| 1 | //===- TosaOps.cpp - MLIR Dialect for TOSA --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // \file |
| 10 | // This file implements the TOSA Specification: |
| 11 | // https://www.mlplatform.org/tosa/tosa_spec.html |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| 16 | #include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h" |
| 17 | #include "mlir/Dialect/Quant/IR/Quant.h" |
| 18 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 19 | #include "mlir/Dialect/Tosa/Utils/QuantUtils.h" |
| 20 | #include "mlir/Dialect/Tosa/Utils/ShapeUtils.h" |
| 21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
| 22 | #include "mlir/IR/BuiltinTypes.h" |
| 23 | #include "mlir/IR/DialectImplementation.h" |
| 24 | #include "mlir/IR/Matchers.h" |
| 25 | #include "mlir/IR/PatternMatch.h" |
| 26 | #include "mlir/IR/TypeUtilities.h" |
| 27 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
| 28 | #include "mlir/Transforms/InliningUtils.h" |
| 29 | #include "llvm/ADT/APFloat.h" |
| 30 | #include "llvm/ADT/DenseMap.h" |
| 31 | #include "llvm/ADT/TypeSwitch.h" |
| 32 | |
| 33 | #include <numeric> |
| 34 | |
| 35 | using namespace mlir; |
| 36 | using namespace mlir::tosa; |
| 37 | |
| 38 | #include "mlir/Dialect/Tosa/IR/TosaOpsDialect.cpp.inc" |
| 39 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
| 40 | |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | // Tosa dialect interface includes. |
| 43 | //===----------------------------------------------------------------------===// |
| 44 | |
| 45 | #include "mlir/Dialect/Tosa/IR/TosaAvailability.cpp.inc" |
| 46 | #include "mlir/Dialect/Tosa/IR/TosaEnums.cpp.inc" |
| 47 | #include "mlir/Dialect/Tosa/IR/TosaInterfaces.cpp.inc" |
| 48 | #include "mlir/Dialect/Tosa/IR/TosaOpAvailabilityImpl.inc" |
| 49 | |
| 50 | namespace { |
| 51 | #include "mlir/Dialect/Tosa/IR/TosaDialectBytecode.cpp.inc" |
| 52 | |
| 53 | //===----------------------------------------------------------------------===// |
| 54 | // Dialect Function Inliner Interface. |
| 55 | //===----------------------------------------------------------------------===// |
| 56 | struct TosaInlinerInterface : public DialectInlinerInterface { |
| 57 | using DialectInlinerInterface::DialectInlinerInterface; |
| 58 | |
| 59 | //===--------------------------------------------------------------------===// |
| 60 | // Analysis Hooks. |
| 61 | //===--------------------------------------------------------------------===// |
| 62 | |
| 63 | /// All operations can be inlined by default. |
| 64 | bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned, |
| 65 | IRMapping &map) const final { |
| 66 | return true; |
| 67 | } |
| 68 | |
| 69 | /// All regions with If and While parent operators can be inlined. |
| 70 | bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, |
| 71 | IRMapping &map) const final { |
| 72 | return (isa<tosa::IfOp>(dest->getParentOp()) || |
| 73 | isa<tosa::WhileOp>(dest->getParentOp())); |
| 74 | } |
| 75 | }; |
| 76 | |
| 77 | /// This class implements the bytecode interface for the Tosa dialect. |
| 78 | struct TosaDialectBytecodeInterface : public BytecodeDialectInterface { |
| 79 | TosaDialectBytecodeInterface(Dialect *dialect) |
| 80 | : BytecodeDialectInterface(dialect) {} |
| 81 | |
| 82 | //===--------------------------------------------------------------------===// |
| 83 | // Attributes |
| 84 | |
| 85 | Attribute readAttribute(DialectBytecodeReader &reader) const override { |
| 86 | return ::readAttribute(getContext(), reader); |
| 87 | } |
| 88 | |
| 89 | LogicalResult writeAttribute(Attribute attr, |
| 90 | DialectBytecodeWriter &writer) const override { |
| 91 | return ::writeAttribute(attr, writer); |
| 92 | } |
| 93 | |
| 94 | //===--------------------------------------------------------------------===// |
| 95 | // Types |
| 96 | |
| 97 | Type readType(DialectBytecodeReader &reader) const override { |
| 98 | return ::readType(getContext(), reader); |
| 99 | } |
| 100 | |
| 101 | LogicalResult writeType(Type type, |
| 102 | DialectBytecodeWriter &writer) const override { |
| 103 | return ::writeType(type, writer); |
| 104 | } |
| 105 | |
| 106 | void writeVersion(DialectBytecodeWriter &writer) const final { |
| 107 | // TODO: Populate. |
| 108 | } |
| 109 | |
| 110 | std::unique_ptr<DialectVersion> |
| 111 | readVersion(DialectBytecodeReader &reader) const final { |
| 112 | // TODO: Populate |
| 113 | reader.emitError(msg: "Dialect does not support versioning" ); |
| 114 | return nullptr; |
| 115 | } |
| 116 | |
| 117 | LogicalResult upgradeFromVersion(Operation *topLevelOp, |
| 118 | const DialectVersion &version) const final { |
| 119 | return success(); |
| 120 | } |
| 121 | }; |
| 122 | |
| 123 | } // namespace |
| 124 | |
| 125 | //===----------------------------------------------------------------------===// |
| 126 | // TOSA control flow support. |
| 127 | //===----------------------------------------------------------------------===// |
| 128 | |
| 129 | /// Returns the while loop body. |
| 130 | SmallVector<Region *> tosa::WhileOp::getLoopRegions() { |
| 131 | return {&getBodyGraph()}; |
| 132 | } |
| 133 | |
| 134 | //===----------------------------------------------------------------------===// |
| 135 | // TOSA variable operator support. |
| 136 | //===----------------------------------------------------------------------===// |
| 137 | |
| 138 | static SmallVector<int64_t> convertToMlirShape(ArrayRef<int64_t> shape) { |
| 139 | return to_vector(Range: llvm::map_range(C&: shape, F: [](int64_t dim) { |
| 140 | return dim == -1 ? ShapedType::kDynamic : dim; |
| 141 | })); |
| 142 | } |
| 143 | |
| 144 | // returns type of variable op |
| 145 | RankedTensorType mlir::tosa::getVariableType(tosa::VariableOp variableOp) { |
| 146 | Type elementType = variableOp.getType(); |
| 147 | DenseIntElementsAttr varShapeAttr = variableOp.getVarShape(); |
| 148 | auto shape = convertToMlirShape(to_vector(varShapeAttr.getValues<int64_t>())); |
| 149 | return RankedTensorType::get(shape, elementType); |
| 150 | } |
| 151 | |
| 152 | //===----------------------------------------------------------------------===// |
| 153 | // Tosa dialect initialization. |
| 154 | //===----------------------------------------------------------------------===// |
| 155 | |
| 156 | void TosaDialect::initialize() { |
| 157 | addTypes< |
| 158 | #define GET_TYPEDEF_LIST |
| 159 | #include "mlir/Dialect/Tosa/IR/TosaOpsTypesBase.cpp.inc" |
| 160 | >(); |
| 161 | addOperations< |
| 162 | #define GET_OP_LIST |
| 163 | #include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc" |
| 164 | >(); |
| 165 | addAttributes< |
| 166 | #define GET_ATTRDEF_LIST |
| 167 | #include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc" |
| 168 | >(); |
| 169 | addInterfaces<TosaDialectBytecodeInterface, TosaInlinerInterface>(); |
| 170 | declarePromisedInterfaces< |
| 171 | mesh::ShardingInterface, ClampOp, SigmoidOp, TanhOp, AddOp, |
| 172 | ArithmeticRightShiftOp, BitwiseAndOp, BitwiseOrOp, BitwiseXorOp, IntDivOp, |
| 173 | LogicalAndOp, LogicalLeftShiftOp, LogicalRightShiftOp, LogicalOrOp, |
| 174 | LogicalXorOp, MaximumOp, MinimumOp, MulOp, PowOp, SubOp, AbsOp, |
| 175 | BitwiseNotOp, CeilOp, ClzOp, ExpOp, FloorOp, LogOp, LogicalNotOp, |
| 176 | NegateOp, ReciprocalOp, RsqrtOp, SelectOp, EqualOp, GreaterOp, |
| 177 | GreaterEqualOp, MatMulOp>(); |
| 178 | } |
| 179 | |
| 180 | Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value, |
| 181 | Type type, Location loc) { |
| 182 | // Tosa dialect constants only support ElementsAttr unlike standard dialect |
| 183 | // constant which supports all attributes. |
| 184 | if (llvm::isa<shapeType>(type) && llvm::isa<DenseIntElementsAttr>(value)) { |
| 185 | return builder.create<tosa::ConstShapeOp>( |
| 186 | loc, type, llvm::cast<DenseIntElementsAttr>(value)); |
| 187 | } |
| 188 | if (llvm::isa<ElementsAttr>(value)) |
| 189 | return builder.create<tosa::ConstOp>(loc, type, |
| 190 | llvm::cast<ElementsAttr>(value)); |
| 191 | return nullptr; |
| 192 | } |
| 193 | |
| 194 | //===----------------------------------------------------------------------===// |
| 195 | // Parsers and printers |
| 196 | //===----------------------------------------------------------------------===// |
| 197 | |
| 198 | namespace { |
| 199 | |
| 200 | ParseResult getShapeAndElementType(OpAsmParser &parser, Type parsedType, |
| 201 | DenseElementsAttr &varShapeAttr, |
| 202 | TypeAttr &typeAttr) { |
| 203 | if (auto shapedType = dyn_cast<ShapedType>(parsedType)) { |
| 204 | if (!shapedType.hasRank()) |
| 205 | return parser.emitError(loc: parser.getCurrentLocation()) |
| 206 | << "expected ranked type" ; |
| 207 | |
| 208 | auto elementType = shapedType.getElementType(); |
| 209 | typeAttr = TypeAttr::get(elementType); |
| 210 | ArrayRef<int64_t> shape = shapedType.getShape(); |
| 211 | Builder builder(parser.getContext()); |
| 212 | varShapeAttr = builder.getIndexTensorAttr(convertFromMlirShape(shape)); |
| 213 | return success(); |
| 214 | } |
| 215 | return parser.emitError(loc: parser.getCurrentLocation()) |
| 216 | << "expected shaped type" ; |
| 217 | } |
| 218 | |
| 219 | } // namespace |
| 220 | |
| 221 | // parses the optional initial value or type for a tosa variable |
| 222 | // with initial value: |
| 223 | // tosa.variable @name = dense<0.0> : tensor<1x8xf32> |
| 224 | // |
| 225 | // without initial value: |
| 226 | // tosa.variable @name : tensor<1x8xf32> |
| 227 | ParseResult mlir::tosa::parseVariableOpTypeOrInitialValue( |
| 228 | OpAsmParser &parser, DenseElementsAttr &varShapeAttr, TypeAttr &typeAttr, |
| 229 | Attribute &initialValueAttr) { |
| 230 | if (succeeded(Result: parser.parseOptionalEqual())) { |
| 231 | if (failed(Result: parser.parseAttribute(result&: initialValueAttr))) { |
| 232 | return parser.emitError(loc: parser.getCurrentLocation()) |
| 233 | << "expected attribute" ; |
| 234 | } |
| 235 | if (auto typedAttr = dyn_cast<TypedAttr>(initialValueAttr)) { |
| 236 | return getShapeAndElementType(parser, typedAttr.getType(), varShapeAttr, |
| 237 | typeAttr); |
| 238 | } |
| 239 | return parser.emitError(loc: parser.getCurrentLocation()) |
| 240 | << "expected Typed attr" ; |
| 241 | } |
| 242 | |
| 243 | initialValueAttr = nullptr; |
| 244 | Type parsedType; |
| 245 | if (failed(Result: parser.parseColonType(result&: parsedType))) { |
| 246 | return parser.emitError(loc: parser.getCurrentLocation()) |
| 247 | << "expected type after colon" ; |
| 248 | } |
| 249 | return getShapeAndElementType(parser, parsedType, varShapeAttr, typeAttr); |
| 250 | } |
| 251 | |
| 252 | void mlir::tosa::printVariableOpTypeOrInitialValue( |
| 253 | OpAsmPrinter &p, Operation *op, DenseElementsAttr varShapeAttr, |
| 254 | TypeAttr typeAttr, Attribute initialValueAttr) { |
| 255 | bool needsSpace = false; |
| 256 | if (!dyn_cast_or_null<TypedAttr>(initialValueAttr)) { |
| 257 | auto shape = |
| 258 | convertToMlirShape(to_vector(varShapeAttr.getValues<int64_t>())); |
| 259 | Type elementType = typeAttr.getValue(); |
| 260 | RankedTensorType tensorType = |
| 261 | RankedTensorType::get(ArrayRef<int64_t>(shape), elementType); |
| 262 | auto tensorTypeAttr = TypeAttr::get(tensorType); |
| 263 | p << ": " ; |
| 264 | p.printAttribute(attr: tensorTypeAttr); |
| 265 | needsSpace = true; // subsequent attr value needs a space separator |
| 266 | } |
| 267 | if (initialValueAttr) { |
| 268 | if (needsSpace) |
| 269 | p << ' '; |
| 270 | p << "= " ; |
| 271 | p.printAttribute(attr: initialValueAttr); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | //===----------------------------------------------------------------------===// |
| 276 | // Tosa utilities. |
| 277 | //===----------------------------------------------------------------------===// |
| 278 | |
| 279 | std::optional<int64_t> idivCheck(const int64_t lhs, const int64_t rhs) { |
| 280 | if (lhs % rhs != 0) |
| 281 | return std::nullopt; |
| 282 | return lhs / rhs; |
| 283 | } |
| 284 | |
| 285 | Type getStorageElementTypeOrSelf(Type type) { |
| 286 | auto srcType = getElementTypeOrSelf(type); |
| 287 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(Val&: srcType)) |
| 288 | srcType = quantType.getStorageType(); |
| 289 | return srcType; |
| 290 | } |
| 291 | |
| 292 | Type getStorageElementTypeOrSelf(Value value) { |
| 293 | return getStorageElementTypeOrSelf(type: value.getType()); |
| 294 | } |
| 295 | |
| 296 | static LogicalResult verifyRescaleValueAndZpTypes(Operation *op, Value val, |
| 297 | Value valZp, StringRef name) { |
| 298 | Type eType = getStorageElementTypeOrSelf(type: val.getType()); |
| 299 | Type eZpType = getStorageElementTypeOrSelf(type: valZp.getType()); |
| 300 | |
| 301 | bool bothInts = |
| 302 | mlir::isa<IntegerType>(Val: eType) && mlir::isa<IntegerType>(Val: eZpType); |
| 303 | bool sameBitWidth = |
| 304 | (eType.getIntOrFloatBitWidth() == eZpType.getIntOrFloatBitWidth()); |
| 305 | |
| 306 | if (!bothInts || !sameBitWidth) { |
| 307 | return op->emitOpError() |
| 308 | << "expected " << name << " and " << name |
| 309 | << "_zp to both be integer of the same bitwidth, but got " << eType |
| 310 | << " vs. " << eZpType; |
| 311 | } |
| 312 | return success(); |
| 313 | } |
| 314 | |
| 315 | // Create a pad-const const tensor with value of `val` of required data-type |
| 316 | Value mlir::tosa::createPadConstTensor(OpBuilder &builder, Location loc, |
| 317 | Value src, int32_t val) { |
| 318 | const auto srcType = getElementTypeOrSelf(val: src); |
| 319 | const auto srcElemType = getStorageElementTypeOrSelf(value: src); |
| 320 | const auto padConstType = mlir::RankedTensorType::get({1}, srcType); |
| 321 | const auto padConstEType = mlir::RankedTensorType::get({1}, srcElemType); |
| 322 | const auto padConstAttr{ |
| 323 | llvm::isa<FloatType>(Val: srcElemType) |
| 324 | ? DenseElementsAttr::get(padConstEType, |
| 325 | builder.getFloatAttr(srcElemType, val)) |
| 326 | : DenseElementsAttr::get(padConstEType, |
| 327 | builder.getIntegerAttr(srcElemType, val))}; |
| 328 | return builder.create<tosa::ConstOp>(loc, padConstType, padConstAttr); |
| 329 | } |
| 330 | |
| 331 | //===----------------------------------------------------------------------===// |
| 332 | // TOSA Operator Verifiers. |
| 333 | //===----------------------------------------------------------------------===// |
| 334 | |
| 335 | template <typename T> |
| 336 | static LogicalResult verifyConvOp(T op) { |
| 337 | const auto inputType = llvm::dyn_cast<TensorType>(op.getInput().getType()); |
| 338 | const auto weightType = llvm::dyn_cast<TensorType>(op.getWeight().getType()); |
| 339 | |
| 340 | auto inputEType = inputType.getElementType(); |
| 341 | auto weightEType = weightType.getElementType(); |
| 342 | auto biasEType = |
| 343 | llvm::cast<ShapedType>(op.getBias().getType()).getElementType(); |
| 344 | auto resultEType = |
| 345 | llvm::cast<ShapedType>(op.getResult().getType()).getElementType(); |
| 346 | bool biasIsFloat = llvm::isa<FloatType>(biasEType); |
| 347 | bool resultIsFloat = llvm::isa<FloatType>(resultEType); |
| 348 | |
| 349 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(inputEType)) |
| 350 | inputEType = quantType.getStorageType(); |
| 351 | |
| 352 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(weightEType)) |
| 353 | weightEType = quantType.getStorageType(); |
| 354 | |
| 355 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(biasEType)) |
| 356 | biasEType = quantType.getStorageType(); |
| 357 | |
| 358 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(resultEType)) |
| 359 | resultEType = quantType.getStorageType(); |
| 360 | |
| 361 | if (biasIsFloat && resultIsFloat && (biasEType != resultEType)) { |
| 362 | // for now, only enforce bias element type == result element type for |
| 363 | // float types. |
| 364 | op.emitOpError( |
| 365 | "expect both bias and result to have same element type, got " ) |
| 366 | << biasEType << " and " << resultEType; |
| 367 | return failure(); |
| 368 | } |
| 369 | |
| 370 | if (isa<Float8E5M2Type>(inputEType) || isa<Float8E4M3FNType>(inputEType) || |
| 371 | isa<Float8E5M2Type>(weightEType) || isa<Float8E4M3FNType>(weightEType)) { |
| 372 | if (inputEType != weightEType) { |
| 373 | op.emitOpError( |
| 374 | "expect both input and weight to have same element type, got " ) |
| 375 | << inputEType << " and " << weightEType; |
| 376 | return failure(); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | bool inputIsFloat = llvm::isa<FloatType>(inputEType); |
| 381 | bool weightIsFloat = llvm::isa<FloatType>(weightEType); |
| 382 | |
| 383 | // Either both must be float or both non-float. |
| 384 | if (inputIsFloat != weightIsFloat) { |
| 385 | op.emitOpError( |
| 386 | "expect both input and weight to be float or not together, got " ) |
| 387 | << inputEType << " and " << weightEType; |
| 388 | return failure(); |
| 389 | } |
| 390 | |
| 391 | auto inputZpEType = getStorageElementTypeOrSelf(op.getInputZp().getType()); |
| 392 | if (inputEType != inputZpEType) { |
| 393 | return op.emitOpError("expect both input and its zero point are the same " |
| 394 | "element type, got " ) |
| 395 | << inputEType << " and " << inputZpEType; |
| 396 | } |
| 397 | |
| 398 | auto weightZpEType = getStorageElementTypeOrSelf(op.getWeightZp().getType()); |
| 399 | if (weightEType != weightZpEType) { |
| 400 | return op.emitOpError("expect both weight and its zero point are the same " |
| 401 | "element type, got " ) |
| 402 | << weightEType << " and " << weightZpEType; |
| 403 | } |
| 404 | |
| 405 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
| 406 | if (succeeded(Result: maybeIZp) && op.verifyInputZeroPoint(*maybeIZp).failed()) |
| 407 | return failure(); |
| 408 | |
| 409 | FailureOr<int64_t> maybeWZp = op.getWeightZeroPoint(); |
| 410 | if (succeeded(Result: maybeWZp) && op.verifyWeightZeroPoint(*maybeWZp).failed()) |
| 411 | return failure(); |
| 412 | |
| 413 | return success(); |
| 414 | } |
| 415 | |
| 416 | LogicalResult tosa::ConstOp::verify() { |
| 417 | |
| 418 | auto attrType = llvm::dyn_cast<TensorType>(getValuesAttr().getType()); |
| 419 | auto outputType = llvm::dyn_cast<TensorType>(getOutput().getType()); |
| 420 | |
| 421 | if (!attrType || !outputType) { |
| 422 | emitOpError("expected tensors for attr/result type" ); |
| 423 | return failure(); |
| 424 | } |
| 425 | |
| 426 | if (auto result = llvm::dyn_cast<mlir::quant::QuantizedType>( |
| 427 | outputType.getElementType())) { |
| 428 | if (result.getStorageType() == attrType.getElementType()) |
| 429 | return success(); |
| 430 | } |
| 431 | |
| 432 | if (attrType.getElementType() != outputType.getElementType()) { |
| 433 | emitOpError("expected same attr/result element types" ); |
| 434 | return failure(); |
| 435 | } |
| 436 | |
| 437 | return success(); |
| 438 | } |
| 439 | |
| 440 | template <typename T> |
| 441 | static LogicalResult verifyConvOpModes(T op) { |
| 442 | auto inputEType = |
| 443 | llvm::cast<ShapedType>(op.getInput().getType()).getElementType(); |
| 444 | |
| 445 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(inputEType)) |
| 446 | inputEType = quantType.getStorageType(); |
| 447 | |
| 448 | auto accType = op.getAccType(); |
| 449 | if (inputEType.isInteger(8) && !accType.isInteger(32)) |
| 450 | return op.emitOpError("accumulator type for i8 tensor is not i32" ); |
| 451 | |
| 452 | if (inputEType.isInteger(16) && !accType.isInteger(48)) |
| 453 | return op.emitOpError("accumulator type for i16 tensor is not i48" ); |
| 454 | |
| 455 | if (isa<Float8E5M2Type, Float8E4M3Type>(inputEType) && !accType.isF16()) |
| 456 | return op.emitOpError("accumulator type for f8 tensor is not f16" ); |
| 457 | |
| 458 | if (inputEType.isF16() && !(accType.isF16() || accType.isF32())) |
| 459 | return op.emitOpError("accumulator type for f16 tensor is not f16/f32" ); |
| 460 | |
| 461 | if (inputEType.isBF16() && !accType.isF32()) |
| 462 | return op.emitOpError("accumulator type for bf16 tensor is not f32" ); |
| 463 | |
| 464 | if (inputEType.isF32() && !accType.isF32()) |
| 465 | return op.emitOpError("accumulator type for f32 tensor is not f32" ); |
| 466 | |
| 467 | auto resultEType = |
| 468 | llvm::cast<ShapedType>(op.getResult().getType()).getElementType(); |
| 469 | |
| 470 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(resultEType)) |
| 471 | resultEType = quantType.getStorageType(); |
| 472 | |
| 473 | return success(); |
| 474 | } |
| 475 | |
| 476 | //===----------------------------------------------------------------------===// |
| 477 | // ERROR_IF functions. |
| 478 | // ERROR_IF is a predicate that must set an error if the condition holds. |
| 479 | //===----------------------------------------------------------------------===// |
| 480 | |
| 481 | template <typename T> |
| 482 | static LogicalResult verifyConvOpErrorIf(T op) { |
| 483 | llvm::ArrayRef<int64_t> padding = op.getPad(); |
| 484 | if (llvm::any_of(padding, [](int64_t p) { return p < 0; })) |
| 485 | return op.emitOpError("expect all padding values to be >= 0, got " ) |
| 486 | << padding; |
| 487 | |
| 488 | llvm::ArrayRef<int64_t> strides = op.getStride(); |
| 489 | if (llvm::any_of(strides, [](int64_t s) { return s < 1; })) |
| 490 | return op.emitOpError("expect all stride values to be >= 1, got " ) |
| 491 | << strides; |
| 492 | |
| 493 | llvm::ArrayRef<int64_t> dilations = op.getDilation(); |
| 494 | if (llvm::any_of(dilations, [](int64_t d) { return d < 1; })) |
| 495 | return op.emitOpError("expect all dilation values to be >= 1, got " ) |
| 496 | << dilations; |
| 497 | |
| 498 | const RankedTensorType outputType = |
| 499 | llvm::dyn_cast<RankedTensorType>(op.getOutput().getType()); |
| 500 | if (!outputType) |
| 501 | // Skip following checks if output is not ranked |
| 502 | return success(); |
| 503 | |
| 504 | const RankedTensorType inputType = |
| 505 | llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
| 506 | const RankedTensorType weightType = |
| 507 | llvm::dyn_cast<RankedTensorType>(op.getWeight().getType()); |
| 508 | |
| 509 | if (inputType && weightType) { |
| 510 | const auto verifyOutputSize = |
| 511 | [&op](const int64_t inputSize, const int64_t kernelSize, |
| 512 | const int64_t outputSize, const int64_t padBefore, |
| 513 | const int64_t padAfter, const int64_t stride, |
| 514 | const int64_t dilation, const llvm::StringRef dimName, |
| 515 | const llvm::StringRef dimAxis, |
| 516 | const llvm::StringRef padBeforeName, |
| 517 | const llvm::StringRef padAfterName) -> LogicalResult { |
| 518 | if (inputSize == ShapedType::kDynamic || |
| 519 | kernelSize == ShapedType::kDynamic) |
| 520 | return success(); |
| 521 | |
| 522 | // ERROR_IF: O != idiv_check(I - 1 + pa + pb - (K - 1) * d, s) + 1 |
| 523 | |
| 524 | const std::optional<int64_t> calculatedOutSizeMinusOne = idivCheck( |
| 525 | lhs: inputSize - 1 + padBefore + padAfter - (kernelSize - 1) * dilation, |
| 526 | rhs: stride); |
| 527 | if (!calculatedOutSizeMinusOne.has_value()) |
| 528 | return op.emitOpError("expected input_" ) |
| 529 | << dimName << " - 1 + pad_" << padBeforeName << " + pad_" |
| 530 | << padAfterName << " - (kernel_" << dimName |
| 531 | << " - 1) * dilation_" << dimAxis |
| 532 | << " to be wholly divisible by stride_" << dimAxis << ", got (" |
| 533 | << inputSize << " - 1 + " << padBefore << " + " << padAfter |
| 534 | << " - (" << kernelSize << " - 1) * " << dilation << ") / " |
| 535 | << stride; |
| 536 | |
| 537 | const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1; |
| 538 | if (outputSize != ShapedType::kDynamic && calculatedOutSize != outputSize) |
| 539 | return op.emitOpError("calculated output " ) |
| 540 | << dimName << " did not match expected: " |
| 541 | << "calculated=" << calculatedOutSize |
| 542 | << ", expected=" << outputSize; |
| 543 | |
| 544 | return success(); |
| 545 | }; |
| 546 | |
| 547 | // input = [_,IH,IW,_], weight = [_,KH,KW,_], output = [_,OH,OW,_] |
| 548 | if constexpr (std::is_same<T, tosa::Conv2DOp>::value) { |
| 549 | if (failed(verifyOutputSize( |
| 550 | inputType.getDimSize(1), weightType.getDimSize(1), |
| 551 | outputType.getDimSize(1), padding[0], padding[1], strides[0], |
| 552 | dilations[0], "height" , "y" , "top" , "bottom" ))) |
| 553 | return failure(); |
| 554 | |
| 555 | if (failed(verifyOutputSize( |
| 556 | inputType.getDimSize(2), weightType.getDimSize(2), |
| 557 | outputType.getDimSize(2), padding[2], padding[3], strides[1], |
| 558 | dilations[1], "width" , "x" , "left" , "right" ))) |
| 559 | return failure(); |
| 560 | } |
| 561 | |
| 562 | // input = [_,IH,IW,_], weight = [KH,KW,_,_], output = [_,OH,OW,_] |
| 563 | if constexpr (std::is_same<T, tosa::DepthwiseConv2DOp>::value) { |
| 564 | if (failed(verifyOutputSize( |
| 565 | inputType.getDimSize(1), weightType.getDimSize(0), |
| 566 | outputType.getDimSize(1), padding[0], padding[1], strides[0], |
| 567 | dilations[0], "height" , "y" , "top" , "bottom" ))) |
| 568 | return failure(); |
| 569 | |
| 570 | if (failed(verifyOutputSize( |
| 571 | inputType.getDimSize(2), weightType.getDimSize(1), |
| 572 | outputType.getDimSize(2), padding[2], padding[3], strides[1], |
| 573 | dilations[1], "width" , "x" , "left" , "right" ))) |
| 574 | return failure(); |
| 575 | } |
| 576 | |
| 577 | // input = [_,ID,IH,IW,_], weight = [_,KD,KH,KW,_], output = [_,OD,OH,OW,_] |
| 578 | if constexpr (std::is_same<T, tosa::Conv3DOp>::value) { |
| 579 | if (failed(verifyOutputSize( |
| 580 | inputType.getDimSize(1), weightType.getDimSize(1), |
| 581 | outputType.getDimSize(1), padding[0], padding[1], strides[0], |
| 582 | dilations[0], "depth" , "d" , "front" , "back" ))) |
| 583 | return failure(); |
| 584 | |
| 585 | if (failed(verifyOutputSize( |
| 586 | inputType.getDimSize(2), weightType.getDimSize(2), |
| 587 | outputType.getDimSize(2), padding[2], padding[3], strides[1], |
| 588 | dilations[1], "height" , "y" , "top" , "bottom" ))) |
| 589 | return failure(); |
| 590 | |
| 591 | if (failed(verifyOutputSize( |
| 592 | inputType.getDimSize(3), weightType.getDimSize(3), |
| 593 | outputType.getDimSize(3), padding[4], padding[5], strides[2], |
| 594 | dilations[2], "width" , "x" , "left" , "right" ))) |
| 595 | return failure(); |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | const RankedTensorType biasType = |
| 600 | llvm::dyn_cast<RankedTensorType>(op.getBias().getType()); |
| 601 | if (!biasType) |
| 602 | // Skip following checks if bias is not ranked |
| 603 | return success(); |
| 604 | |
| 605 | const int64_t biasChannels = biasType.getDimSize(0); |
| 606 | const int64_t outputChannels = |
| 607 | outputType.getDimSize(outputType.getRank() - 1); |
| 608 | if (biasChannels == ShapedType::kDynamic || |
| 609 | outputChannels == ShapedType::kDynamic) |
| 610 | // Skip following checks if biasChannels or outputChannels is dynamic dim |
| 611 | return success(); |
| 612 | |
| 613 | if (biasChannels != outputChannels && biasChannels != 1) |
| 614 | return op.emitOpError( |
| 615 | "bias channels expected to be equal to output channels (" ) |
| 616 | << outputChannels << ") or 1, got " << biasChannels; |
| 617 | |
| 618 | return success(); |
| 619 | } |
| 620 | |
| 621 | // Verify whether same type and shape of the given two types. |
| 622 | static LogicalResult errorIfTypeOrShapeMismatch(Operation *op, Type type1, |
| 623 | StringRef name1, Type type2, |
| 624 | StringRef name2) { |
| 625 | auto shapeType1 = dyn_cast<ShapedType>(type1); |
| 626 | auto shapeType2 = dyn_cast<ShapedType>(type2); |
| 627 | if (!shapeType1 || !shapeType2) |
| 628 | return failure(); |
| 629 | |
| 630 | auto elemType1 = shapeType1.getElementType(); |
| 631 | auto elemType2 = shapeType2.getElementType(); |
| 632 | if (elemType1 != elemType2) |
| 633 | return op->emitOpError() |
| 634 | << "require same element type for " << name1 << " (" << elemType1 |
| 635 | << ") and " << name2 << " (" << elemType2 << ")" ; |
| 636 | |
| 637 | if (failed(Result: verifyCompatibleShape(type1, type2))) |
| 638 | return op->emitOpError() |
| 639 | << "require same shapes for " << name1 << " (" << type1 << ") and " |
| 640 | << name2 << " (" << type2 << ")" ; |
| 641 | |
| 642 | return success(); |
| 643 | } |
| 644 | |
| 645 | // Verify whether same length, type, and shape of the given two tensor lists. |
| 646 | static LogicalResult errorIfTypeOrShapeMismatch(Operation *op, ValueRange list1, |
| 647 | StringRef name1, |
| 648 | ValueRange list2, |
| 649 | StringRef name2) { |
| 650 | if (list1.size() != list2.size()) |
| 651 | return op->emitOpError() |
| 652 | << "require same number of values in " << name1 << " (" |
| 653 | << list1.size() << ") and " << name2 << " (" << list2.size() << ")" ; |
| 654 | |
| 655 | for (auto [type1, type2] : |
| 656 | llvm::zip_equal(t: list1.getTypes(), u: list2.getTypes())) { |
| 657 | if (errorIfTypeOrShapeMismatch(op, type1, name1, type2, name2).failed()) |
| 658 | return failure(); |
| 659 | } |
| 660 | |
| 661 | return success(); |
| 662 | } |
| 663 | |
| 664 | static inline LogicalResult errorIfShapeNotSizeOne(Operation *op, Type type) { |
| 665 | ShapeAdaptor shapeAdaptor(type); |
| 666 | if (!shapeAdaptor.hasRank() || !shapeAdaptor.hasStaticShape()) |
| 667 | return success(); |
| 668 | |
| 669 | return shapeAdaptor.getNumElements() == 1 ? success() : failure(); |
| 670 | } |
| 671 | |
| 672 | // Returns the first declaration point prior to this operation or failure if |
| 673 | // not found. |
| 674 | static FailureOr<tosa::VariableOp> findVariableDecl(Operation *op, |
| 675 | StringRef symName) { |
| 676 | ModuleOp module = op->getParentOfType<ModuleOp>(); |
| 677 | tosa::VariableOp varOp = nullptr; |
| 678 | |
| 679 | // TODO: Adopt SymbolTable trait to Varible ops. |
| 680 | // Currently, the variable's definition point is searched via walk(), |
| 681 | // starting from the top-level ModuleOp and stopping at the point of use. Once |
| 682 | // TOSA control flow and variable extensions reach the complete state, may |
| 683 | // leverage MLIR's Symbol Table functionality to look up symbol and enhance |
| 684 | // the search to a TOSA specific graph traversal over the IR structure. |
| 685 | module.walk([&](Operation *tempOp) { |
| 686 | // Reach this op itself. |
| 687 | if (tempOp == op) { |
| 688 | return WalkResult::interrupt(); |
| 689 | } |
| 690 | |
| 691 | if (auto tosaOp = dyn_cast<tosa::VariableOp>(tempOp)) { |
| 692 | if (symName == tosaOp.getName()) { |
| 693 | varOp = tosaOp; |
| 694 | return WalkResult::interrupt(); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | return WalkResult::advance(); |
| 699 | }); |
| 700 | |
| 701 | if (varOp) |
| 702 | return varOp; |
| 703 | |
| 704 | return failure(); |
| 705 | } |
| 706 | |
| 707 | template <typename T> |
| 708 | static LogicalResult verifyVariableOpErrorIf(T op, Type type, StringRef name) { |
| 709 | StringRef symName = op.getName(); |
| 710 | FailureOr<tosa::VariableOp> varOp = findVariableDecl(op, symName); |
| 711 | if (failed(varOp)) |
| 712 | return op->emitOpError("'" ) |
| 713 | << symName << "' has not been declared by 'tosa.variable'" ; |
| 714 | |
| 715 | // Verify type and shape |
| 716 | auto variableType = getVariableType(varOp.value()); |
| 717 | if (errorIfTypeOrShapeMismatch(op, type, name, variableType, |
| 718 | "the input tensor" ) |
| 719 | .failed()) |
| 720 | return failure(); |
| 721 | |
| 722 | return success(); |
| 723 | } |
| 724 | |
| 725 | // verify that inType and outType have same element types |
| 726 | template <typename T> |
| 727 | static LogicalResult verifySameElementTypes(T op, Type inType, Type outType) { |
| 728 | auto inputType = llvm::dyn_cast<TensorType>(Val&: inType); |
| 729 | auto outputType = llvm::dyn_cast<TensorType>(Val&: outType); |
| 730 | if (!inputType) { |
| 731 | op.emitOpError("expect shaped tensor for input, got " ) << inType; |
| 732 | return failure(); |
| 733 | } |
| 734 | if (!outputType) { |
| 735 | op.emitOpError("expect shaped tensor for output, got " ) << outType; |
| 736 | return failure(); |
| 737 | } |
| 738 | auto inputElementType = inputType.getElementType(); |
| 739 | auto outputElementType = outputType.getElementType(); |
| 740 | auto inputQuantType = |
| 741 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(Val&: inputElementType); |
| 742 | auto outputQuantType = |
| 743 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(Val&: outputElementType); |
| 744 | if ((inputElementType.isIntOrIndexOrFloat() || inputQuantType) && |
| 745 | (outputElementType.isIntOrIndexOrFloat() || outputQuantType) && |
| 746 | inputElementType != outputElementType) { |
| 747 | // only check if both element types are int/index/float/UniformQuantized |
| 748 | // eg, not sure how to check quant::QuantizedType |
| 749 | // this happens in test_conv2d_q_grouped_convolution in |
| 750 | // tfl-to-tosa-pipeline.mlir |
| 751 | op.emitOpError("expect input and output to have same element type, got " ) |
| 752 | << inputElementType << " and " << outputElementType; |
| 753 | return failure(); |
| 754 | } |
| 755 | return success(); |
| 756 | } |
| 757 | |
| 758 | LogicalResult tosa::ArgMaxOp::verify() { |
| 759 | const ShapedType resultType = llvm::cast<ShapedType>(getType()); |
| 760 | |
| 761 | // Ensure output is of 32-bit integer |
| 762 | if (const auto resultETy = resultType.getElementType(); |
| 763 | !resultETy.isIntOrIndex()) |
| 764 | return emitOpError("result tensor is not of integer type" ); |
| 765 | |
| 766 | const auto inputType = llvm::cast<ShapedType>(getInput().getType()); |
| 767 | if (!inputType.hasRank()) |
| 768 | return success(); |
| 769 | |
| 770 | // Ensure axis is within the tensor rank |
| 771 | const int64_t axis = getAxisAttr().getInt(); |
| 772 | if (((axis < 0) || axis >= inputType.getRank())) |
| 773 | return emitOpError("specified axis is outside the rank of the tensor" ); |
| 774 | |
| 775 | if (!resultType.hasRank()) |
| 776 | return success(); |
| 777 | |
| 778 | const ArrayRef<int64_t> inputShape = inputType.getShape(); |
| 779 | const ArrayRef<int64_t> outputShape = resultType.getShape(); |
| 780 | llvm::SmallVector<int64_t> expectedOutputShape(inputShape); |
| 781 | expectedOutputShape.erase(expectedOutputShape.begin() + axis); |
| 782 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) |
| 783 | return emitOpError("expected output shape '" ) |
| 784 | << expectedOutputShape << "', got '" << outputShape << "'" ; |
| 785 | |
| 786 | return success(); |
| 787 | } |
| 788 | |
| 789 | template <typename T> |
| 790 | static LogicalResult verifyPoolingOp(T op) { |
| 791 | const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
| 792 | if (llvm::any_of(kernel, [](int64_t s) { return s < 1; })) |
| 793 | return op.emitOpError("expect all kernel values to be >= 1, got " ) |
| 794 | << kernel; |
| 795 | |
| 796 | const llvm::ArrayRef<int64_t> strides = op.getStride(); |
| 797 | if (llvm::any_of(strides, [](int64_t s) { return s < 1; })) |
| 798 | return op.emitOpError("expect all stride values to be >= 1, got " ) |
| 799 | << strides; |
| 800 | |
| 801 | const llvm::ArrayRef<int64_t> padding = op.getPad(); |
| 802 | if (llvm::any_of(padding, [](int64_t p) { return p < 0; })) |
| 803 | return op.emitOpError("expect all padding values to be >= 0, got " ) |
| 804 | << padding; |
| 805 | |
| 806 | // Padding must be less than kernel size to avoid a divide-by-zero |
| 807 | const int64_t kernelX = kernel[1]; |
| 808 | const int64_t padLeft = padding[2]; |
| 809 | const int64_t padRight = padding[3]; |
| 810 | if (padRight >= kernelX || padLeft >= kernelX) |
| 811 | return op.emitOpError("expected left/right padding to be less than the " |
| 812 | "width of the kernel, got pad_left=" ) |
| 813 | << padLeft << ", pad_right=" << padRight << ", kernel_x=" << kernelX; |
| 814 | |
| 815 | const int64_t kernelY = kernel[0]; |
| 816 | const int64_t padTop = padding[0]; |
| 817 | const int64_t padBottom = padding[1]; |
| 818 | if (padTop >= kernelY || padBottom >= kernelY) |
| 819 | return op.emitOpError("expected top/bottom padding to be less than the " |
| 820 | "height of the kernel, got pad_top=" ) |
| 821 | << padTop << ", pad_bottom=" << padBottom |
| 822 | << ", kernel_y=" << kernelY; |
| 823 | |
| 824 | const auto inputType = |
| 825 | llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
| 826 | const auto outputType = |
| 827 | llvm::dyn_cast<RankedTensorType>(op.getResult().getType()); |
| 828 | if (!inputType || !outputType) |
| 829 | return success(); |
| 830 | |
| 831 | const auto verifyOutputSize = |
| 832 | [&op](const int64_t inputSize, const int64_t outputSize, |
| 833 | const int64_t kernelSize, const int64_t strideSize, |
| 834 | const int64_t padBefore, const int64_t padAfter, |
| 835 | const llvm::StringRef dimName, const llvm::StringRef dimAxis, |
| 836 | const llvm::StringRef padBeforeName, |
| 837 | const llvm::StringRef padAfterName) -> LogicalResult { |
| 838 | if (ShapedType::isDynamic(inputSize)) |
| 839 | return success(); |
| 840 | |
| 841 | const std::optional<int64_t> calculatedOutSizeMinusOne = |
| 842 | idivCheck(lhs: inputSize + padBefore + padAfter - kernelSize, rhs: strideSize); |
| 843 | if (!calculatedOutSizeMinusOne.has_value()) |
| 844 | return op.emitOpError("expected input_" ) |
| 845 | << dimName << " + pad_" << padBeforeName << " + pad_" |
| 846 | << padAfterName << " - kernel_" << dimAxis |
| 847 | << " to be wholly divisible by stride_" << dimAxis << ", got (" |
| 848 | << inputSize << " + " << padBefore << " + " << padAfter << " - " |
| 849 | << kernelSize << ") / " << strideSize; |
| 850 | |
| 851 | const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1; |
| 852 | if (!ShapedType::isDynamic(outputSize) && calculatedOutSize != outputSize) |
| 853 | return op.emitOpError("calculated output " ) |
| 854 | << dimName << " did not match expected: " |
| 855 | << "calculated=" << calculatedOutSize |
| 856 | << ", expected=" << outputSize; |
| 857 | |
| 858 | return success(); |
| 859 | }; |
| 860 | |
| 861 | if (failed(verifyOutputSize(inputType.getDimSize(1), outputType.getDimSize(1), |
| 862 | kernel[0], strides[0], padding[0], padding[1], |
| 863 | "height" , "y" , "top" , "bottom" ))) |
| 864 | return failure(); |
| 865 | |
| 866 | if (failed(verifyOutputSize(inputType.getDimSize(2), outputType.getDimSize(2), |
| 867 | kernel[1], strides[1], padding[2], padding[3], |
| 868 | "width" , "x" , "left" , "right" ))) |
| 869 | return failure(); |
| 870 | |
| 871 | return success(); |
| 872 | } |
| 873 | |
| 874 | LogicalResult tosa::AvgPool2dOp::verify() { |
| 875 | if (failed(verifyPoolingOp(*this))) |
| 876 | return failure(); |
| 877 | |
| 878 | const Type inputETy = getStorageElementTypeOrSelf(getInput().getType()); |
| 879 | const Type resultETy = getStorageElementTypeOrSelf(getOutput().getType()); |
| 880 | const Type inputZpETy = getStorageElementTypeOrSelf(getInputZp().getType()); |
| 881 | const Type outputZpETy = getStorageElementTypeOrSelf(getOutputZp().getType()); |
| 882 | |
| 883 | auto accType = getAccType(); |
| 884 | if (llvm::isa<IntegerType>(inputETy) && !accType.isInteger(32)) |
| 885 | return emitOpError("accumulator type for integer tensor is not i32" ); |
| 886 | |
| 887 | if (inputETy.isF16() && !(accType.isF16() || accType.isF32())) |
| 888 | return emitOpError("accumulator type for f16 tensor is not f16/f32" ); |
| 889 | |
| 890 | if (inputETy.isBF16() && !accType.isF32()) |
| 891 | return emitOpError("accumulator type for bf16 tensor is not f32" ); |
| 892 | |
| 893 | if (inputETy.isF32() && !accType.isF32()) |
| 894 | return emitOpError("accumulator type for f32 tensor is not f32" ); |
| 895 | |
| 896 | if (inputETy != inputZpETy) |
| 897 | return emitOpError("expect both input and its zero point are the same " |
| 898 | "element type, got " ) |
| 899 | << inputETy << " and " << inputZpETy; |
| 900 | |
| 901 | if (resultETy != outputZpETy) |
| 902 | return emitOpError("expect both output and its zero point are the same " |
| 903 | "element type, got " ) |
| 904 | << resultETy << " and " << outputZpETy; |
| 905 | |
| 906 | FailureOr<int64_t> maybeIZp = getInputZeroPoint(); |
| 907 | if (succeeded(maybeIZp) && verifyInputZeroPoint(*maybeIZp).failed()) |
| 908 | return failure(); |
| 909 | |
| 910 | FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
| 911 | if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed()) |
| 912 | return failure(); |
| 913 | |
| 914 | return success(); |
| 915 | } |
| 916 | |
| 917 | LogicalResult tosa::ClampOp::verify() { |
| 918 | mlir::Type inputETy = |
| 919 | llvm::cast<ShapedType>(getInput().getType()).getElementType(); |
| 920 | if (auto quantType = |
| 921 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputETy)) { |
| 922 | inputETy = quantType.getStorageType(); |
| 923 | } |
| 924 | mlir::Type outputETy = |
| 925 | llvm::cast<ShapedType>(getOutput().getType()).getElementType(); |
| 926 | if (auto quantType = |
| 927 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(outputETy)) { |
| 928 | outputETy = quantType.getStorageType(); |
| 929 | } |
| 930 | if (inputETy != outputETy) |
| 931 | return emitOpError("input/output element types are incompatible." ); |
| 932 | |
| 933 | auto maxValAttr = getMaxValAttr(); |
| 934 | auto minValAttr = getMinValAttr(); |
| 935 | |
| 936 | unsigned dataTypeBitWidth = inputETy.getIntOrFloatBitWidth(); |
| 937 | |
| 938 | if (inputETy.isInteger(dataTypeBitWidth)) { |
| 939 | // if input datatype is integer, check that the min_val/max_val attributes |
| 940 | // are integer attributes, and that their type is the same as the input's |
| 941 | // datatype |
| 942 | auto intMaxValAttr = mlir::dyn_cast<mlir::IntegerAttr>(maxValAttr); |
| 943 | auto intMinValAttr = mlir::dyn_cast<mlir::IntegerAttr>(minValAttr); |
| 944 | if (!intMaxValAttr || !intMinValAttr || |
| 945 | (intMaxValAttr.getType() != intMinValAttr.getType()) || |
| 946 | (intMaxValAttr.getType() != inputETy)) |
| 947 | return emitOpError("min/max attributes types are incompatible with " |
| 948 | "input/output element types." ); |
| 949 | |
| 950 | const bool isUnsigned = cast<IntegerType>(inputETy).isUnsigned(); |
| 951 | const APInt minVal = intMinValAttr.getValue(); |
| 952 | const APInt maxVal = intMaxValAttr.getValue(); |
| 953 | if (isUnsigned ? maxVal.ult(minVal) : maxVal.slt(minVal)) |
| 954 | return emitOpError("expected min_val <= max_val, got min_val=" ) |
| 955 | << minValAttr << ", max_val=" << maxValAttr; |
| 956 | } else { |
| 957 | // otherwise, input datatype is float, check that the min_val/max_val |
| 958 | // attributes share the same type and that their type is the same as the |
| 959 | // input's datatype |
| 960 | auto floatMaxValAttr = mlir::dyn_cast<mlir::FloatAttr>(maxValAttr); |
| 961 | auto floatMinValAttr = mlir::dyn_cast<mlir::FloatAttr>(minValAttr); |
| 962 | if (!floatMaxValAttr || !floatMinValAttr || |
| 963 | (floatMaxValAttr.getType() != floatMinValAttr.getType()) || |
| 964 | (floatMaxValAttr.getType() != inputETy)) |
| 965 | return emitOpError("min/max attributes types are incompatible with " |
| 966 | "input/output element types." ); |
| 967 | |
| 968 | const APFloat minVal = floatMinValAttr.getValue(); |
| 969 | const APFloat maxVal = floatMaxValAttr.getValue(); |
| 970 | if (minVal.isNaN() || maxVal.isNaN()) |
| 971 | return emitOpError("min/max attributes should not be 'NaN', got min_val=" ) |
| 972 | << minValAttr << ", max_val=" << maxValAttr; |
| 973 | |
| 974 | if (maxVal < minVal) |
| 975 | return emitOpError("expected min_val <= max_val, got min_val=" ) |
| 976 | << minValAttr << ", max_val=" << maxValAttr; |
| 977 | } |
| 978 | |
| 979 | return success(); |
| 980 | } |
| 981 | |
| 982 | //===----------------------------------------------------------------------===// |
| 983 | // TOSA Operator Quantization Builders. |
| 984 | //===----------------------------------------------------------------------===// |
| 985 | |
| 986 | /// This builder is called on all convolution operators except TransposeConv, |
| 987 | /// which has specialized output shape semantics. The builder also defines the |
| 988 | /// bitwidth of the output given the bit width of the input & weight content. |
| 989 | static void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
| 990 | Type outputType, Value input, Value weight, |
| 991 | Value bias, DenseI64ArrayAttr pad, |
| 992 | DenseI64ArrayAttr stride, |
| 993 | DenseI64ArrayAttr dilation, |
| 994 | TypeAttr accType) { |
| 995 | auto zps = createZPsAsConst(builder, input, weight); |
| 996 | result.addOperands(newOperands: {input, weight, bias, zps.first, zps.second}); |
| 997 | result.addAttribute("pad" , pad); |
| 998 | result.addAttribute("stride" , stride); |
| 999 | result.addAttribute("dilation" , dilation); |
| 1000 | result.addAttribute("acc_type" , accType); |
| 1001 | Type finalOutputType = outputType; |
| 1002 | auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight); |
| 1003 | if (quantAttr) { |
| 1004 | finalOutputType = |
| 1005 | buildConvOpResultTypeInfo(builder, outputType, input, weight); |
| 1006 | } |
| 1007 | result.addTypes(newTypes: finalOutputType); |
| 1008 | } |
| 1009 | |
| 1010 | /// Handles tosa.transpose_conv2d which has outpad and output shape |
| 1011 | /// attributes. |
| 1012 | static void |
| 1013 | buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
| 1014 | Type outputType, Value input, Value weight, |
| 1015 | Value bias, DenseI64ArrayAttr outpad, |
| 1016 | DenseI64ArrayAttr stride, TypeAttr accType) { |
| 1017 | auto zps = createZPsAsConst(builder, input, weight); |
| 1018 | result.addOperands(newOperands: {input, weight, bias, zps.first, zps.second}); |
| 1019 | result.addAttribute("out_pad" , outpad); |
| 1020 | result.addAttribute("stride" , stride); |
| 1021 | result.addAttribute("acc_type" , accType); |
| 1022 | Type finalOutputType = outputType; |
| 1023 | auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight); |
| 1024 | if (quantAttr) { |
| 1025 | finalOutputType = |
| 1026 | buildConvOpResultTypeInfo(builder, outputType, input, weight); |
| 1027 | } |
| 1028 | result.addTypes(newTypes: finalOutputType); |
| 1029 | } |
| 1030 | |
| 1031 | /// The tosa.matmul op is also intended to be generated where a fully_connected |
| 1032 | /// op must be constructed where the weight is not a constant. In this case, |
| 1033 | /// the fully_connected op must be expressed using matmul. |
| 1034 | /// TODO: Add link to the leglization document explaining this. |
| 1035 | static void buildMatMulOpWithQuantInfo(OpBuilder &builder, |
| 1036 | OperationState &result, Type outputType, |
| 1037 | Value a, Value b) { |
| 1038 | auto zps = createZPsAsConst(builder, input: a, weight: b); |
| 1039 | result.addOperands(newOperands: {a, b, zps.first, zps.second}); |
| 1040 | |
| 1041 | Type finalOutputType{outputType}; |
| 1042 | if (auto quantAttr = buildMatMulOpQuantizationAttr(builder, a, b)) { |
| 1043 | auto eType = getStorageElementTypeOrSelf(type: a.getType()); |
| 1044 | auto inputBits = eType.getIntOrFloatBitWidth(); |
| 1045 | |
| 1046 | auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType); |
| 1047 | assert(outputShapedType && "Output must be a shaped type" ); |
| 1048 | |
| 1049 | IntegerType accElementType; |
| 1050 | if (inputBits == 16) |
| 1051 | accElementType = builder.getIntegerType(48); |
| 1052 | else |
| 1053 | accElementType = builder.getI32Type(); |
| 1054 | |
| 1055 | finalOutputType = outputShapedType.clone(accElementType); |
| 1056 | } |
| 1057 | result.addTypes(newTypes: finalOutputType); |
| 1058 | } |
| 1059 | |
| 1060 | /// Both the tosa.avg_pool2d and unary ops use the same |
| 1061 | /// UnaryOpQuantizationAttr but avg_pool operator has its own builder as it |
| 1062 | /// has additional parameters not part of the unary ops. |
| 1063 | static void |
| 1064 | buildAvgPool2dOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
| 1065 | Type outputType, Value input, |
| 1066 | DenseArrayAttr kernel, DenseArrayAttr stride, |
| 1067 | DenseArrayAttr pad, TypeAttr accType) { |
| 1068 | const Location loc{result.location}; |
| 1069 | int64_t inputZp{0}; |
| 1070 | int64_t outputZp{0}; |
| 1071 | |
| 1072 | if (auto quantAttr = |
| 1073 | buildUnaryOpQuantizationAttr(builder, input, outputType)) { |
| 1074 | inputZp = quantAttr.getInputZp(); |
| 1075 | outputZp = quantAttr.getOutputZp(); |
| 1076 | } |
| 1077 | const std::optional<Value> inputZpOp = |
| 1078 | createZeroPointTensor(builder, loc, srcElemType: input.getType(), zp: inputZp); |
| 1079 | if (!inputZpOp) { |
| 1080 | (void)emitError( |
| 1081 | loc, |
| 1082 | message: "Failed to create input zero point tensor for quantized AVG_POOL2D op" ); |
| 1083 | } |
| 1084 | const std::optional<Value> outputZpOp = |
| 1085 | createZeroPointTensor(builder, loc, srcElemType: outputType, zp: outputZp); |
| 1086 | if (!outputZpOp) { |
| 1087 | (void)emitError(loc, message: "Failed to create output zero point tensor for " |
| 1088 | "quantized AVG_POOL2D op" ); |
| 1089 | } |
| 1090 | |
| 1091 | if (inputZpOp && outputZpOp) { |
| 1092 | result.addOperands(newOperands: {input, inputZpOp.value(), outputZpOp.value()}); |
| 1093 | } else { |
| 1094 | // failed to create one or more zero points above: just add input as |
| 1095 | // operands this will trigger error in building the op because of missing |
| 1096 | // zero points |
| 1097 | result.addOperands(newOperands: {input}); |
| 1098 | } |
| 1099 | result.addAttribute("kernel" , kernel); |
| 1100 | result.addAttribute("stride" , stride); |
| 1101 | result.addAttribute("pad" , pad); |
| 1102 | result.addAttribute("acc_type" , accType); |
| 1103 | result.types.push_back(Elt: outputType); |
| 1104 | } |
| 1105 | |
| 1106 | /// This builder is called on single-parameter negate operator |
| 1107 | /// to construct input and output zero points based on their |
| 1108 | /// types. |
| 1109 | static void buildNegateOpWithQuantInfo(OpBuilder &builder, |
| 1110 | OperationState &result, Type outputType, |
| 1111 | Value input) { |
| 1112 | const Location loc{result.location}; |
| 1113 | int64_t input1Zp{0}; |
| 1114 | int64_t outputZp{0}; |
| 1115 | auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType); |
| 1116 | if (quantAttr) { |
| 1117 | input1Zp = quantAttr.getInputZp(); |
| 1118 | outputZp = quantAttr.getOutputZp(); |
| 1119 | } |
| 1120 | const std::optional<Value> input1ZpOp = |
| 1121 | createZeroPointTensor(builder, loc, srcElemType: input.getType(), zp: input1Zp); |
| 1122 | if (!input1ZpOp) { |
| 1123 | (void)emitError( |
| 1124 | loc, message: "Failed to create input1 zero point for quantized NEGATE op" ); |
| 1125 | } |
| 1126 | |
| 1127 | const std::optional<Value> outputZpOp = |
| 1128 | createZeroPointTensor(builder, loc, srcElemType: input.getType(), zp: outputZp); |
| 1129 | if (!outputZpOp) { |
| 1130 | (void)emitError( |
| 1131 | loc, message: "Failed to create output zero point for quantized NEGATE op" ); |
| 1132 | } |
| 1133 | |
| 1134 | if (input1ZpOp && outputZpOp) { |
| 1135 | result.addOperands(newOperands: {input, input1ZpOp.value(), outputZpOp.value()}); |
| 1136 | } else { |
| 1137 | // failed to create one or more zero points above: just add input as |
| 1138 | // operands. This will trigger error in building the op because of |
| 1139 | // missing zero points |
| 1140 | result.addOperands(newOperands: {input}); |
| 1141 | } |
| 1142 | |
| 1143 | result.types.push_back(Elt: outputType); |
| 1144 | } |
| 1145 | |
| 1146 | /// This builder is called on TOSA pad operator that needs to create its own |
| 1147 | /// OptionalAttr quantization_attr parameter to scale the padding values |
| 1148 | /// correctly. No pad_const is interpreted as zero-padding. |
| 1149 | static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
| 1150 | Type outputType, Value input, |
| 1151 | Value paddings) { |
| 1152 | const Location loc{result.location}; |
| 1153 | int32_t zp{0}; |
| 1154 | const auto quantAttr = buildPadOpQuantizationAttr(builder, input); |
| 1155 | if (quantAttr) { |
| 1156 | zp = static_cast<int32_t>(quantAttr.getInputZp()); |
| 1157 | } |
| 1158 | const auto padConstOp{createPadConstTensor(builder, loc, src: input, val: zp)}; |
| 1159 | result.addOperands(newOperands: {input, paddings, padConstOp}); |
| 1160 | result.types.push_back(Elt: outputType); |
| 1161 | } |
| 1162 | |
| 1163 | static void buildVariableOp(OpBuilder &builder, OperationState &result, |
| 1164 | StringRef name, Type variableType, |
| 1165 | Attribute initialValue) { |
| 1166 | const Location loc{result.location}; |
| 1167 | auto nameAttr = builder.getStringAttr(name); |
| 1168 | |
| 1169 | auto shapedType = dyn_cast<ShapedType>(variableType); |
| 1170 | if (!shapedType) { |
| 1171 | (void)emitError(loc, message: "variable type must be a shaped type" ); |
| 1172 | return; |
| 1173 | } |
| 1174 | if (!shapedType.hasRank()) { |
| 1175 | (void)emitError(loc, message: "variable type must be a ranked type" ); |
| 1176 | return; |
| 1177 | } |
| 1178 | |
| 1179 | auto elementType = shapedType.getElementType(); |
| 1180 | auto elementTypeAttr = TypeAttr::get(elementType); |
| 1181 | ArrayRef<int64_t> shape = shapedType.getShape(); |
| 1182 | auto varShapeAttr = builder.getIndexTensorAttr(values: convertFromMlirShape(shape)); |
| 1183 | |
| 1184 | result.addAttribute("name" , nameAttr); |
| 1185 | result.addAttribute("var_shape" , varShapeAttr); |
| 1186 | result.addAttribute("type" , elementTypeAttr); |
| 1187 | result.addAttribute(name: "initial_value" , attr: initialValue); |
| 1188 | } |
| 1189 | |
| 1190 | //===----------------------------------------------------------------------===// |
| 1191 | // TOSA Operator Return Type Inference. |
| 1192 | //===----------------------------------------------------------------------===// |
| 1193 | |
| 1194 | static LogicalResult resolveBroadcastShape(const ValueShapeRange &operands, |
| 1195 | SmallVector<int64_t> &outShape) { |
| 1196 | int64_t outRank = 0; |
| 1197 | for (int i = 0, e = operands.size(); i != e; ++i) { |
| 1198 | auto shape = operands.getShape(index: i); |
| 1199 | if (!shape.hasRank()) { |
| 1200 | // TODO(jennik): Update function to have better case handling for |
| 1201 | // invalid operands and for ranked tensors. |
| 1202 | return failure(); |
| 1203 | } |
| 1204 | outRank = std::max<int64_t>(a: outRank, b: shape.getRank()); |
| 1205 | } |
| 1206 | |
| 1207 | outShape.resize(N: outRank, NV: 1); |
| 1208 | |
| 1209 | for (int i = 0, e = operands.size(); i != e; ++i) { |
| 1210 | auto shape = operands.getShape(index: i); |
| 1211 | auto rankDiff = outShape.size() - shape.getRank(); |
| 1212 | |
| 1213 | for (size_t i = 0, e = shape.getRank(); i < e; ++i) { |
| 1214 | auto dim1 = outShape[i + rankDiff]; |
| 1215 | auto dim2 = shape.getDimSize(index: i); |
| 1216 | auto resolvedDim = dim1; |
| 1217 | |
| 1218 | if (dim1 == 1) { |
| 1219 | resolvedDim = dim2; |
| 1220 | } else if (dim2 == 1) { |
| 1221 | resolvedDim = dim1; |
| 1222 | } else if (dim1 != dim2) { |
| 1223 | return failure(); |
| 1224 | } |
| 1225 | outShape[i + rankDiff] = resolvedDim; |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | return success(); |
| 1230 | } |
| 1231 | |
| 1232 | LogicalResult tosa::ArgMaxOp::inferReturnTypeComponents( |
| 1233 | MLIRContext *context, ::std::optional<Location> location, |
| 1234 | ArgMaxOp::Adaptor adaptor, |
| 1235 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1236 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 1237 | IntegerAttr axis = adaptor.getProperties().axis; |
| 1238 | int32_t axisVal = axis.getValue().getSExtValue(); |
| 1239 | |
| 1240 | if (!inputShape.hasRank()) { |
| 1241 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
| 1242 | return success(); |
| 1243 | } |
| 1244 | |
| 1245 | SmallVector<int64_t> outShape; |
| 1246 | outShape.reserve(inputShape.getRank() - 1); |
| 1247 | for (int i = 0, s = inputShape.getRank(); i < s; i++) { |
| 1248 | if (i == axisVal) |
| 1249 | continue; |
| 1250 | outShape.push_back(inputShape.getDimSize(i)); |
| 1251 | } |
| 1252 | |
| 1253 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape)); |
| 1254 | return success(); |
| 1255 | } |
| 1256 | |
| 1257 | LogicalResult tosa::RFFT2dOp::inferReturnTypeComponents( |
| 1258 | MLIRContext *context, ::std::optional<Location> location, |
| 1259 | RFFT2dOp::Adaptor adaptor, |
| 1260 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1261 | ShapeAdaptor inputShape(adaptor.getInputReal().getType()); |
| 1262 | |
| 1263 | if (!inputShape.hasRank()) |
| 1264 | return failure(); |
| 1265 | |
| 1266 | llvm::SmallVector<int64_t> outputShape; |
| 1267 | outputShape.resize(3, ShapedType::kDynamic); |
| 1268 | outputShape[0] = inputShape.getDimSize(0); |
| 1269 | outputShape[1] = inputShape.getDimSize(1); |
| 1270 | int64_t inWidth = inputShape.getDimSize(2); |
| 1271 | |
| 1272 | // Note that we can support this calculation symbolically |
| 1273 | // in the future e.g. [x, y, z] -> [x, y, z / 2 + 1] |
| 1274 | if (inWidth != ShapedType::kDynamic) |
| 1275 | outputShape[2] = inWidth / 2 + 1; |
| 1276 | |
| 1277 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 1278 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 1279 | |
| 1280 | return success(); |
| 1281 | } |
| 1282 | |
| 1283 | static LogicalResult verifyDimIsPowerOfTwo(Operation *op, const int64_t dimSize, |
| 1284 | const llvm::StringRef dimName) { |
| 1285 | const bool isPowerOfTwo = (dimSize & (dimSize - 1)) == 0 && dimSize > 0; |
| 1286 | if (!isPowerOfTwo) |
| 1287 | return op->emitOpError(message: "expected " ) |
| 1288 | << dimName << " to be a power of two, got " << dimSize; |
| 1289 | |
| 1290 | return success(); |
| 1291 | } |
| 1292 | |
| 1293 | LogicalResult tosa::RFFT2dOp::verify() { |
| 1294 | const auto outputTypes = getResultTypes(); |
| 1295 | if (failed(verifyCompatibleShapes(outputTypes))) |
| 1296 | return emitOpError("expected output shapes to match, got " ) << outputTypes; |
| 1297 | |
| 1298 | const auto inputType = |
| 1299 | llvm::dyn_cast<RankedTensorType>(getInputReal().getType()); |
| 1300 | if (!inputType) |
| 1301 | return success(); |
| 1302 | |
| 1303 | const int64_t height = inputType.getDimSize(1); |
| 1304 | if (!ShapedType::isDynamic(height) && |
| 1305 | failed(verifyDimIsPowerOfTwo(*this, height, "height" ))) |
| 1306 | return failure(); |
| 1307 | |
| 1308 | const int64_t width = inputType.getDimSize(2); |
| 1309 | if (!ShapedType::isDynamic(width) && |
| 1310 | failed(verifyDimIsPowerOfTwo(*this, width, "width" ))) |
| 1311 | return failure(); |
| 1312 | |
| 1313 | const auto outputType = llvm::dyn_cast<RankedTensorType>(outputTypes[0]); |
| 1314 | if (!outputType) |
| 1315 | return success(); |
| 1316 | |
| 1317 | // Batch and height input/output dimensions should match |
| 1318 | if (failed(verifyCompatibleShape(inputType.getShape().drop_back(), |
| 1319 | outputType.getShape().drop_back()))) |
| 1320 | return emitOpError("expected batch and height dimensions of input/output " |
| 1321 | "to match, got input=" ) |
| 1322 | << inputType << " output=" << outputType; |
| 1323 | |
| 1324 | // Output width dimension expected to be input_width / 2 + 1 |
| 1325 | const int64_t outputWidth = outputType.getDimSize(2); |
| 1326 | if (!ShapedType::isDynamic(width) && !ShapedType::isDynamic(outputWidth) && |
| 1327 | (outputWidth != (width / 2) + 1)) |
| 1328 | return emitOpError( |
| 1329 | "expected output width to be equal to input_width / 2 + 1, got " ) |
| 1330 | << outputWidth; |
| 1331 | |
| 1332 | return success(); |
| 1333 | } |
| 1334 | |
| 1335 | LogicalResult tosa::FFT2dOp::inferReturnTypeComponents( |
| 1336 | MLIRContext *context, ::std::optional<Location> location, |
| 1337 | FFT2dOp::Adaptor adaptor, |
| 1338 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1339 | inferredReturnShapes.push_back( |
| 1340 | ShapedTypeComponents(ShapeAdaptor(adaptor.getInputReal().getType()))); |
| 1341 | inferredReturnShapes.push_back( |
| 1342 | ShapedTypeComponents(ShapeAdaptor(adaptor.getInputImag().getType()))); |
| 1343 | return success(); |
| 1344 | } |
| 1345 | |
| 1346 | LogicalResult tosa::FFT2dOp::verify() { |
| 1347 | const auto inputRealType = |
| 1348 | llvm::dyn_cast<RankedTensorType>(getInputReal().getType()); |
| 1349 | const auto inputImagType = |
| 1350 | llvm::dyn_cast<RankedTensorType>(getInputImag().getType()); |
| 1351 | if (!inputRealType || !inputImagType) |
| 1352 | return success(); |
| 1353 | |
| 1354 | const auto trySelectStaticDim = [](const int64_t a, const int64_t b) { |
| 1355 | return ShapedType::isDynamic(a) ? a : b; |
| 1356 | }; |
| 1357 | |
| 1358 | const int64_t height = trySelectStaticDim(inputRealType.getDimSize(1), |
| 1359 | inputImagType.getDimSize(1)); |
| 1360 | if (!ShapedType::isDynamic(height) && |
| 1361 | failed(verifyDimIsPowerOfTwo(*this, height, "height" ))) |
| 1362 | return failure(); |
| 1363 | |
| 1364 | const int64_t width = trySelectStaticDim(inputRealType.getDimSize(2), |
| 1365 | inputImagType.getDimSize(2)); |
| 1366 | if (!ShapedType::isDynamic(width) && |
| 1367 | failed(verifyDimIsPowerOfTwo(*this, width, "width" ))) |
| 1368 | return failure(); |
| 1369 | |
| 1370 | return success(); |
| 1371 | } |
| 1372 | |
| 1373 | LogicalResult tosa::ConcatOp::inferReturnTypeComponents( |
| 1374 | MLIRContext *context, ::std::optional<Location> location, |
| 1375 | ConcatOp::Adaptor adaptor, |
| 1376 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1377 | // Infer all dimension sizes by reducing based on inputs. |
| 1378 | const Properties &prop = adaptor.getProperties(); |
| 1379 | int32_t axis = prop.axis.getValue().getSExtValue(); |
| 1380 | llvm::SmallVector<int64_t> outputShape; |
| 1381 | bool hasRankedInput = false; |
| 1382 | for (auto operand : adaptor.getOperands()) { |
| 1383 | ShapeAdaptor operandShape(operand.getType()); |
| 1384 | if (!operandShape.hasRank()) |
| 1385 | continue; |
| 1386 | |
| 1387 | // Copy the Operand's rank. |
| 1388 | if (!hasRankedInput) |
| 1389 | outputShape.resize(operandShape.getRank(), ShapedType::kDynamic); |
| 1390 | |
| 1391 | // Copy shapes until the dim is non-dynamic. |
| 1392 | for (int i = 0, s = operandShape.getRank(); i < s; i++) { |
| 1393 | if (i == axis || operandShape.isDynamicDim(i)) |
| 1394 | continue; |
| 1395 | if (outputShape[i] == ShapedType::kDynamic) |
| 1396 | outputShape[i] = operandShape.getDimSize(i); |
| 1397 | if (outputShape[i] != operandShape.getDimSize(i)) |
| 1398 | return emitOptionalError(location, |
| 1399 | "Cannot concat tensors with different sizes" |
| 1400 | " on the non-axis dimension " , |
| 1401 | i); |
| 1402 | } |
| 1403 | |
| 1404 | hasRankedInput = true; |
| 1405 | } |
| 1406 | |
| 1407 | if (adaptor.getInput1().empty()) |
| 1408 | return failure(); |
| 1409 | |
| 1410 | Type inputType = |
| 1411 | llvm::cast<TensorType>(adaptor.getInput1().getType()[0]).getElementType(); |
| 1412 | if (!hasRankedInput) { |
| 1413 | inferredReturnShapes.push_back(ShapedTypeComponents(inputType)); |
| 1414 | return success(); |
| 1415 | } |
| 1416 | |
| 1417 | // Determine the dimension size along the concatenation axis. |
| 1418 | int64_t concatDimSize = 0; |
| 1419 | for (auto operand : adaptor.getOperands()) { |
| 1420 | ShapeAdaptor operandShape(operand.getType()); |
| 1421 | |
| 1422 | // We need to know the length of the concatenation axis of all inputs to |
| 1423 | // determine the dimension size of the output shape. |
| 1424 | if (!operandShape.hasRank() || operandShape.isDynamicDim(axis)) { |
| 1425 | concatDimSize = ShapedType::kDynamic; |
| 1426 | break; |
| 1427 | } |
| 1428 | |
| 1429 | concatDimSize += operandShape.getDimSize(axis); |
| 1430 | } |
| 1431 | |
| 1432 | outputShape[axis] = concatDimSize; |
| 1433 | |
| 1434 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType)); |
| 1435 | return success(); |
| 1436 | } |
| 1437 | |
| 1438 | LogicalResult tosa::ConcatOp::verify() { |
| 1439 | // check that each input has same element type as output |
| 1440 | auto outType = getOutput().getType(); |
| 1441 | const Operation::operand_range inputList = getInput1(); |
| 1442 | |
| 1443 | // Check there is at least one input |
| 1444 | if (inputList.empty()) |
| 1445 | return emitOpError("expect at least one input" ); |
| 1446 | |
| 1447 | if (!llvm::all_of(inputList, [&](auto input) { |
| 1448 | return succeeded(verifySameElementTypes( |
| 1449 | *this, /* inType = */ input.getType(), outType)); |
| 1450 | })) { |
| 1451 | return failure(); |
| 1452 | } |
| 1453 | |
| 1454 | const int32_t axis = getAxis(); |
| 1455 | ShapeAdaptor firstRankedInputShape = nullptr; |
| 1456 | for (const auto &input : inputList) { |
| 1457 | const Type inputType = input.getType(); |
| 1458 | ShapeAdaptor currShape(inputType); |
| 1459 | if (currShape.hasRank()) { |
| 1460 | firstRankedInputShape = currShape; |
| 1461 | // Check axis is in expected range |
| 1462 | if (axis < 0 || axis >= firstRankedInputShape.getRank()) |
| 1463 | return emitOpError("expect axis to be within range 0 < axis < " |
| 1464 | "rank(input1[firstRankedTensorIdx]), got " ) |
| 1465 | << axis; |
| 1466 | break; |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | const auto allOperandsHasRank = [](const Value input) { |
| 1471 | return ShapeAdaptor(input.getType()).hasRank(); |
| 1472 | }; |
| 1473 | if (llvm::all_of(inputList, allOperandsHasRank)) { |
| 1474 | const int64_t firstInputRank = firstRankedInputShape.getRank(); |
| 1475 | |
| 1476 | for (const auto &[index, input] : llvm::enumerate(inputList.drop_front())) { |
| 1477 | const ShapeAdaptor inputShape(input.getType()); |
| 1478 | const int64_t inputRank = inputShape.getRank(); |
| 1479 | const size_t operandNum = index + 1; |
| 1480 | |
| 1481 | // Check that each operand has the same rank |
| 1482 | if (inputRank != firstInputRank) |
| 1483 | return emitOpError( |
| 1484 | "expect all operands to have the same rank, but got " ) |
| 1485 | << firstInputRank << " vs " << inputRank << " on operands 0 and " |
| 1486 | << operandNum; |
| 1487 | |
| 1488 | // Check non-axis dims match |
| 1489 | for (int i = 0; i < inputRank; i++) { |
| 1490 | const int64_t inputDim = inputShape.getDimSize(i); |
| 1491 | const int64_t firstInputDim = firstRankedInputShape.getDimSize(i); |
| 1492 | if (i == axis || firstRankedInputShape.isDynamicDim(i) || |
| 1493 | inputShape.isDynamicDim(i)) |
| 1494 | continue; |
| 1495 | if (inputDim != firstInputDim) |
| 1496 | return emitOpError("expect all operand shapes to have the same sizes " |
| 1497 | "on non-axis dimensions, but got " ) |
| 1498 | << inputDim << " vs " << firstInputDim << " at index " << i |
| 1499 | << " on operands 0 and " << operandNum; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | // ERROR_IF(axis_sum != shape[axis]); |
| 1504 | int64_t axisSum = 0; |
| 1505 | for (const auto &input : inputList) { |
| 1506 | const ShapeAdaptor inputShape(input.getType()); |
| 1507 | if (inputShape.isDynamicDim(axis)) { |
| 1508 | // make axisSum negative to indicate invalid value |
| 1509 | axisSum = -1; |
| 1510 | break; |
| 1511 | } |
| 1512 | axisSum += inputShape.getDimSize(axis); |
| 1513 | } |
| 1514 | const ShapeAdaptor outputShape(outType); |
| 1515 | if (axisSum >= 0 && outputShape.hasRank() && |
| 1516 | !outputShape.isDynamicDim(axis) && |
| 1517 | axisSum != outputShape.getDimSize(axis)) |
| 1518 | return emitOpError("requires sum of axis dimensions of input1 " |
| 1519 | "equal to output axis dimension, got " ) |
| 1520 | << axisSum << " and " << outputShape.getDimSize(axis); |
| 1521 | } |
| 1522 | |
| 1523 | return success(); |
| 1524 | } |
| 1525 | |
| 1526 | LogicalResult tosa::EqualOp::inferReturnTypeComponents( |
| 1527 | MLIRContext *context, ::std::optional<Location> location, |
| 1528 | ValueShapeRange operands, DictionaryAttr attributes, |
| 1529 | OpaqueProperties properties, RegionRange regions, |
| 1530 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1531 | auto elementType = IntegerType::get(context, /*width=*/1); |
| 1532 | |
| 1533 | llvm::SmallVector<int64_t> outShape; |
| 1534 | if (resolveBroadcastShape(operands, outShape).failed()) { |
| 1535 | inferredReturnShapes.push_back(ShapedTypeComponents(elementType)); |
| 1536 | return success(); |
| 1537 | } |
| 1538 | |
| 1539 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape, elementType)); |
| 1540 | return success(); |
| 1541 | } |
| 1542 | |
| 1543 | bool tosa::EqualOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 1544 | if (l.size() != r.size() || l.size() != 1) |
| 1545 | return false; |
| 1546 | return succeeded(verifyCompatibleShape(l[0], r[0])); |
| 1547 | } |
| 1548 | |
| 1549 | LogicalResult tosa::MatMulOp::inferReturnTypeComponents( |
| 1550 | MLIRContext *context, ::std::optional<Location> location, |
| 1551 | MatMulOp::Adaptor adaptor, |
| 1552 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1553 | ShapeAdaptor lhsShape(adaptor.getA().getType()); |
| 1554 | ShapeAdaptor rhsShape(adaptor.getB().getType()); |
| 1555 | |
| 1556 | // All shapes are dynamic. |
| 1557 | SmallVector<int64_t> outShape; |
| 1558 | outShape.resize(3, ShapedType::kDynamic); |
| 1559 | |
| 1560 | if (lhsShape.hasRank()) { |
| 1561 | outShape[0] = lhsShape.getDimSize(0); |
| 1562 | outShape[1] = lhsShape.getDimSize(1); |
| 1563 | } |
| 1564 | |
| 1565 | if (rhsShape.hasRank()) { |
| 1566 | outShape[0] = outShape[0] == ShapedType::kDynamic ? rhsShape.getDimSize(0) |
| 1567 | : outShape[0]; |
| 1568 | outShape[2] = rhsShape.getDimSize(2); |
| 1569 | } |
| 1570 | |
| 1571 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape)); |
| 1572 | return success(); |
| 1573 | } |
| 1574 | |
| 1575 | LogicalResult MatMulOp::verify() { |
| 1576 | auto aType = llvm::dyn_cast<ShapedType>(getA().getType()); |
| 1577 | auto bType = llvm::dyn_cast<ShapedType>(getB().getType()); |
| 1578 | |
| 1579 | // Must be shaped tensor types |
| 1580 | if (!aType) |
| 1581 | return emitOpError("expect a shaped tensor for input a, got " ) |
| 1582 | << getA().getType(); |
| 1583 | |
| 1584 | if (!bType) |
| 1585 | return emitOpError("expect a shaped tensor for input b, got " ) |
| 1586 | << getB().getType(); |
| 1587 | |
| 1588 | auto aElementType = aType.getElementType(); |
| 1589 | auto bElementType = bType.getElementType(); |
| 1590 | |
| 1591 | auto aQuantizedEType = |
| 1592 | llvm::dyn_cast<quant::UniformQuantizedType>(aElementType); |
| 1593 | auto bQuantizedEType = |
| 1594 | llvm::dyn_cast<quant::UniformQuantizedType>(bElementType); |
| 1595 | |
| 1596 | if (aQuantizedEType || bQuantizedEType) { |
| 1597 | if (!aQuantizedEType || !bQuantizedEType) { |
| 1598 | return emitOpError("expect operands to be both quantized or both not " |
| 1599 | "quantized, got " ) |
| 1600 | << aElementType << " and " << bElementType; |
| 1601 | } |
| 1602 | // both a and b have quantized element types |
| 1603 | auto aQuantWidth = aQuantizedEType.getStorageTypeIntegralWidth(); |
| 1604 | auto bQuantWidth = bQuantizedEType.getStorageTypeIntegralWidth(); |
| 1605 | if (aQuantWidth != bQuantWidth) { |
| 1606 | return emitOpError("expect quantized operands to have same widths, got " ) |
| 1607 | << aQuantWidth << " and " << bQuantWidth; |
| 1608 | } |
| 1609 | } else { |
| 1610 | // non-quantized element types |
| 1611 | if (aElementType != bElementType) { |
| 1612 | return emitOpError("expect same element type for inputs a and b, got " ) |
| 1613 | << aElementType << " and " << bElementType; |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | // check a_zp and b_zp |
| 1618 | auto aEType = getStorageElementTypeOrSelf(aType); |
| 1619 | auto aZpEType = getStorageElementTypeOrSelf(getAZp().getType()); |
| 1620 | if (aEType != aZpEType) { |
| 1621 | return emitOpError("expect input a and a_zp have the same " |
| 1622 | "element type, got " ) |
| 1623 | << aEType << " and " << aZpEType; |
| 1624 | } |
| 1625 | |
| 1626 | auto bEType = getStorageElementTypeOrSelf(bType); |
| 1627 | auto bZpEType = getStorageElementTypeOrSelf(getBZp().getType()); |
| 1628 | if (bEType != bZpEType) { |
| 1629 | return emitOpError("expect input b and b_zp have the same " |
| 1630 | "element type, got " ) |
| 1631 | << bEType << " and " << bZpEType; |
| 1632 | } |
| 1633 | |
| 1634 | FailureOr<int64_t> maybeAZp = getAZeroPoint(); |
| 1635 | if (succeeded(maybeAZp) && verifyAZeroPoint(*maybeAZp).failed()) |
| 1636 | return failure(); |
| 1637 | |
| 1638 | FailureOr<int64_t> maybeBZp = getBZeroPoint(); |
| 1639 | if (succeeded(maybeBZp) && verifyBZeroPoint(*maybeBZp).failed()) |
| 1640 | return failure(); |
| 1641 | |
| 1642 | return success(); |
| 1643 | } |
| 1644 | |
| 1645 | LogicalResult tosa::PadOp::inferReturnTypeComponents( |
| 1646 | MLIRContext *context, ::std::optional<Location> location, |
| 1647 | PadOp::Adaptor adaptor, |
| 1648 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1649 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 1650 | auto paddingRank = |
| 1651 | cast<tosa::shapeType>(adaptor.getPadding().getType()).getRank(); |
| 1652 | SmallVector<int64_t> outputShape; |
| 1653 | |
| 1654 | // If the input rank is unknown, we can infer the output rank using the |
| 1655 | // padding shape's rank divided by 2. |
| 1656 | if (!inputShape.hasRank()) { |
| 1657 | outputShape.resize(paddingRank / 2, ShapedType::kDynamic); |
| 1658 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 1659 | return success(); |
| 1660 | } |
| 1661 | |
| 1662 | SmallVector<int64_t> paddingValues; |
| 1663 | // If the paddings value is not a constant, all dimensions must be dynamic. |
| 1664 | if (!tosa::getConstShapeValues(adaptor.getPadding().getDefiningOp(), |
| 1665 | paddingValues)) { |
| 1666 | outputShape.resize(inputShape.getRank(), ShapedType::kDynamic); |
| 1667 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 1668 | return success(); |
| 1669 | } |
| 1670 | |
| 1671 | outputShape.reserve(inputShape.getRank()); |
| 1672 | for (int i = 0, s = inputShape.getRank(); i < s; i++) { |
| 1673 | if (inputShape.isDynamicDim(i)) { |
| 1674 | outputShape.push_back(ShapedType::kDynamic); |
| 1675 | continue; |
| 1676 | } |
| 1677 | auto padFront = paddingValues[i * 2]; |
| 1678 | auto padBack = paddingValues[i * 2 + 1]; |
| 1679 | if (padFront < 0 || padBack < 0) { |
| 1680 | // if either padding for dim i is -1, output dim is unknown |
| 1681 | outputShape.push_back(ShapedType::kDynamic); |
| 1682 | continue; |
| 1683 | } |
| 1684 | |
| 1685 | outputShape.push_back(inputShape.getDimSize(i) + padFront + padBack); |
| 1686 | } |
| 1687 | |
| 1688 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 1689 | return success(); |
| 1690 | } |
| 1691 | |
| 1692 | LogicalResult tosa::PadOp::verify() { |
| 1693 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
| 1694 | /* outType = */ getOutput().getType()) |
| 1695 | .failed()) { |
| 1696 | return failure(); |
| 1697 | } |
| 1698 | |
| 1699 | if (auto padConst = getPadConst()) { |
| 1700 | if (verifySameElementTypes(*this, /* inType = */ padConst.getType(), |
| 1701 | /* outType = */ getOutput().getType()) |
| 1702 | .failed()) { |
| 1703 | return failure(); |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | RankedTensorType inputType = |
| 1708 | llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
| 1709 | RankedTensorType outputType = |
| 1710 | llvm::dyn_cast<RankedTensorType>(getOutput().getType()); |
| 1711 | if (!inputType || !outputType) |
| 1712 | return success(); |
| 1713 | |
| 1714 | auto inputRank = inputType.getRank(); |
| 1715 | auto outputRank = outputType.getRank(); |
| 1716 | if (inputRank != outputRank) |
| 1717 | return emitOpError() << "expect same input and output tensor rank, but got " |
| 1718 | << "inputRank: " << inputRank |
| 1719 | << ", outputRank: " << outputRank; |
| 1720 | |
| 1721 | DenseIntElementsAttr paddingAttr; |
| 1722 | if (!matchPattern(getPadding(), m_Constant(&paddingAttr))) { |
| 1723 | return failure(); |
| 1724 | } |
| 1725 | |
| 1726 | auto paddingValues = paddingAttr.getValues<APInt>(); |
| 1727 | if (paddingValues.size() != static_cast<size_t>(inputRank * 2)) |
| 1728 | return emitOpError() << "padding tensor must have " << inputRank |
| 1729 | << " * 2 = " << inputRank * 2 << " elements, but got " |
| 1730 | << paddingValues.size(); |
| 1731 | |
| 1732 | auto inputShape = inputType.getShape(); |
| 1733 | auto outputShape = outputType.getShape(); |
| 1734 | |
| 1735 | for (int64_t i = 0; i < inputRank; ++i) { |
| 1736 | int64_t padStart = paddingValues[i * 2].getSExtValue(); |
| 1737 | int64_t padEnd = paddingValues[i * 2 + 1].getSExtValue(); |
| 1738 | |
| 1739 | if ((padStart < 0 && padStart != -1) || (padEnd < 0 && padEnd != -1)) { |
| 1740 | return emitOpError() |
| 1741 | << "invalid padding values at dimension " << i |
| 1742 | << ": values must be non-negative or -1 for dynamic padding, got [" |
| 1743 | << padStart << ", " << padEnd << "]" ; |
| 1744 | } |
| 1745 | |
| 1746 | // Skip shape verification for dynamic input/output |
| 1747 | if (inputShape[i] == ShapedType::kDynamic || |
| 1748 | outputShape[i] == ShapedType::kDynamic) |
| 1749 | continue; |
| 1750 | |
| 1751 | if (outputShape[i] != inputShape[i] + padStart + padEnd) { |
| 1752 | return emitOpError() << "mismatch in output shape at dimension " << i |
| 1753 | << ": expected " << inputShape[i] << " + " |
| 1754 | << padStart << " + " << padEnd << " = " |
| 1755 | << (inputShape[i] + padStart + padEnd) |
| 1756 | << ", but got " << outputShape[i]; |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | return success(); |
| 1761 | } |
| 1762 | |
| 1763 | LogicalResult tosa::SliceOp::inferReturnTypeComponents( |
| 1764 | MLIRContext *context, ::std::optional<Location> location, |
| 1765 | SliceOp::Adaptor adaptor, |
| 1766 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1767 | |
| 1768 | Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType()); |
| 1769 | SmallVector<int64_t> start; |
| 1770 | SmallVector<int64_t> size; |
| 1771 | |
| 1772 | if (!tosa::getConstShapeValues(adaptor.getStart().getDefiningOp(), start) || |
| 1773 | !tosa::getConstShapeValues(adaptor.getSize().getDefiningOp(), size)) { |
| 1774 | auto rank = cast<tosa::shapeType>(adaptor.getSize().getType()).getRank(); |
| 1775 | SmallVector<int64_t> fallback(rank, ShapedType::kDynamic); |
| 1776 | inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType)); |
| 1777 | return success(); |
| 1778 | } |
| 1779 | |
| 1780 | // if size[i] is -1, all remaining elements in dimension i are included |
| 1781 | // in the slice, similar to TF. |
| 1782 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 1783 | // initialize outputShape to all unknown |
| 1784 | SmallVector<int64_t> outputShape(size.size(), ShapedType::kDynamic); |
| 1785 | if (inputShape.hasRank()) { |
| 1786 | for (size_t i = 0; i < size.size(); i++) { |
| 1787 | if (size[i] != 0 && size[i] >= -1 && start[i] >= 0 && |
| 1788 | (ShapedType::isDynamic(inputShape.getDimSize(i)) || |
| 1789 | start[i] < inputShape.getDimSize(i))) { |
| 1790 | // size[i] is not 0 and not < -1, and start[i] is in valid range |
| 1791 | if (ShapedType::isDynamic(inputShape.getDimSize(i))) { |
| 1792 | // input shape has unknown dim[i] - only valid if size[i] > 0 |
| 1793 | if (size[i] > 0) { |
| 1794 | outputShape[i] = size[i]; |
| 1795 | } |
| 1796 | } else { |
| 1797 | // input shape has known dim[i] |
| 1798 | if (size[i] == -1) { |
| 1799 | outputShape[i] = inputShape.getDimSize(i) - start[i]; |
| 1800 | } else if (start[i] + size[i] <= inputShape.getDimSize(i)) { |
| 1801 | // start[i] + size[i] is within bound of input shape's dim[i] |
| 1802 | outputShape[i] = size[i]; |
| 1803 | } |
| 1804 | } |
| 1805 | } |
| 1806 | } |
| 1807 | } else { |
| 1808 | outputShape = convertToMlirShape(size); |
| 1809 | } |
| 1810 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 1811 | return success(); |
| 1812 | } |
| 1813 | |
| 1814 | LogicalResult tosa::SliceOp::verify() { |
| 1815 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
| 1816 | /* outType = */ getOutput().getType()) |
| 1817 | .failed()) |
| 1818 | return failure(); |
| 1819 | |
| 1820 | const ShapeAdaptor inputShape(getInput1().getType()); |
| 1821 | if (inputShape.hasRank()) { |
| 1822 | const auto inputRank = inputShape.getRank(); |
| 1823 | const ShapeAdaptor outputShape(getOutput().getType()); |
| 1824 | if (outputShape.hasRank() && inputRank != outputShape.getRank()) |
| 1825 | return emitOpError( |
| 1826 | "expect input1 and output to have the same ranks, got " ) |
| 1827 | << inputRank << " and " << outputShape.getRank(); |
| 1828 | |
| 1829 | const auto startShapeRank = |
| 1830 | llvm::cast<tosa::shapeType>(getStart().getType()).getRank(); |
| 1831 | if (inputRank != startShapeRank) |
| 1832 | return emitOpError("length of start is not equal to rank of input shape" ); |
| 1833 | |
| 1834 | const auto sizeShapeRank = |
| 1835 | llvm::cast<tosa::shapeType>(getSize().getType()).getRank(); |
| 1836 | if (inputRank != sizeShapeRank) |
| 1837 | return emitOpError("length of size is not equal to rank of input shape" ); |
| 1838 | } |
| 1839 | |
| 1840 | return success(); |
| 1841 | } |
| 1842 | |
| 1843 | LogicalResult tosa::MulOp::inferReturnTypeComponents( |
| 1844 | MLIRContext *context, ::std::optional<Location> location, |
| 1845 | ValueShapeRange operands, DictionaryAttr attributes, |
| 1846 | OpaqueProperties properties, RegionRange regions, |
| 1847 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1848 | // mul op's output shape only depend on input1 and input2, not on shift |
| 1849 | ValueShapeRange twoInputs = operands.drop_back(); |
| 1850 | llvm::SmallVector<int64_t> outShape; |
| 1851 | if (resolveBroadcastShape(twoInputs, outShape).failed()) { |
| 1852 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
| 1853 | } else { |
| 1854 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape)); |
| 1855 | } |
| 1856 | return success(); |
| 1857 | } |
| 1858 | |
| 1859 | LogicalResult tosa::MulOp::verify() { |
| 1860 | const Value output = getOutput(); |
| 1861 | auto resElemType = getElementTypeOrSelf(output); |
| 1862 | |
| 1863 | // Verify if the element type among operands and result match tosa |
| 1864 | // specification. |
| 1865 | if (auto resIntType = dyn_cast<IntegerType>(resElemType)) { |
| 1866 | IntegerType lhsIntType = |
| 1867 | dyn_cast<IntegerType>(getElementTypeOrSelf(getInput1())); |
| 1868 | IntegerType rhsIntType = |
| 1869 | dyn_cast<IntegerType>(getElementTypeOrSelf(getInput2())); |
| 1870 | if (!lhsIntType || !rhsIntType || lhsIntType != rhsIntType) |
| 1871 | return emitOpError("requires the same element type for all operands" ); |
| 1872 | |
| 1873 | // Though the spec requires the element type of result to be i32, a more |
| 1874 | // relaxed way is provided at dialect level for easier cooperating with |
| 1875 | // other dialects. |
| 1876 | if (lhsIntType.getWidth() > resIntType.getWidth()) |
| 1877 | return emitOpError("invalid data type size for operands or result" ); |
| 1878 | |
| 1879 | } else { |
| 1880 | // For other supported type, the spec requires requires the same element |
| 1881 | // type for all operands (excludes `shift` operand) and results. |
| 1882 | for (int i = 0; i < 2; ++i) { |
| 1883 | if (getElementTypeOrSelf(getOperand(i)) != resElemType) |
| 1884 | return emitOpError( |
| 1885 | "requires the same element type for all operands and results" ); |
| 1886 | } |
| 1887 | |
| 1888 | // verify shift has value 0 for non-integer types |
| 1889 | ElementsAttr shift_elem; |
| 1890 | if (matchPattern(getShift(), m_Constant(&shift_elem))) { |
| 1891 | int32_t shift = shift_elem.getValues<IntegerAttr>()[0].getInt(); |
| 1892 | if (shift != 0) { |
| 1893 | return emitOpError() << "require shift to be 0 for float type" ; |
| 1894 | } |
| 1895 | } |
| 1896 | } |
| 1897 | |
| 1898 | // Verify the op has same ranks for all main operands (excludes extra operands |
| 1899 | // such as shift of mul op, so this is the only difference with the built-in |
| 1900 | // `SameOperandsAndResultRank` trait) and results types, if known. |
| 1901 | TypeRange operandTypes = getOperandTypes(); |
| 1902 | ShapedType aType = cast<ShapedType>(operandTypes[0]); |
| 1903 | ShapedType bType = cast<ShapedType>(operandTypes[1]); |
| 1904 | |
| 1905 | const bool aHasRank = aType.hasRank(); |
| 1906 | const bool bHasRank = bType.hasRank(); |
| 1907 | if (aHasRank && bHasRank) { |
| 1908 | const int64_t aRank = aType.getRank(); |
| 1909 | const int64_t bRank = bType.getRank(); |
| 1910 | if (aRank != bRank) |
| 1911 | return emitOpError("a and b operands don't have matching ranks, got " ) |
| 1912 | << aRank << " and " << bRank; |
| 1913 | |
| 1914 | // check for broadcast compatible shapes |
| 1915 | SmallVector<int64_t> resultShape; |
| 1916 | if (!mlir::OpTrait::util::getBroadcastedShape( |
| 1917 | aType.getShape(), bType.getShape(), resultShape)) |
| 1918 | return emitOpError("a and b operands don't have broadcast-compatible " |
| 1919 | "shapes, got " ) |
| 1920 | << aType << " and " << bType; |
| 1921 | } |
| 1922 | |
| 1923 | ShapedType resultType = cast<ShapedType>(output.getType()); |
| 1924 | if (!resultType.hasRank()) |
| 1925 | return success(); |
| 1926 | |
| 1927 | const int64_t resultRank = resultType.getRank(); |
| 1928 | if (aHasRank && resultRank != aType.getRank()) |
| 1929 | return emitOpError("result type has different rank than a, got " ) |
| 1930 | << resultRank << " vs " << aType.getRank(); |
| 1931 | if (bHasRank && resultRank != bType.getRank()) |
| 1932 | return emitOpError("result type has different rank than b, got " ) |
| 1933 | << resultRank << " vs " << bType.getRank(); |
| 1934 | |
| 1935 | return success(); |
| 1936 | } |
| 1937 | |
| 1938 | LogicalResult tosa::TableOp::inferReturnTypeComponents( |
| 1939 | MLIRContext *context, ::std::optional<Location> location, |
| 1940 | TableOp::Adaptor adaptor, |
| 1941 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1942 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 1943 | |
| 1944 | if (!inputShape.hasRank()) { |
| 1945 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
| 1946 | return success(); |
| 1947 | } |
| 1948 | |
| 1949 | inferredReturnShapes.resize(1); |
| 1950 | inputShape.getDims(inferredReturnShapes[0]); |
| 1951 | return success(); |
| 1952 | } |
| 1953 | |
| 1954 | LogicalResult tosa::TableOp::verify() { |
| 1955 | TensorType inputType = getInput1().getType(); |
| 1956 | TensorType outputType = getOutput().getType(); |
| 1957 | |
| 1958 | if (inputType.hasRank() && outputType.hasRank() && |
| 1959 | inputType.getRank() != outputType.getRank()) |
| 1960 | return emitOpError() |
| 1961 | << "expected input tensor rank to equal result tensor rank" ; |
| 1962 | |
| 1963 | auto inputDims = inputType.getShape(); |
| 1964 | auto outputDims = outputType.getShape(); |
| 1965 | for (auto it : llvm::enumerate(llvm::zip(inputDims, outputDims))) { |
| 1966 | int64_t dim = it.index(); |
| 1967 | auto [inputDim, outputDim] = it.value(); |
| 1968 | if (!ShapedType::isDynamic(outputDim) && outputDim != inputDim) { |
| 1969 | return emitOpError() << "dim(result, " << dim << ") = " << outputDim |
| 1970 | << " doesn't match dim(input, " << dim |
| 1971 | << ") = " << inputDim; |
| 1972 | } |
| 1973 | } |
| 1974 | return success(); |
| 1975 | } |
| 1976 | |
| 1977 | LogicalResult |
| 1978 | tosa::TileOp::getConstantMultiples(SmallVector<int64_t> &multiples) { |
| 1979 | // Multiples must be constants. |
| 1980 | DenseIntElementsAttr multiplesAttr; |
| 1981 | if (!matchPattern(getMultiples(), m_Constant(&multiplesAttr))) |
| 1982 | return failure(); |
| 1983 | multiples = llvm::to_vector( |
| 1984 | llvm::map_range(multiplesAttr.getValues<APInt>(), |
| 1985 | [](const APInt &val) { return val.getSExtValue(); })); |
| 1986 | return success(); |
| 1987 | } |
| 1988 | |
| 1989 | LogicalResult tosa::TileOp::inferReturnTypeComponents( |
| 1990 | MLIRContext *context, ::std::optional<Location> location, |
| 1991 | TileOp::Adaptor adaptor, |
| 1992 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 1993 | Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType()); |
| 1994 | SmallVector<int64_t> multiples; |
| 1995 | if (!tosa::getConstShapeValues(adaptor.getMultiples().getDefiningOp(), |
| 1996 | multiples)) { |
| 1997 | auto rank = |
| 1998 | cast<tosa::shapeType>(adaptor.getMultiples().getType()).getRank(); |
| 1999 | SmallVector<int64_t> fallback(rank, ShapedType::kDynamic); |
| 2000 | inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType)); |
| 2001 | return success(); |
| 2002 | } else { |
| 2003 | multiples = convertToMlirShape(multiples); |
| 2004 | } |
| 2005 | |
| 2006 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 2007 | SmallVector<int64_t> outputShape; |
| 2008 | if (!inputShape.hasRank()) { |
| 2009 | outputShape.resize(multiples.size(), ShapedType::kDynamic); |
| 2010 | inferredReturnShapes.push_back( |
| 2011 | ShapedTypeComponents(outputShape, inputType)); |
| 2012 | return success(); |
| 2013 | } else if (static_cast<size_t>(inputShape.getRank()) != multiples.size()) |
| 2014 | return failure(); |
| 2015 | |
| 2016 | // Any non dynamic dimension can be multiplied to a known size. |
| 2017 | outputShape.reserve(multiples.size()); |
| 2018 | for (int i = 0, s = inputShape.getRank(); i < s; i++) { |
| 2019 | if (multiples[i] == ShapedType::kDynamic) { |
| 2020 | outputShape.push_back(ShapedType::kDynamic); |
| 2021 | } else { |
| 2022 | int64_t dim = inputShape.getDimSize(i); |
| 2023 | if (dim != ShapedType::kDynamic) |
| 2024 | dim *= multiples[i]; |
| 2025 | outputShape.push_back(dim); |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType)); |
| 2030 | return success(); |
| 2031 | } |
| 2032 | |
| 2033 | LogicalResult tosa::TileOp::verify() { |
| 2034 | if (verifySameElementTypes(*this, /* intype = */ getInput1().getType(), |
| 2035 | /* outType = */ getOutput().getType()) |
| 2036 | .failed()) { |
| 2037 | return failure(); |
| 2038 | } |
| 2039 | ShapedType inputType = llvm::cast<ShapedType>(getInput1().getType()); |
| 2040 | ShapedType outputType = llvm::cast<ShapedType>(getType()); |
| 2041 | |
| 2042 | shapeType multiplesType = |
| 2043 | llvm::cast<tosa::shapeType>(getMultiples().getType()); |
| 2044 | |
| 2045 | auto multiplesRank = multiplesType.getRank(); |
| 2046 | |
| 2047 | if (inputType.hasRank()) { |
| 2048 | if (inputType.getRank() != multiplesRank) |
| 2049 | return emitOpError("expect 'multiples' to have rank " ) |
| 2050 | << inputType.getRank() << " but got " << multiplesRank << "." ; |
| 2051 | if (outputType.hasRank() && inputType.getRank() != outputType.getRank()) |
| 2052 | return emitOpError("expect same input and output tensor rank." ); |
| 2053 | } else if (outputType.hasRank() && outputType.getRank() != multiplesRank) |
| 2054 | return emitOpError("expect 'multiples' array to have length " ) |
| 2055 | << outputType.getRank() << " but got " << multiplesRank << "." ; |
| 2056 | |
| 2057 | SmallVector<int64_t> multiples; |
| 2058 | if (getConstantMultiples(multiples).succeeded() && |
| 2059 | llvm::any_of(multiples, [](int64_t v) { return v <= 0 && v != -1; })) |
| 2060 | return emitOpError( |
| 2061 | "expect element of 'multiples' to be positive integer or -1." ); |
| 2062 | |
| 2063 | return success(); |
| 2064 | } |
| 2065 | |
| 2066 | bool tosa::ReshapeOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| 2067 | if (l.size() != r.size() || l.size() != 1) |
| 2068 | return false; |
| 2069 | return getElementTypeOrSelf(l[0]) == getElementTypeOrSelf(r[0]); |
| 2070 | } |
| 2071 | |
| 2072 | LogicalResult tosa::ReshapeOp::inferReturnTypeComponents( |
| 2073 | MLIRContext *context, ::std::optional<Location> location, |
| 2074 | ReshapeOp::Adaptor adaptor, |
| 2075 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2076 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 2077 | Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType()); |
| 2078 | llvm::SmallVector<int64_t> newShapeValue; |
| 2079 | if (!tosa::getConstShapeValues(adaptor.getShape().getDefiningOp(), |
| 2080 | newShapeValue)) { |
| 2081 | auto rank = cast<tosa::shapeType>(adaptor.getShape().getType()).getRank(); |
| 2082 | SmallVector<int64_t> fallback(rank, ShapedType::kDynamic); |
| 2083 | inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType)); |
| 2084 | return success(); |
| 2085 | } else { |
| 2086 | newShapeValue = convertToMlirShape(newShapeValue); |
| 2087 | } |
| 2088 | |
| 2089 | // We cannot infer from the total number of elements so we must take the |
| 2090 | // shape attribute as exact. |
| 2091 | if (!inputShape.hasRank() || !inputShape.hasStaticShape()) { |
| 2092 | inferredReturnShapes.push_back( |
| 2093 | ShapedTypeComponents(newShapeValue, inputType)); |
| 2094 | return success(); |
| 2095 | } |
| 2096 | |
| 2097 | // Determine the number of elements covered by the slice of all static |
| 2098 | // dimensions. This allows us to infer the length of the remaining dynamic |
| 2099 | // dimension. |
| 2100 | int64_t numElements = inputShape.getNumElements(); |
| 2101 | int64_t staticMul = 1; |
| 2102 | for (auto val : newShapeValue) { |
| 2103 | if (!ShapedType::isDynamic(val)) { |
| 2104 | staticMul *= val; |
| 2105 | } |
| 2106 | } |
| 2107 | |
| 2108 | // Determine the length of the dynamic dimension. |
| 2109 | for (auto &val : newShapeValue) { |
| 2110 | if (ShapedType::isDynamic(val)) |
| 2111 | val = numElements / staticMul; |
| 2112 | } |
| 2113 | |
| 2114 | inferredReturnShapes.push_back( |
| 2115 | ShapedTypeComponents(newShapeValue, inputType)); |
| 2116 | return success(); |
| 2117 | } |
| 2118 | |
| 2119 | llvm::LogicalResult tosa::ReshapeOp::verify() { |
| 2120 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
| 2121 | /* outType = */ getOutput().getType()) |
| 2122 | .failed()) { |
| 2123 | return failure(); |
| 2124 | } |
| 2125 | TensorType inputType = getInput1().getType(); |
| 2126 | |
| 2127 | SmallVector<int64_t> shapeValues; |
| 2128 | if (!tosa::getConstShapeValues(getShape().getDefiningOp(), shapeValues)) { |
| 2129 | // skip following checks if shape is not constant |
| 2130 | return mlir::success(); |
| 2131 | } |
| 2132 | |
| 2133 | int missingDims = llvm::count(shapeValues, -1); |
| 2134 | if (missingDims > 1) |
| 2135 | return emitOpError() << "expected at most one target dimension to be -1" ; |
| 2136 | |
| 2137 | const auto outputType = dyn_cast<RankedTensorType>(getType()); |
| 2138 | if (!outputType) |
| 2139 | return success(); |
| 2140 | |
| 2141 | if ((int64_t)shapeValues.size() != outputType.getRank()) |
| 2142 | return emitOpError() << "new shape does not match result rank" ; |
| 2143 | |
| 2144 | for (auto [newShapeDim, outputShapeDim] : |
| 2145 | zip(shapeValues, outputType.getShape())) { |
| 2146 | if (newShapeDim != -1 && newShapeDim != ShapedType::kDynamic && |
| 2147 | outputShapeDim != ShapedType::kDynamic && newShapeDim != outputShapeDim) |
| 2148 | return emitOpError() << "new shape is inconsistent with result shape" ; |
| 2149 | |
| 2150 | if (newShapeDim != ShapedType::kDynamic && newShapeDim < -1) |
| 2151 | return emitOpError() << "new shape has invalid tensor dimension size " |
| 2152 | << newShapeDim; |
| 2153 | } |
| 2154 | |
| 2155 | if (inputType.hasStaticShape()) { |
| 2156 | int64_t inputElementsNum = inputType.getNumElements(); |
| 2157 | if (outputType.hasStaticShape()) { |
| 2158 | int64_t outputElementsNum = outputType.getNumElements(); |
| 2159 | if (inputElementsNum != outputElementsNum) { |
| 2160 | return emitOpError() << "cannot reshape " << inputElementsNum |
| 2161 | << " elements into " << outputElementsNum; |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | int64_t newShapeElementsNum = std::accumulate( |
| 2166 | shapeValues.begin(), shapeValues.end(), 1LL, |
| 2167 | [](int64_t acc, int64_t dim) { return (dim > 0) ? acc * dim : acc; }); |
| 2168 | bool isStaticNewShape = |
| 2169 | llvm::all_of(shapeValues, [](int64_t s) { return s > 0; }); |
| 2170 | if ((isStaticNewShape && inputElementsNum != newShapeElementsNum) || |
| 2171 | (!isStaticNewShape && newShapeElementsNum > inputElementsNum)) { |
| 2172 | return emitOpError() << "cannot reshape " << inputElementsNum |
| 2173 | << " elements into " << newShapeElementsNum; |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | return mlir::success(); |
| 2178 | } |
| 2179 | |
| 2180 | // return failure if val is not a constant |
| 2181 | // set zp to -1 if val is non-zero float or val is not integer nor float |
| 2182 | // otherwise set zp to val's constant value |
| 2183 | static FailureOr<int64_t> getZeroPoint(Value val, bool signExtend) { |
| 2184 | ElementsAttr zpAttr; |
| 2185 | if (!matchPattern(val, m_Constant(&zpAttr))) { |
| 2186 | return failure(); |
| 2187 | } |
| 2188 | |
| 2189 | Type zpElemType = zpAttr.getElementType(); |
| 2190 | |
| 2191 | if (llvm::isa<FloatType>(Val: zpElemType)) { |
| 2192 | if (zpAttr.getValues<APFloat>()[0].isZero()) { |
| 2193 | return 0; |
| 2194 | } |
| 2195 | // return non-zero value to trigger error check |
| 2196 | return -1; |
| 2197 | } |
| 2198 | |
| 2199 | if (llvm::isa<IntegerType>(Val: zpElemType)) { |
| 2200 | if (signExtend) |
| 2201 | return zpAttr.getValues<APInt>()[0].getSExtValue(); |
| 2202 | else |
| 2203 | return zpAttr.getValues<APInt>()[0].getZExtValue(); |
| 2204 | } |
| 2205 | |
| 2206 | // return non-zero value to trigger error check |
| 2207 | return -1; |
| 2208 | } |
| 2209 | |
| 2210 | template <typename T> |
| 2211 | static LogicalResult verifyZeroPoint(T op, Value val, const int64_t &zp, |
| 2212 | const std::string &operand) { |
| 2213 | Type zpElemType = getElementTypeOrSelf(val); |
| 2214 | |
| 2215 | if (!zpElemType.isInteger(width: 8) && zp != 0) { |
| 2216 | // convert operand to lower case for error message |
| 2217 | std::string lower = operand; |
| 2218 | std::transform(first: lower.begin(), last: lower.end(), result: lower.begin(), unary_op: ::tolower); |
| 2219 | return op.emitOpError() |
| 2220 | << lower << " zero point must be zero for non-int8 integer types" ; |
| 2221 | } |
| 2222 | |
| 2223 | return success(); |
| 2224 | } |
| 2225 | |
| 2226 | static LogicalResult verifyZeroPoint(tosa::RescaleOp op, Value zpVal, |
| 2227 | const int64_t &zp, |
| 2228 | const std::string &operand) { |
| 2229 | bool isInputZp = (operand == "Input" ); |
| 2230 | |
| 2231 | bool tensorUnsigned = |
| 2232 | isInputZp ? op.getInputUnsigned() : op.getOutputUnsigned(); |
| 2233 | StringRef tensorName = isInputZp ? "input" : "output" ; |
| 2234 | |
| 2235 | Type zpElemType = getElementTypeOrSelf(val: zpVal); |
| 2236 | |
| 2237 | if (zp != 0) { |
| 2238 | if (!zpElemType.isInteger(width: 8) && |
| 2239 | !(zpElemType.isInteger(width: 16) && tensorUnsigned)) { |
| 2240 | return op.emitOpError() |
| 2241 | << "expect " << tensorName << "_zp of 0, got " << zp; |
| 2242 | } |
| 2243 | if (zpElemType.isInteger(width: 16) && tensorUnsigned && zp != 32768) { |
| 2244 | return op.emitOpError() << "expect " << tensorName |
| 2245 | << "_zp of 0 or 32768 for unsigned int16 " |
| 2246 | << tensorName << ", got " << zp; |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | return success(); |
| 2251 | } |
| 2252 | |
| 2253 | #define ZERO_POINT_HELPER(OP, OPERAND_NAME, SIGN_EXTEND) \ |
| 2254 | FailureOr<int64_t> tosa::OP::get##OPERAND_NAME##ZeroPoint() { \ |
| 2255 | return getZeroPoint(get##OPERAND_NAME##Zp(), SIGN_EXTEND); \ |
| 2256 | } \ |
| 2257 | LogicalResult tosa::OP::verify##OPERAND_NAME##ZeroPoint(int64_t zp) { \ |
| 2258 | return verifyZeroPoint(*this, get##OPERAND_NAME##Zp(), zp, #OPERAND_NAME); \ |
| 2259 | } |
| 2260 | |
| 2261 | ZERO_POINT_HELPER(Conv2DOp, Input, true) |
| 2262 | ZERO_POINT_HELPER(Conv2DOp, Weight, true) |
| 2263 | ZERO_POINT_HELPER(Conv3DOp, Input, true) |
| 2264 | ZERO_POINT_HELPER(Conv3DOp, Weight, true) |
| 2265 | ZERO_POINT_HELPER(DepthwiseConv2DOp, Input, true) |
| 2266 | ZERO_POINT_HELPER(DepthwiseConv2DOp, Weight, true) |
| 2267 | ZERO_POINT_HELPER(TransposeConv2DOp, Input, true) |
| 2268 | ZERO_POINT_HELPER(TransposeConv2DOp, Weight, true) |
| 2269 | ZERO_POINT_HELPER(AvgPool2dOp, Input, true) |
| 2270 | ZERO_POINT_HELPER(AvgPool2dOp, Output, true) |
| 2271 | ZERO_POINT_HELPER(MatMulOp, A, true) |
| 2272 | ZERO_POINT_HELPER(MatMulOp, B, true) |
| 2273 | ZERO_POINT_HELPER(NegateOp, Input1, true) |
| 2274 | ZERO_POINT_HELPER(NegateOp, Output, true) |
| 2275 | ZERO_POINT_HELPER(RescaleOp, Input, !getInputUnsigned()) |
| 2276 | ZERO_POINT_HELPER(RescaleOp, Output, !getOutputUnsigned()) |
| 2277 | #undef ZERO_POINT_HELPER |
| 2278 | |
| 2279 | LogicalResult tosa::TransposeOp::inferReturnTypeComponents( |
| 2280 | MLIRContext *context, ::std::optional<Location> location, |
| 2281 | TransposeOp::Adaptor adaptor, |
| 2282 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2283 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 2284 | |
| 2285 | // If input rank and permutation length is unknown, the output rank is |
| 2286 | // unknown. |
| 2287 | if (!inputShape.hasRank()) { |
| 2288 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
| 2289 | return success(); |
| 2290 | } |
| 2291 | |
| 2292 | const auto inputRank = inputShape.getRank(); |
| 2293 | |
| 2294 | // This would imply the number of permutations does not match the rank of |
| 2295 | // the input which is illegal. |
| 2296 | if (adaptor.getPerms().size() != static_cast<size_t>(inputRank)) { |
| 2297 | return failure(); |
| 2298 | } |
| 2299 | |
| 2300 | SmallVector<int64_t> outputShape; |
| 2301 | // Rank-0 means no permutations matter. |
| 2302 | if (inputRank == 0) { |
| 2303 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 2304 | return success(); |
| 2305 | } |
| 2306 | |
| 2307 | // Check whether the input dimensions are all the same. |
| 2308 | bool allTheSame = true; |
| 2309 | for (int i = 1, s = inputRank; i < s; i++) { |
| 2310 | if (inputShape.getDimSize(0) != inputShape.getDimSize(i)) { |
| 2311 | allTheSame = false; |
| 2312 | break; |
| 2313 | } |
| 2314 | } |
| 2315 | |
| 2316 | // If all of the input dimensions are the same we don't care about the |
| 2317 | // permutation. |
| 2318 | if (allTheSame) { |
| 2319 | outputShape.resize(inputRank, inputShape.getDimSize(0)); |
| 2320 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 2321 | return success(); |
| 2322 | } |
| 2323 | |
| 2324 | outputShape.resize(inputRank, ShapedType::kDynamic); |
| 2325 | |
| 2326 | // Constant permutation values must be within the input rank. |
| 2327 | if (llvm::any_of(adaptor.getPerms(), |
| 2328 | [inputRank](const auto i) { return i >= inputRank; })) |
| 2329 | return failure(); |
| 2330 | |
| 2331 | outputShape.reserve(inputRank); |
| 2332 | for (int i = 0, s = inputRank; i < s; i++) { |
| 2333 | outputShape[i] = inputShape.getDimSize(adaptor.getPerms()[i]); |
| 2334 | } |
| 2335 | |
| 2336 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 2337 | return success(); |
| 2338 | } |
| 2339 | |
| 2340 | LogicalResult tosa::TransposeOp::verify() { |
| 2341 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
| 2342 | /* outType = */ getOutput().getType()) |
| 2343 | .failed()) { |
| 2344 | return failure(); |
| 2345 | } |
| 2346 | |
| 2347 | const ShapeAdaptor inputShape(getInput1().getType()); |
| 2348 | const ShapeAdaptor outputShape(getOutput().getType()); |
| 2349 | |
| 2350 | const llvm::ArrayRef<int32_t> constantPerms = getPerms(); |
| 2351 | |
| 2352 | if (inputShape.hasRank() && |
| 2353 | constantPerms.size() != static_cast<size_t>(inputShape.getRank())) |
| 2354 | return emitOpError() << "expected perms attribute to have size " |
| 2355 | << inputShape.getRank() |
| 2356 | << " (input rank) but got size " |
| 2357 | << constantPerms.size(); |
| 2358 | |
| 2359 | if (inputShape.hasRank() && outputShape.hasRank() && |
| 2360 | inputShape.getRank() != outputShape.getRank()) |
| 2361 | return emitOpError() |
| 2362 | << "expected input tensor rank to equal result tensor rank" ; |
| 2363 | |
| 2364 | if (outputShape.hasRank() && |
| 2365 | constantPerms.size() != static_cast<size_t>(outputShape.getRank())) |
| 2366 | return emitOpError() << "expected perms attribute to have size " |
| 2367 | << outputShape.getRank() |
| 2368 | << " (output rank) but got size " |
| 2369 | << constantPerms.size(); |
| 2370 | |
| 2371 | if (!llvm::all_of(constantPerms, |
| 2372 | [&constantPerms](int32_t s) { |
| 2373 | return s >= 0 && |
| 2374 | static_cast<size_t>(s) < constantPerms.size(); |
| 2375 | }) || |
| 2376 | !isPermutationVector(llvm::to_vector(llvm::map_range( |
| 2377 | constantPerms, [](int32_t v) -> int64_t { return v; })))) |
| 2378 | return emitOpError() << "expected valid permutation indices" ; |
| 2379 | |
| 2380 | // ERROR_IF(tensor_size(shape1) != tensor_size(shape)) |
| 2381 | if (inputShape.hasStaticShape() && outputShape.hasStaticShape() && |
| 2382 | inputShape.getNumElements() != outputShape.getNumElements()) |
| 2383 | return emitOpError() << "expected input1 and output to have same numbers " |
| 2384 | "of elements, got " |
| 2385 | << inputShape.getNumElements() << " and " |
| 2386 | << outputShape.getNumElements(); |
| 2387 | |
| 2388 | // Verify that the types of the input and output tensors are properly |
| 2389 | // permuted. |
| 2390 | if (inputShape.hasRank() && outputShape.hasRank()) { |
| 2391 | for (auto i = 0; i < outputShape.getRank(); i++) { |
| 2392 | if (inputShape.isDynamicDim(constantPerms[i]) || |
| 2393 | outputShape.isDynamicDim(i)) |
| 2394 | continue; |
| 2395 | |
| 2396 | if (inputShape.getDimSize(constantPerms[i]) != outputShape.getDimSize(i)) |
| 2397 | return emitOpError() |
| 2398 | << "expected output tensor dim " << i << " to match " |
| 2399 | << "input dim " << constantPerms[i] << " with value of " |
| 2400 | << inputShape.getDimSize(constantPerms[i]); |
| 2401 | } |
| 2402 | } |
| 2403 | |
| 2404 | return success(); |
| 2405 | } |
| 2406 | |
| 2407 | LogicalResult TransposeOp::reifyResultShapes( |
| 2408 | OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
| 2409 | |
| 2410 | const llvm::ArrayRef<int32_t> transposePerms = getPerms(); |
| 2411 | |
| 2412 | Value input = getInput1(); |
| 2413 | auto inputType = cast<TensorType>(input.getType()); |
| 2414 | |
| 2415 | SmallVector<OpFoldResult> returnedDims(inputType.getRank()); |
| 2416 | for (auto dim : transposePerms) { |
| 2417 | int32_t dimInInput = transposePerms[dim]; |
| 2418 | if (inputType.isDynamicDim(dimInInput)) |
| 2419 | returnedDims[dim] = |
| 2420 | builder.create<tensor::DimOp>(getLoc(), input, dimInInput) |
| 2421 | .getResult(); |
| 2422 | else |
| 2423 | returnedDims[dim] = |
| 2424 | builder.getIndexAttr(inputType.getDimSize(dimInInput)); |
| 2425 | } |
| 2426 | |
| 2427 | reifiedReturnShapes.emplace_back(std::move(returnedDims)); |
| 2428 | return success(); |
| 2429 | } |
| 2430 | |
| 2431 | LogicalResult tosa::GatherOp::inferReturnTypeComponents( |
| 2432 | MLIRContext *context, ::std::optional<Location> location, |
| 2433 | GatherOp::Adaptor adaptor, |
| 2434 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2435 | llvm::SmallVector<int64_t> outputShape; |
| 2436 | outputShape.resize(3, ShapedType::kDynamic); |
| 2437 | |
| 2438 | ShapeAdaptor valuesShape(adaptor.getValues().getType()); |
| 2439 | if (valuesShape.hasRank()) { |
| 2440 | outputShape[0] = valuesShape.getDimSize(0); |
| 2441 | outputShape[2] = valuesShape.getDimSize(2); |
| 2442 | } |
| 2443 | |
| 2444 | ShapeAdaptor indicesShape(adaptor.getIndices().getType()); |
| 2445 | if (indicesShape.hasRank()) { |
| 2446 | if (outputShape[0] == ShapedType::kDynamic) |
| 2447 | outputShape[0] = indicesShape.getDimSize(0); |
| 2448 | if (outputShape[1] == ShapedType::kDynamic) |
| 2449 | outputShape[1] = indicesShape.getDimSize(1); |
| 2450 | } |
| 2451 | |
| 2452 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 2453 | return success(); |
| 2454 | } |
| 2455 | |
| 2456 | LogicalResult tosa::GatherOp::verify() { |
| 2457 | if (verifySameElementTypes(*this, /* inType = */ getValues().getType(), |
| 2458 | /* outType = */ getOutput().getType()) |
| 2459 | .failed()) { |
| 2460 | return failure(); |
| 2461 | } |
| 2462 | |
| 2463 | const ShapeAdaptor valuesShape(getValues().getType()); |
| 2464 | const ShapeAdaptor indicesShape(getIndices().getType()); |
| 2465 | const ShapeAdaptor outputShape(getOutput().getType()); |
| 2466 | |
| 2467 | int64_t N = ShapedType::kDynamic; |
| 2468 | int64_t W = ShapedType::kDynamic; |
| 2469 | int64_t C = ShapedType::kDynamic; |
| 2470 | |
| 2471 | if (valuesShape.hasRank()) { |
| 2472 | N = valuesShape.getDimSize(0); |
| 2473 | C = valuesShape.getDimSize(2); |
| 2474 | } |
| 2475 | if (indicesShape.hasRank()) { |
| 2476 | const int64_t indicesN = indicesShape.getDimSize(0); |
| 2477 | W = indicesShape.getDimSize(1); |
| 2478 | if (N == ShapedType::kDynamic) |
| 2479 | N = indicesN; |
| 2480 | else if (indicesN != ShapedType::kDynamic && N != indicesN) |
| 2481 | return emitOpError() << "requires indices dimension 0 to have size " << N |
| 2482 | << ", got " << indicesN; |
| 2483 | } |
| 2484 | if (outputShape.hasRank()) { |
| 2485 | const int64_t outputN = outputShape.getDimSize(0); |
| 2486 | const int64_t outputW = outputShape.getDimSize(1); |
| 2487 | const int64_t outputC = outputShape.getDimSize(2); |
| 2488 | if (N != ShapedType::kDynamic && outputN != ShapedType::kDynamic && |
| 2489 | N != outputN) |
| 2490 | return emitOpError() << "requires output dimension 0 to have size " << N |
| 2491 | << ", got " << outputN; |
| 2492 | |
| 2493 | if (W != ShapedType::kDynamic && outputW != ShapedType::kDynamic && |
| 2494 | W != outputW) |
| 2495 | return emitOpError() << "requires output dimension 1 to have size " << W |
| 2496 | << ", got " << outputW; |
| 2497 | if (C != ShapedType::kDynamic && outputC != ShapedType::kDynamic && |
| 2498 | C != outputC) |
| 2499 | return emitOpError() << "requires output dimension 2 to have size " << C |
| 2500 | << ", got " << outputC; |
| 2501 | } |
| 2502 | return success(); |
| 2503 | } |
| 2504 | |
| 2505 | LogicalResult tosa::ResizeOp::inferReturnTypeComponents( |
| 2506 | MLIRContext *context, ::std::optional<Location> location, |
| 2507 | ResizeOp::Adaptor adaptor, |
| 2508 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2509 | llvm::SmallVector<int64_t, 4> outputShape; |
| 2510 | outputShape.resize(4, ShapedType::kDynamic); |
| 2511 | |
| 2512 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 2513 | if (!inputShape.hasRank()) |
| 2514 | return failure(); |
| 2515 | |
| 2516 | outputShape[0] = inputShape.getDimSize(0); |
| 2517 | outputShape[3] = inputShape.getDimSize(3); |
| 2518 | int64_t inputHeight = inputShape.getDimSize(1); |
| 2519 | int64_t inputWidth = inputShape.getDimSize(2); |
| 2520 | |
| 2521 | if ((inputHeight == ShapedType::kDynamic) || |
| 2522 | (inputWidth == ShapedType::kDynamic)) |
| 2523 | return failure(); |
| 2524 | |
| 2525 | SmallVector<int64_t> scaleInt, offsetInt, borderInt; |
| 2526 | if (!tosa::getConstShapeValues(adaptor.getScale().getDefiningOp(), |
| 2527 | scaleInt) || |
| 2528 | !tosa::getConstShapeValues(adaptor.getOffset().getDefiningOp(), |
| 2529 | offsetInt) || |
| 2530 | !tosa::getConstShapeValues(adaptor.getBorder().getDefiningOp(), |
| 2531 | borderInt)) { |
| 2532 | return failure(); |
| 2533 | } |
| 2534 | |
| 2535 | // Compute the output shape based on attributes: scale, offset, and border. |
| 2536 | outputShape[1] = |
| 2537 | (((inputHeight - 1) * scaleInt[0] - offsetInt[0] + borderInt[0]) / |
| 2538 | scaleInt[1]) + |
| 2539 | 1; |
| 2540 | |
| 2541 | outputShape[2] = |
| 2542 | (((inputWidth - 1) * scaleInt[2] - offsetInt[1] + borderInt[1]) / |
| 2543 | scaleInt[3]) + |
| 2544 | 1; |
| 2545 | |
| 2546 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 2547 | return success(); |
| 2548 | } |
| 2549 | |
| 2550 | LogicalResult tosa::ResizeOp::verify() { |
| 2551 | const Value input = getInput(); |
| 2552 | const Value output = getOutput(); |
| 2553 | const RankedTensorType inputType = |
| 2554 | llvm::dyn_cast<RankedTensorType>(input.getType()); |
| 2555 | const RankedTensorType outputType = |
| 2556 | llvm::dyn_cast<RankedTensorType>(output.getType()); |
| 2557 | |
| 2558 | SmallVector<int64_t> scaleValues; |
| 2559 | SmallVector<int64_t> offsetValues; |
| 2560 | SmallVector<int64_t> borderValues; |
| 2561 | if (!tosa::getConstShapeValues(getScale().getDefiningOp(), scaleValues) || |
| 2562 | !tosa::getConstShapeValues(getOffset().getDefiningOp(), offsetValues) || |
| 2563 | !tosa::getConstShapeValues(getBorder().getDefiningOp(), borderValues)) { |
| 2564 | // Skip following checks if shape is not constant |
| 2565 | return success(); |
| 2566 | } |
| 2567 | |
| 2568 | if (llvm::any_of(scaleValues, [](int64_t s) { return s <= 0; })) |
| 2569 | return emitOpError("expect all scale values to be > 0, got " ) |
| 2570 | << scaleValues; |
| 2571 | |
| 2572 | const int64_t scaleYN = scaleValues[0]; |
| 2573 | const int64_t scaleYD = scaleValues[1]; |
| 2574 | const int64_t scaleXN = scaleValues[2]; |
| 2575 | const int64_t scaleXD = scaleValues[3]; |
| 2576 | |
| 2577 | const int64_t offsetY = offsetValues[0]; |
| 2578 | const int64_t offsetX = offsetValues[1]; |
| 2579 | |
| 2580 | const int64_t borderY = borderValues[0]; |
| 2581 | const int64_t borderX = borderValues[1]; |
| 2582 | |
| 2583 | if (!inputType) |
| 2584 | return success(); |
| 2585 | if (!outputType) |
| 2586 | return success(); |
| 2587 | |
| 2588 | const int64_t oh = outputType.getDimSize(1); |
| 2589 | const int64_t ow = outputType.getDimSize(2); |
| 2590 | const int64_t ih = inputType.getDimSize(1); |
| 2591 | const int64_t iw = inputType.getDimSize(2); |
| 2592 | |
| 2593 | // Don't check with input height that could be broadcast (ih != 1) |
| 2594 | // since Linalg, a consumer of TOSA, expects broadcasting support |
| 2595 | // in resize to be available. Taking the cautious approach for now, |
| 2596 | // we can consider removing support for broadcasting later. |
| 2597 | if (ih != ShapedType::kDynamic && ih != 1) { |
| 2598 | const std::optional<int64_t> calculatedOutHeightMinusOne = |
| 2599 | idivCheck((ih - 1) * scaleYN - offsetY + borderY, scaleYD); |
| 2600 | if (!calculatedOutHeightMinusOne.has_value()) |
| 2601 | return emitOpError("expected (input_height - 1) * scale_y_n - offset_y + " |
| 2602 | "border_y " ) |
| 2603 | << "to be wholly divisible by scale_y_d, got ((" << ih |
| 2604 | << " - 1) * " << scaleYN << " - " << offsetY << " + " << borderY |
| 2605 | << ") / " << scaleYD; |
| 2606 | const int64_t calculatedOutHeight = calculatedOutHeightMinusOne.value() + 1; |
| 2607 | if (oh != ShapedType::kDynamic && calculatedOutHeight != oh) |
| 2608 | return emitOpError("calculated output height did not match expected: " ) |
| 2609 | << "calculated=" << calculatedOutHeight << ", expected=" << oh; |
| 2610 | } |
| 2611 | |
| 2612 | // Don't check with input width that could be broadcast (iw != 1) |
| 2613 | // since Linalg, a consumer of TOSA, expects broadcasting support |
| 2614 | // in resize to be available. Taking the cautious approach for now, |
| 2615 | // we can consider removing support for broadcasting later. |
| 2616 | if (iw != ShapedType::kDynamic && iw != 1) { |
| 2617 | const int64_t scaledInWidth = (iw - 1) * scaleXN - offsetX + borderX; |
| 2618 | const std::optional<int64_t> calculatedOutWidthMinusOne = |
| 2619 | idivCheck(scaledInWidth, scaleXD); |
| 2620 | if (!calculatedOutWidthMinusOne.has_value()) |
| 2621 | return emitOpError("expected (input_width - 1) * scale_x_n - offset_x + " |
| 2622 | "border_x " ) |
| 2623 | << "to be wholly divisible by scale_x_d, got ((" << iw |
| 2624 | << " - 1) * " << scaleXN << " - " << offsetX << " + " << borderX |
| 2625 | << ") / " << scaleXD; |
| 2626 | const int64_t calculatedOutWidth = calculatedOutWidthMinusOne.value() + 1; |
| 2627 | if (ow != ShapedType::kDynamic && calculatedOutWidth != ow) |
| 2628 | return emitOpError("calculated output width did not match expected: " ) |
| 2629 | << "calculated=" << calculatedOutWidth << ", expected=" << ow; |
| 2630 | } |
| 2631 | |
| 2632 | return success(); |
| 2633 | } |
| 2634 | |
| 2635 | LogicalResult tosa::ScatterOp::inferReturnTypeComponents( |
| 2636 | MLIRContext *context, ::std::optional<Location> location, |
| 2637 | ScatterOp::Adaptor adaptor, |
| 2638 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2639 | llvm::SmallVector<int64_t> outputShape; |
| 2640 | outputShape.resize(3, ShapedType::kDynamic); |
| 2641 | |
| 2642 | ShapeAdaptor valuesInShape(adaptor.getValuesIn().getType()); |
| 2643 | if (valuesInShape.hasRank()) { |
| 2644 | outputShape[0] = valuesInShape.getDimSize(0); |
| 2645 | outputShape[1] = valuesInShape.getDimSize(1); |
| 2646 | outputShape[2] = valuesInShape.getDimSize(2); |
| 2647 | } |
| 2648 | |
| 2649 | ShapeAdaptor indicesShape(adaptor.getIndices().getType()); |
| 2650 | if (indicesShape.hasRank()) { |
| 2651 | if (outputShape[0] == ShapedType::kDynamic) |
| 2652 | outputShape[0] = indicesShape.getDimSize(0); |
| 2653 | } |
| 2654 | |
| 2655 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 2656 | if (inputShape.hasRank()) { |
| 2657 | if (outputShape[0] == ShapedType::kDynamic) |
| 2658 | outputShape[0] = inputShape.getDimSize(0); |
| 2659 | if (outputShape[2] == ShapedType::kDynamic) |
| 2660 | outputShape[2] = inputShape.getDimSize(2); |
| 2661 | } |
| 2662 | |
| 2663 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 2664 | return success(); |
| 2665 | } |
| 2666 | |
| 2667 | LogicalResult tosa::ScatterOp::verify() { |
| 2668 | if (verifySameElementTypes(*this, /* inType = */ getValuesIn().getType(), |
| 2669 | /* outType = */ getValuesOut().getType()) |
| 2670 | .failed() || |
| 2671 | verifySameElementTypes(*this, /* inType = */ getInput().getType(), |
| 2672 | /* outType = */ getValuesOut().getType()) |
| 2673 | .failed()) { |
| 2674 | return failure(); |
| 2675 | } |
| 2676 | |
| 2677 | const ShapeAdaptor valuesInShape(getValuesIn().getType()); |
| 2678 | const ShapeAdaptor indicesShape(getIndices().getType()); |
| 2679 | const ShapeAdaptor inputShape(getInput().getType()); |
| 2680 | const ShapeAdaptor outputShape(getValuesOut().getType()); |
| 2681 | |
| 2682 | int64_t N = ShapedType::kDynamic; |
| 2683 | int64_t K = ShapedType::kDynamic; |
| 2684 | int64_t W = ShapedType::kDynamic; |
| 2685 | int64_t C = ShapedType::kDynamic; |
| 2686 | if (valuesInShape.hasRank()) { |
| 2687 | N = valuesInShape.getDimSize(0); |
| 2688 | K = valuesInShape.getDimSize(1); |
| 2689 | C = valuesInShape.getDimSize(2); |
| 2690 | } |
| 2691 | if (indicesShape.hasRank()) { |
| 2692 | const int64_t indicesN = indicesShape.getDimSize(0); |
| 2693 | W = indicesShape.getDimSize(1); |
| 2694 | if (N == ShapedType::kDynamic) |
| 2695 | N = indicesN; |
| 2696 | else if (indicesN != ShapedType::kDynamic && N != indicesN) |
| 2697 | return emitOpError() << "requires indices dimension 0 to have size " << N |
| 2698 | << ", got " << indicesN; |
| 2699 | } |
| 2700 | if (inputShape.hasRank()) { |
| 2701 | const int64_t inputN = inputShape.getDimSize(0); |
| 2702 | const int64_t inputW = inputShape.getDimSize(1); |
| 2703 | const int64_t inputC = inputShape.getDimSize(2); |
| 2704 | if (N == ShapedType::kDynamic) |
| 2705 | N = inputN; |
| 2706 | else if (inputN != ShapedType::kDynamic && N != inputN) |
| 2707 | return emitOpError() << "requires input dimension 0 to have size " << N |
| 2708 | << ", got " << inputN; |
| 2709 | if (W == ShapedType::kDynamic) |
| 2710 | W = inputW; |
| 2711 | else if (inputW != ShapedType::kDynamic && W != inputW) |
| 2712 | return emitOpError() << "requires input dimension 1 to have size " << W |
| 2713 | << ", got " << inputW; |
| 2714 | |
| 2715 | if (C == ShapedType::kDynamic) |
| 2716 | C = inputC; |
| 2717 | else if (inputC != ShapedType::kDynamic && C != inputC) |
| 2718 | return emitOpError() << "requires input dimension 2 to have size " << C |
| 2719 | << ", got " << inputC; |
| 2720 | } |
| 2721 | if (outputShape.hasRank()) { |
| 2722 | const int64_t outputN = outputShape.getDimSize(0); |
| 2723 | const int64_t outputK = outputShape.getDimSize(1); |
| 2724 | const int64_t outputC = outputShape.getDimSize(2); |
| 2725 | if (N != ShapedType::kDynamic && outputN != ShapedType::kDynamic && |
| 2726 | N != outputN) |
| 2727 | return emitOpError() << "requires values_out dimension 0 to have size " |
| 2728 | << N << ", got " << outputN; |
| 2729 | if (K == ShapedType::kDynamic) |
| 2730 | K = outputK; |
| 2731 | else if (outputK != ShapedType::kDynamic && K != outputK) |
| 2732 | return emitOpError() << "requires values_out dimension 1 to have size " |
| 2733 | << K << ", got " << outputK; |
| 2734 | if (C != ShapedType::kDynamic && outputC != ShapedType::kDynamic && |
| 2735 | C != outputC) |
| 2736 | return emitOpError() << "requires values_out dimension 2 to have size " |
| 2737 | << C << ", got " << outputC; |
| 2738 | } |
| 2739 | if (K != ShapedType::kDynamic && W != ShapedType::kDynamic && !(K >= W)) |
| 2740 | return emitOpError() << "requires dimensions K >= W, got K=" << K |
| 2741 | << " and W=" << W; |
| 2742 | |
| 2743 | return success(); |
| 2744 | } |
| 2745 | |
| 2746 | static LogicalResult ReduceInferReturnTypes( |
| 2747 | ShapeAdaptor operandShape, Type inputType, IntegerAttr axis, |
| 2748 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2749 | int64_t axisVal = axis.getValue().getSExtValue(); |
| 2750 | if (!operandShape.hasRank() || operandShape.getRank() <= axisVal) { |
| 2751 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(inputType)); |
| 2752 | return success(); |
| 2753 | } |
| 2754 | |
| 2755 | SmallVector<int64_t> outputShape; |
| 2756 | operandShape.getDims(res&: outputShape); |
| 2757 | outputShape[axisVal] = 1; |
| 2758 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outputShape, inputType)); |
| 2759 | return success(); |
| 2760 | } |
| 2761 | |
| 2762 | #define COMPATIBLE_RETURN_TYPES(OP) \ |
| 2763 | bool OP::isCompatibleReturnTypes(TypeRange l, TypeRange r) { \ |
| 2764 | if (l.size() != r.size() || l.size() != 1) \ |
| 2765 | return false; \ |
| 2766 | if (getElementTypeOrSelf(l[0]) != getElementTypeOrSelf(r[0])) \ |
| 2767 | return false; \ |
| 2768 | return succeeded(verifyCompatibleShape(l[0], r[0])); \ |
| 2769 | } |
| 2770 | |
| 2771 | #define REDUCE_SHAPE_INFER(OP) \ |
| 2772 | LogicalResult OP::inferReturnTypeComponents( \ |
| 2773 | MLIRContext *context, ::std::optional<Location> location, \ |
| 2774 | OP::Adaptor adaptor, \ |
| 2775 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \ |
| 2776 | Type inputType = \ |
| 2777 | llvm::cast<TensorType>(adaptor.getInput().getType()).getElementType(); \ |
| 2778 | ShapeAdaptor inputShape(adaptor.getInput().getType()); \ |
| 2779 | const Properties &prop = adaptor.getProperties(); \ |
| 2780 | return ReduceInferReturnTypes(inputShape, inputType, prop.axis, \ |
| 2781 | inferredReturnShapes); \ |
| 2782 | } \ |
| 2783 | COMPATIBLE_RETURN_TYPES(OP) |
| 2784 | |
| 2785 | REDUCE_SHAPE_INFER(tosa::ReduceAllOp) |
| 2786 | REDUCE_SHAPE_INFER(tosa::ReduceAnyOp) |
| 2787 | REDUCE_SHAPE_INFER(tosa::ReduceMaxOp) |
| 2788 | REDUCE_SHAPE_INFER(tosa::ReduceMinOp) |
| 2789 | REDUCE_SHAPE_INFER(tosa::ReduceProductOp) |
| 2790 | REDUCE_SHAPE_INFER(tosa::ReduceSumOp) |
| 2791 | #undef REDUCE_SHAPE_INFER |
| 2792 | COMPATIBLE_RETURN_TYPES(tosa::ConcatOp) |
| 2793 | #undef COMPATIBLE_RETURN_TYPES |
| 2794 | |
| 2795 | template <typename T> |
| 2796 | static LogicalResult verifyReduceOp(T op) { |
| 2797 | // All TOSA reduce Ops have input, output and axis. |
| 2798 | TensorType inputType = op.getInput().getType(); |
| 2799 | TensorType outputType = op.getOutput().getType(); |
| 2800 | int32_t reduceAxis = op.getAxis(); |
| 2801 | |
| 2802 | if (reduceAxis < 0) { |
| 2803 | op.emitOpError("reduce axis must not be negative" ); |
| 2804 | return failure(); |
| 2805 | } |
| 2806 | if (inputType.hasRank()) { |
| 2807 | int64_t inputRank = inputType.getRank(); |
| 2808 | // We allow for a special case where the input/output shape has rank 0 and |
| 2809 | // axis is also 0. |
| 2810 | if (reduceAxis >= inputRank && !(reduceAxis == 0 && inputRank == 0)) { |
| 2811 | op.emitOpError("expect input tensor rank (" ) |
| 2812 | << inputRank << ") to be larger than reduce axis (" << reduceAxis |
| 2813 | << ")" ; |
| 2814 | return failure(); |
| 2815 | } |
| 2816 | } |
| 2817 | if (outputType.hasRank()) { |
| 2818 | int64_t outputRank = outputType.getRank(); |
| 2819 | if (inputType.hasRank() && outputRank != inputType.getRank()) { |
| 2820 | op.emitOpError( |
| 2821 | "expect output tensor rank to be equal to input tensor rank" ); |
| 2822 | return failure(); |
| 2823 | } |
| 2824 | if (reduceAxis >= outputRank && !(reduceAxis == 0 && outputRank == 0)) { |
| 2825 | op.emitOpError("expect output tensor rank (" ) |
| 2826 | << outputRank << ") to be larger than reduce axis (" << reduceAxis |
| 2827 | << ")" ; |
| 2828 | return failure(); |
| 2829 | } |
| 2830 | // We can only verify the reduced dimension size to be 1 if this is not |
| 2831 | // the special case of output rank == 0. |
| 2832 | if (outputRank != 0) { |
| 2833 | auto outputShape = outputType.getShape(); |
| 2834 | if (!outputType.isDynamicDim(reduceAxis) && |
| 2835 | outputShape[reduceAxis] != 1) { |
| 2836 | op.emitOpError("expect reduced dimension size to be 1, got " ) |
| 2837 | << outputShape[reduceAxis]; |
| 2838 | return failure(); |
| 2839 | } |
| 2840 | } |
| 2841 | } |
| 2842 | return success(); |
| 2843 | } |
| 2844 | |
| 2845 | LogicalResult tosa::ReduceAllOp::verify() { return verifyReduceOp(*this); } |
| 2846 | LogicalResult tosa::ReduceAnyOp::verify() { return verifyReduceOp(*this); } |
| 2847 | LogicalResult tosa::ReduceMaxOp::verify() { return verifyReduceOp(*this); } |
| 2848 | LogicalResult tosa::ReduceMinOp::verify() { return verifyReduceOp(*this); } |
| 2849 | LogicalResult tosa::ReduceProductOp::verify() { return verifyReduceOp(*this); } |
| 2850 | LogicalResult tosa::ReduceSumOp::verify() { return verifyReduceOp(*this); } |
| 2851 | |
| 2852 | static LogicalResult NAryInferReturnTypes( |
| 2853 | const ValueShapeRange &operands, |
| 2854 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2855 | llvm::SmallVector<int64_t> outShape; |
| 2856 | if (resolveBroadcastShape(operands, outShape).failed()) { |
| 2857 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents()); |
| 2858 | } else { |
| 2859 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outShape)); |
| 2860 | } |
| 2861 | return success(); |
| 2862 | } |
| 2863 | |
| 2864 | #define NARY_SHAPE_INFER(OP) \ |
| 2865 | LogicalResult OP::inferReturnTypeComponents( \ |
| 2866 | MLIRContext *context, ::std::optional<Location> location, \ |
| 2867 | ValueShapeRange operands, DictionaryAttr attributes, \ |
| 2868 | OpaqueProperties properties, RegionRange regions, \ |
| 2869 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \ |
| 2870 | return NAryInferReturnTypes(operands, inferredReturnShapes); \ |
| 2871 | } |
| 2872 | |
| 2873 | NARY_SHAPE_INFER(tosa::AbsOp) |
| 2874 | NARY_SHAPE_INFER(tosa::AddOp) |
| 2875 | NARY_SHAPE_INFER(tosa::ArithmeticRightShiftOp) |
| 2876 | NARY_SHAPE_INFER(tosa::BitwiseAndOp) |
| 2877 | NARY_SHAPE_INFER(tosa::BitwiseOrOp) |
| 2878 | NARY_SHAPE_INFER(tosa::BitwiseXorOp) |
| 2879 | NARY_SHAPE_INFER(tosa::BitwiseNotOp) |
| 2880 | NARY_SHAPE_INFER(tosa::CastOp) |
| 2881 | NARY_SHAPE_INFER(tosa::CeilOp) |
| 2882 | NARY_SHAPE_INFER(tosa::ClampOp) |
| 2883 | NARY_SHAPE_INFER(tosa::ClzOp) |
| 2884 | NARY_SHAPE_INFER(tosa::CosOp) |
| 2885 | NARY_SHAPE_INFER(tosa::ExpOp) |
| 2886 | NARY_SHAPE_INFER(tosa::FloorOp) |
| 2887 | NARY_SHAPE_INFER(tosa::GreaterEqualOp) |
| 2888 | NARY_SHAPE_INFER(tosa::GreaterOp) |
| 2889 | NARY_SHAPE_INFER(tosa::IdentityOp) |
| 2890 | NARY_SHAPE_INFER(tosa::IntDivOp) |
| 2891 | NARY_SHAPE_INFER(tosa::LogOp) |
| 2892 | NARY_SHAPE_INFER(tosa::LogicalAndOp) |
| 2893 | NARY_SHAPE_INFER(tosa::LogicalLeftShiftOp) |
| 2894 | NARY_SHAPE_INFER(tosa::LogicalNotOp) |
| 2895 | NARY_SHAPE_INFER(tosa::LogicalOrOp) |
| 2896 | NARY_SHAPE_INFER(tosa::LogicalRightShiftOp) |
| 2897 | NARY_SHAPE_INFER(tosa::LogicalXorOp) |
| 2898 | NARY_SHAPE_INFER(tosa::MaximumOp) |
| 2899 | NARY_SHAPE_INFER(tosa::MinimumOp) |
| 2900 | NARY_SHAPE_INFER(tosa::PowOp) |
| 2901 | NARY_SHAPE_INFER(tosa::ReciprocalOp) |
| 2902 | NARY_SHAPE_INFER(tosa::ReverseOp) |
| 2903 | NARY_SHAPE_INFER(tosa::RsqrtOp) |
| 2904 | NARY_SHAPE_INFER(tosa::SinOp) |
| 2905 | NARY_SHAPE_INFER(tosa::SelectOp) |
| 2906 | NARY_SHAPE_INFER(tosa::SubOp) |
| 2907 | NARY_SHAPE_INFER(tosa::TanhOp) |
| 2908 | NARY_SHAPE_INFER(tosa::ErfOp) |
| 2909 | NARY_SHAPE_INFER(tosa::SigmoidOp) |
| 2910 | #undef PRED_SHAPE_INFER |
| 2911 | |
| 2912 | LogicalResult tosa::NegateOp::inferReturnTypeComponents( |
| 2913 | MLIRContext *context, ::std::optional<Location> location, |
| 2914 | NegateOp::Adaptor adaptor, |
| 2915 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2916 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
| 2917 | inferredReturnShapes.push_back(ShapedTypeComponents(inputShape)); |
| 2918 | return success(); |
| 2919 | } |
| 2920 | |
| 2921 | LogicalResult tosa::NegateOp::verify() { |
| 2922 | // Verify same element type |
| 2923 | const Type input1Type = getInput1().getType(); |
| 2924 | const Type outputType = getOutput().getType(); |
| 2925 | if (verifySameElementTypes(*this, input1Type, outputType).failed()) |
| 2926 | return failure(); |
| 2927 | |
| 2928 | // Verify same shape |
| 2929 | const SmallVector<Type, 2> types = {input1Type, outputType}; |
| 2930 | if (failed(verifyCompatibleShapes(types))) |
| 2931 | return emitOpError() << "requires the same shape for input1 and output" ; |
| 2932 | |
| 2933 | const Type input1EType = getStorageElementTypeOrSelf(getInput1().getType()); |
| 2934 | const Type input1ZpEType = |
| 2935 | getStorageElementTypeOrSelf(getInput1Zp().getType()); |
| 2936 | if (input1EType != input1ZpEType) { |
| 2937 | return emitOpError("expect both input1 and its zero point are the same " |
| 2938 | "element type, got " ) |
| 2939 | << input1EType << " and " << input1ZpEType; |
| 2940 | } |
| 2941 | const Type outputEType = getStorageElementTypeOrSelf(getOutput().getType()); |
| 2942 | const Type outputZpEType = |
| 2943 | getStorageElementTypeOrSelf(getOutputZp().getType()); |
| 2944 | if (outputEType != outputZpEType) { |
| 2945 | return emitOpError("expect both output and its zero point are the same " |
| 2946 | "element type, got " ) |
| 2947 | << outputEType << " and " << outputZpEType; |
| 2948 | } |
| 2949 | |
| 2950 | FailureOr<int64_t> maybeIZp = getInput1ZeroPoint(); |
| 2951 | if (succeeded(maybeIZp) && verifyInput1ZeroPoint(*maybeIZp).failed()) |
| 2952 | return failure(); |
| 2953 | |
| 2954 | FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
| 2955 | if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed()) |
| 2956 | return failure(); |
| 2957 | |
| 2958 | return success(); |
| 2959 | } |
| 2960 | |
| 2961 | static LogicalResult poolingInferReturnTypes( |
| 2962 | ShapeAdaptor inputShape, ArrayRef<int64_t> kernel, ArrayRef<int64_t> stride, |
| 2963 | ArrayRef<int64_t> pad, |
| 2964 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2965 | llvm::SmallVector<int64_t> outputShape; |
| 2966 | outputShape.resize(4, ShapedType::kDynamic); |
| 2967 | |
| 2968 | // We only know the rank if the input type is unranked. |
| 2969 | if (!inputShape) { |
| 2970 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outputShape)); |
| 2971 | return success(); |
| 2972 | } |
| 2973 | |
| 2974 | // Batch and number of channels are identical for pooling layer. |
| 2975 | outputShape[0] = inputShape.getDimSize(index: 0); |
| 2976 | outputShape[3] = inputShape.getDimSize(index: 3); |
| 2977 | |
| 2978 | int64_t height = inputShape.getDimSize(index: 1); |
| 2979 | int64_t width = inputShape.getDimSize(index: 2); |
| 2980 | |
| 2981 | if (!ShapedType::isDynamic(height)) { |
| 2982 | int64_t padded = height + pad[0] + pad[1] - kernel[0]; |
| 2983 | outputShape[1] = padded / stride[0] + 1; |
| 2984 | } |
| 2985 | |
| 2986 | if (!ShapedType::isDynamic(width)) { |
| 2987 | int64_t padded = width + pad[2] + pad[3] - kernel[1]; |
| 2988 | outputShape[2] = padded / stride[1] + 1; |
| 2989 | } |
| 2990 | |
| 2991 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outputShape)); |
| 2992 | return success(); |
| 2993 | } |
| 2994 | |
| 2995 | LogicalResult Conv2DOp::inferReturnTypeComponents( |
| 2996 | MLIRContext *context, ::std::optional<Location> location, |
| 2997 | Conv2DOp::Adaptor adaptor, |
| 2998 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 2999 | llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic); |
| 3000 | |
| 3001 | int64_t inputWidth = ShapedType::kDynamic; |
| 3002 | int64_t inputHeight = ShapedType::kDynamic; |
| 3003 | int64_t weightWidth = ShapedType::kDynamic; |
| 3004 | int64_t weightHeight = ShapedType::kDynamic; |
| 3005 | |
| 3006 | // Input shape describes input width/height and batch. |
| 3007 | |
| 3008 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3009 | if (inputShape.hasRank()) { |
| 3010 | outputShape[0] = inputShape.getDimSize(0); |
| 3011 | inputHeight = inputShape.getDimSize(1); |
| 3012 | inputWidth = inputShape.getDimSize(2); |
| 3013 | } |
| 3014 | |
| 3015 | // Weight shapes describes the filter width/height and the output channels. |
| 3016 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
| 3017 | if (weightShape.hasRank()) { |
| 3018 | outputShape[3] = weightShape.getDimSize(0); |
| 3019 | weightHeight = weightShape.getDimSize(1); |
| 3020 | weightWidth = weightShape.getDimSize(2); |
| 3021 | } |
| 3022 | |
| 3023 | // Bias shape can describe the output channels. |
| 3024 | ShapeAdaptor biasShape(adaptor.getBias().getType()); |
| 3025 | if (biasShape.hasRank()) { |
| 3026 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
| 3027 | ? biasShape.getDimSize(0) |
| 3028 | : outputShape[3]; |
| 3029 | } |
| 3030 | |
| 3031 | llvm::ArrayRef<int64_t> dilation = adaptor.getDilation(); |
| 3032 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
| 3033 | llvm::ArrayRef<int64_t> padding = adaptor.getPad(); |
| 3034 | |
| 3035 | if (!ShapedType::isDynamic(inputHeight) && |
| 3036 | !ShapedType::isDynamic(weightHeight)) { |
| 3037 | int64_t inputSize = inputHeight + padding[0] + padding[1]; |
| 3038 | int64_t filterSize = (weightHeight - 1) * dilation[0] + 1; |
| 3039 | int64_t unstridedResult = inputSize - filterSize + 1; |
| 3040 | outputShape[1] = (unstridedResult - 1) / stride[0] + 1; |
| 3041 | } |
| 3042 | |
| 3043 | if (!ShapedType::isDynamic(inputWidth) && |
| 3044 | !ShapedType::isDynamic(weightWidth)) { |
| 3045 | int64_t inputSize = inputWidth + padding[2] + padding[3]; |
| 3046 | int64_t filterSize = (weightWidth - 1) * dilation[1] + 1; |
| 3047 | int64_t unstridedResult = inputSize - filterSize + 1; |
| 3048 | outputShape[2] = (unstridedResult - 1) / stride[1] + 1; |
| 3049 | } |
| 3050 | |
| 3051 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 3052 | return success(); |
| 3053 | } |
| 3054 | |
| 3055 | LogicalResult Conv2DOp::verify() { |
| 3056 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() || |
| 3057 | verifyConvOpErrorIf(*this).failed()) |
| 3058 | return failure(); |
| 3059 | return success(); |
| 3060 | } |
| 3061 | |
| 3062 | LogicalResult Conv3DOp::inferReturnTypeComponents( |
| 3063 | MLIRContext *context, ::std::optional<Location> location, |
| 3064 | Conv3DOp::Adaptor adaptor, |
| 3065 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3066 | llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamic); |
| 3067 | |
| 3068 | int64_t inputWidth = ShapedType::kDynamic; |
| 3069 | int64_t inputHeight = ShapedType::kDynamic; |
| 3070 | int64_t inputDepth = ShapedType::kDynamic; |
| 3071 | |
| 3072 | int64_t weightWidth = ShapedType::kDynamic; |
| 3073 | int64_t weightHeight = ShapedType::kDynamic; |
| 3074 | int64_t weightDepth = ShapedType::kDynamic; |
| 3075 | |
| 3076 | // Input shape describes input width/height and batch. |
| 3077 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3078 | if (inputShape.hasRank()) { |
| 3079 | outputShape[0] = inputShape.getDimSize(0); |
| 3080 | inputDepth = inputShape.getDimSize(1); |
| 3081 | inputHeight = inputShape.getDimSize(2); |
| 3082 | inputWidth = inputShape.getDimSize(3); |
| 3083 | } |
| 3084 | |
| 3085 | // Weight shapes describes the filter width/height and the output channels. |
| 3086 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
| 3087 | if (weightShape.hasRank()) { |
| 3088 | outputShape[4] = weightShape.getDimSize(0); |
| 3089 | weightDepth = weightShape.getDimSize(1); |
| 3090 | weightHeight = weightShape.getDimSize(2); |
| 3091 | weightWidth = weightShape.getDimSize(3); |
| 3092 | } |
| 3093 | |
| 3094 | // Bias shape can describe the output channels. |
| 3095 | ShapeAdaptor biasShape(adaptor.getBias().getType()); |
| 3096 | if (biasShape.hasRank() && ShapedType::isDynamic(outputShape[4])) { |
| 3097 | outputShape[4] = biasShape.getDimSize(0); |
| 3098 | } |
| 3099 | |
| 3100 | llvm::ArrayRef<int64_t> dilation = adaptor.getDilation(); |
| 3101 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
| 3102 | llvm::ArrayRef<int64_t> pad = adaptor.getPad(); |
| 3103 | |
| 3104 | if (!ShapedType::isDynamic(inputDepth) && |
| 3105 | !ShapedType::isDynamic(weightDepth)) { |
| 3106 | int32_t inputSize = inputDepth + pad[0] + pad[1]; |
| 3107 | int32_t filterSize = (weightDepth - 1) * dilation[0] + 1; |
| 3108 | int32_t unstridedResult = inputSize - filterSize + 1; |
| 3109 | outputShape[1] = (unstridedResult - 1) / stride[0] + 1; |
| 3110 | } |
| 3111 | |
| 3112 | if (!ShapedType::isDynamic(inputHeight) && |
| 3113 | !ShapedType::isDynamic(weightHeight)) { |
| 3114 | int32_t inputSize = inputHeight + pad[2] + pad[3]; |
| 3115 | int32_t filterSize = (weightHeight - 1) * dilation[1] + 1; |
| 3116 | int32_t unstridedResult = inputSize - filterSize + 1; |
| 3117 | outputShape[2] = (unstridedResult - 1) / stride[1] + 1; |
| 3118 | } |
| 3119 | |
| 3120 | if (!ShapedType::isDynamic(inputWidth) && |
| 3121 | !ShapedType::isDynamic(weightWidth)) { |
| 3122 | int32_t inputSize = inputWidth + pad[4] + pad[5]; |
| 3123 | int32_t filterSize = (weightWidth - 1) * dilation[2] + 1; |
| 3124 | int32_t unstridedResult = inputSize - filterSize + 1; |
| 3125 | outputShape[3] = (unstridedResult - 1) / stride[2] + 1; |
| 3126 | } |
| 3127 | |
| 3128 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 3129 | return success(); |
| 3130 | } |
| 3131 | |
| 3132 | LogicalResult Conv3DOp::verify() { |
| 3133 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() || |
| 3134 | verifyConvOpErrorIf(*this).failed()) |
| 3135 | return failure(); |
| 3136 | return success(); |
| 3137 | } |
| 3138 | |
| 3139 | LogicalResult AvgPool2dOp::inferReturnTypeComponents( |
| 3140 | MLIRContext *context, ::std::optional<Location> location, |
| 3141 | AvgPool2dOp::Adaptor adaptor, |
| 3142 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3143 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3144 | const Properties &prop = adaptor.getProperties(); |
| 3145 | return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad, |
| 3146 | inferredReturnShapes); |
| 3147 | } |
| 3148 | |
| 3149 | LogicalResult MaxPool2dOp::inferReturnTypeComponents( |
| 3150 | MLIRContext *context, ::std::optional<Location> location, |
| 3151 | MaxPool2dOp::Adaptor adaptor, |
| 3152 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3153 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3154 | const Properties &prop = adaptor.getProperties(); |
| 3155 | return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad, |
| 3156 | inferredReturnShapes); |
| 3157 | } |
| 3158 | |
| 3159 | LogicalResult MaxPool2dOp::verify() { |
| 3160 | if (failed(verifySameElementTypes(*this, /* intype = */ getInput().getType(), |
| 3161 | /* outType = */ getOutput().getType()))) |
| 3162 | return failure(); |
| 3163 | |
| 3164 | if (failed(verifyPoolingOp(*this))) |
| 3165 | return failure(); |
| 3166 | |
| 3167 | return success(); |
| 3168 | } |
| 3169 | |
| 3170 | LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents( |
| 3171 | MLIRContext *context, ::std::optional<Location> location, |
| 3172 | DepthwiseConv2DOp::Adaptor adaptor, |
| 3173 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3174 | llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic); |
| 3175 | |
| 3176 | int64_t inputWidth = ShapedType::kDynamic; |
| 3177 | int64_t inputHeight = ShapedType::kDynamic; |
| 3178 | int64_t inputChannels = ShapedType::kDynamic; |
| 3179 | |
| 3180 | int64_t weightWidth = ShapedType::kDynamic; |
| 3181 | int64_t weightHeight = ShapedType::kDynamic; |
| 3182 | int64_t depthChannels = ShapedType::kDynamic; |
| 3183 | |
| 3184 | // Input shape describes input width/height and batch. |
| 3185 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3186 | if (inputShape.hasRank()) { |
| 3187 | outputShape[0] = inputShape.getDimSize(0); |
| 3188 | inputHeight = inputShape.getDimSize(1); |
| 3189 | inputWidth = inputShape.getDimSize(2); |
| 3190 | inputChannels = inputShape.getDimSize(3); |
| 3191 | } |
| 3192 | |
| 3193 | // Weight shapes describes the filter width/height and the output channels. |
| 3194 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
| 3195 | if (weightShape.hasRank()) { |
| 3196 | weightHeight = weightShape.getDimSize(0); |
| 3197 | weightWidth = weightShape.getDimSize(1); |
| 3198 | inputChannels = ShapedType::isDynamic(inputChannels) |
| 3199 | ? weightShape.getDimSize(2) |
| 3200 | : inputChannels; |
| 3201 | depthChannels = weightShape.getDimSize(3); |
| 3202 | } |
| 3203 | |
| 3204 | // If both inputChannels and depthChannels are available we can determine |
| 3205 | // the output channels. |
| 3206 | if (!ShapedType::isDynamic(inputChannels) && |
| 3207 | !ShapedType::isDynamic(depthChannels)) { |
| 3208 | outputShape[3] = inputChannels * depthChannels; |
| 3209 | } |
| 3210 | |
| 3211 | // Bias shape can describe the output channels. |
| 3212 | ShapeAdaptor biasShape(adaptor.getBias().getType()); |
| 3213 | if (biasShape.hasRank()) { |
| 3214 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
| 3215 | ? biasShape.getDimSize(0) |
| 3216 | : outputShape[3]; |
| 3217 | } |
| 3218 | |
| 3219 | llvm::ArrayRef<int64_t> dilation = adaptor.getDilation(); |
| 3220 | llvm::ArrayRef<int64_t> padding = adaptor.getPad(); |
| 3221 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
| 3222 | |
| 3223 | if (!ShapedType::isDynamic(inputHeight) && |
| 3224 | !ShapedType::isDynamic(weightHeight)) { |
| 3225 | int64_t inputSize = inputHeight + padding[0] + padding[1]; |
| 3226 | int64_t filterSize = (weightHeight - 1) * dilation[0] + 1; |
| 3227 | int64_t unstridedResult = inputSize - filterSize + 1; |
| 3228 | outputShape[1] = (unstridedResult - 1) / stride[0] + 1; |
| 3229 | } |
| 3230 | |
| 3231 | if (!ShapedType::isDynamic(inputWidth) && |
| 3232 | !ShapedType::isDynamic(weightWidth)) { |
| 3233 | int64_t inputSize = inputWidth + padding[2] + padding[3]; |
| 3234 | int64_t filterSize = (weightWidth - 1) * dilation[1] + 1; |
| 3235 | int64_t unstridedResult = inputSize - filterSize + 1; |
| 3236 | outputShape[2] = (unstridedResult - 1) / stride[1] + 1; |
| 3237 | } |
| 3238 | |
| 3239 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 3240 | return success(); |
| 3241 | } |
| 3242 | |
| 3243 | LogicalResult DepthwiseConv2DOp::verify() { |
| 3244 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() || |
| 3245 | verifyConvOpErrorIf(*this).failed()) |
| 3246 | return failure(); |
| 3247 | return success(); |
| 3248 | } |
| 3249 | |
| 3250 | LogicalResult TransposeConv2DOp::inferReturnTypeComponents( |
| 3251 | MLIRContext *context, ::std::optional<Location> location, |
| 3252 | TransposeConv2DOp::Adaptor adaptor, |
| 3253 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3254 | llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic); |
| 3255 | |
| 3256 | int64_t inputWidth = ShapedType::kDynamic; |
| 3257 | int64_t inputHeight = ShapedType::kDynamic; |
| 3258 | int64_t weightWidth = ShapedType::kDynamic; |
| 3259 | int64_t weightHeight = ShapedType::kDynamic; |
| 3260 | |
| 3261 | // Input shape describes input width/height and batch. |
| 3262 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3263 | if (inputShape.hasRank()) { |
| 3264 | outputShape[0] = ShapedType::isDynamic(outputShape[0]) |
| 3265 | ? inputShape.getDimSize(0) |
| 3266 | : outputShape[0]; |
| 3267 | inputHeight = inputShape.getDimSize(1); |
| 3268 | inputWidth = inputShape.getDimSize(2); |
| 3269 | } |
| 3270 | |
| 3271 | // Weight shapes describes the filter width/height and the output channels. |
| 3272 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
| 3273 | if (weightShape.hasRank()) { |
| 3274 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
| 3275 | ? weightShape.getDimSize(0) |
| 3276 | : outputShape[3]; |
| 3277 | weightHeight = weightShape.getDimSize(1); |
| 3278 | weightWidth = weightShape.getDimSize(2); |
| 3279 | } |
| 3280 | |
| 3281 | // Bias shape can describe the output channels. |
| 3282 | ShapeAdaptor biasShape(adaptor.getInput().getType()); |
| 3283 | if (biasShape.hasRank()) { |
| 3284 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
| 3285 | ? biasShape.getDimSize(0) |
| 3286 | : outputShape[3]; |
| 3287 | } |
| 3288 | |
| 3289 | llvm::ArrayRef<int64_t> padding = adaptor.getOutPad(); |
| 3290 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
| 3291 | |
| 3292 | if (!ShapedType::isDynamic(inputHeight) && |
| 3293 | !ShapedType::isDynamic(weightHeight)) { |
| 3294 | int64_t calculateSize = |
| 3295 | (inputHeight - 1) * stride[0] + padding[0] + padding[1] + weightHeight; |
| 3296 | outputShape[1] = |
| 3297 | ShapedType::isDynamic(outputShape[1]) ? calculateSize : outputShape[1]; |
| 3298 | } |
| 3299 | |
| 3300 | if (!ShapedType::isDynamic(inputWidth) && |
| 3301 | !ShapedType::isDynamic(weightWidth)) { |
| 3302 | int64_t calculateSize = |
| 3303 | (inputWidth - 1) * stride[1] + padding[2] + padding[3] + weightWidth; |
| 3304 | outputShape[2] = |
| 3305 | ShapedType::isDynamic(outputShape[2]) ? calculateSize : outputShape[2]; |
| 3306 | } |
| 3307 | |
| 3308 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
| 3309 | return success(); |
| 3310 | } |
| 3311 | |
| 3312 | LogicalResult TransposeConv2DOp::verify() { |
| 3313 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed()) |
| 3314 | return failure(); |
| 3315 | |
| 3316 | const llvm::ArrayRef<int64_t> strides = getStride(); |
| 3317 | const int64_t strideY = strides[0]; |
| 3318 | const int64_t strideX = strides[1]; |
| 3319 | |
| 3320 | if (strideY < 1 || strideX < 1) |
| 3321 | return emitOpError("expect all stride values to be >= 1, got [" ) |
| 3322 | << strides << "]" ; |
| 3323 | |
| 3324 | const auto checkPadAgainstKernelDim = |
| 3325 | [this](int64_t pad_value, int64_t kernel_dim_size, |
| 3326 | llvm::StringRef pad_name, |
| 3327 | llvm::StringRef kernel_dim_name) -> LogicalResult { |
| 3328 | if (pad_value <= -kernel_dim_size) |
| 3329 | return emitOpError("expected " ) |
| 3330 | << pad_name << " > -" << kernel_dim_name |
| 3331 | << ", but got: " << pad_name << "=" << pad_value << " and " |
| 3332 | << kernel_dim_name << "=" << kernel_dim_size; |
| 3333 | return success(); |
| 3334 | }; |
| 3335 | |
| 3336 | const llvm::ArrayRef<int64_t> padding = getOutPad(); |
| 3337 | const int64_t outPadTop = padding[0]; |
| 3338 | const int64_t outPadBottom = padding[1]; |
| 3339 | const int64_t outPadLeft = padding[2]; |
| 3340 | const int64_t outPadRight = padding[3]; |
| 3341 | |
| 3342 | const auto weightType = |
| 3343 | llvm::dyn_cast<RankedTensorType>(getWeight().getType()); |
| 3344 | |
| 3345 | if (weightType) { |
| 3346 | const int64_t kernelHeight = weightType.getDimSize(1); |
| 3347 | if (!ShapedType::isDynamic(kernelHeight)) { |
| 3348 | if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, |
| 3349 | "out_pad_top" , "KH" ))) |
| 3350 | return failure(); |
| 3351 | |
| 3352 | if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight, |
| 3353 | "out_pad_bottom" , "KH" ))) |
| 3354 | return failure(); |
| 3355 | } |
| 3356 | |
| 3357 | const int64_t kernelWidth = weightType.getDimSize(2); |
| 3358 | if (!ShapedType::isDynamic(kernelWidth)) { |
| 3359 | if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, |
| 3360 | "out_pad_left" , "KW" ))) |
| 3361 | return failure(); |
| 3362 | |
| 3363 | if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth, |
| 3364 | "out_pad_right" , "KW" ))) |
| 3365 | return failure(); |
| 3366 | } |
| 3367 | } |
| 3368 | |
| 3369 | // Rest of the checks depend on the output type being a RankedTensorType |
| 3370 | const auto outputType = |
| 3371 | llvm::dyn_cast<RankedTensorType>(getOutput().getType()); |
| 3372 | if (!outputType) |
| 3373 | return success(); |
| 3374 | |
| 3375 | const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType()); |
| 3376 | if (inputType && weightType) { |
| 3377 | const int64_t inputHeight = inputType.getDimSize(1); |
| 3378 | const int64_t kernelHeight = weightType.getDimSize(1); |
| 3379 | const int64_t outputHeight = outputType.getDimSize(1); |
| 3380 | |
| 3381 | if (!ShapedType::isDynamic(inputHeight) && |
| 3382 | !ShapedType::isDynamic(outputHeight)) { |
| 3383 | if (outputHeight != |
| 3384 | (inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight) |
| 3385 | return emitOpError( |
| 3386 | "dimension mismatch: expected OH == (IH - 1) * stride_y " |
| 3387 | "+ out_pad_top + out_pad_bottom + KH, but got " ) |
| 3388 | << outputHeight << " != (" << inputHeight << " - 1) * " |
| 3389 | << strideY << " + " << outPadTop << " + " << outPadBottom |
| 3390 | << " + " << kernelHeight; |
| 3391 | } |
| 3392 | |
| 3393 | const int64_t inputWidth = inputType.getDimSize(2); |
| 3394 | const int64_t kernelWidth = weightType.getDimSize(2); |
| 3395 | const int64_t outputWidth = outputType.getDimSize(2); |
| 3396 | |
| 3397 | if (!ShapedType::isDynamic(inputWidth) && |
| 3398 | !ShapedType::isDynamic(outputWidth)) { |
| 3399 | if (outputWidth != |
| 3400 | (inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth) |
| 3401 | return emitOpError( |
| 3402 | "dimension mismatch: expected OW == (IW - 1) * stride_x " |
| 3403 | "+ out_pad_left + out_pad_right + KW, but got " ) |
| 3404 | << outputWidth << " != (" << inputWidth << " - 1) * " << strideX |
| 3405 | << " + " << outPadLeft << " + " << outPadRight << " + " |
| 3406 | << kernelWidth; |
| 3407 | } |
| 3408 | } |
| 3409 | |
| 3410 | const auto biasType = llvm::dyn_cast<RankedTensorType>(getBias().getType()); |
| 3411 | |
| 3412 | if (!biasType) |
| 3413 | return success(); |
| 3414 | |
| 3415 | const int64_t biasChannels = biasType.getDimSize(0); |
| 3416 | |
| 3417 | // Skip further checks if bias is dynamic |
| 3418 | if (biasChannels == ShapedType::kDynamic) |
| 3419 | return success(); |
| 3420 | |
| 3421 | const int64_t outputChannels = outputType.getDimSize(3); |
| 3422 | if (biasChannels != outputChannels && biasChannels != 1) |
| 3423 | return emitOpError( |
| 3424 | "bias channels expected to be equal to output channels (" ) |
| 3425 | << outputChannels << ") or 1, got " << biasChannels; |
| 3426 | |
| 3427 | return success(); |
| 3428 | } |
| 3429 | |
| 3430 | LogicalResult RescaleOp::verify() { |
| 3431 | auto inputType = llvm::dyn_cast<ShapedType>(getInput().getType()); |
| 3432 | if (!inputType) { |
| 3433 | emitOpError("expect shaped tensor for input, got " ) << getInput().getType(); |
| 3434 | return failure(); |
| 3435 | } |
| 3436 | |
| 3437 | auto inputElementType = |
| 3438 | getStorageElementTypeOrSelf(inputType.getElementType()); |
| 3439 | if (!mlir::isa<IntegerType>(inputElementType)) { |
| 3440 | emitOpError("expect input to have integer element type, got " ) |
| 3441 | << inputElementType; |
| 3442 | return failure(); |
| 3443 | } |
| 3444 | |
| 3445 | auto outputType = llvm::dyn_cast<ShapedType>(getOutput().getType()); |
| 3446 | if (!outputType) { |
| 3447 | emitOpError("expect shaped tensor for output, got " ) |
| 3448 | << getOutput().getType(); |
| 3449 | return failure(); |
| 3450 | } |
| 3451 | |
| 3452 | auto outputElementType = |
| 3453 | getStorageElementTypeOrSelf(outputType.getElementType()); |
| 3454 | if (!mlir::isa<IntegerType>(outputElementType)) { |
| 3455 | emitOpError("expect output to have integer element type, got " ) |
| 3456 | << outputElementType; |
| 3457 | return failure(); |
| 3458 | } |
| 3459 | |
| 3460 | if (verifyRescaleValueAndZpTypes(*this, getInput(), getInputZp(), "input" ) |
| 3461 | .failed()) |
| 3462 | return failure(); |
| 3463 | |
| 3464 | if (verifyRescaleValueAndZpTypes(*this, getOutput(), getOutputZp(), "output" ) |
| 3465 | .failed()) |
| 3466 | return failure(); |
| 3467 | |
| 3468 | FailureOr<int64_t> maybeIZp = getInputZeroPoint(); |
| 3469 | if (succeeded(maybeIZp) && verifyInputZeroPoint(*maybeIZp).failed()) |
| 3470 | return failure(); |
| 3471 | |
| 3472 | FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
| 3473 | if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed()) |
| 3474 | return failure(); |
| 3475 | |
| 3476 | auto multiplierType = llvm::dyn_cast<ShapedType>(getMultiplier().getType()); |
| 3477 | if (!multiplierType) { |
| 3478 | emitOpError("expect shaped tensor for multiplier, got " ) |
| 3479 | << getMultiplier().getType(); |
| 3480 | return failure(); |
| 3481 | } |
| 3482 | |
| 3483 | auto shiftType = llvm::dyn_cast<ShapedType>(getShift().getType()); |
| 3484 | if (!shiftType) { |
| 3485 | emitOpError("expect shaped tensor for shift, got " ) << getShift().getType(); |
| 3486 | return failure(); |
| 3487 | } |
| 3488 | |
| 3489 | // multiplier element type must be i32 for scale32 = true |
| 3490 | if (getScale32() && !multiplierType.getElementType().isInteger(32)) { |
| 3491 | emitOpError("expect i32 element type for multiplier for scale32=true, got " ) |
| 3492 | << multiplierType.getElementType(); |
| 3493 | return failure(); |
| 3494 | } |
| 3495 | |
| 3496 | // multiplier element type must be i16 for scale32 = false |
| 3497 | if (!getScale32() && !multiplierType.getElementType().isInteger(16)) { |
| 3498 | emitOpError( |
| 3499 | "expect i16 element type for multiplier for scale32=false, got " ) |
| 3500 | << multiplierType.getElementType(); |
| 3501 | return failure(); |
| 3502 | } |
| 3503 | |
| 3504 | if (!inputType.hasRank()) |
| 3505 | return success(); |
| 3506 | |
| 3507 | // multiplier/shift must have shape = {numChannels}, |
| 3508 | // where numChannel is 1 if per_channel = false |
| 3509 | // otherwise numChannel is dimension in input shape's last axis |
| 3510 | int64_t numChannels = 1; |
| 3511 | if (getPerChannel()) { |
| 3512 | if (inputType.getRank() < 1) { |
| 3513 | emitOpError("requires input to be at least rank 1 when per_channel is " |
| 3514 | "true, but got rank " ) |
| 3515 | << inputType.getRank(); |
| 3516 | return failure(); |
| 3517 | } |
| 3518 | numChannels = inputType.getDimSize(inputType.getRank() - 1); |
| 3519 | } |
| 3520 | |
| 3521 | if (!multiplierType.hasRank()) |
| 3522 | return success(); |
| 3523 | |
| 3524 | ArrayRef<int64_t> multiplierShape = multiplierType.getShape(); |
| 3525 | // multiplier input has rank 1 by dialect definition |
| 3526 | if (multiplierShape[0] != ShapedType::kDynamic && |
| 3527 | multiplierShape[0] != numChannels) { |
| 3528 | emitOpError("expect shape of { " ) |
| 3529 | << numChannels << " } for multiplier input, got { " |
| 3530 | << multiplierShape[0] << " }" ; |
| 3531 | return failure(); |
| 3532 | } |
| 3533 | |
| 3534 | if (!shiftType.hasRank()) |
| 3535 | return success(); |
| 3536 | |
| 3537 | ArrayRef<int64_t> shiftShape = shiftType.getShape(); |
| 3538 | // shift input has rank 1 by dialect definition |
| 3539 | if (shiftShape[0] != ShapedType::kDynamic && shiftShape[0] != numChannels) { |
| 3540 | emitOpError("expect shape of { " ) |
| 3541 | << numChannels << " } for shift input, got { " << shiftShape[0] << " }" ; |
| 3542 | return failure(); |
| 3543 | } |
| 3544 | |
| 3545 | return success(); |
| 3546 | } |
| 3547 | |
| 3548 | LogicalResult RescaleOp::inferReturnTypeComponents( |
| 3549 | MLIRContext *context, ::std::optional<Location> location, |
| 3550 | RescaleOp::Adaptor adaptor, |
| 3551 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3552 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
| 3553 | inferredReturnShapes.push_back(ShapedTypeComponents(inputShape)); |
| 3554 | return success(); |
| 3555 | } |
| 3556 | |
| 3557 | LogicalResult IfOp::inferReturnTypeComponents( |
| 3558 | MLIRContext *context, ::std::optional<Location> location, |
| 3559 | IfOp::Adaptor adaptor, |
| 3560 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3561 | llvm::SmallVector<tosa::YieldOp> yieldOps; |
| 3562 | for (Region *region : adaptor.getRegions()) { |
| 3563 | for (auto &block : *region) |
| 3564 | if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator())) |
| 3565 | yieldOps.push_back(returnOp); |
| 3566 | } |
| 3567 | |
| 3568 | if (yieldOps.empty()) |
| 3569 | return failure(); |
| 3570 | |
| 3571 | // Get the initial type information for the yield op. |
| 3572 | llvm::SmallVector<ValueKnowledge> resultKnowledge; |
| 3573 | resultKnowledge.reserve(yieldOps.front().getNumOperands()); |
| 3574 | for (auto operand : yieldOps.front().getOperands()) { |
| 3575 | resultKnowledge.push_back( |
| 3576 | ValueKnowledge::getKnowledgeFromType(operand.getType())); |
| 3577 | } |
| 3578 | |
| 3579 | for (auto yieldOp : yieldOps) { |
| 3580 | if (resultKnowledge.size() != yieldOp.getNumOperands()) |
| 3581 | return failure(); |
| 3582 | |
| 3583 | for (const auto &it : llvm::enumerate(yieldOp.getOperands())) { |
| 3584 | int32_t index = it.index(); |
| 3585 | auto meet = ValueKnowledge::meet( |
| 3586 | resultKnowledge[index], |
| 3587 | ValueKnowledge::getKnowledgeFromType(it.value().getType())); |
| 3588 | if (!meet) |
| 3589 | continue; |
| 3590 | resultKnowledge[index] = meet; |
| 3591 | } |
| 3592 | } |
| 3593 | |
| 3594 | for (const ValueKnowledge &result : resultKnowledge) { |
| 3595 | inferredReturnShapes.push_back(result.getShapedTypeComponents()); |
| 3596 | } |
| 3597 | |
| 3598 | return success(); |
| 3599 | } |
| 3600 | |
| 3601 | LogicalResult WhileOp::inferReturnTypeComponents( |
| 3602 | MLIRContext *context, ::std::optional<Location> location, |
| 3603 | WhileOp::Adaptor adaptor, |
| 3604 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
| 3605 | llvm::SmallVector<tosa::YieldOp> yieldOps; |
| 3606 | for (auto &block : adaptor.getBodyGraph()) |
| 3607 | if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator())) |
| 3608 | yieldOps.push_back(returnOp); |
| 3609 | |
| 3610 | // TOSA's while must have a tosa.yield as its terminator. If not found this |
| 3611 | // tosa.while is invalid. |
| 3612 | if (yieldOps.empty()) |
| 3613 | return failure(); |
| 3614 | |
| 3615 | // Get the initial type information from the operand types. |
| 3616 | llvm::SmallVector<ValueKnowledge> resultKnowledge; |
| 3617 | resultKnowledge.reserve(yieldOps.front().getNumOperands()); |
| 3618 | for (auto operand : yieldOps.front().getOperands()) { |
| 3619 | resultKnowledge.push_back( |
| 3620 | ValueKnowledge::getKnowledgeFromType(operand.getType())); |
| 3621 | } |
| 3622 | |
| 3623 | for (auto yieldOp : yieldOps) { |
| 3624 | if (resultKnowledge.size() != yieldOp.getNumOperands()) |
| 3625 | return failure(); |
| 3626 | |
| 3627 | for (const auto &it : llvm::enumerate(yieldOp.getOperands())) { |
| 3628 | int32_t index = it.index(); |
| 3629 | if (auto meet = ValueKnowledge::meet( |
| 3630 | resultKnowledge[index], |
| 3631 | ValueKnowledge::getKnowledgeFromType(it.value().getType()))) { |
| 3632 | resultKnowledge[index] = meet; |
| 3633 | } |
| 3634 | } |
| 3635 | } |
| 3636 | |
| 3637 | for (const ValueKnowledge &result : resultKnowledge) { |
| 3638 | inferredReturnShapes.push_back(result.getShapedTypeComponents()); |
| 3639 | } |
| 3640 | |
| 3641 | return success(); |
| 3642 | } |
| 3643 | |
| 3644 | std::optional<SmallVector<int64_t, 4>> ApplyScaleOp::getShapeForUnroll() { |
| 3645 | if (auto vt = llvm::dyn_cast<VectorType>(getType())) |
| 3646 | return llvm::to_vector<4>(vt.getShape()); |
| 3647 | return std::nullopt; |
| 3648 | } |
| 3649 | |
| 3650 | // parse and print of IfOp refer to the implementation of SCF dialect. |
| 3651 | ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3652 | // Create the regions for 'then'. |
| 3653 | result.regions.reserve(2); |
| 3654 | Region *thenRegion = result.addRegion(); |
| 3655 | Region *elseRegion = result.addRegion(); |
| 3656 | |
| 3657 | auto &builder = parser.getBuilder(); |
| 3658 | OpAsmParser::UnresolvedOperand cond; |
| 3659 | // Create a i1 tensor type for the boolean condition. |
| 3660 | Type i1Type = RankedTensorType::get({}, builder.getIntegerType(1)); |
| 3661 | if (parser.parseOperand(cond) || |
| 3662 | parser.resolveOperand(cond, i1Type, result.operands)) |
| 3663 | return failure(); |
| 3664 | // Parse optional results type list. |
| 3665 | if (parser.parseOptionalArrowTypeList(result.types)) |
| 3666 | return failure(); |
| 3667 | // Parse the 'then' region. |
| 3668 | if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| 3669 | return failure(); |
| 3670 | |
| 3671 | // If we find an 'else' keyword then parse the 'else' region. |
| 3672 | if (!parser.parseOptionalKeyword("else" )) { |
| 3673 | if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| 3674 | return failure(); |
| 3675 | } |
| 3676 | |
| 3677 | // Parse the optional attribute list. |
| 3678 | if (parser.parseOptionalAttrDict(result.attributes)) |
| 3679 | return failure(); |
| 3680 | return success(); |
| 3681 | } |
| 3682 | |
| 3683 | void IfOp::print(OpAsmPrinter &p) { |
| 3684 | bool printBlockTerminators = false; |
| 3685 | |
| 3686 | p << " " << getCondition(); |
| 3687 | if (!getResults().empty()) { |
| 3688 | p << " -> (" << getResultTypes() << ")" ; |
| 3689 | // Print yield explicitly if the op defines values. |
| 3690 | printBlockTerminators = true; |
| 3691 | } |
| 3692 | p << ' '; |
| 3693 | p.printRegion(getThenGraph(), |
| 3694 | /*printEntryBlockArgs=*/false, |
| 3695 | /*printBlockTerminators=*/printBlockTerminators); |
| 3696 | |
| 3697 | // Print the 'else' regions if it exists and has a block. |
| 3698 | auto &elseRegion = getElseGraph(); |
| 3699 | if (!elseRegion.empty()) { |
| 3700 | p << " else " ; |
| 3701 | p.printRegion(elseRegion, |
| 3702 | /*printEntryBlockArgs=*/false, |
| 3703 | /*printBlockTerminators=*/printBlockTerminators); |
| 3704 | } |
| 3705 | |
| 3706 | p.printOptionalAttrDict((*this)->getAttrs()); |
| 3707 | } |
| 3708 | |
| 3709 | LogicalResult IfOp::verify() { |
| 3710 | if (errorIfTypeOrShapeMismatch(*this, getThenGraph().front().getArguments(), |
| 3711 | "'then_graph' arguments" , getInputList(), |
| 3712 | "'input_list'" ) |
| 3713 | .failed()) |
| 3714 | return failure(); |
| 3715 | |
| 3716 | if (errorIfTypeOrShapeMismatch(*this, getElseGraph().front().getArguments(), |
| 3717 | "'else_graph' arguments" , getInputList(), |
| 3718 | "'input_list'" ) |
| 3719 | .failed()) |
| 3720 | return failure(); |
| 3721 | |
| 3722 | auto thenYield = cast<tosa::YieldOp>(getThenGraph().front().getTerminator()); |
| 3723 | if (errorIfTypeOrShapeMismatch(*this, thenYield.getInputs(), |
| 3724 | "'then_graph' results" , getOutputList(), |
| 3725 | "'output_list'" ) |
| 3726 | .failed()) |
| 3727 | return failure(); |
| 3728 | |
| 3729 | auto elseYield = cast<tosa::YieldOp>(getElseGraph().front().getTerminator()); |
| 3730 | if (errorIfTypeOrShapeMismatch(*this, elseYield.getInputs(), |
| 3731 | "'else_graph' results" , getOutputList(), |
| 3732 | "'output_list'" ) |
| 3733 | .failed()) |
| 3734 | return failure(); |
| 3735 | |
| 3736 | auto condType = getCondition().getType(); |
| 3737 | if (errorIfShapeNotSizeOne(*this, condType).failed()) |
| 3738 | return emitOpError() << "'condition' must be a size 1 tensor, got " |
| 3739 | << condType; |
| 3740 | |
| 3741 | return success(); |
| 3742 | } |
| 3743 | |
| 3744 | LogicalResult WhileOp::verify() { |
| 3745 | if (errorIfTypeOrShapeMismatch(*this, getInputList(), "'input_list'" , |
| 3746 | getOutputList(), "'output_list'" ) |
| 3747 | .failed()) |
| 3748 | return failure(); |
| 3749 | |
| 3750 | if (errorIfTypeOrShapeMismatch(*this, getCondGraph().front().getArguments(), |
| 3751 | "'cond_graph' arguments" , getInputList(), |
| 3752 | "'input_list'" ) |
| 3753 | .failed()) |
| 3754 | return failure(); |
| 3755 | |
| 3756 | if (errorIfTypeOrShapeMismatch(*this, getBodyGraph().front().getArguments(), |
| 3757 | "'body_graph' arguments" , getInputList(), |
| 3758 | "'input_list'" ) |
| 3759 | .failed()) |
| 3760 | return failure(); |
| 3761 | |
| 3762 | auto bodyYield = cast<tosa::YieldOp>(getBodyGraph().front().getTerminator()); |
| 3763 | if (errorIfTypeOrShapeMismatch(*this, bodyYield.getInputs(), |
| 3764 | "'body_graph' results" , getInputList(), |
| 3765 | "'input_list'" ) |
| 3766 | .failed()) |
| 3767 | return failure(); |
| 3768 | |
| 3769 | // Condition block output must be a single element tensor with a single bool |
| 3770 | // value. |
| 3771 | auto condYield = cast<tosa::YieldOp>(getCondGraph().front().getTerminator()); |
| 3772 | if (condYield.getInputs().size() != 1) |
| 3773 | return emitOpError() << "require 'cond_graph' only have one result" ; |
| 3774 | |
| 3775 | auto condOutType = condYield.getInputs()[0].getType(); |
| 3776 | if (errorIfShapeNotSizeOne(*this, condOutType).failed()) |
| 3777 | return emitOpError() << "'cond_graph' result must be a size 1 tensor, got " |
| 3778 | << condOutType; |
| 3779 | |
| 3780 | if (!getElementTypeOrSelf(condOutType).isInteger(1)) |
| 3781 | return emitOpError() << "'cond_graph' result must be a boolean tensor, got " |
| 3782 | << condOutType; |
| 3783 | |
| 3784 | return success(); |
| 3785 | } |
| 3786 | |
| 3787 | LogicalResult ReverseOp::verify() { |
| 3788 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
| 3789 | /* outType = */ getOutput().getType()) |
| 3790 | .failed()) |
| 3791 | return failure(); |
| 3792 | TensorType inputType = getInput1().getType(); |
| 3793 | TensorType outputType = getOutput().getType(); |
| 3794 | int32_t reverseAxis = getAxis(); |
| 3795 | |
| 3796 | if (reverseAxis < 0) |
| 3797 | return emitOpError("expected non-negative reverse axis" ); |
| 3798 | if (inputType.hasRank()) { |
| 3799 | int64_t inputRank = inputType.getRank(); |
| 3800 | // We allow for a special case where the input/output shape has rank 0 and |
| 3801 | // axis is also 0. |
| 3802 | if (reverseAxis >= inputRank && !(reverseAxis == 0 && inputRank == 0)) |
| 3803 | return emitOpError("expect input tensor rank (" ) |
| 3804 | << inputRank << ") to be larger than reverse axis (" << reverseAxis |
| 3805 | << ")" ; |
| 3806 | } |
| 3807 | if (outputType.hasRank()) { |
| 3808 | int64_t outputRank = outputType.getRank(); |
| 3809 | if (inputType.hasRank() && outputRank != inputType.getRank()) |
| 3810 | return emitOpError( |
| 3811 | "expect output tensor rank to be equal to input tensor rank" ); |
| 3812 | if (reverseAxis >= outputRank && !(reverseAxis == 0 && outputRank == 0)) |
| 3813 | return emitOpError("expect output tensor rank (" ) |
| 3814 | << outputRank << ") to be larger than reverse axis (" |
| 3815 | << reverseAxis << ")" ; |
| 3816 | } |
| 3817 | return success(); |
| 3818 | } |
| 3819 | |
| 3820 | LogicalResult tosa::SelectOp::verify() { |
| 3821 | // verify input2 and input3 have same element type as output |
| 3822 | if (verifySameElementTypes(*this, /* inType = */ getInput2().getType(), |
| 3823 | /* outType = */ getOutput().getType()) |
| 3824 | .failed() || |
| 3825 | verifySameElementTypes(*this, /* inType = */ getInput3().getType(), |
| 3826 | /* outType = */ getOutput().getType()) |
| 3827 | .failed()) { |
| 3828 | return failure(); |
| 3829 | } |
| 3830 | // verify input1 has element type of bool |
| 3831 | auto predicateType = llvm::dyn_cast<ShapedType>(getInput1().getType()); |
| 3832 | if (!predicateType) { |
| 3833 | return emitOpError("expect shaped tensor for input1, got " ) |
| 3834 | << getInput1().getType(); |
| 3835 | } |
| 3836 | auto predicateElementType = predicateType.getElementType(); |
| 3837 | if (!predicateElementType.isInteger(1)) { |
| 3838 | return emitOpError("expect element type of bool for input1, got " ) |
| 3839 | << predicateElementType; |
| 3840 | } |
| 3841 | |
| 3842 | return success(); |
| 3843 | } |
| 3844 | |
| 3845 | LogicalResult tosa::VariableOp::verify() { |
| 3846 | StringRef symName = getName(); |
| 3847 | FailureOr<tosa::VariableOp> varOp = findVariableDecl(*this, symName); |
| 3848 | if (succeeded(varOp)) |
| 3849 | return emitOpError("illegal to have multiple declaration of '" ) |
| 3850 | << symName << "'" ; |
| 3851 | |
| 3852 | return success(); |
| 3853 | } |
| 3854 | |
| 3855 | LogicalResult tosa::VariableReadOp::verify() { |
| 3856 | if (verifyVariableOpErrorIf(*this, getOutput1().getType(), "'output1'" ) |
| 3857 | .failed()) |
| 3858 | return failure(); |
| 3859 | |
| 3860 | return success(); |
| 3861 | } |
| 3862 | |
| 3863 | LogicalResult tosa::VariableWriteOp::verify() { |
| 3864 | if (verifyVariableOpErrorIf(*this, getInput1().getType(), "'input1'" ) |
| 3865 | .failed()) |
| 3866 | return failure(); |
| 3867 | |
| 3868 | return success(); |
| 3869 | } |
| 3870 | |
| 3871 | // parse and print of WhileOp refer to the implementation of SCF dialect. |
| 3872 | ParseResult WhileOp::parse(OpAsmParser &parser, OperationState &result) { |
| 3873 | SmallVector<OpAsmParser::Argument, 4> regionArgs; |
| 3874 | SmallVector<OpAsmParser::UnresolvedOperand, 4> operands; |
| 3875 | Region *cond = result.addRegion(); |
| 3876 | Region *body = result.addRegion(); |
| 3877 | |
| 3878 | OptionalParseResult listResult = |
| 3879 | parser.parseOptionalAssignmentList(regionArgs, operands); |
| 3880 | if (listResult.has_value() && failed(listResult.value())) |
| 3881 | return failure(); |
| 3882 | |
| 3883 | FunctionType functionType; |
| 3884 | SMLoc typeLoc = parser.getCurrentLocation(); |
| 3885 | if (failed(parser.parseColonType(functionType))) |
| 3886 | return failure(); |
| 3887 | |
| 3888 | result.addTypes(functionType.getResults()); |
| 3889 | |
| 3890 | if (functionType.getNumInputs() != operands.size()) { |
| 3891 | return parser.emitError(typeLoc) |
| 3892 | << "expected as many input types as operands " |
| 3893 | << "(expected " << operands.size() << " got " |
| 3894 | << functionType.getNumInputs() << ")" ; |
| 3895 | } |
| 3896 | |
| 3897 | // Resolve input operands. |
| 3898 | if (failed(parser.resolveOperands(operands, functionType.getInputs(), |
| 3899 | parser.getCurrentLocation(), |
| 3900 | result.operands))) |
| 3901 | return failure(); |
| 3902 | |
| 3903 | // Propagate the types into the region arguments. |
| 3904 | for (size_t i = 0, e = regionArgs.size(); i != e; ++i) |
| 3905 | regionArgs[i].type = functionType.getInput(i); |
| 3906 | |
| 3907 | return failure(parser.parseRegion(*cond, regionArgs) || |
| 3908 | parser.parseKeyword("do" ) || parser.parseRegion(*body) || |
| 3909 | parser.parseOptionalAttrDictWithKeyword(result.attributes)); |
| 3910 | } |
| 3911 | |
| 3912 | static void printInitializationList(OpAsmPrinter &parser, |
| 3913 | Block::BlockArgListType blocksArgs, |
| 3914 | ValueRange initializers, |
| 3915 | StringRef prefix = "" ) { |
| 3916 | assert(blocksArgs.size() == initializers.size() && |
| 3917 | "expected same length of arguments and initializers" ); |
| 3918 | if (initializers.empty()) |
| 3919 | return; |
| 3920 | |
| 3921 | parser << prefix << '('; |
| 3922 | llvm::interleaveComma( |
| 3923 | c: llvm::zip(t&: blocksArgs, u&: initializers), os&: parser, |
| 3924 | each_fn: [&](auto it) { parser << std::get<0>(it) << " = " << std::get<1>(it); }); |
| 3925 | parser << ")" ; |
| 3926 | } |
| 3927 | |
| 3928 | void WhileOp::print(OpAsmPrinter &parser) { |
| 3929 | printInitializationList(parser, getCondGraph().front().getArguments(), |
| 3930 | getInputList(), " " ); |
| 3931 | parser << " : " ; |
| 3932 | parser.printFunctionalType(getInputList().getTypes(), |
| 3933 | getResults().getTypes()); |
| 3934 | parser << ' '; |
| 3935 | parser.printRegion(getCondGraph(), /*printEntryBlockArgs=*/false); |
| 3936 | parser << " do " ; |
| 3937 | parser.printRegion(getBodyGraph()); |
| 3938 | parser.printOptionalAttrDictWithKeyword((*this)->getAttrs()); |
| 3939 | } |
| 3940 | |
| 3941 | // Create a rank-1 const tensor for zero point of the source tensor. |
| 3942 | std::optional<Value> mlir::tosa::createZeroPointTensor(OpBuilder &builder, |
| 3943 | Location loc, |
| 3944 | Type srcElemType, |
| 3945 | int64_t zp) { |
| 3946 | srcElemType = getStorageElementTypeOrSelf(type: srcElemType); |
| 3947 | auto zpType = mlir::RankedTensorType::get({1}, srcElemType); |
| 3948 | if (llvm::isa<FloatType>(Val: srcElemType)) { |
| 3949 | auto zpAttr = DenseElementsAttr::get( |
| 3950 | zpType, builder.getFloatAttr(srcElemType, static_cast<double>(zp))); |
| 3951 | return builder.create<tosa::ConstOp>(loc, zpType, zpAttr); |
| 3952 | } |
| 3953 | if (llvm::isa<IntegerType>(Val: srcElemType)) { |
| 3954 | auto zpAttr = |
| 3955 | DenseElementsAttr::get(zpType, builder.getIntegerAttr(srcElemType, zp)); |
| 3956 | return builder.create<tosa::ConstOp>(loc, zpType, zpAttr); |
| 3957 | } |
| 3958 | llvm::errs() << "zero point is not allowed for unsupported data types\n" ; |
| 3959 | return std::nullopt; |
| 3960 | } |
| 3961 | |
| 3962 | //===----------------------------------------------------------------------===// |
| 3963 | // TOSA Shape and Shape Operators Helper functions. |
| 3964 | //===----------------------------------------------------------------------===// |
| 3965 | |
| 3966 | bool mlir::tosa::isa_tosa_shape_type(mlir::Type t) { |
| 3967 | return mlir::isa<tosa::shapeType>(t); |
| 3968 | } |
| 3969 | |
| 3970 | LogicalResult |
| 3971 | mlir::tosa::shapeType::verify(function_ref<InFlightDiagnostic()> emitError, |
| 3972 | int rank) { |
| 3973 | if (rank < 0) |
| 3974 | return emitError() << "invalid rank (must be >= 0): " << rank; |
| 3975 | return success(); |
| 3976 | } |
| 3977 | |
| 3978 | LogicalResult OpTrait::tosa::verifyTosaResolvableShapeOperands(Operation *op) { |
| 3979 | for (auto v : op->getOperands()) { |
| 3980 | if (mlir::isa<::mlir::tosa::shapeType>(v.getType())) { |
| 3981 | Operation *definingOp = v.getDefiningOp(); |
| 3982 | if (!definingOp || !definingOp->hasTrait<TosaShapeOperator>()) { |
| 3983 | return op->emitOpError(message: "shape operand is not compile time resolvable" ); |
| 3984 | } |
| 3985 | } |
| 3986 | } |
| 3987 | return success(); |
| 3988 | } |
| 3989 | |
| 3990 | LogicalResult OpTrait::tosa::verifyTosaShapeOperator(Operation *op) { |
| 3991 | for (auto type : op->getOperandTypes()) { |
| 3992 | if (!mlir::isa<mlir::tosa::shapeType>(type)) { |
| 3993 | return op->emitOpError(message: "must have operands with tosa shape type" ); |
| 3994 | } |
| 3995 | } |
| 3996 | for (auto type : op->getResultTypes()) { |
| 3997 | if (!mlir::isa<mlir::tosa::shapeType>(type)) { |
| 3998 | return op->emitOpError(message: "must have result with tosa shape type" ); |
| 3999 | } |
| 4000 | } |
| 4001 | return success(); |
| 4002 | } |
| 4003 | |
| 4004 | LogicalResult |
| 4005 | OpTrait::tosa::verifyTosaShapeOperatorWithSameRanks(Operation *op) { |
| 4006 | if (failed(Result: OpTrait::impl::verifyAtLeastNOperands(op, numOperands: 1)) || |
| 4007 | failed(Result: verifyTosaShapeOperator(op))) |
| 4008 | return failure(); |
| 4009 | |
| 4010 | // delegate function that returns rank of shape type |
| 4011 | auto getRank = [](const Type type) { |
| 4012 | return mlir::cast<mlir::tosa::shapeType>(type).getRank(); |
| 4013 | }; |
| 4014 | auto operandTypes = op->getOperandTypes(); |
| 4015 | auto resultTypes = op->getResultTypes(); |
| 4016 | |
| 4017 | auto rank = getRank(*op->getOperandTypes().begin()); |
| 4018 | for (auto type : operandTypes) { |
| 4019 | if (getRank(type) != rank) { |
| 4020 | return op->emitOpError(message: "operands don't have matching ranks" ); |
| 4021 | } |
| 4022 | } |
| 4023 | for (auto type : resultTypes) { |
| 4024 | if (getRank(type) != rank) { |
| 4025 | return op->emitOpError(message: "result shape has different rank than operands" ); |
| 4026 | } |
| 4027 | } |
| 4028 | return success(); |
| 4029 | } |
| 4030 | |
| 4031 | //===----------------------------------------------------------------------===// |
| 4032 | // TOSA Shape Operators verify functions. |
| 4033 | //===----------------------------------------------------------------------===// |
| 4034 | |
| 4035 | LogicalResult tosa::ConstShapeOp::verify() { |
| 4036 | // check one dimensional rank |
| 4037 | auto valuesRank = getValues().getType().getRank(); |
| 4038 | if (valuesRank != 1) |
| 4039 | return emitOpError("expect elements in attribute values with rank 1" ); |
| 4040 | // check that number of elements in values attr equal to rank of result shape |
| 4041 | auto count = getValues().getNumElements(); |
| 4042 | auto rank = (cast<tosa::shapeType>(getResult().getType())).getRank(); |
| 4043 | if (!(count == rank || (count == 1 && rank == 0))) { |
| 4044 | return emitOpError("expect number of elements in attribute values (" ) |
| 4045 | << count << ") to be equal to the rank (" << rank |
| 4046 | << ") for the result shape type" ; |
| 4047 | } |
| 4048 | return success(); |
| 4049 | } |
| 4050 | |
| 4051 | //===----------------------------------------------------------------------===// |
| 4052 | // TOSA Attribute Definitions. |
| 4053 | //===----------------------------------------------------------------------===// |
| 4054 | |
| 4055 | #define GET_ATTRDEF_CLASSES |
| 4056 | #include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc" |
| 4057 | |
| 4058 | //===----------------------------------------------------------------------===// |
| 4059 | // TOSA Type Definitions. |
| 4060 | //===----------------------------------------------------------------------===// |
| 4061 | #define GET_TYPEDEF_CLASSES |
| 4062 | #include "mlir/Dialect/Tosa/IR/TosaOpsTypesBase.cpp.inc" |
| 4063 | |
| 4064 | //===----------------------------------------------------------------------===// |
| 4065 | // TOSA Operator Definitions. |
| 4066 | //===----------------------------------------------------------------------===// |
| 4067 | |
| 4068 | #define GET_OP_CLASSES |
| 4069 | #include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc" |
| 4070 | |