246 | foldedPad); |
247 | |
248 | return success(); |
249 | } |
250 | }; |
251 | } // namespace |
252 | |
253 | void AvgPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results, |
254 | MLIRContext *context) { |
255 | results.add<FoldPadToTensorOp<tosa::AvgPool2dOp, |
256 | PoolPadFoldAdaptor<tosa::AvgPool2dOp>>>( |
257 | context); |
258 | } |
259 | |
260 | void Conv2DOp::getCanonicalizationPatterns(RewritePatternSet &results, |
261 | MLIRContext *context) { |
262 | results.add< |
263 | FoldPadToTensorOp<tosa::Conv2DOp, ConvPadFoldAdaptor<tosa::Conv2DOp>>>( |
264 | context); |
265 | } |
266 | |
267 | void DepthwiseConv2DOp::getCanonicalizationPatterns(RewritePatternSet &results, |
268 | MLIRContext *context) { |
269 | results.add<FoldPadToTensorOp<tosa::DepthwiseConv2DOp, |
270 | ConvPadFoldAdaptor<tosa::DepthwiseConv2DOp>>>( |
271 | context); |
272 | } |
273 | |
274 | struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> { |
275 | using OpRewritePattern::OpRewritePattern; |
276 | |
277 | LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, |
278 | PatternRewriter &rewriter) const override { |
279 | Value input = op.getInput(); |
280 | Value output = op.getOutput(); |
281 | ShapedType inputType = llvm::cast<ShapedType>(input.getType()); |
282 | ShapedType outputType = llvm::cast<ShapedType>(output.getType()); |
283 | |
284 | if (!inputType.hasStaticShape() || !outputType.hasStaticShape()) { |
285 | return failure(); |
286 | } |
287 | |
288 | // If the output and input shapes are 1x1, then this is a no op. |
289 | ArrayRef<int64_t> outputShape = outputType.getShape(); |
290 | if (outputShape[1] != 1 || outputShape[2] != 1) { |
291 | return failure(); |
292 | } |
293 | |
294 | ArrayRef<int64_t> inputShape = inputType.getShape(); |
295 | if (inputShape[1] != 1 || inputShape[2] != 1) { |
296 | return failure(); |
297 | } |
298 | |
299 | rewriter.replaceOp(op, input); |
300 | return success(); |
301 | } |
302 | }; |
303 | |
304 | void MaxPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results, |
305 | MLIRContext *context) { |
306 | results.add<MaxPool2dIsNoOp, |
307 | FoldPadToTensorOp<tosa::MaxPool2dOp, |
308 | PoolPadFoldAdaptor<tosa::MaxPool2dOp>>>( |
309 | context); |
310 | } |
311 | |
312 | //===----------------------------------------------------------------------===// |
313 | // Data Layout / Memory Reinterpretation. |
314 | //===----------------------------------------------------------------------===// |
315 | |
316 | struct ConcatOptimization : public OpRewritePattern<tosa::ConcatOp> { |
317 | using OpRewritePattern<tosa::ConcatOp>::OpRewritePattern; |
318 | |
319 | LogicalResult matchAndRewrite(tosa::ConcatOp op, |
320 | PatternRewriter &rewriter) const override { |
321 | if (op.getInput1().size() != 1) |
322 | return failure(); |
323 | if (op.getInput1().front().getType() != op.getType()) { |
324 | rewriter |
325 | .replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), |
326 | op.getInput1().front()) |
327 | .getResult(); |
328 | return success(); |
329 | } |
330 | |
331 | rewriter.replaceOp(op, op.getInput1().front()); |
332 | return success(); |
333 | } |
334 | }; |
335 | |
336 | void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results, |
337 | MLIRContext *context) { |
338 | results.add<ConcatOptimization>(context); |
339 | } |
340 | |
341 | LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) { |
342 | auto notOp = op.getInput1().getDefiningOp<tosa::LogicalNotOp>(); |
343 | if (!notOp) |
344 | return failure(); |
345 | rewriter.modifyOpInPlace(op, [&]() { |
346 | op.getOperation()->setOperands( |
347 | {notOp.getInput1(), op.getInput3(), op.getInput2()}); |
348 | }); |
349 | return success(); |
350 | } |
351 | |
352 | struct ConsolidateTransposeOptimization |
353 | : public OpRewritePattern<tosa::TransposeOp> { |
354 | using OpRewritePattern::OpRewritePattern; |
355 | |
356 | LogicalResult matchAndRewrite(tosa::TransposeOp transposeOp, |
357 | PatternRewriter &rewriter) const override { |
358 | // Input is also TransposeOp - transpose(transpose(A)). |
359 | auto innerTranspose = |
360 | transposeOp.getInput1().getDefiningOp<tosa::TransposeOp>(); |
361 | if (!innerTranspose) |
362 | return rewriter.notifyMatchFailure(transposeOp, |
363 | "input must be transpose operation" ); |
364 | |
365 | const llvm::ArrayRef<int32_t> transposePerms = transposeOp.getPerms(); |
366 | const llvm::ArrayRef<int32_t> innerTransposePerms = |
367 | innerTranspose.getPerms(); |
368 | |
369 | if (transposePerms.size() != innerTransposePerms.size()) |
370 | return rewriter.notifyMatchFailure( |
371 | transposeOp, |
372 | "transpose and inner transpose perms sizes must be equal" ); |
373 | if (transposePerms.empty()) |
374 | return rewriter.notifyMatchFailure( |
375 | transposeOp, "transpose perms sizes must be positive" ); |
376 | |
377 | // Consolidate transposes into one transpose. |
378 | SmallVector<int32_t> perms(transposePerms.size()); |
379 | for (int i = 0, s = transposePerms.size(); i < s; ++i) |
380 | perms[i] = innerTransposePerms[transposePerms[i]]; |
381 | |
382 | rewriter.replaceOpWithNewOp<tosa::TransposeOp>( |
383 | transposeOp, transposeOp.getResult().getType(), |
384 | innerTranspose.getInput1(), rewriter.getDenseI32ArrayAttr(perms)); |
385 | |
386 | return success(); |
387 | } |
388 | }; |
389 | |
390 | // Determines the case when tosa.transpose is a tosa.reshape operation. |
391 | struct TransposeIsReshape : public OpRewritePattern<tosa::TransposeOp> { |
392 | using OpRewritePattern::OpRewritePattern; |
393 | |
394 | LogicalResult matchAndRewrite(tosa::TransposeOp op, |
395 | PatternRewriter &rewriter) const override { |
396 | if (op.getInput1().getDefiningOp<tosa::TransposeOp>()) |
397 | return rewriter.notifyMatchFailure( |
398 | op, "Src is from transpose, can compose transposes" ); |
399 | |
400 | Value result = op.getResult(); |
401 | for (Operation *subop : result.getUsers()) { |
402 | if (isa_and_nonnull<tosa::TransposeOp>(subop)) |
403 | return rewriter.notifyMatchFailure( |
404 | op, "Dest is used by transpose, can compose transposes" ); |
405 | } |
406 | |
407 | auto input = op.getInput1(); |
408 | auto inputTy = llvm::cast<ShapedType>(input.getType()); |
409 | if (!inputTy.hasRank()) |
410 | return rewriter.notifyMatchFailure(op, "Unranked input." ); |
411 | |
412 | int64_t numDynDims = 0; |
413 | for (int i = 0; i < inputTy.getRank(); ++i) |
414 | if (inputTy.isDynamicDim(i)) |
415 | numDynDims++; |
416 | |
417 | if (numDynDims > 1) |
418 | return rewriter.notifyMatchFailure(op, "Has more than one dynamic dim." ); |
419 | |
420 | const llvm::ArrayRef<int32_t> permValues = op.getPerms(); |
421 | |
422 | SmallVector<int64_t> nonZeroPerms; |
423 | nonZeroPerms.reserve(N: permValues.size()); |
424 | for (auto idx : permValues) { |
425 | auto sz = inputTy.getDimSize(idx); |
426 | if (sz != 1) |
427 | nonZeroPerms.push_back(idx); |
428 | } |
429 | |
430 | for (int i = 1, s = nonZeroPerms.size(); i < s; ++i) |
431 | if (nonZeroPerms[i - 1] > nonZeroPerms[i]) |
432 | return rewriter.notifyMatchFailure(op, |
433 | "Transpose changes memory layout." ); |
434 | |
435 | SmallVector<int64_t> newShape; |
436 | newShape.reserve(N: inputTy.getRank()); |
437 | for (int i = 0, s = inputTy.getRank(); i < s; ++i) |
438 | newShape.push_back(Elt: inputTy.getDimSize(permValues[i])); |
439 | |
440 | rewriter.replaceOpWithNewOp<tosa::ReshapeOp>( |
441 | op, op.getType(), op.getInput1(), |
442 | getTosaConstShape(rewriter, op.getLoc(), newShape)); |
443 | return success(); |
444 | } |
445 | }; |
446 | |
447 | void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results, |
448 | MLIRContext *context) { |
449 | results.add<ConsolidateTransposeOptimization, TransposeIsReshape>(context); |
450 | } |
451 | |
452 | struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> { |
453 | using OpRewritePattern::OpRewritePattern; |
454 | |
455 | LogicalResult matchAndRewrite(tosa::ClampOp op, |
456 | PatternRewriter &rewriter) const override { |
457 | Value input = op.getInput(); |
458 | auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
459 | auto inputElementType = inputType.getElementType(); |
460 | |
461 | if (!inputType.hasStaticShape()) { |
462 | return failure(); |
463 | } |
464 | |
465 | if (isa<FloatType>(inputElementType)) { |
466 | // Unlike integer types, floating point types can represent infinity. |
467 | auto minClamp = |
468 | llvm::cast<mlir::FloatAttr>(op.getMinValAttr()).getValue(); |
469 | auto maxClamp = |
470 | llvm::cast<mlir::FloatAttr>(op.getMaxValAttr()).getValue(); |
471 | bool isMin = minClamp.isNegInfinity(); |
472 | bool isMax = maxClamp.isInfinity(); |
473 | |
474 | if (isMin && isMax) { |
475 | rewriter.replaceOp(op, input); |
476 | return success(); |
477 | } |
478 | return failure(); |
479 | } |
480 | |
481 | if (inputElementType.isUnsignedInteger()) { |
482 | int64_t minClamp = |
483 | llvm::cast<mlir::IntegerAttr>(op.getMinValAttr()).getUInt(); |
484 | int64_t maxClamp = |
485 | llvm::cast<mlir::IntegerAttr>(op.getMaxValAttr()).getUInt(); |
486 | |
487 | int64_t intMin = |
488 | APInt::getMinValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
489 | .getZExtValue(); |
490 | int64_t intMax = |
491 | APInt::getMaxValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
492 | .getZExtValue(); |
493 | |
494 | if (minClamp <= intMin && maxClamp >= intMax) { |
495 | rewriter.replaceOp(op, input); |
496 | return success(); |
497 | } |
498 | return failure(); |
499 | } |
500 | |
501 | if (llvm::isa<IntegerType>(inputElementType)) { |
502 | int64_t minClamp = |
503 | llvm::cast<mlir::IntegerAttr>(op.getMinValAttr()).getInt(); |
504 | int64_t maxClamp = |
505 | llvm::cast<mlir::IntegerAttr>(op.getMaxValAttr()).getInt(); |
506 | |
507 | int64_t intMin = |
508 | APInt::getSignedMinValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
509 | .getSExtValue(); |
510 | int64_t intMax = |
511 | APInt::getSignedMaxValue(numBits: inputElementType.getIntOrFloatBitWidth()) |
512 | .getSExtValue(); |
513 | |
514 | if (minClamp <= intMin && maxClamp >= intMax) { |
515 | rewriter.replaceOp(op, input); |
516 | return success(); |
517 | } |
518 | return failure(); |
519 | } |
520 | |
521 | return failure(); |
522 | } |
523 | }; |
524 | |
525 | // Attempts the following transformation: |
526 | // |
527 | // For integers a, b, a', and b' such that [a, b] ∩ [a', b'] ≠∅ and input |
528 | // tensor X the following identity holds: |
529 | // |
530 | // CLAMP(CLAMP(X, a, b), a', b') = CLAMP(X, max(a, a'), min(b, b')) |
531 | // |
532 | // subject to the following valid NaN propagation semantics: |
533 | // -------------------------------------------- |
534 | // | OUTER CLAMP | INNER CLAMP | RESULT MODE | |
535 | // |-------------|--------------|-------------| |
536 | // | PROPAGATE | PROPAGATE | PROPAGATE | |
537 | // | PROPAGATE | IGNORE | IGNORE | |
538 | // | IGNORE | PROPAGATE | INVALID | |
539 | // | IGNORE | IGNORE | IGNORE | |
540 | // |------------------------------------------| |
541 | |
542 | struct ClampClampOptimization : public OpRewritePattern<tosa::ClampOp> { |
543 | using OpRewritePattern<tosa::ClampOp>::OpRewritePattern; |
544 | |
545 | // Helper structure to describe the range of a clamp operation. |
546 | template <typename T> |
547 | struct ClampRange { |
548 | ClampRange(const T &start, const T &end) : start(start), end(end) {} |
549 | T start; |
550 | T end; |
551 | |
552 | // Helper function to determine if two Clamp ranges intersect. |
553 | bool intersects(const ClampRange<T> &otherRange) { |
554 | return start < otherRange.end && otherRange.start < end; |
555 | } |
556 | }; |
557 | |
558 | LogicalResult matchAndRewrite(tosa::ClampOp op, |
559 | PatternRewriter &rewriter) const override { |
560 | Value input = op.getInput(); |
561 | |
562 | // Check the input to the CLAMP op is itself a CLAMP. |
563 | auto clampOp = dyn_cast_if_present<tosa::ClampOp>(input.getDefiningOp()); |
564 | if (!clampOp) |
565 | return failure(); |
566 | |
567 | // Check we have a valid NaN propagation combination. |
568 | const auto opNanMode = op.getNanMode(); |
569 | const auto clampNanMode = clampOp.getNanMode(); |
570 | if (opNanMode == "IGNORE" && clampNanMode == "PROPAGATE" ) |
571 | return failure(); |
572 | |
573 | auto maxValAttr = op.getMaxValAttr(); |
574 | auto minValAttr = op.getMinValAttr(); |
575 | auto clampOpMaxValAttr = clampOp.getMaxValAttr(); |
576 | auto clampOpMinValAttr = clampOp.getMinValAttr(); |
577 | |
578 | auto inputEType = llvm::cast<ShapedType>(input.getType()).getElementType(); |
579 | if (auto quantType = |
580 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputEType)) { |
581 | inputEType = quantType.getStorageType(); |
582 | } |
583 | |
584 | Attribute newMinValAttr, newMaxValAttr; |
585 | if (mlir::isa<FloatType>(inputEType)) { |
586 | auto floatMaxValAttr = cast<mlir::FloatAttr>(maxValAttr); |
587 | auto floatMinValAttr = cast<mlir::FloatAttr>(minValAttr); |
588 | auto clampOpFloatMaxValAttr = cast<mlir::FloatAttr>(clampOpMaxValAttr); |
589 | auto clampOpFloatMinValAttr = cast<mlir::FloatAttr>(clampOpMinValAttr); |
590 | |
591 | // Check we have intersecting ranges. |
592 | const auto opMinFloat = floatMinValAttr.getValue(); |
593 | const auto opMaxFloat = floatMaxValAttr.getValue(); |
594 | const auto clampOpMinFloat = clampOpFloatMinValAttr.getValue(); |
595 | const auto clampOpMaxFloat = clampOpFloatMaxValAttr.getValue(); |
596 | ClampRange<APFloat> opRangeFloatRange(opMinFloat, opMaxFloat); |
597 | ClampRange<APFloat> clampRangeFloatRange(clampOpMinFloat, |
598 | clampOpMaxFloat); |
599 | if (!opRangeFloatRange.intersects(otherRange: clampRangeFloatRange)) |
600 | return failure(); |
601 | |
602 | // Run the transformation. |
603 | auto newMinVal = std::max(opMinFloat, clampOpMinFloat); |
604 | auto newMaxVal = std::min(opMaxFloat, clampOpMaxFloat); |
605 | newMinValAttr = rewriter.getFloatAttr(inputEType, newMinVal); |
606 | newMaxValAttr = rewriter.getFloatAttr(inputEType, newMaxVal); |
607 | } else { |
608 | assert(mlir::isa<IntegerType>(inputEType)); |
609 | auto intMaxValAttr = cast<mlir::IntegerAttr>(maxValAttr); |
610 | auto intMinValAttr = cast<mlir::IntegerAttr>(minValAttr); |
611 | auto clampOpIntMaxValAttr = cast<mlir::IntegerAttr>(clampOpMaxValAttr); |
612 | auto clampOpIntMinValAttr = cast<mlir::IntegerAttr>(clampOpMinValAttr); |
613 | |
614 | if (inputEType.isUnsignedInteger()) { |
615 | // Check we have intersecting ranges. |
616 | const auto opMinInt = intMinValAttr.getUInt(); |
617 | const auto opMaxInt = intMaxValAttr.getUInt(); |
618 | const auto clampOpMinInt = clampOpIntMinValAttr.getUInt(); |
619 | const auto clampOpMaxInt = clampOpIntMaxValAttr.getUInt(); |
620 | ClampRange<std::uint64_t> opRangeIntRange(opMinInt, opMaxInt); |
621 | ClampRange<std::uint64_t> clampRangeIntRange(clampOpMinInt, |
622 | clampOpMaxInt); |
623 | if (!opRangeIntRange.intersects(otherRange: clampRangeIntRange)) |
624 | return failure(); |
625 | |
626 | // Run the transformation. |
627 | auto newMinVal = std::max(opMinInt, clampOpMinInt); |
628 | auto newMaxVal = std::min(opMaxInt, clampOpMaxInt); |
629 | newMinValAttr = rewriter.getIntegerAttr(inputEType, newMinVal); |
630 | newMaxValAttr = rewriter.getIntegerAttr(inputEType, newMaxVal); |
631 | } else { |
632 | // Check we have intersecting ranges. |
633 | const auto opMinInt = intMinValAttr.getInt(); |
634 | const auto opMaxInt = intMaxValAttr.getInt(); |
635 | const auto clampOpMinInt = clampOpIntMinValAttr.getInt(); |
636 | const auto clampOpMaxInt = clampOpIntMaxValAttr.getInt(); |
637 | ClampRange<std::int64_t> opRangeIntRange(opMinInt, opMaxInt); |
638 | ClampRange<std::int64_t> clampRangeIntRange(clampOpMinInt, |
639 | clampOpMaxInt); |
640 | if (!opRangeIntRange.intersects(otherRange: clampRangeIntRange)) |
641 | return failure(); |
642 | |
643 | // Run the transformation. |
644 | auto newMinVal = std::max(opMinInt, clampOpMinInt); |
645 | auto newMaxVal = std::min(opMaxInt, clampOpMaxInt); |
646 | newMinValAttr = rewriter.getIntegerAttr(inputEType, newMinVal); |
647 | newMaxValAttr = rewriter.getIntegerAttr(inputEType, newMaxVal); |
648 | } |
649 | } |
650 | |
651 | rewriter.replaceOpWithNewOp<tosa::ClampOp>( |
652 | op, op.getType(), clampOp.getInput(), newMinValAttr, newMaxValAttr, |
653 | rewriter.getStringAttr((opNanMode != clampNanMode) ? "IGNORE" |
654 | : opNanMode)); |
655 | return success(); |
656 | } |
657 | }; |
658 | |
659 | void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results, |
660 | MLIRContext *context) { |
661 | results.add<ClampIsNoOp>(context); |
662 | results.add<ClampClampOptimization>(context); |
663 | } |
664 | |
665 | struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> { |
666 | using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
667 | |
668 | LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
669 | PatternRewriter &rewriter) const override { |
670 | Value sliceInput = sliceOp.getInput1(); |
671 | auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>(); |
672 | if (!concatOp) |
673 | return rewriter.notifyMatchFailure( |
674 | sliceOp, "slice input must be concat operation" ); |
675 | |
676 | OperandRange inputs = concatOp.getInput1(); |
677 | auto concatType = dyn_cast<RankedTensorType>(concatOp.getType()); |
678 | if (!concatType || !concatType.hasStaticShape()) |
679 | return rewriter.notifyMatchFailure( |
680 | sliceOp, "slice input must be a static ranked tensor" ); |
681 | int32_t axis = concatOp.getAxis(); |
682 | |
683 | DenseElementsAttr startElems; |
684 | DenseElementsAttr sizeElems; |
685 | |
686 | if (!matchPattern(sliceOp.getStart(), m_Constant(bind_value: &startElems))) |
687 | return rewriter.notifyMatchFailure( |
688 | sliceOp, "start of slice must be a static ranked shape" ); |
689 | |
690 | if (!matchPattern(sliceOp.getSize(), m_Constant(bind_value: &sizeElems))) |
691 | return rewriter.notifyMatchFailure( |
692 | sliceOp, "size of slice must be a static ranked shape" ); |
693 | |
694 | llvm::SmallVector<int64_t> sliceStarts = |
695 | llvm::to_vector(startElems.getValues<int64_t>()); |
696 | llvm::SmallVector<int64_t> sliceSizes = |
697 | llvm::to_vector(sizeElems.getValues<int64_t>()); |
698 | |
699 | // Validate slice on the concatenated axis. Slicing along this |
700 | // axis should span only one of the inputs to the concatenate |
701 | // operation. |
702 | std::optional<Value> replaceWithSlice; |
703 | for (auto input : inputs) { |
704 | auto inputType = dyn_cast<RankedTensorType>(input.getType()); |
705 | if (!inputType || !inputType.hasStaticShape()) |
706 | return rewriter.notifyMatchFailure( |
707 | sliceOp, "concat input must be a static ranked tensor" ); |
708 | |
709 | if (sliceStarts[axis] >= 0 && (sliceStarts[axis] + sliceSizes[axis]) <= |
710 | inputType.getDimSize(axis)) { |
711 | auto start_op = |
712 | getTosaConstShape(rewriter, sliceOp.getLoc(), sliceStarts); |
713 | auto size_op = |
714 | getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes); |
715 | replaceWithSlice = |
716 | rewriter |
717 | .create<tosa::SliceOp>(sliceOp.getLoc(), sliceOp.getType(), |
718 | input, start_op, size_op) |
719 | .getResult(); |
720 | break; |
721 | } |
722 | sliceStarts[axis] -= inputType.getDimSize(axis); |
723 | } |
724 | |
725 | if (!replaceWithSlice) |
726 | return rewriter.notifyMatchFailure( |
727 | sliceOp, "corresponding concat input not found for slice" ); |
728 | |
729 | rewriter.replaceOp(sliceOp, replaceWithSlice.value()); |
730 | return success(); |
731 | } |
732 | }; |
733 | |
734 | struct PadSliceOptimization : public OpRewritePattern<tosa::SliceOp> { |
735 | using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
736 | |
737 | LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
738 | PatternRewriter &rewriter) const override { |
739 | Value sliceInput = sliceOp.getInput1(); |
740 | |
741 | // Check if producer is a PadOp |
742 | auto padOp = sliceInput.getDefiningOp<tosa::PadOp>(); |
743 | if (!padOp) |
744 | return rewriter.notifyMatchFailure(sliceOp, |
745 | "slice input must be a pad operation" ); |
746 | |
747 | // Check PadOp has a single consumer |
748 | if (!padOp->hasOneUse()) |
749 | return rewriter.notifyMatchFailure(sliceOp, |
750 | "pad shall have a single consumer" ); |
751 | |
752 | // Check input is statically ranked |
753 | auto inputTy = dyn_cast<RankedTensorType>(padOp.getInput1().getType()); |
754 | auto padTy = dyn_cast<RankedTensorType>(padOp.getType()); |
755 | if (!inputTy || !padTy || !inputTy.hasRank()) |
756 | return rewriter.notifyMatchFailure(sliceOp, |
757 | "slice input must be a ranked tensor" ); |
758 | |
759 | // Validate and extract tosa::PadOp padding |
760 | DenseIntElementsAttr paddingElems; |
761 | if (!matchPattern(padOp.getPadding(), m_Constant(bind_value: &paddingElems))) { |
762 | return rewriter.notifyMatchFailure( |
763 | sliceOp, |
764 | "`padding` input specified on the tosa::PadOp must be constant." ); |
765 | } |
766 | llvm::SmallVector<int64_t> padPaddings = |
767 | llvm::to_vector(paddingElems.getValues<int64_t>()); |
768 | |
769 | // Extract slice parameters |
770 | DenseElementsAttr startElems; |
771 | if (!matchPattern(sliceOp.getStart(), m_Constant(bind_value: &startElems))) |
772 | return rewriter.notifyMatchFailure( |
773 | sliceOp, "start of slice must be a static ranked shape" ); |
774 | llvm::SmallVector<int64_t> sliceStarts = |
775 | llvm::to_vector(startElems.getValues<int64_t>()); |
776 | |
777 | DenseElementsAttr sizeElems; |
778 | if (!matchPattern(sliceOp.getSize(), m_Constant(bind_value: &sizeElems))) |
779 | return rewriter.notifyMatchFailure( |
780 | sliceOp, "size of slice must be a static ranked shape" ); |
781 | llvm::SmallVector<int64_t> sliceSizes = |
782 | llvm::to_vector(sizeElems.getValues<int64_t>()); |
783 | |
784 | // Check if dynamic dimensions are sliced |
785 | const int64_t rank = inputTy.getRank(); |
786 | if (llvm::any_of(Range: llvm::seq<int64_t>(Begin: 0, End: rank), P: [&](int64_t i) { |
787 | const bool isDimDynamic = inputTy.isDynamicDim(i); |
788 | const bool isDimSliced = |
789 | (sliceStarts[i] != 0) || (sliceSizes[i] != -1); |
790 | |
791 | return isDimDynamic && isDimSliced; |
792 | })) { |
793 | return rewriter.notifyMatchFailure( |
794 | sliceOp, "axis that are sliced shall be statically known." ); |
795 | } |
796 | |
797 | // Update the parameters |
798 | llvm::SmallVector<int64_t> newSliceStarts(rank, 0); |
799 | llvm::SmallVector<int64_t> newPadPaddings(2 * rank, 0); |
800 | llvm::SmallVector<int64_t> newPadShape(rank, ShapedType::kDynamic); |
801 | bool updated = false; |
802 | |
803 | for (int64_t i = 0; i < rank; ++i) { |
804 | const int64_t padLo = padPaddings[i * 2]; |
805 | const int64_t padHi = padPaddings[i * 2 + 1]; |
806 | const int64_t sliceStart = sliceStarts[i]; |
807 | const int64_t sliceSize = sliceSizes[i]; |
808 | const int64_t sliceEnd = sliceStart + sliceSize; |
809 | |
810 | // If dimension is dynamic pass-through |
811 | if (inputTy.isDynamicDim(i)) { |
812 | newPadPaddings[i * 2] = padLo; |
813 | newPadPaddings[i * 2 + 1] = padHi; |
814 | newSliceStarts[i] = sliceStart; |
815 | continue; |
816 | } |
817 | |
818 | // Handle static dimensions |
819 | const int64_t dimSize = inputTy.getShape()[i]; |
820 | const int64_t dimTotal = padLo + dimSize + padHi; |
821 | |
822 | // Check slice within bounds |
823 | if (sliceStart < 0 || sliceEnd > dimTotal) |
824 | return rewriter.notifyMatchFailure(sliceOp, "slice is out-of-bounds" ); |
825 | |
826 | // Compute updated slice start parameter |
827 | const int64_t newSliceStart = std::max<int64_t>(a: sliceStart - padLo, b: 0); |
828 | newSliceStarts[i] = newSliceStart; |
829 | updated |= newSliceStart != sliceStart; |
830 | |
831 | // Compute updated pad parameters |
832 | const int64_t newPadLo = std::max<int64_t>(a: padLo - sliceStart, b: 0); |
833 | const int64_t newPadHi = |
834 | std::max<int64_t>(a: sliceEnd - (padLo + dimSize), b: 0); |
835 | newPadPaddings[i * 2] = newPadLo; |
836 | newPadPaddings[i * 2 + 1] = newPadHi; |
837 | updated |= (newPadLo != padLo) || (newPadHi != padHi); |
838 | |
839 | // Calculate new pad output shape |
840 | newPadShape[i] = |
841 | newPadPaddings[i * 2] + dimSize + newPadPaddings[i * 2 + 1]; |
842 | } |
843 | |
844 | // Check that we actually need to proceed with the rewrite |
845 | if (!updated) |
846 | return rewriter.notifyMatchFailure( |
847 | sliceOp, "terminate condition; nothing to rewrite" ); |
848 | |
849 | // Create a PadOp with updated padding |
850 | auto newPaddingsOp = |
851 | getTosaConstShape(rewriter, sliceOp.getLoc(), newPadPaddings); |
852 | auto newPadTy = |
853 | RankedTensorType::get(newPadShape, inputTy.getElementType()); |
854 | auto newPadOp = rewriter.create<tosa::PadOp>( |
855 | padOp.getLoc(), newPadTy, padOp.getInput1(), newPaddingsOp, |
856 | padOp.getPadConst()); |
857 | |
858 | // Update SliceOp and point to new PadOp |
859 | auto newStartOp = |
860 | getTosaConstShape(rewriter, sliceOp.getLoc(), newSliceStarts); |
861 | rewriter.replaceOpWithNewOp<tosa::SliceOp>(sliceOp, sliceOp.getType(), |
862 | newPadOp.getResult(), newStartOp, |
863 | sliceOp.getSize()); |
864 | |
865 | return success(); |
866 | } |
867 | }; |
868 | |
869 | // Update size operand of tosa.slice if size has dynamic dims but corresponding |
870 | // output dim is static |
871 | struct SliceDynamicSizeCanonicalization |
872 | : public OpRewritePattern<tosa::SliceOp> { |
873 | using OpRewritePattern<tosa::SliceOp>::OpRewritePattern; |
874 | |
875 | LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, |
876 | PatternRewriter &rewriter) const override { |
877 | ShapedType resultType = cast<ShapedType>(sliceOp.getType()); |
878 | |
879 | ElementsAttr sizeElems; |
880 | if (!matchPattern(sliceOp.getSize(), m_Constant(&sizeElems))) { |
881 | return rewriter.notifyMatchFailure( |
882 | sliceOp, "size of slice must be a static ranked shape" ); |
883 | } |
884 | |
885 | llvm::SmallVector<int64_t> sliceSizes = |
886 | llvm::to_vector(sizeElems.getValues<int64_t>()); |
887 | |
888 | bool replaceSliceSize{false}; |
889 | // if size op has -1 indicating dynamic shape but corresponding dim on the |
890 | // output is statically known, update size to match with known output dim |
891 | // shape |
892 | for (const auto &[index, size] : llvm::enumerate(sliceSizes)) { |
893 | if (size == -1 && !resultType.isDynamicDim(index)) { |
894 | sliceSizes[index] = resultType.getDimSize(index); |
895 | replaceSliceSize = true; |
896 | } |
897 | } |
898 | |
899 | if (!replaceSliceSize) { |
900 | return rewriter.notifyMatchFailure( |
901 | sliceOp, "no dimension of size of slice is dynamic that resolves " |
902 | "to static output shape" ); |
903 | } |
904 | |
905 | auto size_op = getTosaConstShape(rewriter, sliceOp.getLoc(), sliceSizes); |
906 | auto newSliceOp = rewriter.create<tosa::SliceOp>( |
907 | sliceOp.getLoc(), sliceOp.getType(), sliceOp.getInput1(), |
908 | sliceOp.getStart(), size_op); |
909 | |
910 | rewriter.replaceOp(sliceOp, newSliceOp.getResult()); |
911 | return success(); |
912 | } |
913 | }; |
914 | |
915 | void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results, |
916 | MLIRContext *context) { |
917 | results.add<ConcatSliceOptimization, PadSliceOptimization, |
918 | SliceDynamicSizeCanonicalization>(context); |
919 | } |
920 | |
921 | //===----------------------------------------------------------------------===// |
922 | // Operator Folders. |
923 | //===----------------------------------------------------------------------===// |
924 | |
925 | template <typename IntFolder, typename FloatFolder> |
926 | DenseElementsAttr binaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs, |
927 | RankedTensorType returnTy) { |
928 | if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) { |
929 | auto lETy = llvm::cast<ShapedType>(lhs.getType()).getElementType(); |
930 | auto rETy = llvm::cast<ShapedType>(rhs.getType()).getElementType(); |
931 | if (lETy != rETy) |
932 | return {}; |
933 | |
934 | if (llvm::isa<IntegerType>(lETy)) { |
935 | APInt l = lhs.getSplatValue<APInt>(); |
936 | APInt r = rhs.getSplatValue<APInt>(); |
937 | auto result = IntFolder()(l, r); |
938 | return DenseElementsAttr::get(returnTy, result); |
939 | } |
940 | |
941 | if (llvm::isa<FloatType>(lETy)) { |
942 | APFloat l = lhs.getSplatValue<APFloat>(); |
943 | APFloat r = rhs.getSplatValue<APFloat>(); |
944 | auto result = FloatFolder()(l, r); |
945 | return DenseElementsAttr::get(returnTy, result); |
946 | } |
947 | } |
948 | |
949 | return {}; |
950 | } |
951 | |
952 | static bool isSplatZero(Type elemType, DenseElementsAttr val) { |
953 | if (llvm::isa<FloatType>(Val: elemType)) |
954 | return val && val.isSplat() && val.getSplatValue<APFloat>().isZero(); |
955 | if (llvm::isa<IntegerType>(Val: elemType)) |
956 | return val && val.isSplat() && val.getSplatValue<APInt>().isZero(); |
957 | return false; |
958 | } |
959 | |
960 | static bool isSplatOne(Type elemType, DenseElementsAttr val, int64_t shift) { |
961 | if (llvm::isa<FloatType>(Val: elemType)) |
962 | return val && val.isSplat() && |
963 | val.getSplatValue<APFloat>().isExactlyValue(V: 1.0); |
964 | if (llvm::isa<IntegerType>(Val: elemType)) { |
965 | const int64_t shifted = 1LL << shift; |
966 | return val && val.isSplat() && |
967 | val.getSplatValue<APInt>().getSExtValue() == shifted; |
968 | } |
969 | return false; |
970 | } |
971 | |
972 | OpFoldResult AddOp::fold(FoldAdaptor adaptor) { |
973 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
974 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
975 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
976 | if (!lhsTy || !rhsTy || !resultTy) |
977 | return {}; |
978 | |
979 | // Cannot create an ElementsAttr from non-int/float/index types |
980 | if (!lhsTy.getElementType().isIntOrIndexOrFloat() || |
981 | !rhsTy.getElementType().isIntOrIndexOrFloat()) |
982 | return {}; |
983 | |
984 | auto resultETy = resultTy.getElementType(); |
985 | auto lhsAttr = |
986 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
987 | auto rhsAttr = |
988 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
989 | |
990 | if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr)) |
991 | return getInput1(); |
992 | if (rhsTy == resultTy && isSplatZero(resultETy, lhsAttr)) |
993 | return getInput2(); |
994 | |
995 | if (!lhsAttr || !rhsAttr) |
996 | return {}; |
997 | |
998 | return binaryFolder<std::plus<APInt>, std::plus<APFloat>>(lhsAttr, rhsAttr, |
999 | resultTy); |
1000 | } |
1001 | |
1002 | OpFoldResult ArgMaxOp::fold(FoldAdaptor adaptor) { |
1003 | auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType()); |
1004 | auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1005 | if (!inputTy || !outputTy || !inputTy.hasStaticShape() || |
1006 | !outputTy.hasStaticShape()) |
1007 | return {}; |
1008 | |
1009 | if (inputTy.getDimSize(getAxis()) == 1) |
1010 | return DenseElementsAttr::get(outputTy, 0); |
1011 | |
1012 | return {}; |
1013 | } |
1014 | |
1015 | OpFoldResult IntDivOp::fold(FoldAdaptor adaptor) { |
1016 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
1017 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
1018 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1019 | if (!lhsTy || !rhsTy || !resultTy) |
1020 | return {}; |
1021 | if (lhsTy != rhsTy) |
1022 | return {}; |
1023 | |
1024 | // IntDivOp inputs must be integer type, no need to check for quantized type |
1025 | auto resultETy = resultTy.getElementType(); |
1026 | auto lhsAttr = |
1027 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
1028 | auto rhsAttr = |
1029 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
1030 | if (lhsAttr && lhsAttr.isSplat()) { |
1031 | if (llvm::isa<IntegerType>(resultETy) && |
1032 | lhsAttr.getSplatValue<APInt>().isZero()) |
1033 | return lhsAttr; |
1034 | } |
1035 | |
1036 | if (rhsAttr && rhsAttr.isSplat()) { |
1037 | if (llvm::isa<IntegerType>(resultETy) && |
1038 | rhsAttr.getSplatValue<APInt>().isOne()) |
1039 | return getInput1(); |
1040 | } |
1041 | |
1042 | if (rhsAttr && lhsAttr && rhsAttr.isSplat() && lhsAttr.isSplat() && |
1043 | llvm::isa<IntegerType>(resultETy)) { |
1044 | APInt l = lhsAttr.getSplatValue<APInt>(); |
1045 | APInt r = rhsAttr.getSplatValue<APInt>(); |
1046 | if (!r.isZero()) { |
1047 | APInt result = l.sdiv(r); |
1048 | return DenseElementsAttr::get(resultTy, result); |
1049 | } |
1050 | } |
1051 | |
1052 | return {}; |
1053 | } |
1054 | |
1055 | namespace { |
1056 | // calculate lhs * rhs >> shift according to TOSA Spec |
1057 | // return nullopt if result is not in range of int32_t when shift > 0 |
1058 | std::optional<APInt> mulInt(APInt lhs, APInt rhs, int32_t shift, |
1059 | unsigned bitwidth) { |
1060 | APInt result = lhs.sext(width: 64) * rhs.sext(width: 64); |
1061 | |
1062 | if (shift > 0) { |
1063 | auto round = APInt(64, 1) << (shift - 1); |
1064 | result += round; |
1065 | result.ashrInPlace(ShiftAmt: shift); |
1066 | // REQUIRE(product >= minimum_s<i32_t>() && product <= maximum_s<i32_t>()) |
1067 | if (!(result.getSExtValue() >= INT32_MIN && |
1068 | result.getSExtValue() <= INT32_MAX)) { |
1069 | // REQUIRE failed |
1070 | return std::nullopt; |
1071 | } |
1072 | } |
1073 | |
1074 | return result.trunc(width: bitwidth); |
1075 | } |
1076 | |
1077 | DenseElementsAttr mulBinaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs, |
1078 | RankedTensorType ty, int32_t shift) { |
1079 | if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) { |
1080 | if (llvm::isa<IntegerType>(ty.getElementType())) { |
1081 | APInt l = lhs.getSplatValue<APInt>(); |
1082 | APInt r = rhs.getSplatValue<APInt>(); |
1083 | |
1084 | if (shift == 0) { |
1085 | return DenseElementsAttr::get(ty, l * r); |
1086 | } |
1087 | |
1088 | auto bitwidth = ty.getElementType().getIntOrFloatBitWidth(); |
1089 | const std::optional<APInt> result = mulInt(l, r, shift, bitwidth); |
1090 | if (!result) |
1091 | return {}; |
1092 | return DenseElementsAttr::get(ty, result.value()); |
1093 | } |
1094 | |
1095 | if (llvm::isa<FloatType>(ty.getElementType())) { |
1096 | APFloat l = lhs.getSplatValue<APFloat>(); |
1097 | APFloat r = rhs.getSplatValue<APFloat>(); |
1098 | APFloat result = l * r; |
1099 | return DenseElementsAttr::get(ty, result); |
1100 | } |
1101 | } |
1102 | |
1103 | return {}; |
1104 | } |
1105 | } // namespace |
1106 | |
1107 | OpFoldResult MulOp::fold(FoldAdaptor adaptor) { |
1108 | auto lhs = getInput1(); |
1109 | auto rhs = getInput2(); |
1110 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(lhs.getType()); |
1111 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(rhs.getType()); |
1112 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1113 | if (!lhsTy || !rhsTy || !resultTy) |
1114 | return {}; |
1115 | |
1116 | auto resultETy = resultTy.getElementType(); |
1117 | auto lhsAttr = |
1118 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
1119 | auto rhsAttr = |
1120 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
1121 | |
1122 | // Result right shift on i32_t data type only. For simplification, synthesize |
1123 | // a zero shift for other data type. |
1124 | int32_t shift = 0; |
1125 | if (resultETy.isInteger(32)) { |
1126 | ElementsAttr shift_elem; |
1127 | if (getShift().getImpl()) { |
1128 | if (!matchPattern(getShift(), m_Constant(&shift_elem))) |
1129 | // cannot be folded when the shift value is unknown. |
1130 | return {}; |
1131 | shift = shift_elem.getValues<IntegerAttr>()[0].getInt(); |
1132 | } |
1133 | } |
1134 | |
1135 | if (rhsTy == resultTy) { |
1136 | if (isSplatZero(resultETy, lhsAttr)) |
1137 | return lhsAttr.resizeSplat(resultTy); |
1138 | if (isSplatOne(resultETy, lhsAttr, shift)) |
1139 | return rhs; |
1140 | } |
1141 | if (lhsTy == resultTy) { |
1142 | if (isSplatZero(resultETy, rhsAttr)) |
1143 | return rhsAttr.resizeSplat(resultTy); |
1144 | if (isSplatOne(resultETy, rhsAttr, shift)) |
1145 | return lhs; |
1146 | } |
1147 | |
1148 | return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, shift); |
1149 | } |
1150 | |
1151 | OpFoldResult SubOp::fold(FoldAdaptor adaptor) { |
1152 | auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
1153 | auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType()); |
1154 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1155 | if (!lhsTy || !rhsTy || !resultTy) |
1156 | return {}; |
1157 | |
1158 | // Cannot create an ElementsAttr from non-int/float/index types |
1159 | if (!lhsTy.getElementType().isIntOrIndexOrFloat() || |
1160 | !rhsTy.getElementType().isIntOrIndexOrFloat()) |
1161 | return {}; |
1162 | |
1163 | auto resultETy = resultTy.getElementType(); |
1164 | auto lhsAttr = |
1165 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
1166 | auto rhsAttr = |
1167 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
1168 | |
1169 | if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr)) |
1170 | return getInput1(); |
1171 | |
1172 | if (!lhsAttr || !rhsAttr) |
1173 | return {}; |
1174 | |
1175 | return binaryFolder<std::minus<APInt>, std::minus<APFloat>>(lhsAttr, rhsAttr, |
1176 | resultTy); |
1177 | } |
1178 | |
1179 | namespace { |
1180 | template <typename Cmp> |
1181 | struct ComparisonFold { |
1182 | ComparisonFold() = default; |
1183 | APInt operator()(const APInt &l, const APInt &r) { |
1184 | return APInt(1, Cmp()(l, r)); |
1185 | } |
1186 | |
1187 | APInt operator()(const APFloat &l, const APFloat &r) { |
1188 | return APInt(1, Cmp()(l, r)); |
1189 | } |
1190 | }; |
1191 | |
1192 | struct APIntFoldGreater { |
1193 | APIntFoldGreater() = default; |
1194 | APInt operator()(const APInt &l, const APInt &r) { |
1195 | return APInt(1, l.sgt(RHS: r)); |
1196 | } |
1197 | }; |
1198 | |
1199 | struct APIntFoldGreaterEqual { |
1200 | APIntFoldGreaterEqual() = default; |
1201 | APInt operator()(const APInt &l, const APInt &r) { |
1202 | return APInt(1, l.sge(RHS: r)); |
1203 | } |
1204 | }; |
1205 | } // namespace |
1206 | |
1207 | OpFoldResult GreaterOp::fold(FoldAdaptor adaptor) { |
1208 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1209 | auto lhsAttr = |
1210 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
1211 | auto rhsAttr = |
1212 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
1213 | |
1214 | if (!lhsAttr || !rhsAttr) |
1215 | return {}; |
1216 | |
1217 | return binaryFolder<APIntFoldGreater, ComparisonFold<std::greater<APFloat>>>( |
1218 | lhsAttr, rhsAttr, resultTy); |
1219 | } |
1220 | |
1221 | OpFoldResult GreaterEqualOp::fold(FoldAdaptor adaptor) { |
1222 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1223 | auto lhsAttr = |
1224 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
1225 | auto rhsAttr = |
1226 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
1227 | |
1228 | if (!lhsAttr || !rhsAttr) |
1229 | return {}; |
1230 | |
1231 | return binaryFolder<APIntFoldGreaterEqual, |
1232 | ComparisonFold<std::greater_equal<APFloat>>>( |
1233 | lhsAttr, rhsAttr, resultTy); |
1234 | } |
1235 | |
1236 | OpFoldResult EqualOp::fold(FoldAdaptor adaptor) { |
1237 | auto resultTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1238 | auto lhsAttr = |
1239 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1()); |
1240 | auto rhsAttr = |
1241 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2()); |
1242 | Value lhs = getInput1(); |
1243 | Value rhs = getInput2(); |
1244 | auto lhsTy = llvm::cast<ShapedType>(lhs.getType()); |
1245 | |
1246 | // If we are comparing an integer value to itself it is always true. We can |
1247 | // not do this with float due to float values. |
1248 | if (llvm::isa<IntegerType>(lhsTy.getElementType()) && resultTy && |
1249 | resultTy.hasStaticShape() && lhs == rhs) { |
1250 | return DenseElementsAttr::get(resultTy, true); |
1251 | } |
1252 | |
1253 | if (!lhsAttr || !rhsAttr) |
1254 | return {}; |
1255 | |
1256 | return binaryFolder<ComparisonFold<std::equal_to<APInt>>, |
1257 | ComparisonFold<std::equal_to<APFloat>>>(lhsAttr, rhsAttr, |
1258 | resultTy); |
1259 | } |
1260 | |
1261 | OpFoldResult CastOp::fold(FoldAdaptor adaptor) { |
1262 | if (getInput().getType() == getType()) |
1263 | return getInput(); |
1264 | |
1265 | auto operand = llvm::dyn_cast_if_present<ElementsAttr>(adaptor.getInput()); |
1266 | if (!operand) |
1267 | return {}; |
1268 | |
1269 | auto inTy = llvm::cast<ShapedType>(getInput().getType()); |
1270 | auto outTy = llvm::cast<ShapedType>(getType()); |
1271 | auto inETy = inTy.getElementType(); |
1272 | auto outETy = outTy.getElementType(); |
1273 | |
1274 | if (operand.isSplat()) { |
1275 | if (llvm::isa<FloatType>(inETy) && llvm::isa<FloatType>(outETy)) { |
1276 | bool overflow; |
1277 | auto splatVal = operand.getSplatValue<APFloat>(); |
1278 | auto &semantics = llvm::cast<FloatType>(outETy).getFloatSemantics(); |
1279 | splatVal.convert(semantics, llvm::RoundingMode::NearestTiesToEven, |
1280 | &overflow); |
1281 | return SplatElementsAttr::get(outTy, splatVal); |
1282 | } |
1283 | |
1284 | if (llvm::isa<IntegerType>(inETy) && llvm::isa<FloatType>(outETy)) { |
1285 | auto unsign = llvm::cast<IntegerType>(inETy).isUnsignedInteger(); |
1286 | APFloat splatVal(llvm::cast<FloatType>(outETy).getFloatSemantics()); |
1287 | splatVal.convertFromAPInt(operand.getSplatValue<APInt>(), !unsign, |
1288 | llvm::RoundingMode::NearestTiesToEven); |
1289 | return SplatElementsAttr::get(outTy, splatVal); |
1290 | } |
1291 | |
1292 | if (llvm::isa<FloatType>(inETy) && llvm::isa<IntegerType>(outETy)) { |
1293 | auto unsign = llvm::cast<IntegerType>(outETy).isUnsignedInteger(); |
1294 | auto intVal = APSInt( |
1295 | llvm::cast<IntegerType>(outETy).getIntOrFloatBitWidth(), unsign); |
1296 | auto floatVal = operand.getSplatValue<APFloat>(); |
1297 | bool exact; |
1298 | floatVal.convertToInteger(intVal, llvm::RoundingMode::NearestTiesToEven, |
1299 | &exact); |
1300 | return SplatElementsAttr::get(outTy, intVal); |
1301 | } |
1302 | |
1303 | if (llvm::isa<IntegerType>(inETy) && llvm::isa<IntegerType>(outETy)) { |
1304 | auto unsignIn = llvm::cast<IntegerType>(inETy).isUnsignedInteger(); |
1305 | bool trunc = |
1306 | inETy.getIntOrFloatBitWidth() > outETy.getIntOrFloatBitWidth(); |
1307 | auto intVal = operand.getSplatValue<APInt>(); |
1308 | auto bitwidth = outETy.getIntOrFloatBitWidth(); |
1309 | |
1310 | if (trunc) { |
1311 | intVal = intVal.trunc(bitwidth); |
1312 | } else if (unsignIn) { |
1313 | intVal = intVal.zext(bitwidth); |
1314 | } else { |
1315 | intVal = intVal.sext(bitwidth); |
1316 | } |
1317 | |
1318 | return SplatElementsAttr::get(outTy, intVal); |
1319 | } |
1320 | } |
1321 | |
1322 | return {}; |
1323 | } |
1324 | |
1325 | OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); } |
1326 | |
1327 | OpFoldResult ConstShapeOp::fold(FoldAdaptor adaptor) { return getValuesAttr(); } |
1328 | |
1329 | #define REDUCE_FOLDER(OP) \ |
1330 | OpFoldResult OP::fold(FoldAdaptor adaptor) { \ |
1331 | ShapedType inputTy = llvm::cast<ShapedType>(getInput().getType()); \ |
1332 | if (!inputTy.hasRank()) \ |
1333 | return {}; \ |
1334 | if (inputTy != getType()) \ |
1335 | return {}; \ |
1336 | if (inputTy.getRank() == 0 || inputTy.getDimSize(getAxis()) == 1) \ |
1337 | return getInput(); \ |
1338 | return {}; \ |
1339 | } |
1340 | |
1341 | REDUCE_FOLDER(ReduceAllOp) |
1342 | REDUCE_FOLDER(ReduceAnyOp) |
1343 | REDUCE_FOLDER(ReduceMaxOp) |
1344 | REDUCE_FOLDER(ReduceMinOp) |
1345 | REDUCE_FOLDER(ReduceProductOp) |
1346 | REDUCE_FOLDER(ReduceSumOp) |
1347 | #undef REDUCE_FOLDER |
1348 | |
1349 | OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) { |
1350 | auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
1351 | auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1352 | |
1353 | if (!inputTy || !outputTy) |
1354 | return {}; |
1355 | |
1356 | // Fold when the input and output types are the same. This is only safe when |
1357 | // there is at most 1 dynamic dimension. For 2 or more dynamic dimensions, |
1358 | // there may still be a productive reshape. |
1359 | if (inputTy == outputTy && inputTy.getNumDynamicDims() < 2) |
1360 | return getInput1(); |
1361 | |
1362 | // reshape(reshape(x)) -> reshape(x) |
1363 | if (auto reshapeOp = llvm::dyn_cast_if_present<tosa::ReshapeOp>( |
1364 | getInput1().getDefiningOp())) { |
1365 | getInput1Mutable().assign(reshapeOp.getInput1()); |
1366 | return getResult(); |
1367 | } |
1368 | |
1369 | // Cannot create an ElementsAttr from non-int/float/index types |
1370 | if (!inputTy.getElementType().isIntOrIndexOrFloat()) |
1371 | return {}; |
1372 | |
1373 | // reshape(const(x)) -> const(reshape-attr(x)) |
1374 | if (auto operand = |
1375 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) { |
1376 | // Constants must have static shape. |
1377 | if (!outputTy.hasStaticShape()) |
1378 | return {}; |
1379 | |
1380 | // Okay to duplicate splat constants. |
1381 | if (operand.isSplat()) |
1382 | return SplatElementsAttr::get(outputTy, |
1383 | operand.getSplatValue<Attribute>()); |
1384 | |
1385 | // Don't duplicate other constants. |
1386 | if (!getInput1().hasOneUse()) |
1387 | return {}; |
1388 | |
1389 | llvm::SmallVector<int64_t> shapeVec; |
1390 | if (!tosa::getConstShapeValues(getShape().getDefiningOp(), shapeVec)) |
1391 | return {}; |
1392 | |
1393 | return operand.reshape( |
1394 | llvm::cast<ShapedType>(operand.getType()).clone(shapeVec)); |
1395 | } |
1396 | |
1397 | return {}; |
1398 | } |
1399 | |
1400 | OpFoldResult PadOp::fold(FoldAdaptor adaptor) { |
1401 | // If the pad is all zeros we can fold this operation away. |
1402 | if (adaptor.getPadding() && getInput1().getType() == getType()) { |
1403 | auto densePad = llvm::dyn_cast<DenseElementsAttr>(adaptor.getPadding()); |
1404 | if (densePad && densePad.isSplat() && |
1405 | densePad.getSplatValue<APInt>().isZero()) { |
1406 | return getInput1(); |
1407 | } |
1408 | } |
1409 | |
1410 | return {}; |
1411 | } |
1412 | |
1413 | // Fold away cases where a tosa.resize operation returns a copy |
1414 | // of the input image. |
1415 | OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) { |
1416 | auto scaleAttr = |
1417 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getScale()); |
1418 | auto offsetAttr = |
1419 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getOffset()); |
1420 | auto borderAttr = |
1421 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getBorder()); |
1422 | if (!scaleAttr || !offsetAttr || !borderAttr) { |
1423 | return {}; |
1424 | } |
1425 | |
1426 | auto scale = tosa::convertFromIntAttr(scaleAttr, /* rank = */ 4); |
1427 | auto offset = tosa::convertFromIntAttr(offsetAttr, /* rank = */ 2); |
1428 | auto border = tosa::convertFromIntAttr(borderAttr, /* rank = */ 2); |
1429 | if (scale.size() != 4 || offset.size() != 2 || border.size() != 2) { |
1430 | return {}; |
1431 | } |
1432 | |
1433 | // Check unit scaling. |
1434 | if (scale[0] != scale[1] || scale[2] != scale[3]) { |
1435 | return {}; |
1436 | } |
1437 | |
1438 | // There should be no offset. |
1439 | if (offset[0] != 0 || offset[1] != 0) { |
1440 | return {}; |
1441 | } |
1442 | |
1443 | // There should be no border. |
1444 | if (border[0] != 0 || border[1] != 0) { |
1445 | return {}; |
1446 | } |
1447 | |
1448 | auto input = getInput(); |
1449 | auto inputTy = llvm::cast<RankedTensorType>(input.getType()); |
1450 | auto resultTy = llvm::cast<RankedTensorType>(getType()); |
1451 | if (inputTy != resultTy) |
1452 | return {}; |
1453 | |
1454 | return input; |
1455 | } |
1456 | |
1457 | OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) { |
1458 | auto operand = getInput1(); |
1459 | auto operandTy = llvm::cast<ShapedType>(operand.getType()); |
1460 | auto axis = getAxis(); |
1461 | auto operandAttr = |
1462 | llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput1()); |
1463 | if (operandAttr) |
1464 | return operandAttr; |
1465 | |
1466 | // If the dim-length is 1, tosa.reverse is a no-op. |
1467 | if (operandTy.hasRank() && |
1468 | (operandTy.getRank() == 0 || operandTy.getDimSize(axis) == 1)) |
1469 | return operand; |
1470 | |
1471 | return {}; |
1472 | } |
1473 | |
1474 | OpFoldResult SliceOp::fold(FoldAdaptor adaptor) { |
1475 | auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
1476 | auto outputTy = llvm::dyn_cast<RankedTensorType>(getType()); |
1477 | |
1478 | if (!inputTy || !outputTy) |
1479 | return {}; |
1480 | |
1481 | if (inputTy == outputTy && inputTy.hasStaticShape()) |
1482 | return getInput1(); |
1483 | |
1484 | if (!adaptor.getInput1()) |
1485 | return {}; |
1486 | |
1487 | // Cannot create an ElementsAttr from non-int/float/index types |
1488 | if (!inputTy.getElementType().isIntOrIndexOrFloat() || |
1489 | !outputTy.getElementType().isIntOrIndexOrFloat()) |
1490 | return {}; |
1491 | |
1492 | auto operand = llvm::cast<ElementsAttr>(adaptor.getInput1()); |
1493 | if (operand.isSplat() && outputTy.hasStaticShape()) { |
1494 | return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>()); |
1495 | } |
1496 | |
1497 | if (inputTy.hasStaticShape() && outputTy.hasStaticShape() && |
1498 | outputTy.getNumElements() == 1) { |
1499 | DenseElementsAttr startElems; |
1500 | if (!matchPattern(getStart(), m_Constant(&startElems))) |
1501 | return {}; |
1502 | |
1503 | llvm::SmallVector<uint64_t> indices = |
1504 | llvm::to_vector(startElems.getValues<uint64_t>()); |
1505 | auto value = operand.getValues<Attribute>()[indices]; |
1506 | return SplatElementsAttr::get(outputTy, value); |
1507 | } |
1508 | |
1509 | return {}; |
1510 | } |
1511 | |
1512 | OpFoldResult tosa::SelectOp::fold(FoldAdaptor adaptor) { |
1513 | if (getInput2() == getInput3()) |
1514 | return getInput2(); |
1515 | |
1516 | auto predicate = |
1517 | llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getInput1()); |
1518 | if (!predicate) |
1519 | return {}; |
1520 | |
1521 | if (!predicate.isSplat()) |
1522 | return {}; |
1523 | return predicate.getSplatValue<APInt>().getBoolValue() ? getInput2() |
1524 | : getInput3(); |
1525 | } |
1526 | |
1527 | OpFoldResult TileOp::fold(FoldAdaptor adaptor) { |
1528 | if (getInput1().getType() == getType()) { |
1529 | if (auto multiples = llvm::dyn_cast_if_present<DenseElementsAttr>( |
1530 | adaptor.getMultiples())) { |
1531 | if (multiples.isSplat() && |
1532 | multiples.getSplatValue<APInt>().getSExtValue() == 1) |
1533 | return getInput1(); |
1534 | if (auto int_array_attr = |
1535 | llvm::dyn_cast<DenseIntElementsAttr>(multiples)) { |
1536 | if (llvm::all_of(int_array_attr.getValues<APInt>(), |
1537 | [](APInt v) { return v.getSExtValue() == 1; })) |
1538 | return getInput1(); |
1539 | } |
1540 | } |
1541 | } |
1542 | return {}; |
1543 | } |
1544 | |
1545 | OpFoldResult TransposeOp::fold(FoldAdaptor adaptor) { |
1546 | auto resultTy = llvm::cast<ShapedType>(getType()); |
1547 | |
1548 | // Transposing splat values just means reshaping. |
1549 | if (auto input = |
1550 | llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) { |
1551 | if (input.isSplat() && resultTy.hasStaticShape() && |
1552 | input.getType().getElementType() == resultTy.getElementType()) |
1553 | return input.reshape(resultTy); |
1554 | } |
1555 | |
1556 | // Transpose is not the identity transpose. |
1557 | const llvm::ArrayRef<int32_t> perms = getPerms(); |
1558 | |
1559 | if (!llvm::equal(llvm::seq<int32_t>(0, perms.size()), perms)) |
1560 | return {}; |
1561 | |
1562 | return getInput1(); |
1563 | } |
1564 | |
1565 | OpFoldResult tosa::LogOp::fold(FoldAdaptor adaptor) { |
1566 | auto input = getInput1(); |
1567 | // Element-wise log(exp(x)) = x |
1568 | if (auto op = input.getDefiningOp<tosa::ExpOp>()) { |
1569 | return op.getInput1(); |
1570 | } |
1571 | |
1572 | return {}; |
1573 | } |
1574 | |
1575 | OpFoldResult tosa::ExpOp::fold(FoldAdaptor adaptor) { |
1576 | auto input = getInput1(); |
1577 | // Element-wise exp(log(x)) = x |
1578 | if (auto op = input.getDefiningOp<tosa::LogOp>()) { |
1579 | return op.getInput1(); |
1580 | } |
1581 | |
1582 | return {}; |
1583 | } |
1584 | |
1585 | OpFoldResult tosa::NegateOp::fold(FoldAdaptor adaptor) { |
1586 | // Element-wise negate(negate(x)) = x |
1587 | // iff all zero points are constant 0 |
1588 | auto definingOp = getInput1().getDefiningOp<tosa::NegateOp>(); |
1589 | if (!definingOp) { |
1590 | // defining op of input1 is not a negate, cannot fold |
1591 | return {}; |
1592 | } |
1593 | |
1594 | if (FailureOr<int64_t> maybeIZp = getInput1ZeroPoint(); |
1595 | failed(maybeIZp) || *maybeIZp != 0) { |
1596 | // input1 zero point is not constant 0, cannot fold |
1597 | return {}; |
1598 | } |
1599 | if (FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
1600 | failed(maybeOZp) || *maybeOZp != 0) { |
1601 | // output zero point is not constant 0, cannot fold |
1602 | return {}; |
1603 | } |
1604 | if (FailureOr<int64_t> maybeIZp = definingOp.getInput1ZeroPoint(); |
1605 | failed(maybeIZp) || *maybeIZp != 0) { |
1606 | // definingOp's input1 zero point is not constant 0, cannot fold |
1607 | return {}; |
1608 | } |
1609 | if (FailureOr<int64_t> maybeOZp = definingOp.getOutputZeroPoint(); |
1610 | failed(maybeOZp) || *maybeOZp != 0) { |
1611 | // definingOp's output zero point is not constant 0, cannot fold |
1612 | return {}; |
1613 | } |
1614 | |
1615 | return definingOp.getInput1(); |
1616 | } |
1617 | |
1618 | OpFoldResult tosa::AbsOp::fold(FoldAdaptor adaptor) { |
1619 | auto input = getInput1(); |
1620 | // Element-wise abs(abs(x)) = abs(x) |
1621 | if (auto op = input.getDefiningOp<tosa::AbsOp>()) { |
1622 | return input; |
1623 | } |
1624 | |
1625 | return {}; |
1626 | } |
1627 | |
1628 | OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) { |
1629 | // Fold consecutive concats on the same axis into a single op. |
1630 | // Keep track of the operands so we are able to construct a new concat |
1631 | // later. Conservatively assume that we double the number of operands when |
1632 | // folding |
1633 | SmallVector<Value, 8> concatOperands; |
1634 | concatOperands.reserve(2 * getNumOperands()); |
1635 | |
1636 | // Find all operands that are foldable concats |
1637 | bool foundFoldableConcat = false; |
1638 | for (Value operand : getOperands()) { |
1639 | concatOperands.emplace_back(operand); |
1640 | |
1641 | auto producer = dyn_cast_or_null<ConcatOp>(operand.getDefiningOp()); |
1642 | if (!producer) |
1643 | continue; |
1644 | |
1645 | // Not foldable if axes are not the same |
1646 | if (getAxis() != producer.getAxis()) |
1647 | continue; |
1648 | |
1649 | // Replace the original operand with all incoming operands |
1650 | foundFoldableConcat = true; |
1651 | concatOperands.pop_back(); |
1652 | llvm::append_range(concatOperands, producer->getOperands()); |
1653 | } |
1654 | |
1655 | if (!foundFoldableConcat) |
1656 | return {}; |
1657 | |
1658 | getOperation()->setOperands(concatOperands); |
1659 | return getResult(); |
1660 | } |
1661 | |
1662 | OpFoldResult tosa::ReciprocalOp::fold(FoldAdaptor adaptor) { |
1663 | auto input = adaptor.getInput1(); |
1664 | |
1665 | auto inputAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(input); |
1666 | // Fold splat inputs only. |
1667 | if (!inputAttr || !inputAttr.isSplat()) |
1668 | return {}; |
1669 | |
1670 | auto shapeType = llvm::cast<ShapedType>(getType()); |
1671 | if (auto floatType = llvm::dyn_cast<FloatType>(inputAttr.getElementType())) { |
1672 | auto floatVal = inputAttr.getSplatValue<APFloat>(); |
1673 | return DenseElementsAttr::get(shapeType, |
1674 | ReciprocalOp::calcOneElement(floatVal)); |
1675 | } |
1676 | |
1677 | return {}; |
1678 | } |
1679 | |