1 | //===- TosaOps.cpp - MLIR Dialect for TOSA --------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // \file |
10 | // This file implements the TOSA Specification: |
11 | // https://www.mlplatform.org/tosa/tosa_spec.html |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
16 | #include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h" |
17 | #include "mlir/Dialect/Quant/IR/Quant.h" |
18 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
19 | #include "mlir/Dialect/Tosa/Utils/QuantUtils.h" |
20 | #include "mlir/Dialect/Tosa/Utils/ShapeUtils.h" |
21 | #include "mlir/Dialect/Utils/IndexingUtils.h" |
22 | #include "mlir/IR/BuiltinTypes.h" |
23 | #include "mlir/IR/DialectImplementation.h" |
24 | #include "mlir/IR/Matchers.h" |
25 | #include "mlir/IR/PatternMatch.h" |
26 | #include "mlir/IR/TypeUtilities.h" |
27 | #include "mlir/Interfaces/InferTypeOpInterface.h" |
28 | #include "mlir/Transforms/InliningUtils.h" |
29 | #include "llvm/ADT/APFloat.h" |
30 | #include "llvm/ADT/DenseMap.h" |
31 | #include "llvm/ADT/TypeSwitch.h" |
32 | |
33 | #include <numeric> |
34 | |
35 | using namespace mlir; |
36 | using namespace mlir::tosa; |
37 | |
38 | #include "mlir/Dialect/Tosa/IR/TosaOpsDialect.cpp.inc" |
39 | #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h" |
40 | |
41 | //===----------------------------------------------------------------------===// |
42 | // Tosa dialect interface includes. |
43 | //===----------------------------------------------------------------------===// |
44 | |
45 | #include "mlir/Dialect/Tosa/IR/TosaAvailability.cpp.inc" |
46 | #include "mlir/Dialect/Tosa/IR/TosaEnums.cpp.inc" |
47 | #include "mlir/Dialect/Tosa/IR/TosaInterfaces.cpp.inc" |
48 | #include "mlir/Dialect/Tosa/IR/TosaOpAvailabilityImpl.inc" |
49 | |
50 | namespace { |
51 | #include "mlir/Dialect/Tosa/IR/TosaDialectBytecode.cpp.inc" |
52 | |
53 | //===----------------------------------------------------------------------===// |
54 | // Dialect Function Inliner Interface. |
55 | //===----------------------------------------------------------------------===// |
56 | struct TosaInlinerInterface : public DialectInlinerInterface { |
57 | using DialectInlinerInterface::DialectInlinerInterface; |
58 | |
59 | //===--------------------------------------------------------------------===// |
60 | // Analysis Hooks. |
61 | //===--------------------------------------------------------------------===// |
62 | |
63 | /// All operations can be inlined by default. |
64 | bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned, |
65 | IRMapping &map) const final { |
66 | return true; |
67 | } |
68 | |
69 | /// All regions with If and While parent operators can be inlined. |
70 | bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, |
71 | IRMapping &map) const final { |
72 | return (isa<tosa::IfOp>(dest->getParentOp()) || |
73 | isa<tosa::WhileOp>(dest->getParentOp())); |
74 | } |
75 | }; |
76 | |
77 | /// This class implements the bytecode interface for the Tosa dialect. |
78 | struct TosaDialectBytecodeInterface : public BytecodeDialectInterface { |
79 | TosaDialectBytecodeInterface(Dialect *dialect) |
80 | : BytecodeDialectInterface(dialect) {} |
81 | |
82 | //===--------------------------------------------------------------------===// |
83 | // Attributes |
84 | |
85 | Attribute readAttribute(DialectBytecodeReader &reader) const override { |
86 | return ::readAttribute(getContext(), reader); |
87 | } |
88 | |
89 | LogicalResult writeAttribute(Attribute attr, |
90 | DialectBytecodeWriter &writer) const override { |
91 | return ::writeAttribute(attr, writer); |
92 | } |
93 | |
94 | //===--------------------------------------------------------------------===// |
95 | // Types |
96 | |
97 | Type readType(DialectBytecodeReader &reader) const override { |
98 | return ::readType(getContext(), reader); |
99 | } |
100 | |
101 | LogicalResult writeType(Type type, |
102 | DialectBytecodeWriter &writer) const override { |
103 | return ::writeType(type, writer); |
104 | } |
105 | |
106 | void writeVersion(DialectBytecodeWriter &writer) const final { |
107 | // TODO: Populate. |
108 | } |
109 | |
110 | std::unique_ptr<DialectVersion> |
111 | readVersion(DialectBytecodeReader &reader) const final { |
112 | // TODO: Populate |
113 | reader.emitError(msg: "Dialect does not support versioning"); |
114 | return nullptr; |
115 | } |
116 | |
117 | LogicalResult upgradeFromVersion(Operation *topLevelOp, |
118 | const DialectVersion &version) const final { |
119 | return success(); |
120 | } |
121 | }; |
122 | |
123 | } // namespace |
124 | |
125 | //===----------------------------------------------------------------------===// |
126 | // TOSA control flow support. |
127 | //===----------------------------------------------------------------------===// |
128 | |
129 | /// Returns the while loop body. |
130 | SmallVector<Region *> tosa::WhileOp::getLoopRegions() { |
131 | return {&getBodyGraph()}; |
132 | } |
133 | |
134 | //===----------------------------------------------------------------------===// |
135 | // TOSA variable operator support. |
136 | //===----------------------------------------------------------------------===// |
137 | |
138 | static SmallVector<int64_t> convertToMlirShape(ArrayRef<int64_t> shape) { |
139 | return to_vector(Range: llvm::map_range(C&: shape, F: [](int64_t dim) { |
140 | return dim == -1 ? ShapedType::kDynamic : dim; |
141 | })); |
142 | } |
143 | |
144 | // returns type of variable op |
145 | RankedTensorType mlir::tosa::getVariableType(tosa::VariableOp variableOp) { |
146 | Type elementType = variableOp.getType(); |
147 | DenseIntElementsAttr varShapeAttr = variableOp.getVarShape(); |
148 | auto shape = convertToMlirShape(to_vector(varShapeAttr.getValues<int64_t>())); |
149 | return RankedTensorType::get(shape, elementType); |
150 | } |
151 | |
152 | //===----------------------------------------------------------------------===// |
153 | // Tosa dialect initialization. |
154 | //===----------------------------------------------------------------------===// |
155 | |
156 | void TosaDialect::initialize() { |
157 | addTypes< |
158 | #define GET_TYPEDEF_LIST |
159 | #include "mlir/Dialect/Tosa/IR/TosaOpsTypesBase.cpp.inc" |
160 | >(); |
161 | addOperations< |
162 | #define GET_OP_LIST |
163 | #include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc" |
164 | >(); |
165 | addAttributes< |
166 | #define GET_ATTRDEF_LIST |
167 | #include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc" |
168 | >(); |
169 | addInterfaces<TosaDialectBytecodeInterface, TosaInlinerInterface>(); |
170 | declarePromisedInterfaces< |
171 | mesh::ShardingInterface, ClampOp, SigmoidOp, TanhOp, AddOp, |
172 | ArithmeticRightShiftOp, BitwiseAndOp, BitwiseOrOp, BitwiseXorOp, IntDivOp, |
173 | LogicalAndOp, LogicalLeftShiftOp, LogicalRightShiftOp, LogicalOrOp, |
174 | LogicalXorOp, MaximumOp, MinimumOp, MulOp, PowOp, SubOp, AbsOp, |
175 | BitwiseNotOp, CeilOp, ClzOp, ExpOp, FloorOp, LogOp, LogicalNotOp, |
176 | NegateOp, ReciprocalOp, RsqrtOp, SelectOp, EqualOp, GreaterOp, |
177 | GreaterEqualOp, MatMulOp>(); |
178 | } |
179 | |
180 | Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value, |
181 | Type type, Location loc) { |
182 | // Tosa dialect constants only support ElementsAttr unlike standard dialect |
183 | // constant which supports all attributes. |
184 | if (llvm::isa<shapeType>(type) && llvm::isa<DenseIntElementsAttr>(value)) { |
185 | return builder.create<tosa::ConstShapeOp>( |
186 | loc, type, llvm::cast<DenseIntElementsAttr>(value)); |
187 | } |
188 | if (llvm::isa<ElementsAttr>(value)) |
189 | return builder.create<tosa::ConstOp>(loc, type, |
190 | llvm::cast<ElementsAttr>(value)); |
191 | return nullptr; |
192 | } |
193 | |
194 | //===----------------------------------------------------------------------===// |
195 | // Parsers and printers |
196 | //===----------------------------------------------------------------------===// |
197 | |
198 | namespace { |
199 | |
200 | ParseResult getShapeAndElementType(OpAsmParser &parser, Type parsedType, |
201 | DenseElementsAttr &varShapeAttr, |
202 | TypeAttr &typeAttr) { |
203 | if (auto shapedType = dyn_cast<ShapedType>(parsedType)) { |
204 | if (!shapedType.hasRank()) |
205 | return parser.emitError(loc: parser.getCurrentLocation()) |
206 | << "expected ranked type"; |
207 | |
208 | auto elementType = shapedType.getElementType(); |
209 | typeAttr = TypeAttr::get(elementType); |
210 | ArrayRef<int64_t> shape = shapedType.getShape(); |
211 | Builder builder(parser.getContext()); |
212 | varShapeAttr = builder.getIndexTensorAttr(convertFromMlirShape(shape)); |
213 | return success(); |
214 | } |
215 | return parser.emitError(loc: parser.getCurrentLocation()) |
216 | << "expected shaped type"; |
217 | } |
218 | |
219 | } // namespace |
220 | |
221 | // parses the optional initial value or type for a tosa variable |
222 | // with initial value: |
223 | // tosa.variable @name = dense<0.0> : tensor<1x8xf32> |
224 | // |
225 | // without initial value: |
226 | // tosa.variable @name : tensor<1x8xf32> |
227 | ParseResult mlir::tosa::parseVariableOpTypeOrInitialValue( |
228 | OpAsmParser &parser, DenseElementsAttr &varShapeAttr, TypeAttr &typeAttr, |
229 | Attribute &initialValueAttr) { |
230 | if (succeeded(Result: parser.parseOptionalEqual())) { |
231 | if (failed(Result: parser.parseAttribute(result&: initialValueAttr))) { |
232 | return parser.emitError(loc: parser.getCurrentLocation()) |
233 | << "expected attribute"; |
234 | } |
235 | if (auto typedAttr = dyn_cast<TypedAttr>(initialValueAttr)) { |
236 | return getShapeAndElementType(parser, typedAttr.getType(), varShapeAttr, |
237 | typeAttr); |
238 | } |
239 | return parser.emitError(loc: parser.getCurrentLocation()) |
240 | << "expected Typed attr"; |
241 | } |
242 | |
243 | initialValueAttr = nullptr; |
244 | Type parsedType; |
245 | if (failed(Result: parser.parseColonType(result&: parsedType))) { |
246 | return parser.emitError(loc: parser.getCurrentLocation()) |
247 | << "expected type after colon"; |
248 | } |
249 | return getShapeAndElementType(parser, parsedType, varShapeAttr, typeAttr); |
250 | } |
251 | |
252 | void mlir::tosa::printVariableOpTypeOrInitialValue( |
253 | OpAsmPrinter &p, Operation *op, DenseElementsAttr varShapeAttr, |
254 | TypeAttr typeAttr, Attribute initialValueAttr) { |
255 | bool needsSpace = false; |
256 | if (!dyn_cast_or_null<TypedAttr>(initialValueAttr)) { |
257 | auto shape = |
258 | convertToMlirShape(to_vector(varShapeAttr.getValues<int64_t>())); |
259 | Type elementType = typeAttr.getValue(); |
260 | RankedTensorType tensorType = |
261 | RankedTensorType::get(ArrayRef<int64_t>(shape), elementType); |
262 | auto tensorTypeAttr = TypeAttr::get(tensorType); |
263 | p << ": "; |
264 | p.printAttribute(attr: tensorTypeAttr); |
265 | needsSpace = true; // subsequent attr value needs a space separator |
266 | } |
267 | if (initialValueAttr) { |
268 | if (needsSpace) |
269 | p << ' '; |
270 | p << "= "; |
271 | p.printAttribute(attr: initialValueAttr); |
272 | } |
273 | } |
274 | |
275 | //===----------------------------------------------------------------------===// |
276 | // Tosa utilities. |
277 | //===----------------------------------------------------------------------===// |
278 | |
279 | std::optional<int64_t> idivCheck(const int64_t lhs, const int64_t rhs) { |
280 | if (lhs % rhs != 0) |
281 | return std::nullopt; |
282 | return lhs / rhs; |
283 | } |
284 | |
285 | Type getStorageElementTypeOrSelf(Type type) { |
286 | auto srcType = getElementTypeOrSelf(type); |
287 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(Val&: srcType)) |
288 | srcType = quantType.getStorageType(); |
289 | return srcType; |
290 | } |
291 | |
292 | Type getStorageElementTypeOrSelf(Value value) { |
293 | return getStorageElementTypeOrSelf(type: value.getType()); |
294 | } |
295 | |
296 | static LogicalResult verifyRescaleValueAndZpTypes(Operation *op, Value val, |
297 | Value valZp, StringRef name) { |
298 | Type eType = getStorageElementTypeOrSelf(type: val.getType()); |
299 | Type eZpType = getStorageElementTypeOrSelf(type: valZp.getType()); |
300 | |
301 | bool bothInts = |
302 | mlir::isa<IntegerType>(Val: eType) && mlir::isa<IntegerType>(Val: eZpType); |
303 | bool sameBitWidth = |
304 | (eType.getIntOrFloatBitWidth() == eZpType.getIntOrFloatBitWidth()); |
305 | |
306 | if (!bothInts || !sameBitWidth) { |
307 | return op->emitOpError() |
308 | << "expected "<< name << " and "<< name |
309 | << "_zp to both be integer of the same bitwidth, but got "<< eType |
310 | << " vs. "<< eZpType; |
311 | } |
312 | return success(); |
313 | } |
314 | |
315 | // Create a pad-const const tensor with value of `val` of required data-type |
316 | Value mlir::tosa::createPadConstTensor(OpBuilder &builder, Location loc, |
317 | Value src, int32_t val) { |
318 | const auto srcType = getElementTypeOrSelf(val: src); |
319 | const auto srcElemType = getStorageElementTypeOrSelf(value: src); |
320 | const auto padConstType = mlir::RankedTensorType::get({1}, srcType); |
321 | const auto padConstEType = mlir::RankedTensorType::get({1}, srcElemType); |
322 | const auto padConstAttr{ |
323 | llvm::isa<FloatType>(Val: srcElemType) |
324 | ? DenseElementsAttr::get(padConstEType, |
325 | builder.getFloatAttr(srcElemType, val)) |
326 | : DenseElementsAttr::get(padConstEType, |
327 | builder.getIntegerAttr(srcElemType, val))}; |
328 | return builder.create<tosa::ConstOp>(loc, padConstType, padConstAttr); |
329 | } |
330 | |
331 | //===----------------------------------------------------------------------===// |
332 | // TOSA Operator Verifiers. |
333 | //===----------------------------------------------------------------------===// |
334 | |
335 | template <typename T> |
336 | static LogicalResult verifyConvOp(T op) { |
337 | const auto inputType = llvm::dyn_cast<TensorType>(op.getInput().getType()); |
338 | const auto weightType = llvm::dyn_cast<TensorType>(op.getWeight().getType()); |
339 | |
340 | auto inputEType = inputType.getElementType(); |
341 | auto weightEType = weightType.getElementType(); |
342 | auto biasEType = |
343 | llvm::cast<ShapedType>(op.getBias().getType()).getElementType(); |
344 | auto resultEType = |
345 | llvm::cast<ShapedType>(op.getResult().getType()).getElementType(); |
346 | bool biasIsFloat = llvm::isa<FloatType>(biasEType); |
347 | bool resultIsFloat = llvm::isa<FloatType>(resultEType); |
348 | |
349 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(inputEType)) |
350 | inputEType = quantType.getStorageType(); |
351 | |
352 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(weightEType)) |
353 | weightEType = quantType.getStorageType(); |
354 | |
355 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(biasEType)) |
356 | biasEType = quantType.getStorageType(); |
357 | |
358 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(resultEType)) |
359 | resultEType = quantType.getStorageType(); |
360 | |
361 | if (biasIsFloat && resultIsFloat && (biasEType != resultEType)) { |
362 | // for now, only enforce bias element type == result element type for |
363 | // float types. |
364 | op.emitOpError( |
365 | "expect both bias and result to have same element type, got ") |
366 | << biasEType << " and "<< resultEType; |
367 | return failure(); |
368 | } |
369 | |
370 | if (isa<Float8E5M2Type>(inputEType) || isa<Float8E4M3FNType>(inputEType) || |
371 | isa<Float8E5M2Type>(weightEType) || isa<Float8E4M3FNType>(weightEType)) { |
372 | if (inputEType != weightEType) { |
373 | op.emitOpError( |
374 | "expect both input and weight to have same element type, got ") |
375 | << inputEType << " and "<< weightEType; |
376 | return failure(); |
377 | } |
378 | } |
379 | |
380 | bool inputIsFloat = llvm::isa<FloatType>(inputEType); |
381 | bool weightIsFloat = llvm::isa<FloatType>(weightEType); |
382 | |
383 | // Either both must be float or both non-float. |
384 | if (inputIsFloat != weightIsFloat) { |
385 | op.emitOpError( |
386 | "expect both input and weight to be float or not together, got ") |
387 | << inputEType << " and "<< weightEType; |
388 | return failure(); |
389 | } |
390 | |
391 | auto inputZpEType = getStorageElementTypeOrSelf(op.getInputZp().getType()); |
392 | if (inputEType != inputZpEType) { |
393 | return op.emitOpError("expect both input and its zero point are the same " |
394 | "element type, got ") |
395 | << inputEType << " and "<< inputZpEType; |
396 | } |
397 | |
398 | auto weightZpEType = getStorageElementTypeOrSelf(op.getWeightZp().getType()); |
399 | if (weightEType != weightZpEType) { |
400 | return op.emitOpError("expect both weight and its zero point are the same " |
401 | "element type, got ") |
402 | << weightEType << " and "<< weightZpEType; |
403 | } |
404 | |
405 | FailureOr<int64_t> maybeIZp = op.getInputZeroPoint(); |
406 | if (succeeded(Result: maybeIZp) && op.verifyInputZeroPoint(*maybeIZp).failed()) |
407 | return failure(); |
408 | |
409 | FailureOr<int64_t> maybeWZp = op.getWeightZeroPoint(); |
410 | if (succeeded(Result: maybeWZp) && op.verifyWeightZeroPoint(*maybeWZp).failed()) |
411 | return failure(); |
412 | |
413 | return success(); |
414 | } |
415 | |
416 | LogicalResult tosa::ConstOp::verify() { |
417 | |
418 | auto attrType = llvm::dyn_cast<TensorType>(getValuesAttr().getType()); |
419 | auto outputType = llvm::dyn_cast<TensorType>(getOutput().getType()); |
420 | |
421 | if (!attrType || !outputType) { |
422 | emitOpError("expected tensors for attr/result type"); |
423 | return failure(); |
424 | } |
425 | |
426 | if (auto result = llvm::dyn_cast<mlir::quant::QuantizedType>( |
427 | outputType.getElementType())) { |
428 | if (result.getStorageType() == attrType.getElementType()) |
429 | return success(); |
430 | } |
431 | |
432 | if (attrType.getElementType() != outputType.getElementType()) { |
433 | emitOpError("expected same attr/result element types"); |
434 | return failure(); |
435 | } |
436 | |
437 | return success(); |
438 | } |
439 | |
440 | template <typename T> |
441 | static LogicalResult verifyConvOpModes(T op) { |
442 | auto inputEType = |
443 | llvm::cast<ShapedType>(op.getInput().getType()).getElementType(); |
444 | |
445 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(inputEType)) |
446 | inputEType = quantType.getStorageType(); |
447 | |
448 | auto accType = op.getAccType(); |
449 | if (inputEType.isInteger(8) && !accType.isInteger(32)) |
450 | return op.emitOpError("accumulator type for i8 tensor is not i32"); |
451 | |
452 | if (inputEType.isInteger(16) && !accType.isInteger(48)) |
453 | return op.emitOpError("accumulator type for i16 tensor is not i48"); |
454 | |
455 | if (isa<Float8E5M2Type, Float8E4M3Type>(inputEType) && !accType.isF16()) |
456 | return op.emitOpError("accumulator type for f8 tensor is not f16"); |
457 | |
458 | if (inputEType.isF16() && !(accType.isF16() || accType.isF32())) |
459 | return op.emitOpError("accumulator type for f16 tensor is not f16/f32"); |
460 | |
461 | if (inputEType.isBF16() && !accType.isF32()) |
462 | return op.emitOpError("accumulator type for bf16 tensor is not f32"); |
463 | |
464 | if (inputEType.isF32() && !accType.isF32()) |
465 | return op.emitOpError("accumulator type for f32 tensor is not f32"); |
466 | |
467 | auto resultEType = |
468 | llvm::cast<ShapedType>(op.getResult().getType()).getElementType(); |
469 | |
470 | if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(resultEType)) |
471 | resultEType = quantType.getStorageType(); |
472 | |
473 | return success(); |
474 | } |
475 | |
476 | //===----------------------------------------------------------------------===// |
477 | // ERROR_IF functions. |
478 | // ERROR_IF is a predicate that must set an error if the condition holds. |
479 | //===----------------------------------------------------------------------===// |
480 | |
481 | template <typename T> |
482 | static LogicalResult verifyConvOpErrorIf(T op) { |
483 | llvm::ArrayRef<int64_t> padding = op.getPad(); |
484 | if (llvm::any_of(padding, [](int64_t p) { return p < 0; })) |
485 | return op.emitOpError("expect all padding values to be >= 0, got ") |
486 | << padding; |
487 | |
488 | llvm::ArrayRef<int64_t> strides = op.getStride(); |
489 | if (llvm::any_of(strides, [](int64_t s) { return s < 1; })) |
490 | return op.emitOpError("expect all stride values to be >= 1, got ") |
491 | << strides; |
492 | |
493 | llvm::ArrayRef<int64_t> dilations = op.getDilation(); |
494 | if (llvm::any_of(dilations, [](int64_t d) { return d < 1; })) |
495 | return op.emitOpError("expect all dilation values to be >= 1, got ") |
496 | << dilations; |
497 | |
498 | const RankedTensorType outputType = |
499 | llvm::dyn_cast<RankedTensorType>(op.getOutput().getType()); |
500 | if (!outputType) |
501 | // Skip following checks if output is not ranked |
502 | return success(); |
503 | |
504 | const RankedTensorType inputType = |
505 | llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
506 | const RankedTensorType weightType = |
507 | llvm::dyn_cast<RankedTensorType>(op.getWeight().getType()); |
508 | |
509 | if (inputType && weightType) { |
510 | const auto verifyOutputSize = |
511 | [&op](const int64_t inputSize, const int64_t kernelSize, |
512 | const int64_t outputSize, const int64_t padBefore, |
513 | const int64_t padAfter, const int64_t stride, |
514 | const int64_t dilation, const llvm::StringRef dimName, |
515 | const llvm::StringRef dimAxis, |
516 | const llvm::StringRef padBeforeName, |
517 | const llvm::StringRef padAfterName) -> LogicalResult { |
518 | if (inputSize == ShapedType::kDynamic || |
519 | kernelSize == ShapedType::kDynamic) |
520 | return success(); |
521 | |
522 | // ERROR_IF: O != idiv_check(I - 1 + pa + pb - (K - 1) * d, s) + 1 |
523 | |
524 | const std::optional<int64_t> calculatedOutSizeMinusOne = idivCheck( |
525 | lhs: inputSize - 1 + padBefore + padAfter - (kernelSize - 1) * dilation, |
526 | rhs: stride); |
527 | if (!calculatedOutSizeMinusOne.has_value()) |
528 | return op.emitOpError("expected input_") |
529 | << dimName << " - 1 + pad_"<< padBeforeName << " + pad_" |
530 | << padAfterName << " - (kernel_"<< dimName |
531 | << " - 1) * dilation_"<< dimAxis |
532 | << " to be wholly divisible by stride_"<< dimAxis << ", got (" |
533 | << inputSize << " - 1 + "<< padBefore << " + "<< padAfter |
534 | << " - ("<< kernelSize << " - 1) * "<< dilation << ") / " |
535 | << stride; |
536 | |
537 | const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1; |
538 | if (outputSize != ShapedType::kDynamic && calculatedOutSize != outputSize) |
539 | return op.emitOpError("calculated output ") |
540 | << dimName << " did not match expected: " |
541 | << "calculated="<< calculatedOutSize |
542 | << ", expected="<< outputSize; |
543 | |
544 | return success(); |
545 | }; |
546 | |
547 | // input = [_,IH,IW,_], weight = [_,KH,KW,_], output = [_,OH,OW,_] |
548 | if constexpr (std::is_same<T, tosa::Conv2DOp>::value) { |
549 | if (failed(verifyOutputSize( |
550 | inputType.getDimSize(1), weightType.getDimSize(1), |
551 | outputType.getDimSize(1), padding[0], padding[1], strides[0], |
552 | dilations[0], "height", "y", "top", "bottom"))) |
553 | return failure(); |
554 | |
555 | if (failed(verifyOutputSize( |
556 | inputType.getDimSize(2), weightType.getDimSize(2), |
557 | outputType.getDimSize(2), padding[2], padding[3], strides[1], |
558 | dilations[1], "width", "x", "left", "right"))) |
559 | return failure(); |
560 | } |
561 | |
562 | // input = [_,IH,IW,_], weight = [KH,KW,_,_], output = [_,OH,OW,_] |
563 | if constexpr (std::is_same<T, tosa::DepthwiseConv2DOp>::value) { |
564 | if (failed(verifyOutputSize( |
565 | inputType.getDimSize(1), weightType.getDimSize(0), |
566 | outputType.getDimSize(1), padding[0], padding[1], strides[0], |
567 | dilations[0], "height", "y", "top", "bottom"))) |
568 | return failure(); |
569 | |
570 | if (failed(verifyOutputSize( |
571 | inputType.getDimSize(2), weightType.getDimSize(1), |
572 | outputType.getDimSize(2), padding[2], padding[3], strides[1], |
573 | dilations[1], "width", "x", "left", "right"))) |
574 | return failure(); |
575 | } |
576 | |
577 | // input = [_,ID,IH,IW,_], weight = [_,KD,KH,KW,_], output = [_,OD,OH,OW,_] |
578 | if constexpr (std::is_same<T, tosa::Conv3DOp>::value) { |
579 | if (failed(verifyOutputSize( |
580 | inputType.getDimSize(1), weightType.getDimSize(1), |
581 | outputType.getDimSize(1), padding[0], padding[1], strides[0], |
582 | dilations[0], "depth", "d", "front", "back"))) |
583 | return failure(); |
584 | |
585 | if (failed(verifyOutputSize( |
586 | inputType.getDimSize(2), weightType.getDimSize(2), |
587 | outputType.getDimSize(2), padding[2], padding[3], strides[1], |
588 | dilations[1], "height", "y", "top", "bottom"))) |
589 | return failure(); |
590 | |
591 | if (failed(verifyOutputSize( |
592 | inputType.getDimSize(3), weightType.getDimSize(3), |
593 | outputType.getDimSize(3), padding[4], padding[5], strides[2], |
594 | dilations[2], "width", "x", "left", "right"))) |
595 | return failure(); |
596 | } |
597 | } |
598 | |
599 | const RankedTensorType biasType = |
600 | llvm::dyn_cast<RankedTensorType>(op.getBias().getType()); |
601 | if (!biasType) |
602 | // Skip following checks if bias is not ranked |
603 | return success(); |
604 | |
605 | const int64_t biasChannels = biasType.getDimSize(0); |
606 | const int64_t outputChannels = |
607 | outputType.getDimSize(outputType.getRank() - 1); |
608 | if (biasChannels == ShapedType::kDynamic || |
609 | outputChannels == ShapedType::kDynamic) |
610 | // Skip following checks if biasChannels or outputChannels is dynamic dim |
611 | return success(); |
612 | |
613 | if (biasChannels != outputChannels && biasChannels != 1) |
614 | return op.emitOpError( |
615 | "bias channels expected to be equal to output channels (") |
616 | << outputChannels << ") or 1, got "<< biasChannels; |
617 | |
618 | return success(); |
619 | } |
620 | |
621 | // Verify whether same type and shape of the given two types. |
622 | static LogicalResult errorIfTypeOrShapeMismatch(Operation *op, Type type1, |
623 | StringRef name1, Type type2, |
624 | StringRef name2) { |
625 | auto shapeType1 = dyn_cast<ShapedType>(type1); |
626 | auto shapeType2 = dyn_cast<ShapedType>(type2); |
627 | if (!shapeType1 || !shapeType2) |
628 | return failure(); |
629 | |
630 | auto elemType1 = shapeType1.getElementType(); |
631 | auto elemType2 = shapeType2.getElementType(); |
632 | if (elemType1 != elemType2) |
633 | return op->emitOpError() |
634 | << "require same element type for "<< name1 << " ("<< elemType1 |
635 | << ") and "<< name2 << " ("<< elemType2 << ")"; |
636 | |
637 | if (failed(Result: verifyCompatibleShape(type1, type2))) |
638 | return op->emitOpError() |
639 | << "require same shapes for "<< name1 << " ("<< type1 << ") and " |
640 | << name2 << " ("<< type2 << ")"; |
641 | |
642 | return success(); |
643 | } |
644 | |
645 | // Verify whether same length, type, and shape of the given two tensor lists. |
646 | static LogicalResult errorIfTypeOrShapeMismatch(Operation *op, ValueRange list1, |
647 | StringRef name1, |
648 | ValueRange list2, |
649 | StringRef name2) { |
650 | if (list1.size() != list2.size()) |
651 | return op->emitOpError() |
652 | << "require same number of values in "<< name1 << " (" |
653 | << list1.size() << ") and "<< name2 << " ("<< list2.size() << ")"; |
654 | |
655 | for (auto [type1, type2] : |
656 | llvm::zip_equal(t: list1.getTypes(), u: list2.getTypes())) { |
657 | if (errorIfTypeOrShapeMismatch(op, type1, name1, type2, name2).failed()) |
658 | return failure(); |
659 | } |
660 | |
661 | return success(); |
662 | } |
663 | |
664 | static inline LogicalResult errorIfShapeNotSizeOne(Operation *op, Type type) { |
665 | ShapeAdaptor shapeAdaptor(type); |
666 | if (!shapeAdaptor.hasRank() || !shapeAdaptor.hasStaticShape()) |
667 | return success(); |
668 | |
669 | return shapeAdaptor.getNumElements() == 1 ? success() : failure(); |
670 | } |
671 | |
672 | // Returns the first declaration point prior to this operation or failure if |
673 | // not found. |
674 | static FailureOr<tosa::VariableOp> findVariableDecl(Operation *op, |
675 | StringRef symName) { |
676 | ModuleOp module = op->getParentOfType<ModuleOp>(); |
677 | tosa::VariableOp varOp = nullptr; |
678 | |
679 | // TODO: Adopt SymbolTable trait to Varible ops. |
680 | // Currently, the variable's definition point is searched via walk(), |
681 | // starting from the top-level ModuleOp and stopping at the point of use. Once |
682 | // TOSA control flow and variable extensions reach the complete state, may |
683 | // leverage MLIR's Symbol Table functionality to look up symbol and enhance |
684 | // the search to a TOSA specific graph traversal over the IR structure. |
685 | module.walk([&](Operation *tempOp) { |
686 | // Reach this op itself. |
687 | if (tempOp == op) { |
688 | return WalkResult::interrupt(); |
689 | } |
690 | |
691 | if (auto tosaOp = dyn_cast<tosa::VariableOp>(tempOp)) { |
692 | if (symName == tosaOp.getName()) { |
693 | varOp = tosaOp; |
694 | return WalkResult::interrupt(); |
695 | } |
696 | } |
697 | |
698 | return WalkResult::advance(); |
699 | }); |
700 | |
701 | if (varOp) |
702 | return varOp; |
703 | |
704 | return failure(); |
705 | } |
706 | |
707 | template <typename T> |
708 | static LogicalResult verifyVariableOpErrorIf(T op, Type type, StringRef name) { |
709 | StringRef symName = op.getName(); |
710 | FailureOr<tosa::VariableOp> varOp = findVariableDecl(op, symName); |
711 | if (failed(varOp)) |
712 | return op->emitOpError("'") |
713 | << symName << "' has not been declared by 'tosa.variable'"; |
714 | |
715 | // Verify type and shape |
716 | auto variableType = getVariableType(varOp.value()); |
717 | if (errorIfTypeOrShapeMismatch(op, type, name, variableType, |
718 | "the input tensor") |
719 | .failed()) |
720 | return failure(); |
721 | |
722 | return success(); |
723 | } |
724 | |
725 | // verify that inType and outType have same element types |
726 | template <typename T> |
727 | static LogicalResult verifySameElementTypes(T op, Type inType, Type outType) { |
728 | auto inputType = llvm::dyn_cast<TensorType>(Val&: inType); |
729 | auto outputType = llvm::dyn_cast<TensorType>(Val&: outType); |
730 | if (!inputType) { |
731 | op.emitOpError("expect shaped tensor for input, got ") << inType; |
732 | return failure(); |
733 | } |
734 | if (!outputType) { |
735 | op.emitOpError("expect shaped tensor for output, got ") << outType; |
736 | return failure(); |
737 | } |
738 | auto inputElementType = inputType.getElementType(); |
739 | auto outputElementType = outputType.getElementType(); |
740 | auto inputQuantType = |
741 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(Val&: inputElementType); |
742 | auto outputQuantType = |
743 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(Val&: outputElementType); |
744 | if ((inputElementType.isIntOrIndexOrFloat() || inputQuantType) && |
745 | (outputElementType.isIntOrIndexOrFloat() || outputQuantType) && |
746 | inputElementType != outputElementType) { |
747 | // only check if both element types are int/index/float/UniformQuantized |
748 | // eg, not sure how to check quant::QuantizedType |
749 | // this happens in test_conv2d_q_grouped_convolution in |
750 | // tfl-to-tosa-pipeline.mlir |
751 | op.emitOpError("expect input and output to have same element type, got ") |
752 | << inputElementType << " and "<< outputElementType; |
753 | return failure(); |
754 | } |
755 | return success(); |
756 | } |
757 | |
758 | LogicalResult tosa::ArgMaxOp::verify() { |
759 | const ShapedType resultType = llvm::cast<ShapedType>(getType()); |
760 | |
761 | // Ensure output is of 32-bit integer |
762 | if (const auto resultETy = resultType.getElementType(); |
763 | !resultETy.isIntOrIndex()) |
764 | return emitOpError("result tensor is not of integer type"); |
765 | |
766 | const auto inputType = llvm::cast<ShapedType>(getInput().getType()); |
767 | if (!inputType.hasRank()) |
768 | return success(); |
769 | |
770 | // Ensure axis is within the tensor rank |
771 | const int64_t axis = getAxisAttr().getInt(); |
772 | if (((axis < 0) || axis >= inputType.getRank())) |
773 | return emitOpError("specified axis is outside the rank of the tensor"); |
774 | |
775 | if (!resultType.hasRank()) |
776 | return success(); |
777 | |
778 | const ArrayRef<int64_t> inputShape = inputType.getShape(); |
779 | const ArrayRef<int64_t> outputShape = resultType.getShape(); |
780 | llvm::SmallVector<int64_t> expectedOutputShape(inputShape); |
781 | expectedOutputShape.erase(expectedOutputShape.begin() + axis); |
782 | if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) |
783 | return emitOpError("expected output shape '") |
784 | << expectedOutputShape << "', got '"<< outputShape << "'"; |
785 | |
786 | return success(); |
787 | } |
788 | |
789 | template <typename T> |
790 | static LogicalResult verifyPoolingOp(T op) { |
791 | const llvm::ArrayRef<int64_t> kernel = op.getKernel(); |
792 | if (llvm::any_of(kernel, [](int64_t s) { return s < 1; })) |
793 | return op.emitOpError("expect all kernel values to be >= 1, got ") |
794 | << kernel; |
795 | |
796 | const llvm::ArrayRef<int64_t> strides = op.getStride(); |
797 | if (llvm::any_of(strides, [](int64_t s) { return s < 1; })) |
798 | return op.emitOpError("expect all stride values to be >= 1, got ") |
799 | << strides; |
800 | |
801 | const llvm::ArrayRef<int64_t> padding = op.getPad(); |
802 | if (llvm::any_of(padding, [](int64_t p) { return p < 0; })) |
803 | return op.emitOpError("expect all padding values to be >= 0, got ") |
804 | << padding; |
805 | |
806 | // Padding must be less than kernel size to avoid a divide-by-zero |
807 | const int64_t kernelX = kernel[1]; |
808 | const int64_t padLeft = padding[2]; |
809 | const int64_t padRight = padding[3]; |
810 | if (padRight >= kernelX || padLeft >= kernelX) |
811 | return op.emitOpError("expected left/right padding to be less than the " |
812 | "width of the kernel, got pad_left=") |
813 | << padLeft << ", pad_right="<< padRight << ", kernel_x="<< kernelX; |
814 | |
815 | const int64_t kernelY = kernel[0]; |
816 | const int64_t padTop = padding[0]; |
817 | const int64_t padBottom = padding[1]; |
818 | if (padTop >= kernelY || padBottom >= kernelY) |
819 | return op.emitOpError("expected top/bottom padding to be less than the " |
820 | "height of the kernel, got pad_top=") |
821 | << padTop << ", pad_bottom="<< padBottom |
822 | << ", kernel_y="<< kernelY; |
823 | |
824 | const auto inputType = |
825 | llvm::dyn_cast<RankedTensorType>(op.getInput().getType()); |
826 | const auto outputType = |
827 | llvm::dyn_cast<RankedTensorType>(op.getResult().getType()); |
828 | if (!inputType || !outputType) |
829 | return success(); |
830 | |
831 | const auto verifyOutputSize = |
832 | [&op](const int64_t inputSize, const int64_t outputSize, |
833 | const int64_t kernelSize, const int64_t strideSize, |
834 | const int64_t padBefore, const int64_t padAfter, |
835 | const llvm::StringRef dimName, const llvm::StringRef dimAxis, |
836 | const llvm::StringRef padBeforeName, |
837 | const llvm::StringRef padAfterName) -> LogicalResult { |
838 | if (ShapedType::isDynamic(inputSize)) |
839 | return success(); |
840 | |
841 | const std::optional<int64_t> calculatedOutSizeMinusOne = |
842 | idivCheck(lhs: inputSize + padBefore + padAfter - kernelSize, rhs: strideSize); |
843 | if (!calculatedOutSizeMinusOne.has_value()) |
844 | return op.emitOpError("expected input_") |
845 | << dimName << " + pad_"<< padBeforeName << " + pad_" |
846 | << padAfterName << " - kernel_"<< dimAxis |
847 | << " to be wholly divisible by stride_"<< dimAxis << ", got (" |
848 | << inputSize << " + "<< padBefore << " + "<< padAfter << " - " |
849 | << kernelSize << ") / "<< strideSize; |
850 | |
851 | const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1; |
852 | if (!ShapedType::isDynamic(outputSize) && calculatedOutSize != outputSize) |
853 | return op.emitOpError("calculated output ") |
854 | << dimName << " did not match expected: " |
855 | << "calculated="<< calculatedOutSize |
856 | << ", expected="<< outputSize; |
857 | |
858 | return success(); |
859 | }; |
860 | |
861 | if (failed(verifyOutputSize(inputType.getDimSize(1), outputType.getDimSize(1), |
862 | kernel[0], strides[0], padding[0], padding[1], |
863 | "height", "y", "top", "bottom"))) |
864 | return failure(); |
865 | |
866 | if (failed(verifyOutputSize(inputType.getDimSize(2), outputType.getDimSize(2), |
867 | kernel[1], strides[1], padding[2], padding[3], |
868 | "width", "x", "left", "right"))) |
869 | return failure(); |
870 | |
871 | return success(); |
872 | } |
873 | |
874 | LogicalResult tosa::AvgPool2dOp::verify() { |
875 | if (failed(verifyPoolingOp(*this))) |
876 | return failure(); |
877 | |
878 | const Type inputETy = getStorageElementTypeOrSelf(getInput().getType()); |
879 | const Type resultETy = getStorageElementTypeOrSelf(getOutput().getType()); |
880 | const Type inputZpETy = getStorageElementTypeOrSelf(getInputZp().getType()); |
881 | const Type outputZpETy = getStorageElementTypeOrSelf(getOutputZp().getType()); |
882 | |
883 | auto accType = getAccType(); |
884 | if (llvm::isa<IntegerType>(inputETy) && !accType.isInteger(32)) |
885 | return emitOpError("accumulator type for integer tensor is not i32"); |
886 | |
887 | if (inputETy.isF16() && !(accType.isF16() || accType.isF32())) |
888 | return emitOpError("accumulator type for f16 tensor is not f16/f32"); |
889 | |
890 | if (inputETy.isBF16() && !accType.isF32()) |
891 | return emitOpError("accumulator type for bf16 tensor is not f32"); |
892 | |
893 | if (inputETy.isF32() && !accType.isF32()) |
894 | return emitOpError("accumulator type for f32 tensor is not f32"); |
895 | |
896 | if (inputETy != inputZpETy) |
897 | return emitOpError("expect both input and its zero point are the same " |
898 | "element type, got ") |
899 | << inputETy << " and "<< inputZpETy; |
900 | |
901 | if (resultETy != outputZpETy) |
902 | return emitOpError("expect both output and its zero point are the same " |
903 | "element type, got ") |
904 | << resultETy << " and "<< outputZpETy; |
905 | |
906 | FailureOr<int64_t> maybeIZp = getInputZeroPoint(); |
907 | if (succeeded(maybeIZp) && verifyInputZeroPoint(*maybeIZp).failed()) |
908 | return failure(); |
909 | |
910 | FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
911 | if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed()) |
912 | return failure(); |
913 | |
914 | return success(); |
915 | } |
916 | |
917 | LogicalResult tosa::ClampOp::verify() { |
918 | mlir::Type inputETy = |
919 | llvm::cast<ShapedType>(getInput().getType()).getElementType(); |
920 | if (auto quantType = |
921 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputETy)) { |
922 | inputETy = quantType.getStorageType(); |
923 | } |
924 | mlir::Type outputETy = |
925 | llvm::cast<ShapedType>(getOutput().getType()).getElementType(); |
926 | if (auto quantType = |
927 | llvm::dyn_cast<mlir::quant::UniformQuantizedType>(outputETy)) { |
928 | outputETy = quantType.getStorageType(); |
929 | } |
930 | if (inputETy != outputETy) |
931 | return emitOpError("input/output element types are incompatible."); |
932 | |
933 | auto maxValAttr = getMaxValAttr(); |
934 | auto minValAttr = getMinValAttr(); |
935 | |
936 | unsigned dataTypeBitWidth = inputETy.getIntOrFloatBitWidth(); |
937 | |
938 | if (inputETy.isInteger(dataTypeBitWidth)) { |
939 | // if input datatype is integer, check that the min_val/max_val attributes |
940 | // are integer attributes, and that their type is the same as the input's |
941 | // datatype |
942 | auto intMaxValAttr = mlir::dyn_cast<mlir::IntegerAttr>(maxValAttr); |
943 | auto intMinValAttr = mlir::dyn_cast<mlir::IntegerAttr>(minValAttr); |
944 | if (!intMaxValAttr || !intMinValAttr || |
945 | (intMaxValAttr.getType() != intMinValAttr.getType()) || |
946 | (intMaxValAttr.getType() != inputETy)) |
947 | return emitOpError("min/max attributes types are incompatible with " |
948 | "input/output element types."); |
949 | |
950 | const bool isUnsigned = cast<IntegerType>(inputETy).isUnsigned(); |
951 | const APInt minVal = intMinValAttr.getValue(); |
952 | const APInt maxVal = intMaxValAttr.getValue(); |
953 | if (isUnsigned ? maxVal.ult(minVal) : maxVal.slt(minVal)) |
954 | return emitOpError("expected min_val <= max_val, got min_val=") |
955 | << minValAttr << ", max_val="<< maxValAttr; |
956 | } else { |
957 | // otherwise, input datatype is float, check that the min_val/max_val |
958 | // attributes share the same type and that their type is the same as the |
959 | // input's datatype |
960 | auto floatMaxValAttr = mlir::dyn_cast<mlir::FloatAttr>(maxValAttr); |
961 | auto floatMinValAttr = mlir::dyn_cast<mlir::FloatAttr>(minValAttr); |
962 | if (!floatMaxValAttr || !floatMinValAttr || |
963 | (floatMaxValAttr.getType() != floatMinValAttr.getType()) || |
964 | (floatMaxValAttr.getType() != inputETy)) |
965 | return emitOpError("min/max attributes types are incompatible with " |
966 | "input/output element types."); |
967 | |
968 | const APFloat minVal = floatMinValAttr.getValue(); |
969 | const APFloat maxVal = floatMaxValAttr.getValue(); |
970 | if (minVal.isNaN() || maxVal.isNaN()) |
971 | return emitOpError("min/max attributes should not be 'NaN', got min_val=") |
972 | << minValAttr << ", max_val="<< maxValAttr; |
973 | |
974 | if (maxVal < minVal) |
975 | return emitOpError("expected min_val <= max_val, got min_val=") |
976 | << minValAttr << ", max_val="<< maxValAttr; |
977 | } |
978 | |
979 | return success(); |
980 | } |
981 | |
982 | //===----------------------------------------------------------------------===// |
983 | // TOSA Operator Quantization Builders. |
984 | //===----------------------------------------------------------------------===// |
985 | |
986 | /// This builder is called on all convolution operators except TransposeConv, |
987 | /// which has specialized output shape semantics. The builder also defines the |
988 | /// bitwidth of the output given the bit width of the input & weight content. |
989 | static void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
990 | Type outputType, Value input, Value weight, |
991 | Value bias, DenseI64ArrayAttr pad, |
992 | DenseI64ArrayAttr stride, |
993 | DenseI64ArrayAttr dilation, |
994 | TypeAttr accType) { |
995 | auto zps = createZPsAsConst(builder, input, weight); |
996 | result.addOperands(newOperands: {input, weight, bias, zps.first, zps.second}); |
997 | result.addAttribute("pad", pad); |
998 | result.addAttribute("stride", stride); |
999 | result.addAttribute("dilation", dilation); |
1000 | result.addAttribute("acc_type", accType); |
1001 | Type finalOutputType = outputType; |
1002 | auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight); |
1003 | if (quantAttr) { |
1004 | finalOutputType = |
1005 | buildConvOpResultTypeInfo(builder, outputType, input, weight); |
1006 | } |
1007 | result.addTypes(newTypes: finalOutputType); |
1008 | } |
1009 | |
1010 | /// Handles tosa.transpose_conv2d which has outpad and output shape |
1011 | /// attributes. |
1012 | static void |
1013 | buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
1014 | Type outputType, Value input, Value weight, |
1015 | Value bias, DenseI64ArrayAttr outpad, |
1016 | DenseI64ArrayAttr stride, TypeAttr accType) { |
1017 | auto zps = createZPsAsConst(builder, input, weight); |
1018 | result.addOperands(newOperands: {input, weight, bias, zps.first, zps.second}); |
1019 | result.addAttribute("out_pad", outpad); |
1020 | result.addAttribute("stride", stride); |
1021 | result.addAttribute("acc_type", accType); |
1022 | Type finalOutputType = outputType; |
1023 | auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight); |
1024 | if (quantAttr) { |
1025 | finalOutputType = |
1026 | buildConvOpResultTypeInfo(builder, outputType, input, weight); |
1027 | } |
1028 | result.addTypes(newTypes: finalOutputType); |
1029 | } |
1030 | |
1031 | /// The tosa.matmul op is also intended to be generated where a fully_connected |
1032 | /// op must be constructed where the weight is not a constant. In this case, |
1033 | /// the fully_connected op must be expressed using matmul. |
1034 | /// TODO: Add link to the leglization document explaining this. |
1035 | static void buildMatMulOpWithQuantInfo(OpBuilder &builder, |
1036 | OperationState &result, Type outputType, |
1037 | Value a, Value b) { |
1038 | auto zps = createZPsAsConst(builder, input: a, weight: b); |
1039 | result.addOperands(newOperands: {a, b, zps.first, zps.second}); |
1040 | |
1041 | Type finalOutputType{outputType}; |
1042 | if (auto quantAttr = buildMatMulOpQuantizationAttr(builder, a, b)) { |
1043 | auto eType = getStorageElementTypeOrSelf(type: a.getType()); |
1044 | auto inputBits = eType.getIntOrFloatBitWidth(); |
1045 | |
1046 | auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType); |
1047 | assert(outputShapedType && "Output must be a shaped type"); |
1048 | |
1049 | IntegerType accElementType; |
1050 | if (inputBits == 16) |
1051 | accElementType = builder.getIntegerType(48); |
1052 | else |
1053 | accElementType = builder.getI32Type(); |
1054 | |
1055 | finalOutputType = outputShapedType.clone(accElementType); |
1056 | } |
1057 | result.addTypes(newTypes: finalOutputType); |
1058 | } |
1059 | |
1060 | /// Both the tosa.avg_pool2d and unary ops use the same |
1061 | /// UnaryOpQuantizationAttr but avg_pool operator has its own builder as it |
1062 | /// has additional parameters not part of the unary ops. |
1063 | static void |
1064 | buildAvgPool2dOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
1065 | Type outputType, Value input, |
1066 | DenseArrayAttr kernel, DenseArrayAttr stride, |
1067 | DenseArrayAttr pad, TypeAttr accType) { |
1068 | const Location loc{result.location}; |
1069 | int64_t inputZp{0}; |
1070 | int64_t outputZp{0}; |
1071 | |
1072 | if (auto quantAttr = |
1073 | buildUnaryOpQuantizationAttr(builder, input, outputType)) { |
1074 | inputZp = quantAttr.getInputZp(); |
1075 | outputZp = quantAttr.getOutputZp(); |
1076 | } |
1077 | const std::optional<Value> inputZpOp = |
1078 | createZeroPointTensor(builder, loc, srcElemType: input.getType(), zp: inputZp); |
1079 | if (!inputZpOp) { |
1080 | (void)emitError( |
1081 | loc, |
1082 | message: "Failed to create input zero point tensor for quantized AVG_POOL2D op"); |
1083 | } |
1084 | const std::optional<Value> outputZpOp = |
1085 | createZeroPointTensor(builder, loc, srcElemType: outputType, zp: outputZp); |
1086 | if (!outputZpOp) { |
1087 | (void)emitError(loc, message: "Failed to create output zero point tensor for " |
1088 | "quantized AVG_POOL2D op"); |
1089 | } |
1090 | |
1091 | if (inputZpOp && outputZpOp) { |
1092 | result.addOperands(newOperands: {input, inputZpOp.value(), outputZpOp.value()}); |
1093 | } else { |
1094 | // failed to create one or more zero points above: just add input as |
1095 | // operands this will trigger error in building the op because of missing |
1096 | // zero points |
1097 | result.addOperands(newOperands: {input}); |
1098 | } |
1099 | result.addAttribute("kernel", kernel); |
1100 | result.addAttribute("stride", stride); |
1101 | result.addAttribute("pad", pad); |
1102 | result.addAttribute("acc_type", accType); |
1103 | result.types.push_back(Elt: outputType); |
1104 | } |
1105 | |
1106 | /// This builder is called on single-parameter negate operator |
1107 | /// to construct input and output zero points based on their |
1108 | /// types. |
1109 | static void buildNegateOpWithQuantInfo(OpBuilder &builder, |
1110 | OperationState &result, Type outputType, |
1111 | Value input) { |
1112 | const Location loc{result.location}; |
1113 | int64_t input1Zp{0}; |
1114 | int64_t outputZp{0}; |
1115 | auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType); |
1116 | if (quantAttr) { |
1117 | input1Zp = quantAttr.getInputZp(); |
1118 | outputZp = quantAttr.getOutputZp(); |
1119 | } |
1120 | const std::optional<Value> input1ZpOp = |
1121 | createZeroPointTensor(builder, loc, srcElemType: input.getType(), zp: input1Zp); |
1122 | if (!input1ZpOp) { |
1123 | (void)emitError( |
1124 | loc, message: "Failed to create input1 zero point for quantized NEGATE op"); |
1125 | } |
1126 | |
1127 | const std::optional<Value> outputZpOp = |
1128 | createZeroPointTensor(builder, loc, srcElemType: input.getType(), zp: outputZp); |
1129 | if (!outputZpOp) { |
1130 | (void)emitError( |
1131 | loc, message: "Failed to create output zero point for quantized NEGATE op"); |
1132 | } |
1133 | |
1134 | if (input1ZpOp && outputZpOp) { |
1135 | result.addOperands(newOperands: {input, input1ZpOp.value(), outputZpOp.value()}); |
1136 | } else { |
1137 | // failed to create one or more zero points above: just add input as |
1138 | // operands. This will trigger error in building the op because of |
1139 | // missing zero points |
1140 | result.addOperands(newOperands: {input}); |
1141 | } |
1142 | |
1143 | result.types.push_back(Elt: outputType); |
1144 | } |
1145 | |
1146 | /// This builder is called on TOSA pad operator that needs to create its own |
1147 | /// OptionalAttr quantization_attr parameter to scale the padding values |
1148 | /// correctly. No pad_const is interpreted as zero-padding. |
1149 | static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result, |
1150 | Type outputType, Value input, |
1151 | Value paddings) { |
1152 | const Location loc{result.location}; |
1153 | int32_t zp{0}; |
1154 | const auto quantAttr = buildPadOpQuantizationAttr(builder, input); |
1155 | if (quantAttr) { |
1156 | zp = static_cast<int32_t>(quantAttr.getInputZp()); |
1157 | } |
1158 | const auto padConstOp{createPadConstTensor(builder, loc, src: input, val: zp)}; |
1159 | result.addOperands(newOperands: {input, paddings, padConstOp}); |
1160 | result.types.push_back(Elt: outputType); |
1161 | } |
1162 | |
1163 | static void buildVariableOp(OpBuilder &builder, OperationState &result, |
1164 | StringRef name, Type variableType, |
1165 | Attribute initialValue) { |
1166 | const Location loc{result.location}; |
1167 | auto nameAttr = builder.getStringAttr(name); |
1168 | |
1169 | auto shapedType = dyn_cast<ShapedType>(variableType); |
1170 | if (!shapedType) { |
1171 | (void)emitError(loc, message: "variable type must be a shaped type"); |
1172 | return; |
1173 | } |
1174 | if (!shapedType.hasRank()) { |
1175 | (void)emitError(loc, message: "variable type must be a ranked type"); |
1176 | return; |
1177 | } |
1178 | |
1179 | auto elementType = shapedType.getElementType(); |
1180 | auto elementTypeAttr = TypeAttr::get(elementType); |
1181 | ArrayRef<int64_t> shape = shapedType.getShape(); |
1182 | auto varShapeAttr = builder.getIndexTensorAttr(values: convertFromMlirShape(shape)); |
1183 | |
1184 | result.addAttribute("name", nameAttr); |
1185 | result.addAttribute("var_shape", varShapeAttr); |
1186 | result.addAttribute("type", elementTypeAttr); |
1187 | result.addAttribute(name: "initial_value", attr: initialValue); |
1188 | } |
1189 | |
1190 | //===----------------------------------------------------------------------===// |
1191 | // TOSA Operator Return Type Inference. |
1192 | //===----------------------------------------------------------------------===// |
1193 | |
1194 | static LogicalResult resolveBroadcastShape(const ValueShapeRange &operands, |
1195 | SmallVector<int64_t> &outShape) { |
1196 | int64_t outRank = 0; |
1197 | for (int i = 0, e = operands.size(); i != e; ++i) { |
1198 | auto shape = operands.getShape(index: i); |
1199 | if (!shape.hasRank()) { |
1200 | // TODO(jennik): Update function to have better case handling for |
1201 | // invalid operands and for ranked tensors. |
1202 | return failure(); |
1203 | } |
1204 | outRank = std::max<int64_t>(a: outRank, b: shape.getRank()); |
1205 | } |
1206 | |
1207 | outShape.resize(N: outRank, NV: 1); |
1208 | |
1209 | for (int i = 0, e = operands.size(); i != e; ++i) { |
1210 | auto shape = operands.getShape(index: i); |
1211 | auto rankDiff = outShape.size() - shape.getRank(); |
1212 | |
1213 | for (size_t i = 0, e = shape.getRank(); i < e; ++i) { |
1214 | auto dim1 = outShape[i + rankDiff]; |
1215 | auto dim2 = shape.getDimSize(index: i); |
1216 | auto resolvedDim = dim1; |
1217 | |
1218 | if (dim1 == 1) { |
1219 | resolvedDim = dim2; |
1220 | } else if (dim2 == 1) { |
1221 | resolvedDim = dim1; |
1222 | } else if (dim1 != dim2) { |
1223 | return failure(); |
1224 | } |
1225 | outShape[i + rankDiff] = resolvedDim; |
1226 | } |
1227 | } |
1228 | |
1229 | return success(); |
1230 | } |
1231 | |
1232 | LogicalResult tosa::ArgMaxOp::inferReturnTypeComponents( |
1233 | MLIRContext *context, ::std::optional<Location> location, |
1234 | ArgMaxOp::Adaptor adaptor, |
1235 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1236 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
1237 | IntegerAttr axis = adaptor.getProperties().axis; |
1238 | int32_t axisVal = axis.getValue().getSExtValue(); |
1239 | |
1240 | if (!inputShape.hasRank()) { |
1241 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
1242 | return success(); |
1243 | } |
1244 | |
1245 | SmallVector<int64_t> outShape; |
1246 | outShape.reserve(inputShape.getRank() - 1); |
1247 | for (int i = 0, s = inputShape.getRank(); i < s; i++) { |
1248 | if (i == axisVal) |
1249 | continue; |
1250 | outShape.push_back(inputShape.getDimSize(i)); |
1251 | } |
1252 | |
1253 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape)); |
1254 | return success(); |
1255 | } |
1256 | |
1257 | LogicalResult tosa::RFFT2dOp::inferReturnTypeComponents( |
1258 | MLIRContext *context, ::std::optional<Location> location, |
1259 | RFFT2dOp::Adaptor adaptor, |
1260 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1261 | ShapeAdaptor inputShape(adaptor.getInputReal().getType()); |
1262 | |
1263 | if (!inputShape.hasRank()) |
1264 | return failure(); |
1265 | |
1266 | llvm::SmallVector<int64_t> outputShape; |
1267 | outputShape.resize(3, ShapedType::kDynamic); |
1268 | outputShape[0] = inputShape.getDimSize(0); |
1269 | outputShape[1] = inputShape.getDimSize(1); |
1270 | int64_t inWidth = inputShape.getDimSize(2); |
1271 | |
1272 | // Note that we can support this calculation symbolically |
1273 | // in the future e.g. [x, y, z] -> [x, y, z / 2 + 1] |
1274 | if (inWidth != ShapedType::kDynamic) |
1275 | outputShape[2] = inWidth / 2 + 1; |
1276 | |
1277 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
1278 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
1279 | |
1280 | return success(); |
1281 | } |
1282 | |
1283 | static LogicalResult verifyDimIsPowerOfTwo(Operation *op, const int64_t dimSize, |
1284 | const llvm::StringRef dimName) { |
1285 | const bool isPowerOfTwo = (dimSize & (dimSize - 1)) == 0 && dimSize > 0; |
1286 | if (!isPowerOfTwo) |
1287 | return op->emitOpError(message: "expected ") |
1288 | << dimName << " to be a power of two, got "<< dimSize; |
1289 | |
1290 | return success(); |
1291 | } |
1292 | |
1293 | LogicalResult tosa::RFFT2dOp::verify() { |
1294 | const auto outputTypes = getResultTypes(); |
1295 | if (failed(verifyCompatibleShapes(outputTypes))) |
1296 | return emitOpError("expected output shapes to match, got ") << outputTypes; |
1297 | |
1298 | const auto inputType = |
1299 | llvm::dyn_cast<RankedTensorType>(getInputReal().getType()); |
1300 | if (!inputType) |
1301 | return success(); |
1302 | |
1303 | const int64_t height = inputType.getDimSize(1); |
1304 | if (!ShapedType::isDynamic(height) && |
1305 | failed(verifyDimIsPowerOfTwo(*this, height, "height"))) |
1306 | return failure(); |
1307 | |
1308 | const int64_t width = inputType.getDimSize(2); |
1309 | if (!ShapedType::isDynamic(width) && |
1310 | failed(verifyDimIsPowerOfTwo(*this, width, "width"))) |
1311 | return failure(); |
1312 | |
1313 | const auto outputType = llvm::dyn_cast<RankedTensorType>(outputTypes[0]); |
1314 | if (!outputType) |
1315 | return success(); |
1316 | |
1317 | // Batch and height input/output dimensions should match |
1318 | if (failed(verifyCompatibleShape(inputType.getShape().drop_back(), |
1319 | outputType.getShape().drop_back()))) |
1320 | return emitOpError("expected batch and height dimensions of input/output " |
1321 | "to match, got input=") |
1322 | << inputType << " output="<< outputType; |
1323 | |
1324 | // Output width dimension expected to be input_width / 2 + 1 |
1325 | const int64_t outputWidth = outputType.getDimSize(2); |
1326 | if (!ShapedType::isDynamic(width) && !ShapedType::isDynamic(outputWidth) && |
1327 | (outputWidth != (width / 2) + 1)) |
1328 | return emitOpError( |
1329 | "expected output width to be equal to input_width / 2 + 1, got ") |
1330 | << outputWidth; |
1331 | |
1332 | return success(); |
1333 | } |
1334 | |
1335 | LogicalResult tosa::FFT2dOp::inferReturnTypeComponents( |
1336 | MLIRContext *context, ::std::optional<Location> location, |
1337 | FFT2dOp::Adaptor adaptor, |
1338 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1339 | inferredReturnShapes.push_back( |
1340 | ShapedTypeComponents(ShapeAdaptor(adaptor.getInputReal().getType()))); |
1341 | inferredReturnShapes.push_back( |
1342 | ShapedTypeComponents(ShapeAdaptor(adaptor.getInputImag().getType()))); |
1343 | return success(); |
1344 | } |
1345 | |
1346 | LogicalResult tosa::FFT2dOp::verify() { |
1347 | const auto inputRealType = |
1348 | llvm::dyn_cast<RankedTensorType>(getInputReal().getType()); |
1349 | const auto inputImagType = |
1350 | llvm::dyn_cast<RankedTensorType>(getInputImag().getType()); |
1351 | if (!inputRealType || !inputImagType) |
1352 | return success(); |
1353 | |
1354 | const auto trySelectStaticDim = [](const int64_t a, const int64_t b) { |
1355 | return ShapedType::isDynamic(a) ? a : b; |
1356 | }; |
1357 | |
1358 | const int64_t height = trySelectStaticDim(inputRealType.getDimSize(1), |
1359 | inputImagType.getDimSize(1)); |
1360 | if (!ShapedType::isDynamic(height) && |
1361 | failed(verifyDimIsPowerOfTwo(*this, height, "height"))) |
1362 | return failure(); |
1363 | |
1364 | const int64_t width = trySelectStaticDim(inputRealType.getDimSize(2), |
1365 | inputImagType.getDimSize(2)); |
1366 | if (!ShapedType::isDynamic(width) && |
1367 | failed(verifyDimIsPowerOfTwo(*this, width, "width"))) |
1368 | return failure(); |
1369 | |
1370 | return success(); |
1371 | } |
1372 | |
1373 | LogicalResult tosa::ConcatOp::inferReturnTypeComponents( |
1374 | MLIRContext *context, ::std::optional<Location> location, |
1375 | ConcatOp::Adaptor adaptor, |
1376 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1377 | // Infer all dimension sizes by reducing based on inputs. |
1378 | const Properties &prop = adaptor.getProperties(); |
1379 | int32_t axis = prop.axis.getValue().getSExtValue(); |
1380 | llvm::SmallVector<int64_t> outputShape; |
1381 | bool hasRankedInput = false; |
1382 | for (auto operand : adaptor.getOperands()) { |
1383 | ShapeAdaptor operandShape(operand.getType()); |
1384 | if (!operandShape.hasRank()) |
1385 | continue; |
1386 | |
1387 | // Copy the Operand's rank. |
1388 | if (!hasRankedInput) |
1389 | outputShape.resize(operandShape.getRank(), ShapedType::kDynamic); |
1390 | |
1391 | // Copy shapes until the dim is non-dynamic. |
1392 | for (int i = 0, s = operandShape.getRank(); i < s; i++) { |
1393 | if (i == axis || operandShape.isDynamicDim(i)) |
1394 | continue; |
1395 | if (outputShape[i] == ShapedType::kDynamic) |
1396 | outputShape[i] = operandShape.getDimSize(i); |
1397 | if (outputShape[i] != operandShape.getDimSize(i)) |
1398 | return emitOptionalError(location, |
1399 | "Cannot concat tensors with different sizes" |
1400 | " on the non-axis dimension ", |
1401 | i); |
1402 | } |
1403 | |
1404 | hasRankedInput = true; |
1405 | } |
1406 | |
1407 | if (adaptor.getInput1().empty()) |
1408 | return failure(); |
1409 | |
1410 | Type inputType = |
1411 | llvm::cast<TensorType>(adaptor.getInput1().getType()[0]).getElementType(); |
1412 | if (!hasRankedInput) { |
1413 | inferredReturnShapes.push_back(ShapedTypeComponents(inputType)); |
1414 | return success(); |
1415 | } |
1416 | |
1417 | // Determine the dimension size along the concatenation axis. |
1418 | int64_t concatDimSize = 0; |
1419 | for (auto operand : adaptor.getOperands()) { |
1420 | ShapeAdaptor operandShape(operand.getType()); |
1421 | |
1422 | // We need to know the length of the concatenation axis of all inputs to |
1423 | // determine the dimension size of the output shape. |
1424 | if (!operandShape.hasRank() || operandShape.isDynamicDim(axis)) { |
1425 | concatDimSize = ShapedType::kDynamic; |
1426 | break; |
1427 | } |
1428 | |
1429 | concatDimSize += operandShape.getDimSize(axis); |
1430 | } |
1431 | |
1432 | outputShape[axis] = concatDimSize; |
1433 | |
1434 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType)); |
1435 | return success(); |
1436 | } |
1437 | |
1438 | LogicalResult tosa::ConcatOp::verify() { |
1439 | // check that each input has same element type as output |
1440 | auto outType = getOutput().getType(); |
1441 | const Operation::operand_range inputList = getInput1(); |
1442 | |
1443 | // Check there is at least one input |
1444 | if (inputList.empty()) |
1445 | return emitOpError("expect at least one input"); |
1446 | |
1447 | if (!llvm::all_of(inputList, [&](auto input) { |
1448 | return succeeded(verifySameElementTypes( |
1449 | *this, /* inType = */ input.getType(), outType)); |
1450 | })) { |
1451 | return failure(); |
1452 | } |
1453 | |
1454 | const int32_t axis = getAxis(); |
1455 | ShapeAdaptor firstRankedInputShape = nullptr; |
1456 | for (const auto &input : inputList) { |
1457 | const Type inputType = input.getType(); |
1458 | ShapeAdaptor currShape(inputType); |
1459 | if (currShape.hasRank()) { |
1460 | firstRankedInputShape = currShape; |
1461 | // Check axis is in expected range |
1462 | if (axis < 0 || axis >= firstRankedInputShape.getRank()) |
1463 | return emitOpError("expect axis to be within range 0 < axis < " |
1464 | "rank(input1[firstRankedTensorIdx]), got ") |
1465 | << axis; |
1466 | break; |
1467 | } |
1468 | } |
1469 | |
1470 | const auto allOperandsHasRank = [](const Value input) { |
1471 | return ShapeAdaptor(input.getType()).hasRank(); |
1472 | }; |
1473 | if (llvm::all_of(inputList, allOperandsHasRank)) { |
1474 | const int64_t firstInputRank = firstRankedInputShape.getRank(); |
1475 | |
1476 | for (const auto &[index, input] : llvm::enumerate(inputList.drop_front())) { |
1477 | const ShapeAdaptor inputShape(input.getType()); |
1478 | const int64_t inputRank = inputShape.getRank(); |
1479 | const size_t operandNum = index + 1; |
1480 | |
1481 | // Check that each operand has the same rank |
1482 | if (inputRank != firstInputRank) |
1483 | return emitOpError( |
1484 | "expect all operands to have the same rank, but got ") |
1485 | << firstInputRank << " vs "<< inputRank << " on operands 0 and " |
1486 | << operandNum; |
1487 | |
1488 | // Check non-axis dims match |
1489 | for (int i = 0; i < inputRank; i++) { |
1490 | const int64_t inputDim = inputShape.getDimSize(i); |
1491 | const int64_t firstInputDim = firstRankedInputShape.getDimSize(i); |
1492 | if (i == axis || firstRankedInputShape.isDynamicDim(i) || |
1493 | inputShape.isDynamicDim(i)) |
1494 | continue; |
1495 | if (inputDim != firstInputDim) |
1496 | return emitOpError("expect all operand shapes to have the same sizes " |
1497 | "on non-axis dimensions, but got ") |
1498 | << inputDim << " vs "<< firstInputDim << " at index "<< i |
1499 | << " on operands 0 and "<< operandNum; |
1500 | } |
1501 | } |
1502 | |
1503 | // ERROR_IF(axis_sum != shape[axis]); |
1504 | int64_t axisSum = 0; |
1505 | for (const auto &input : inputList) { |
1506 | const ShapeAdaptor inputShape(input.getType()); |
1507 | if (inputShape.isDynamicDim(axis)) { |
1508 | // make axisSum negative to indicate invalid value |
1509 | axisSum = -1; |
1510 | break; |
1511 | } |
1512 | axisSum += inputShape.getDimSize(axis); |
1513 | } |
1514 | const ShapeAdaptor outputShape(outType); |
1515 | if (axisSum >= 0 && outputShape.hasRank() && |
1516 | !outputShape.isDynamicDim(axis) && |
1517 | axisSum != outputShape.getDimSize(axis)) |
1518 | return emitOpError("requires sum of axis dimensions of input1 " |
1519 | "equal to output axis dimension, got ") |
1520 | << axisSum << " and "<< outputShape.getDimSize(axis); |
1521 | } |
1522 | |
1523 | return success(); |
1524 | } |
1525 | |
1526 | LogicalResult tosa::EqualOp::inferReturnTypeComponents( |
1527 | MLIRContext *context, ::std::optional<Location> location, |
1528 | ValueShapeRange operands, DictionaryAttr attributes, |
1529 | OpaqueProperties properties, RegionRange regions, |
1530 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1531 | auto elementType = IntegerType::get(context, /*width=*/1); |
1532 | |
1533 | llvm::SmallVector<int64_t> outShape; |
1534 | if (resolveBroadcastShape(operands, outShape).failed()) { |
1535 | inferredReturnShapes.push_back(ShapedTypeComponents(elementType)); |
1536 | return success(); |
1537 | } |
1538 | |
1539 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape, elementType)); |
1540 | return success(); |
1541 | } |
1542 | |
1543 | bool tosa::EqualOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
1544 | if (l.size() != r.size() || l.size() != 1) |
1545 | return false; |
1546 | return succeeded(verifyCompatibleShape(l[0], r[0])); |
1547 | } |
1548 | |
1549 | LogicalResult tosa::MatMulOp::inferReturnTypeComponents( |
1550 | MLIRContext *context, ::std::optional<Location> location, |
1551 | MatMulOp::Adaptor adaptor, |
1552 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1553 | ShapeAdaptor lhsShape(adaptor.getA().getType()); |
1554 | ShapeAdaptor rhsShape(adaptor.getB().getType()); |
1555 | |
1556 | // All shapes are dynamic. |
1557 | SmallVector<int64_t> outShape; |
1558 | outShape.resize(3, ShapedType::kDynamic); |
1559 | |
1560 | if (lhsShape.hasRank()) { |
1561 | outShape[0] = lhsShape.getDimSize(0); |
1562 | outShape[1] = lhsShape.getDimSize(1); |
1563 | } |
1564 | |
1565 | if (rhsShape.hasRank()) { |
1566 | outShape[0] = outShape[0] == ShapedType::kDynamic ? rhsShape.getDimSize(0) |
1567 | : outShape[0]; |
1568 | outShape[2] = rhsShape.getDimSize(2); |
1569 | } |
1570 | |
1571 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape)); |
1572 | return success(); |
1573 | } |
1574 | |
1575 | LogicalResult MatMulOp::verify() { |
1576 | auto aType = llvm::dyn_cast<ShapedType>(getA().getType()); |
1577 | auto bType = llvm::dyn_cast<ShapedType>(getB().getType()); |
1578 | |
1579 | // Must be shaped tensor types |
1580 | if (!aType) |
1581 | return emitOpError("expect a shaped tensor for input a, got ") |
1582 | << getA().getType(); |
1583 | |
1584 | if (!bType) |
1585 | return emitOpError("expect a shaped tensor for input b, got ") |
1586 | << getB().getType(); |
1587 | |
1588 | auto aElementType = aType.getElementType(); |
1589 | auto bElementType = bType.getElementType(); |
1590 | |
1591 | auto aQuantizedEType = |
1592 | llvm::dyn_cast<quant::UniformQuantizedType>(aElementType); |
1593 | auto bQuantizedEType = |
1594 | llvm::dyn_cast<quant::UniformQuantizedType>(bElementType); |
1595 | |
1596 | if (aQuantizedEType || bQuantizedEType) { |
1597 | if (!aQuantizedEType || !bQuantizedEType) { |
1598 | return emitOpError("expect operands to be both quantized or both not " |
1599 | "quantized, got ") |
1600 | << aElementType << " and "<< bElementType; |
1601 | } |
1602 | // both a and b have quantized element types |
1603 | auto aQuantWidth = aQuantizedEType.getStorageTypeIntegralWidth(); |
1604 | auto bQuantWidth = bQuantizedEType.getStorageTypeIntegralWidth(); |
1605 | if (aQuantWidth != bQuantWidth) { |
1606 | return emitOpError("expect quantized operands to have same widths, got ") |
1607 | << aQuantWidth << " and "<< bQuantWidth; |
1608 | } |
1609 | } else { |
1610 | // non-quantized element types |
1611 | if (aElementType != bElementType) { |
1612 | return emitOpError("expect same element type for inputs a and b, got ") |
1613 | << aElementType << " and "<< bElementType; |
1614 | } |
1615 | } |
1616 | |
1617 | // check a_zp and b_zp |
1618 | auto aEType = getStorageElementTypeOrSelf(aType); |
1619 | auto aZpEType = getStorageElementTypeOrSelf(getAZp().getType()); |
1620 | if (aEType != aZpEType) { |
1621 | return emitOpError("expect input a and a_zp have the same " |
1622 | "element type, got ") |
1623 | << aEType << " and "<< aZpEType; |
1624 | } |
1625 | |
1626 | auto bEType = getStorageElementTypeOrSelf(bType); |
1627 | auto bZpEType = getStorageElementTypeOrSelf(getBZp().getType()); |
1628 | if (bEType != bZpEType) { |
1629 | return emitOpError("expect input b and b_zp have the same " |
1630 | "element type, got ") |
1631 | << bEType << " and "<< bZpEType; |
1632 | } |
1633 | |
1634 | FailureOr<int64_t> maybeAZp = getAZeroPoint(); |
1635 | if (succeeded(maybeAZp) && verifyAZeroPoint(*maybeAZp).failed()) |
1636 | return failure(); |
1637 | |
1638 | FailureOr<int64_t> maybeBZp = getBZeroPoint(); |
1639 | if (succeeded(maybeBZp) && verifyBZeroPoint(*maybeBZp).failed()) |
1640 | return failure(); |
1641 | |
1642 | return success(); |
1643 | } |
1644 | |
1645 | LogicalResult tosa::PadOp::inferReturnTypeComponents( |
1646 | MLIRContext *context, ::std::optional<Location> location, |
1647 | PadOp::Adaptor adaptor, |
1648 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1649 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
1650 | auto paddingRank = |
1651 | cast<tosa::shapeType>(adaptor.getPadding().getType()).getRank(); |
1652 | SmallVector<int64_t> outputShape; |
1653 | |
1654 | // If the input rank is unknown, we can infer the output rank using the |
1655 | // padding shape's rank divided by 2. |
1656 | if (!inputShape.hasRank()) { |
1657 | outputShape.resize(paddingRank / 2, ShapedType::kDynamic); |
1658 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
1659 | return success(); |
1660 | } |
1661 | |
1662 | SmallVector<int64_t> paddingValues; |
1663 | // If the paddings value is not a constant, all dimensions must be dynamic. |
1664 | if (!tosa::getConstShapeValues(adaptor.getPadding().getDefiningOp(), |
1665 | paddingValues)) { |
1666 | outputShape.resize(inputShape.getRank(), ShapedType::kDynamic); |
1667 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
1668 | return success(); |
1669 | } |
1670 | |
1671 | outputShape.reserve(inputShape.getRank()); |
1672 | for (int i = 0, s = inputShape.getRank(); i < s; i++) { |
1673 | if (inputShape.isDynamicDim(i)) { |
1674 | outputShape.push_back(ShapedType::kDynamic); |
1675 | continue; |
1676 | } |
1677 | auto padFront = paddingValues[i * 2]; |
1678 | auto padBack = paddingValues[i * 2 + 1]; |
1679 | if (padFront < 0 || padBack < 0) { |
1680 | // if either padding for dim i is -1, output dim is unknown |
1681 | outputShape.push_back(ShapedType::kDynamic); |
1682 | continue; |
1683 | } |
1684 | |
1685 | outputShape.push_back(inputShape.getDimSize(i) + padFront + padBack); |
1686 | } |
1687 | |
1688 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
1689 | return success(); |
1690 | } |
1691 | |
1692 | LogicalResult tosa::PadOp::verify() { |
1693 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
1694 | /* outType = */ getOutput().getType()) |
1695 | .failed()) { |
1696 | return failure(); |
1697 | } |
1698 | |
1699 | if (auto padConst = getPadConst()) { |
1700 | if (verifySameElementTypes(*this, /* inType = */ padConst.getType(), |
1701 | /* outType = */ getOutput().getType()) |
1702 | .failed()) { |
1703 | return failure(); |
1704 | } |
1705 | } |
1706 | |
1707 | RankedTensorType inputType = |
1708 | llvm::dyn_cast<RankedTensorType>(getInput1().getType()); |
1709 | RankedTensorType outputType = |
1710 | llvm::dyn_cast<RankedTensorType>(getOutput().getType()); |
1711 | if (!inputType || !outputType) |
1712 | return success(); |
1713 | |
1714 | auto inputRank = inputType.getRank(); |
1715 | auto outputRank = outputType.getRank(); |
1716 | if (inputRank != outputRank) |
1717 | return emitOpError() << "expect same input and output tensor rank, but got " |
1718 | << "inputRank: "<< inputRank |
1719 | << ", outputRank: "<< outputRank; |
1720 | |
1721 | DenseIntElementsAttr paddingAttr; |
1722 | if (!matchPattern(getPadding(), m_Constant(&paddingAttr))) { |
1723 | return failure(); |
1724 | } |
1725 | |
1726 | auto paddingValues = paddingAttr.getValues<APInt>(); |
1727 | if (paddingValues.size() != static_cast<size_t>(inputRank * 2)) |
1728 | return emitOpError() << "padding tensor must have "<< inputRank |
1729 | << " * 2 = "<< inputRank * 2 << " elements, but got " |
1730 | << paddingValues.size(); |
1731 | |
1732 | auto inputShape = inputType.getShape(); |
1733 | auto outputShape = outputType.getShape(); |
1734 | |
1735 | for (int64_t i = 0; i < inputRank; ++i) { |
1736 | int64_t padStart = paddingValues[i * 2].getSExtValue(); |
1737 | int64_t padEnd = paddingValues[i * 2 + 1].getSExtValue(); |
1738 | |
1739 | if ((padStart < 0 && padStart != -1) || (padEnd < 0 && padEnd != -1)) { |
1740 | return emitOpError() |
1741 | << "invalid padding values at dimension "<< i |
1742 | << ": values must be non-negative or -1 for dynamic padding, got [" |
1743 | << padStart << ", "<< padEnd << "]"; |
1744 | } |
1745 | |
1746 | // Skip shape verification for dynamic input/output |
1747 | if (inputShape[i] == ShapedType::kDynamic || |
1748 | outputShape[i] == ShapedType::kDynamic) |
1749 | continue; |
1750 | |
1751 | if (outputShape[i] != inputShape[i] + padStart + padEnd) { |
1752 | return emitOpError() << "mismatch in output shape at dimension "<< i |
1753 | << ": expected "<< inputShape[i] << " + " |
1754 | << padStart << " + "<< padEnd << " = " |
1755 | << (inputShape[i] + padStart + padEnd) |
1756 | << ", but got "<< outputShape[i]; |
1757 | } |
1758 | } |
1759 | |
1760 | return success(); |
1761 | } |
1762 | |
1763 | LogicalResult tosa::SliceOp::inferReturnTypeComponents( |
1764 | MLIRContext *context, ::std::optional<Location> location, |
1765 | SliceOp::Adaptor adaptor, |
1766 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1767 | |
1768 | Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType()); |
1769 | SmallVector<int64_t> start; |
1770 | SmallVector<int64_t> size; |
1771 | |
1772 | if (!tosa::getConstShapeValues(adaptor.getStart().getDefiningOp(), start) || |
1773 | !tosa::getConstShapeValues(adaptor.getSize().getDefiningOp(), size)) { |
1774 | auto rank = cast<tosa::shapeType>(adaptor.getSize().getType()).getRank(); |
1775 | SmallVector<int64_t> fallback(rank, ShapedType::kDynamic); |
1776 | inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType)); |
1777 | return success(); |
1778 | } |
1779 | |
1780 | // if size[i] is -1, all remaining elements in dimension i are included |
1781 | // in the slice, similar to TF. |
1782 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
1783 | // initialize outputShape to all unknown |
1784 | SmallVector<int64_t> outputShape(size.size(), ShapedType::kDynamic); |
1785 | if (inputShape.hasRank()) { |
1786 | for (size_t i = 0; i < size.size(); i++) { |
1787 | if (size[i] != 0 && size[i] >= -1 && start[i] >= 0 && |
1788 | (ShapedType::isDynamic(inputShape.getDimSize(i)) || |
1789 | start[i] < inputShape.getDimSize(i))) { |
1790 | // size[i] is not 0 and not < -1, and start[i] is in valid range |
1791 | if (ShapedType::isDynamic(inputShape.getDimSize(i))) { |
1792 | // input shape has unknown dim[i] - only valid if size[i] > 0 |
1793 | if (size[i] > 0) { |
1794 | outputShape[i] = size[i]; |
1795 | } |
1796 | } else { |
1797 | // input shape has known dim[i] |
1798 | if (size[i] == -1) { |
1799 | outputShape[i] = inputShape.getDimSize(i) - start[i]; |
1800 | } else if (start[i] + size[i] <= inputShape.getDimSize(i)) { |
1801 | // start[i] + size[i] is within bound of input shape's dim[i] |
1802 | outputShape[i] = size[i]; |
1803 | } |
1804 | } |
1805 | } |
1806 | } |
1807 | } else { |
1808 | outputShape = convertToMlirShape(size); |
1809 | } |
1810 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
1811 | return success(); |
1812 | } |
1813 | |
1814 | LogicalResult tosa::SliceOp::verify() { |
1815 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
1816 | /* outType = */ getOutput().getType()) |
1817 | .failed()) |
1818 | return failure(); |
1819 | |
1820 | const ShapeAdaptor inputShape(getInput1().getType()); |
1821 | if (inputShape.hasRank()) { |
1822 | const auto inputRank = inputShape.getRank(); |
1823 | const ShapeAdaptor outputShape(getOutput().getType()); |
1824 | if (outputShape.hasRank() && inputRank != outputShape.getRank()) |
1825 | return emitOpError( |
1826 | "expect input1 and output to have the same ranks, got ") |
1827 | << inputRank << " and "<< outputShape.getRank(); |
1828 | |
1829 | const auto startShapeRank = |
1830 | llvm::cast<tosa::shapeType>(getStart().getType()).getRank(); |
1831 | if (inputRank != startShapeRank) |
1832 | return emitOpError("length of start is not equal to rank of input shape"); |
1833 | |
1834 | const auto sizeShapeRank = |
1835 | llvm::cast<tosa::shapeType>(getSize().getType()).getRank(); |
1836 | if (inputRank != sizeShapeRank) |
1837 | return emitOpError("length of size is not equal to rank of input shape"); |
1838 | } |
1839 | |
1840 | return success(); |
1841 | } |
1842 | |
1843 | LogicalResult tosa::MulOp::inferReturnTypeComponents( |
1844 | MLIRContext *context, ::std::optional<Location> location, |
1845 | ValueShapeRange operands, DictionaryAttr attributes, |
1846 | OpaqueProperties properties, RegionRange regions, |
1847 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1848 | // mul op's output shape only depend on input1 and input2, not on shift |
1849 | ValueShapeRange twoInputs = operands.drop_back(); |
1850 | llvm::SmallVector<int64_t> outShape; |
1851 | if (resolveBroadcastShape(twoInputs, outShape).failed()) { |
1852 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
1853 | } else { |
1854 | inferredReturnShapes.push_back(ShapedTypeComponents(outShape)); |
1855 | } |
1856 | return success(); |
1857 | } |
1858 | |
1859 | LogicalResult tosa::MulOp::verify() { |
1860 | const Value output = getOutput(); |
1861 | auto resElemType = getElementTypeOrSelf(output); |
1862 | |
1863 | // Verify if the element type among operands and result match tosa |
1864 | // specification. |
1865 | if (auto resIntType = dyn_cast<IntegerType>(resElemType)) { |
1866 | IntegerType lhsIntType = |
1867 | dyn_cast<IntegerType>(getElementTypeOrSelf(getInput1())); |
1868 | IntegerType rhsIntType = |
1869 | dyn_cast<IntegerType>(getElementTypeOrSelf(getInput2())); |
1870 | if (!lhsIntType || !rhsIntType || lhsIntType != rhsIntType) |
1871 | return emitOpError("requires the same element type for all operands"); |
1872 | |
1873 | // Though the spec requires the element type of result to be i32, a more |
1874 | // relaxed way is provided at dialect level for easier cooperating with |
1875 | // other dialects. |
1876 | if (lhsIntType.getWidth() > resIntType.getWidth()) |
1877 | return emitOpError("invalid data type size for operands or result"); |
1878 | |
1879 | } else { |
1880 | // For other supported type, the spec requires requires the same element |
1881 | // type for all operands (excludes `shift` operand) and results. |
1882 | for (int i = 0; i < 2; ++i) { |
1883 | if (getElementTypeOrSelf(getOperand(i)) != resElemType) |
1884 | return emitOpError( |
1885 | "requires the same element type for all operands and results"); |
1886 | } |
1887 | |
1888 | // verify shift has value 0 for non-integer types |
1889 | ElementsAttr shift_elem; |
1890 | if (matchPattern(getShift(), m_Constant(&shift_elem))) { |
1891 | int32_t shift = shift_elem.getValues<IntegerAttr>()[0].getInt(); |
1892 | if (shift != 0) { |
1893 | return emitOpError() << "require shift to be 0 for float type"; |
1894 | } |
1895 | } |
1896 | } |
1897 | |
1898 | // Verify the op has same ranks for all main operands (excludes extra operands |
1899 | // such as shift of mul op, so this is the only difference with the built-in |
1900 | // `SameOperandsAndResultRank` trait) and results types, if known. |
1901 | TypeRange operandTypes = getOperandTypes(); |
1902 | ShapedType aType = cast<ShapedType>(operandTypes[0]); |
1903 | ShapedType bType = cast<ShapedType>(operandTypes[1]); |
1904 | |
1905 | const bool aHasRank = aType.hasRank(); |
1906 | const bool bHasRank = bType.hasRank(); |
1907 | if (aHasRank && bHasRank) { |
1908 | const int64_t aRank = aType.getRank(); |
1909 | const int64_t bRank = bType.getRank(); |
1910 | if (aRank != bRank) |
1911 | return emitOpError("a and b operands don't have matching ranks, got ") |
1912 | << aRank << " and "<< bRank; |
1913 | |
1914 | // check for broadcast compatible shapes |
1915 | SmallVector<int64_t> resultShape; |
1916 | if (!mlir::OpTrait::util::getBroadcastedShape( |
1917 | aType.getShape(), bType.getShape(), resultShape)) |
1918 | return emitOpError("a and b operands don't have broadcast-compatible " |
1919 | "shapes, got ") |
1920 | << aType << " and "<< bType; |
1921 | } |
1922 | |
1923 | ShapedType resultType = cast<ShapedType>(output.getType()); |
1924 | if (!resultType.hasRank()) |
1925 | return success(); |
1926 | |
1927 | const int64_t resultRank = resultType.getRank(); |
1928 | if (aHasRank && resultRank != aType.getRank()) |
1929 | return emitOpError("result type has different rank than a, got ") |
1930 | << resultRank << " vs "<< aType.getRank(); |
1931 | if (bHasRank && resultRank != bType.getRank()) |
1932 | return emitOpError("result type has different rank than b, got ") |
1933 | << resultRank << " vs "<< bType.getRank(); |
1934 | |
1935 | return success(); |
1936 | } |
1937 | |
1938 | LogicalResult tosa::TableOp::inferReturnTypeComponents( |
1939 | MLIRContext *context, ::std::optional<Location> location, |
1940 | TableOp::Adaptor adaptor, |
1941 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1942 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
1943 | |
1944 | if (!inputShape.hasRank()) { |
1945 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
1946 | return success(); |
1947 | } |
1948 | |
1949 | inferredReturnShapes.resize(1); |
1950 | inputShape.getDims(inferredReturnShapes[0]); |
1951 | return success(); |
1952 | } |
1953 | |
1954 | LogicalResult tosa::TableOp::verify() { |
1955 | TensorType inputType = getInput1().getType(); |
1956 | TensorType outputType = getOutput().getType(); |
1957 | |
1958 | if (inputType.hasRank() && outputType.hasRank() && |
1959 | inputType.getRank() != outputType.getRank()) |
1960 | return emitOpError() |
1961 | << "expected input tensor rank to equal result tensor rank"; |
1962 | |
1963 | auto inputDims = inputType.getShape(); |
1964 | auto outputDims = outputType.getShape(); |
1965 | for (auto it : llvm::enumerate(llvm::zip(inputDims, outputDims))) { |
1966 | int64_t dim = it.index(); |
1967 | auto [inputDim, outputDim] = it.value(); |
1968 | if (!ShapedType::isDynamic(outputDim) && outputDim != inputDim) { |
1969 | return emitOpError() << "dim(result, "<< dim << ") = "<< outputDim |
1970 | << " doesn't match dim(input, "<< dim |
1971 | << ") = "<< inputDim; |
1972 | } |
1973 | } |
1974 | return success(); |
1975 | } |
1976 | |
1977 | LogicalResult |
1978 | tosa::TileOp::getConstantMultiples(SmallVector<int64_t> &multiples) { |
1979 | // Multiples must be constants. |
1980 | DenseIntElementsAttr multiplesAttr; |
1981 | if (!matchPattern(getMultiples(), m_Constant(&multiplesAttr))) |
1982 | return failure(); |
1983 | multiples = llvm::to_vector( |
1984 | llvm::map_range(multiplesAttr.getValues<APInt>(), |
1985 | [](const APInt &val) { return val.getSExtValue(); })); |
1986 | return success(); |
1987 | } |
1988 | |
1989 | LogicalResult tosa::TileOp::inferReturnTypeComponents( |
1990 | MLIRContext *context, ::std::optional<Location> location, |
1991 | TileOp::Adaptor adaptor, |
1992 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
1993 | Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType()); |
1994 | SmallVector<int64_t> multiples; |
1995 | if (!tosa::getConstShapeValues(adaptor.getMultiples().getDefiningOp(), |
1996 | multiples)) { |
1997 | auto rank = |
1998 | cast<tosa::shapeType>(adaptor.getMultiples().getType()).getRank(); |
1999 | SmallVector<int64_t> fallback(rank, ShapedType::kDynamic); |
2000 | inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType)); |
2001 | return success(); |
2002 | } else { |
2003 | multiples = convertToMlirShape(multiples); |
2004 | } |
2005 | |
2006 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
2007 | SmallVector<int64_t> outputShape; |
2008 | if (!inputShape.hasRank()) { |
2009 | outputShape.resize(multiples.size(), ShapedType::kDynamic); |
2010 | inferredReturnShapes.push_back( |
2011 | ShapedTypeComponents(outputShape, inputType)); |
2012 | return success(); |
2013 | } else if (static_cast<size_t>(inputShape.getRank()) != multiples.size()) |
2014 | return failure(); |
2015 | |
2016 | // Any non dynamic dimension can be multiplied to a known size. |
2017 | outputShape.reserve(multiples.size()); |
2018 | for (int i = 0, s = inputShape.getRank(); i < s; i++) { |
2019 | if (multiples[i] == ShapedType::kDynamic) { |
2020 | outputShape.push_back(ShapedType::kDynamic); |
2021 | } else { |
2022 | int64_t dim = inputShape.getDimSize(i); |
2023 | if (dim != ShapedType::kDynamic) |
2024 | dim *= multiples[i]; |
2025 | outputShape.push_back(dim); |
2026 | } |
2027 | } |
2028 | |
2029 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType)); |
2030 | return success(); |
2031 | } |
2032 | |
2033 | LogicalResult tosa::TileOp::verify() { |
2034 | if (verifySameElementTypes(*this, /* intype = */ getInput1().getType(), |
2035 | /* outType = */ getOutput().getType()) |
2036 | .failed()) { |
2037 | return failure(); |
2038 | } |
2039 | ShapedType inputType = llvm::cast<ShapedType>(getInput1().getType()); |
2040 | ShapedType outputType = llvm::cast<ShapedType>(getType()); |
2041 | |
2042 | shapeType multiplesType = |
2043 | llvm::cast<tosa::shapeType>(getMultiples().getType()); |
2044 | |
2045 | auto multiplesRank = multiplesType.getRank(); |
2046 | |
2047 | if (inputType.hasRank()) { |
2048 | if (inputType.getRank() != multiplesRank) |
2049 | return emitOpError("expect 'multiples' to have rank ") |
2050 | << inputType.getRank() << " but got "<< multiplesRank << "."; |
2051 | if (outputType.hasRank() && inputType.getRank() != outputType.getRank()) |
2052 | return emitOpError("expect same input and output tensor rank."); |
2053 | } else if (outputType.hasRank() && outputType.getRank() != multiplesRank) |
2054 | return emitOpError("expect 'multiples' array to have length ") |
2055 | << outputType.getRank() << " but got "<< multiplesRank << "."; |
2056 | |
2057 | SmallVector<int64_t> multiples; |
2058 | if (getConstantMultiples(multiples).succeeded() && |
2059 | llvm::any_of(multiples, [](int64_t v) { return v <= 0 && v != -1; })) |
2060 | return emitOpError( |
2061 | "expect element of 'multiples' to be positive integer or -1."); |
2062 | |
2063 | return success(); |
2064 | } |
2065 | |
2066 | bool tosa::ReshapeOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
2067 | if (l.size() != r.size() || l.size() != 1) |
2068 | return false; |
2069 | return getElementTypeOrSelf(l[0]) == getElementTypeOrSelf(r[0]); |
2070 | } |
2071 | |
2072 | LogicalResult tosa::ReshapeOp::inferReturnTypeComponents( |
2073 | MLIRContext *context, ::std::optional<Location> location, |
2074 | ReshapeOp::Adaptor adaptor, |
2075 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2076 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
2077 | Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType()); |
2078 | llvm::SmallVector<int64_t> newShapeValue; |
2079 | if (!tosa::getConstShapeValues(adaptor.getShape().getDefiningOp(), |
2080 | newShapeValue)) { |
2081 | auto rank = cast<tosa::shapeType>(adaptor.getShape().getType()).getRank(); |
2082 | SmallVector<int64_t> fallback(rank, ShapedType::kDynamic); |
2083 | inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType)); |
2084 | return success(); |
2085 | } else { |
2086 | newShapeValue = convertToMlirShape(newShapeValue); |
2087 | } |
2088 | |
2089 | // We cannot infer from the total number of elements so we must take the |
2090 | // shape attribute as exact. |
2091 | if (!inputShape.hasRank() || !inputShape.hasStaticShape()) { |
2092 | inferredReturnShapes.push_back( |
2093 | ShapedTypeComponents(newShapeValue, inputType)); |
2094 | return success(); |
2095 | } |
2096 | |
2097 | // Determine the number of elements covered by the slice of all static |
2098 | // dimensions. This allows us to infer the length of the remaining dynamic |
2099 | // dimension. |
2100 | int64_t numElements = inputShape.getNumElements(); |
2101 | int64_t staticMul = 1; |
2102 | for (auto val : newShapeValue) { |
2103 | if (!ShapedType::isDynamic(val)) { |
2104 | staticMul *= val; |
2105 | } |
2106 | } |
2107 | |
2108 | // Determine the length of the dynamic dimension. |
2109 | for (auto &val : newShapeValue) { |
2110 | if (ShapedType::isDynamic(val)) |
2111 | val = numElements / staticMul; |
2112 | } |
2113 | |
2114 | inferredReturnShapes.push_back( |
2115 | ShapedTypeComponents(newShapeValue, inputType)); |
2116 | return success(); |
2117 | } |
2118 | |
2119 | llvm::LogicalResult tosa::ReshapeOp::verify() { |
2120 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
2121 | /* outType = */ getOutput().getType()) |
2122 | .failed()) { |
2123 | return failure(); |
2124 | } |
2125 | TensorType inputType = getInput1().getType(); |
2126 | |
2127 | SmallVector<int64_t> shapeValues; |
2128 | if (!tosa::getConstShapeValues(getShape().getDefiningOp(), shapeValues)) { |
2129 | // skip following checks if shape is not constant |
2130 | return mlir::success(); |
2131 | } |
2132 | |
2133 | int missingDims = llvm::count(shapeValues, -1); |
2134 | if (missingDims > 1) |
2135 | return emitOpError() << "expected at most one target dimension to be -1"; |
2136 | |
2137 | const auto outputType = dyn_cast<RankedTensorType>(getType()); |
2138 | if (!outputType) |
2139 | return success(); |
2140 | |
2141 | if ((int64_t)shapeValues.size() != outputType.getRank()) |
2142 | return emitOpError() << "new shape does not match result rank"; |
2143 | |
2144 | for (auto [newShapeDim, outputShapeDim] : |
2145 | zip(shapeValues, outputType.getShape())) { |
2146 | if (newShapeDim != -1 && newShapeDim != ShapedType::kDynamic && |
2147 | outputShapeDim != ShapedType::kDynamic && newShapeDim != outputShapeDim) |
2148 | return emitOpError() << "new shape is inconsistent with result shape"; |
2149 | |
2150 | if (newShapeDim != ShapedType::kDynamic && newShapeDim < -1) |
2151 | return emitOpError() << "new shape has invalid tensor dimension size " |
2152 | << newShapeDim; |
2153 | } |
2154 | |
2155 | if (inputType.hasStaticShape()) { |
2156 | int64_t inputElementsNum = inputType.getNumElements(); |
2157 | if (outputType.hasStaticShape()) { |
2158 | int64_t outputElementsNum = outputType.getNumElements(); |
2159 | if (inputElementsNum != outputElementsNum) { |
2160 | return emitOpError() << "cannot reshape "<< inputElementsNum |
2161 | << " elements into "<< outputElementsNum; |
2162 | } |
2163 | } |
2164 | |
2165 | int64_t newShapeElementsNum = std::accumulate( |
2166 | shapeValues.begin(), shapeValues.end(), 1LL, |
2167 | [](int64_t acc, int64_t dim) { return (dim > 0) ? acc * dim : acc; }); |
2168 | bool isStaticNewShape = |
2169 | llvm::all_of(shapeValues, [](int64_t s) { return s > 0; }); |
2170 | if ((isStaticNewShape && inputElementsNum != newShapeElementsNum) || |
2171 | (!isStaticNewShape && newShapeElementsNum > inputElementsNum)) { |
2172 | return emitOpError() << "cannot reshape "<< inputElementsNum |
2173 | << " elements into "<< newShapeElementsNum; |
2174 | } |
2175 | } |
2176 | |
2177 | return mlir::success(); |
2178 | } |
2179 | |
2180 | // return failure if val is not a constant |
2181 | // set zp to -1 if val is non-zero float or val is not integer nor float |
2182 | // otherwise set zp to val's constant value |
2183 | static FailureOr<int64_t> getZeroPoint(Value val, bool signExtend) { |
2184 | ElementsAttr zpAttr; |
2185 | if (!matchPattern(val, m_Constant(&zpAttr))) { |
2186 | return failure(); |
2187 | } |
2188 | |
2189 | Type zpElemType = zpAttr.getElementType(); |
2190 | |
2191 | if (llvm::isa<FloatType>(Val: zpElemType)) { |
2192 | if (zpAttr.getValues<APFloat>()[0].isZero()) { |
2193 | return 0; |
2194 | } |
2195 | // return non-zero value to trigger error check |
2196 | return -1; |
2197 | } |
2198 | |
2199 | if (llvm::isa<IntegerType>(Val: zpElemType)) { |
2200 | if (signExtend) |
2201 | return zpAttr.getValues<APInt>()[0].getSExtValue(); |
2202 | else |
2203 | return zpAttr.getValues<APInt>()[0].getZExtValue(); |
2204 | } |
2205 | |
2206 | // return non-zero value to trigger error check |
2207 | return -1; |
2208 | } |
2209 | |
2210 | template <typename T> |
2211 | static LogicalResult verifyZeroPoint(T op, Value val, const int64_t &zp, |
2212 | const std::string &operand) { |
2213 | Type zpElemType = getElementTypeOrSelf(val); |
2214 | |
2215 | if (!zpElemType.isInteger(width: 8) && zp != 0) { |
2216 | // convert operand to lower case for error message |
2217 | std::string lower = operand; |
2218 | std::transform(first: lower.begin(), last: lower.end(), result: lower.begin(), unary_op: ::tolower); |
2219 | return op.emitOpError() |
2220 | << lower << " zero point must be zero for non-int8 integer types"; |
2221 | } |
2222 | |
2223 | return success(); |
2224 | } |
2225 | |
2226 | static LogicalResult verifyZeroPoint(tosa::RescaleOp op, Value zpVal, |
2227 | const int64_t &zp, |
2228 | const std::string &operand) { |
2229 | bool isInputZp = (operand == "Input"); |
2230 | |
2231 | bool tensorUnsigned = |
2232 | isInputZp ? op.getInputUnsigned() : op.getOutputUnsigned(); |
2233 | StringRef tensorName = isInputZp ? "input": "output"; |
2234 | |
2235 | Type zpElemType = getElementTypeOrSelf(val: zpVal); |
2236 | |
2237 | if (zp != 0) { |
2238 | if (!zpElemType.isInteger(width: 8) && |
2239 | !(zpElemType.isInteger(width: 16) && tensorUnsigned)) { |
2240 | return op.emitOpError() |
2241 | << "expect "<< tensorName << "_zp of 0, got "<< zp; |
2242 | } |
2243 | if (zpElemType.isInteger(width: 16) && tensorUnsigned && zp != 32768) { |
2244 | return op.emitOpError() << "expect "<< tensorName |
2245 | << "_zp of 0 or 32768 for unsigned int16 " |
2246 | << tensorName << ", got "<< zp; |
2247 | } |
2248 | } |
2249 | |
2250 | return success(); |
2251 | } |
2252 | |
2253 | #define ZERO_POINT_HELPER(OP, OPERAND_NAME, SIGN_EXTEND) \ |
2254 | FailureOr<int64_t> tosa::OP::get##OPERAND_NAME##ZeroPoint() { \ |
2255 | return getZeroPoint(get##OPERAND_NAME##Zp(), SIGN_EXTEND); \ |
2256 | } \ |
2257 | LogicalResult tosa::OP::verify##OPERAND_NAME##ZeroPoint(int64_t zp) { \ |
2258 | return verifyZeroPoint(*this, get##OPERAND_NAME##Zp(), zp, #OPERAND_NAME); \ |
2259 | } |
2260 | |
2261 | ZERO_POINT_HELPER(Conv2DOp, Input, true) |
2262 | ZERO_POINT_HELPER(Conv2DOp, Weight, true) |
2263 | ZERO_POINT_HELPER(Conv3DOp, Input, true) |
2264 | ZERO_POINT_HELPER(Conv3DOp, Weight, true) |
2265 | ZERO_POINT_HELPER(DepthwiseConv2DOp, Input, true) |
2266 | ZERO_POINT_HELPER(DepthwiseConv2DOp, Weight, true) |
2267 | ZERO_POINT_HELPER(TransposeConv2DOp, Input, true) |
2268 | ZERO_POINT_HELPER(TransposeConv2DOp, Weight, true) |
2269 | ZERO_POINT_HELPER(AvgPool2dOp, Input, true) |
2270 | ZERO_POINT_HELPER(AvgPool2dOp, Output, true) |
2271 | ZERO_POINT_HELPER(MatMulOp, A, true) |
2272 | ZERO_POINT_HELPER(MatMulOp, B, true) |
2273 | ZERO_POINT_HELPER(NegateOp, Input1, true) |
2274 | ZERO_POINT_HELPER(NegateOp, Output, true) |
2275 | ZERO_POINT_HELPER(RescaleOp, Input, !getInputUnsigned()) |
2276 | ZERO_POINT_HELPER(RescaleOp, Output, !getOutputUnsigned()) |
2277 | #undef ZERO_POINT_HELPER |
2278 | |
2279 | LogicalResult tosa::TransposeOp::inferReturnTypeComponents( |
2280 | MLIRContext *context, ::std::optional<Location> location, |
2281 | TransposeOp::Adaptor adaptor, |
2282 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2283 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
2284 | |
2285 | // If input rank and permutation length is unknown, the output rank is |
2286 | // unknown. |
2287 | if (!inputShape.hasRank()) { |
2288 | inferredReturnShapes.push_back(ShapedTypeComponents()); |
2289 | return success(); |
2290 | } |
2291 | |
2292 | const auto inputRank = inputShape.getRank(); |
2293 | |
2294 | // This would imply the number of permutations does not match the rank of |
2295 | // the input which is illegal. |
2296 | if (adaptor.getPerms().size() != static_cast<size_t>(inputRank)) { |
2297 | return failure(); |
2298 | } |
2299 | |
2300 | SmallVector<int64_t> outputShape; |
2301 | // Rank-0 means no permutations matter. |
2302 | if (inputRank == 0) { |
2303 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
2304 | return success(); |
2305 | } |
2306 | |
2307 | // Check whether the input dimensions are all the same. |
2308 | bool allTheSame = true; |
2309 | for (int i = 1, s = inputRank; i < s; i++) { |
2310 | if (inputShape.getDimSize(0) != inputShape.getDimSize(i)) { |
2311 | allTheSame = false; |
2312 | break; |
2313 | } |
2314 | } |
2315 | |
2316 | // If all of the input dimensions are the same we don't care about the |
2317 | // permutation. |
2318 | if (allTheSame) { |
2319 | outputShape.resize(inputRank, inputShape.getDimSize(0)); |
2320 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
2321 | return success(); |
2322 | } |
2323 | |
2324 | outputShape.resize(inputRank, ShapedType::kDynamic); |
2325 | |
2326 | // Constant permutation values must be within the input rank. |
2327 | if (llvm::any_of(adaptor.getPerms(), |
2328 | [inputRank](const auto i) { return i >= inputRank; })) |
2329 | return failure(); |
2330 | |
2331 | outputShape.reserve(inputRank); |
2332 | for (int i = 0, s = inputRank; i < s; i++) { |
2333 | outputShape[i] = inputShape.getDimSize(adaptor.getPerms()[i]); |
2334 | } |
2335 | |
2336 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
2337 | return success(); |
2338 | } |
2339 | |
2340 | LogicalResult tosa::TransposeOp::verify() { |
2341 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
2342 | /* outType = */ getOutput().getType()) |
2343 | .failed()) { |
2344 | return failure(); |
2345 | } |
2346 | |
2347 | const ShapeAdaptor inputShape(getInput1().getType()); |
2348 | const ShapeAdaptor outputShape(getOutput().getType()); |
2349 | |
2350 | const llvm::ArrayRef<int32_t> constantPerms = getPerms(); |
2351 | |
2352 | if (inputShape.hasRank() && |
2353 | constantPerms.size() != static_cast<size_t>(inputShape.getRank())) |
2354 | return emitOpError() << "expected perms attribute to have size " |
2355 | << inputShape.getRank() |
2356 | << " (input rank) but got size " |
2357 | << constantPerms.size(); |
2358 | |
2359 | if (inputShape.hasRank() && outputShape.hasRank() && |
2360 | inputShape.getRank() != outputShape.getRank()) |
2361 | return emitOpError() |
2362 | << "expected input tensor rank to equal result tensor rank"; |
2363 | |
2364 | if (outputShape.hasRank() && |
2365 | constantPerms.size() != static_cast<size_t>(outputShape.getRank())) |
2366 | return emitOpError() << "expected perms attribute to have size " |
2367 | << outputShape.getRank() |
2368 | << " (output rank) but got size " |
2369 | << constantPerms.size(); |
2370 | |
2371 | if (!llvm::all_of(constantPerms, |
2372 | [&constantPerms](int32_t s) { |
2373 | return s >= 0 && |
2374 | static_cast<size_t>(s) < constantPerms.size(); |
2375 | }) || |
2376 | !isPermutationVector(llvm::to_vector(llvm::map_range( |
2377 | constantPerms, [](int32_t v) -> int64_t { return v; })))) |
2378 | return emitOpError() << "expected valid permutation indices"; |
2379 | |
2380 | // ERROR_IF(tensor_size(shape1) != tensor_size(shape)) |
2381 | if (inputShape.hasStaticShape() && outputShape.hasStaticShape() && |
2382 | inputShape.getNumElements() != outputShape.getNumElements()) |
2383 | return emitOpError() << "expected input1 and output to have same numbers " |
2384 | "of elements, got " |
2385 | << inputShape.getNumElements() << " and " |
2386 | << outputShape.getNumElements(); |
2387 | |
2388 | // Verify that the types of the input and output tensors are properly |
2389 | // permuted. |
2390 | if (inputShape.hasRank() && outputShape.hasRank()) { |
2391 | for (auto i = 0; i < outputShape.getRank(); i++) { |
2392 | if (inputShape.isDynamicDim(constantPerms[i]) || |
2393 | outputShape.isDynamicDim(i)) |
2394 | continue; |
2395 | |
2396 | if (inputShape.getDimSize(constantPerms[i]) != outputShape.getDimSize(i)) |
2397 | return emitOpError() |
2398 | << "expected output tensor dim "<< i << " to match " |
2399 | << "input dim "<< constantPerms[i] << " with value of " |
2400 | << inputShape.getDimSize(constantPerms[i]); |
2401 | } |
2402 | } |
2403 | |
2404 | return success(); |
2405 | } |
2406 | |
2407 | LogicalResult TransposeOp::reifyResultShapes( |
2408 | OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { |
2409 | |
2410 | const llvm::ArrayRef<int32_t> transposePerms = getPerms(); |
2411 | |
2412 | Value input = getInput1(); |
2413 | auto inputType = cast<TensorType>(input.getType()); |
2414 | |
2415 | SmallVector<OpFoldResult> returnedDims(inputType.getRank()); |
2416 | for (auto dim : transposePerms) { |
2417 | int32_t dimInInput = transposePerms[dim]; |
2418 | if (inputType.isDynamicDim(dimInInput)) |
2419 | returnedDims[dim] = |
2420 | builder.create<tensor::DimOp>(getLoc(), input, dimInInput) |
2421 | .getResult(); |
2422 | else |
2423 | returnedDims[dim] = |
2424 | builder.getIndexAttr(inputType.getDimSize(dimInInput)); |
2425 | } |
2426 | |
2427 | reifiedReturnShapes.emplace_back(std::move(returnedDims)); |
2428 | return success(); |
2429 | } |
2430 | |
2431 | LogicalResult tosa::GatherOp::inferReturnTypeComponents( |
2432 | MLIRContext *context, ::std::optional<Location> location, |
2433 | GatherOp::Adaptor adaptor, |
2434 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2435 | llvm::SmallVector<int64_t> outputShape; |
2436 | outputShape.resize(3, ShapedType::kDynamic); |
2437 | |
2438 | ShapeAdaptor valuesShape(adaptor.getValues().getType()); |
2439 | if (valuesShape.hasRank()) { |
2440 | outputShape[0] = valuesShape.getDimSize(0); |
2441 | outputShape[2] = valuesShape.getDimSize(2); |
2442 | } |
2443 | |
2444 | ShapeAdaptor indicesShape(adaptor.getIndices().getType()); |
2445 | if (indicesShape.hasRank()) { |
2446 | if (outputShape[0] == ShapedType::kDynamic) |
2447 | outputShape[0] = indicesShape.getDimSize(0); |
2448 | if (outputShape[1] == ShapedType::kDynamic) |
2449 | outputShape[1] = indicesShape.getDimSize(1); |
2450 | } |
2451 | |
2452 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
2453 | return success(); |
2454 | } |
2455 | |
2456 | LogicalResult tosa::GatherOp::verify() { |
2457 | if (verifySameElementTypes(*this, /* inType = */ getValues().getType(), |
2458 | /* outType = */ getOutput().getType()) |
2459 | .failed()) { |
2460 | return failure(); |
2461 | } |
2462 | |
2463 | const ShapeAdaptor valuesShape(getValues().getType()); |
2464 | const ShapeAdaptor indicesShape(getIndices().getType()); |
2465 | const ShapeAdaptor outputShape(getOutput().getType()); |
2466 | |
2467 | int64_t N = ShapedType::kDynamic; |
2468 | int64_t W = ShapedType::kDynamic; |
2469 | int64_t C = ShapedType::kDynamic; |
2470 | |
2471 | if (valuesShape.hasRank()) { |
2472 | N = valuesShape.getDimSize(0); |
2473 | C = valuesShape.getDimSize(2); |
2474 | } |
2475 | if (indicesShape.hasRank()) { |
2476 | const int64_t indicesN = indicesShape.getDimSize(0); |
2477 | W = indicesShape.getDimSize(1); |
2478 | if (N == ShapedType::kDynamic) |
2479 | N = indicesN; |
2480 | else if (indicesN != ShapedType::kDynamic && N != indicesN) |
2481 | return emitOpError() << "requires indices dimension 0 to have size "<< N |
2482 | << ", got "<< indicesN; |
2483 | } |
2484 | if (outputShape.hasRank()) { |
2485 | const int64_t outputN = outputShape.getDimSize(0); |
2486 | const int64_t outputW = outputShape.getDimSize(1); |
2487 | const int64_t outputC = outputShape.getDimSize(2); |
2488 | if (N != ShapedType::kDynamic && outputN != ShapedType::kDynamic && |
2489 | N != outputN) |
2490 | return emitOpError() << "requires output dimension 0 to have size "<< N |
2491 | << ", got "<< outputN; |
2492 | |
2493 | if (W != ShapedType::kDynamic && outputW != ShapedType::kDynamic && |
2494 | W != outputW) |
2495 | return emitOpError() << "requires output dimension 1 to have size "<< W |
2496 | << ", got "<< outputW; |
2497 | if (C != ShapedType::kDynamic && outputC != ShapedType::kDynamic && |
2498 | C != outputC) |
2499 | return emitOpError() << "requires output dimension 2 to have size "<< C |
2500 | << ", got "<< outputC; |
2501 | } |
2502 | return success(); |
2503 | } |
2504 | |
2505 | LogicalResult tosa::ResizeOp::inferReturnTypeComponents( |
2506 | MLIRContext *context, ::std::optional<Location> location, |
2507 | ResizeOp::Adaptor adaptor, |
2508 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2509 | llvm::SmallVector<int64_t, 4> outputShape; |
2510 | outputShape.resize(4, ShapedType::kDynamic); |
2511 | |
2512 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
2513 | if (!inputShape.hasRank()) |
2514 | return failure(); |
2515 | |
2516 | outputShape[0] = inputShape.getDimSize(0); |
2517 | outputShape[3] = inputShape.getDimSize(3); |
2518 | int64_t inputHeight = inputShape.getDimSize(1); |
2519 | int64_t inputWidth = inputShape.getDimSize(2); |
2520 | |
2521 | if ((inputHeight == ShapedType::kDynamic) || |
2522 | (inputWidth == ShapedType::kDynamic)) |
2523 | return failure(); |
2524 | |
2525 | SmallVector<int64_t> scaleInt, offsetInt, borderInt; |
2526 | if (!tosa::getConstShapeValues(adaptor.getScale().getDefiningOp(), |
2527 | scaleInt) || |
2528 | !tosa::getConstShapeValues(adaptor.getOffset().getDefiningOp(), |
2529 | offsetInt) || |
2530 | !tosa::getConstShapeValues(adaptor.getBorder().getDefiningOp(), |
2531 | borderInt)) { |
2532 | return failure(); |
2533 | } |
2534 | |
2535 | // Compute the output shape based on attributes: scale, offset, and border. |
2536 | outputShape[1] = |
2537 | (((inputHeight - 1) * scaleInt[0] - offsetInt[0] + borderInt[0]) / |
2538 | scaleInt[1]) + |
2539 | 1; |
2540 | |
2541 | outputShape[2] = |
2542 | (((inputWidth - 1) * scaleInt[2] - offsetInt[1] + borderInt[1]) / |
2543 | scaleInt[3]) + |
2544 | 1; |
2545 | |
2546 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
2547 | return success(); |
2548 | } |
2549 | |
2550 | LogicalResult tosa::ResizeOp::verify() { |
2551 | const Value input = getInput(); |
2552 | const Value output = getOutput(); |
2553 | const RankedTensorType inputType = |
2554 | llvm::dyn_cast<RankedTensorType>(input.getType()); |
2555 | const RankedTensorType outputType = |
2556 | llvm::dyn_cast<RankedTensorType>(output.getType()); |
2557 | |
2558 | SmallVector<int64_t> scaleValues; |
2559 | SmallVector<int64_t> offsetValues; |
2560 | SmallVector<int64_t> borderValues; |
2561 | if (!tosa::getConstShapeValues(getScale().getDefiningOp(), scaleValues) || |
2562 | !tosa::getConstShapeValues(getOffset().getDefiningOp(), offsetValues) || |
2563 | !tosa::getConstShapeValues(getBorder().getDefiningOp(), borderValues)) { |
2564 | // Skip following checks if shape is not constant |
2565 | return success(); |
2566 | } |
2567 | |
2568 | if (llvm::any_of(scaleValues, [](int64_t s) { return s <= 0; })) |
2569 | return emitOpError("expect all scale values to be > 0, got ") |
2570 | << scaleValues; |
2571 | |
2572 | const int64_t scaleYN = scaleValues[0]; |
2573 | const int64_t scaleYD = scaleValues[1]; |
2574 | const int64_t scaleXN = scaleValues[2]; |
2575 | const int64_t scaleXD = scaleValues[3]; |
2576 | |
2577 | const int64_t offsetY = offsetValues[0]; |
2578 | const int64_t offsetX = offsetValues[1]; |
2579 | |
2580 | const int64_t borderY = borderValues[0]; |
2581 | const int64_t borderX = borderValues[1]; |
2582 | |
2583 | if (!inputType) |
2584 | return success(); |
2585 | if (!outputType) |
2586 | return success(); |
2587 | |
2588 | const int64_t oh = outputType.getDimSize(1); |
2589 | const int64_t ow = outputType.getDimSize(2); |
2590 | const int64_t ih = inputType.getDimSize(1); |
2591 | const int64_t iw = inputType.getDimSize(2); |
2592 | |
2593 | // Don't check with input height that could be broadcast (ih != 1) |
2594 | // since Linalg, a consumer of TOSA, expects broadcasting support |
2595 | // in resize to be available. Taking the cautious approach for now, |
2596 | // we can consider removing support for broadcasting later. |
2597 | if (ih != ShapedType::kDynamic && ih != 1) { |
2598 | const std::optional<int64_t> calculatedOutHeightMinusOne = |
2599 | idivCheck((ih - 1) * scaleYN - offsetY + borderY, scaleYD); |
2600 | if (!calculatedOutHeightMinusOne.has_value()) |
2601 | return emitOpError("expected (input_height - 1) * scale_y_n - offset_y + " |
2602 | "border_y ") |
2603 | << "to be wholly divisible by scale_y_d, got (("<< ih |
2604 | << " - 1) * "<< scaleYN << " - "<< offsetY << " + "<< borderY |
2605 | << ") / "<< scaleYD; |
2606 | const int64_t calculatedOutHeight = calculatedOutHeightMinusOne.value() + 1; |
2607 | if (oh != ShapedType::kDynamic && calculatedOutHeight != oh) |
2608 | return emitOpError("calculated output height did not match expected: ") |
2609 | << "calculated="<< calculatedOutHeight << ", expected="<< oh; |
2610 | } |
2611 | |
2612 | // Don't check with input width that could be broadcast (iw != 1) |
2613 | // since Linalg, a consumer of TOSA, expects broadcasting support |
2614 | // in resize to be available. Taking the cautious approach for now, |
2615 | // we can consider removing support for broadcasting later. |
2616 | if (iw != ShapedType::kDynamic && iw != 1) { |
2617 | const int64_t scaledInWidth = (iw - 1) * scaleXN - offsetX + borderX; |
2618 | const std::optional<int64_t> calculatedOutWidthMinusOne = |
2619 | idivCheck(scaledInWidth, scaleXD); |
2620 | if (!calculatedOutWidthMinusOne.has_value()) |
2621 | return emitOpError("expected (input_width - 1) * scale_x_n - offset_x + " |
2622 | "border_x ") |
2623 | << "to be wholly divisible by scale_x_d, got (("<< iw |
2624 | << " - 1) * "<< scaleXN << " - "<< offsetX << " + "<< borderX |
2625 | << ") / "<< scaleXD; |
2626 | const int64_t calculatedOutWidth = calculatedOutWidthMinusOne.value() + 1; |
2627 | if (ow != ShapedType::kDynamic && calculatedOutWidth != ow) |
2628 | return emitOpError("calculated output width did not match expected: ") |
2629 | << "calculated="<< calculatedOutWidth << ", expected="<< ow; |
2630 | } |
2631 | |
2632 | return success(); |
2633 | } |
2634 | |
2635 | LogicalResult tosa::ScatterOp::inferReturnTypeComponents( |
2636 | MLIRContext *context, ::std::optional<Location> location, |
2637 | ScatterOp::Adaptor adaptor, |
2638 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2639 | llvm::SmallVector<int64_t> outputShape; |
2640 | outputShape.resize(3, ShapedType::kDynamic); |
2641 | |
2642 | ShapeAdaptor valuesInShape(adaptor.getValuesIn().getType()); |
2643 | if (valuesInShape.hasRank()) { |
2644 | outputShape[0] = valuesInShape.getDimSize(0); |
2645 | outputShape[1] = valuesInShape.getDimSize(1); |
2646 | outputShape[2] = valuesInShape.getDimSize(2); |
2647 | } |
2648 | |
2649 | ShapeAdaptor indicesShape(adaptor.getIndices().getType()); |
2650 | if (indicesShape.hasRank()) { |
2651 | if (outputShape[0] == ShapedType::kDynamic) |
2652 | outputShape[0] = indicesShape.getDimSize(0); |
2653 | } |
2654 | |
2655 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
2656 | if (inputShape.hasRank()) { |
2657 | if (outputShape[0] == ShapedType::kDynamic) |
2658 | outputShape[0] = inputShape.getDimSize(0); |
2659 | if (outputShape[2] == ShapedType::kDynamic) |
2660 | outputShape[2] = inputShape.getDimSize(2); |
2661 | } |
2662 | |
2663 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
2664 | return success(); |
2665 | } |
2666 | |
2667 | LogicalResult tosa::ScatterOp::verify() { |
2668 | if (verifySameElementTypes(*this, /* inType = */ getValuesIn().getType(), |
2669 | /* outType = */ getValuesOut().getType()) |
2670 | .failed() || |
2671 | verifySameElementTypes(*this, /* inType = */ getInput().getType(), |
2672 | /* outType = */ getValuesOut().getType()) |
2673 | .failed()) { |
2674 | return failure(); |
2675 | } |
2676 | |
2677 | const ShapeAdaptor valuesInShape(getValuesIn().getType()); |
2678 | const ShapeAdaptor indicesShape(getIndices().getType()); |
2679 | const ShapeAdaptor inputShape(getInput().getType()); |
2680 | const ShapeAdaptor outputShape(getValuesOut().getType()); |
2681 | |
2682 | int64_t N = ShapedType::kDynamic; |
2683 | int64_t K = ShapedType::kDynamic; |
2684 | int64_t W = ShapedType::kDynamic; |
2685 | int64_t C = ShapedType::kDynamic; |
2686 | if (valuesInShape.hasRank()) { |
2687 | N = valuesInShape.getDimSize(0); |
2688 | K = valuesInShape.getDimSize(1); |
2689 | C = valuesInShape.getDimSize(2); |
2690 | } |
2691 | if (indicesShape.hasRank()) { |
2692 | const int64_t indicesN = indicesShape.getDimSize(0); |
2693 | W = indicesShape.getDimSize(1); |
2694 | if (N == ShapedType::kDynamic) |
2695 | N = indicesN; |
2696 | else if (indicesN != ShapedType::kDynamic && N != indicesN) |
2697 | return emitOpError() << "requires indices dimension 0 to have size "<< N |
2698 | << ", got "<< indicesN; |
2699 | } |
2700 | if (inputShape.hasRank()) { |
2701 | const int64_t inputN = inputShape.getDimSize(0); |
2702 | const int64_t inputW = inputShape.getDimSize(1); |
2703 | const int64_t inputC = inputShape.getDimSize(2); |
2704 | if (N == ShapedType::kDynamic) |
2705 | N = inputN; |
2706 | else if (inputN != ShapedType::kDynamic && N != inputN) |
2707 | return emitOpError() << "requires input dimension 0 to have size "<< N |
2708 | << ", got "<< inputN; |
2709 | if (W == ShapedType::kDynamic) |
2710 | W = inputW; |
2711 | else if (inputW != ShapedType::kDynamic && W != inputW) |
2712 | return emitOpError() << "requires input dimension 1 to have size "<< W |
2713 | << ", got "<< inputW; |
2714 | |
2715 | if (C == ShapedType::kDynamic) |
2716 | C = inputC; |
2717 | else if (inputC != ShapedType::kDynamic && C != inputC) |
2718 | return emitOpError() << "requires input dimension 2 to have size "<< C |
2719 | << ", got "<< inputC; |
2720 | } |
2721 | if (outputShape.hasRank()) { |
2722 | const int64_t outputN = outputShape.getDimSize(0); |
2723 | const int64_t outputK = outputShape.getDimSize(1); |
2724 | const int64_t outputC = outputShape.getDimSize(2); |
2725 | if (N != ShapedType::kDynamic && outputN != ShapedType::kDynamic && |
2726 | N != outputN) |
2727 | return emitOpError() << "requires values_out dimension 0 to have size " |
2728 | << N << ", got "<< outputN; |
2729 | if (K == ShapedType::kDynamic) |
2730 | K = outputK; |
2731 | else if (outputK != ShapedType::kDynamic && K != outputK) |
2732 | return emitOpError() << "requires values_out dimension 1 to have size " |
2733 | << K << ", got "<< outputK; |
2734 | if (C != ShapedType::kDynamic && outputC != ShapedType::kDynamic && |
2735 | C != outputC) |
2736 | return emitOpError() << "requires values_out dimension 2 to have size " |
2737 | << C << ", got "<< outputC; |
2738 | } |
2739 | if (K != ShapedType::kDynamic && W != ShapedType::kDynamic && !(K >= W)) |
2740 | return emitOpError() << "requires dimensions K >= W, got K="<< K |
2741 | << " and W="<< W; |
2742 | |
2743 | return success(); |
2744 | } |
2745 | |
2746 | static LogicalResult ReduceInferReturnTypes( |
2747 | ShapeAdaptor operandShape, Type inputType, IntegerAttr axis, |
2748 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2749 | int64_t axisVal = axis.getValue().getSExtValue(); |
2750 | if (!operandShape.hasRank() || operandShape.getRank() <= axisVal) { |
2751 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(inputType)); |
2752 | return success(); |
2753 | } |
2754 | |
2755 | SmallVector<int64_t> outputShape; |
2756 | operandShape.getDims(res&: outputShape); |
2757 | outputShape[axisVal] = 1; |
2758 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outputShape, inputType)); |
2759 | return success(); |
2760 | } |
2761 | |
2762 | #define COMPATIBLE_RETURN_TYPES(OP) \ |
2763 | bool OP::isCompatibleReturnTypes(TypeRange l, TypeRange r) { \ |
2764 | if (l.size() != r.size() || l.size() != 1) \ |
2765 | return false; \ |
2766 | if (getElementTypeOrSelf(l[0]) != getElementTypeOrSelf(r[0])) \ |
2767 | return false; \ |
2768 | return succeeded(verifyCompatibleShape(l[0], r[0])); \ |
2769 | } |
2770 | |
2771 | #define REDUCE_SHAPE_INFER(OP) \ |
2772 | LogicalResult OP::inferReturnTypeComponents( \ |
2773 | MLIRContext *context, ::std::optional<Location> location, \ |
2774 | OP::Adaptor adaptor, \ |
2775 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \ |
2776 | Type inputType = \ |
2777 | llvm::cast<TensorType>(adaptor.getInput().getType()).getElementType(); \ |
2778 | ShapeAdaptor inputShape(adaptor.getInput().getType()); \ |
2779 | const Properties &prop = adaptor.getProperties(); \ |
2780 | return ReduceInferReturnTypes(inputShape, inputType, prop.axis, \ |
2781 | inferredReturnShapes); \ |
2782 | } \ |
2783 | COMPATIBLE_RETURN_TYPES(OP) |
2784 | |
2785 | REDUCE_SHAPE_INFER(tosa::ReduceAllOp) |
2786 | REDUCE_SHAPE_INFER(tosa::ReduceAnyOp) |
2787 | REDUCE_SHAPE_INFER(tosa::ReduceMaxOp) |
2788 | REDUCE_SHAPE_INFER(tosa::ReduceMinOp) |
2789 | REDUCE_SHAPE_INFER(tosa::ReduceProductOp) |
2790 | REDUCE_SHAPE_INFER(tosa::ReduceSumOp) |
2791 | #undef REDUCE_SHAPE_INFER |
2792 | COMPATIBLE_RETURN_TYPES(tosa::ConcatOp) |
2793 | #undef COMPATIBLE_RETURN_TYPES |
2794 | |
2795 | template <typename T> |
2796 | static LogicalResult verifyReduceOp(T op) { |
2797 | // All TOSA reduce Ops have input, output and axis. |
2798 | TensorType inputType = op.getInput().getType(); |
2799 | TensorType outputType = op.getOutput().getType(); |
2800 | int32_t reduceAxis = op.getAxis(); |
2801 | |
2802 | if (reduceAxis < 0) { |
2803 | op.emitOpError("reduce axis must not be negative"); |
2804 | return failure(); |
2805 | } |
2806 | if (inputType.hasRank()) { |
2807 | int64_t inputRank = inputType.getRank(); |
2808 | // We allow for a special case where the input/output shape has rank 0 and |
2809 | // axis is also 0. |
2810 | if (reduceAxis >= inputRank && !(reduceAxis == 0 && inputRank == 0)) { |
2811 | op.emitOpError("expect input tensor rank (") |
2812 | << inputRank << ") to be larger than reduce axis ("<< reduceAxis |
2813 | << ")"; |
2814 | return failure(); |
2815 | } |
2816 | } |
2817 | if (outputType.hasRank()) { |
2818 | int64_t outputRank = outputType.getRank(); |
2819 | if (inputType.hasRank() && outputRank != inputType.getRank()) { |
2820 | op.emitOpError( |
2821 | "expect output tensor rank to be equal to input tensor rank"); |
2822 | return failure(); |
2823 | } |
2824 | if (reduceAxis >= outputRank && !(reduceAxis == 0 && outputRank == 0)) { |
2825 | op.emitOpError("expect output tensor rank (") |
2826 | << outputRank << ") to be larger than reduce axis ("<< reduceAxis |
2827 | << ")"; |
2828 | return failure(); |
2829 | } |
2830 | // We can only verify the reduced dimension size to be 1 if this is not |
2831 | // the special case of output rank == 0. |
2832 | if (outputRank != 0) { |
2833 | auto outputShape = outputType.getShape(); |
2834 | if (!outputType.isDynamicDim(reduceAxis) && |
2835 | outputShape[reduceAxis] != 1) { |
2836 | op.emitOpError("expect reduced dimension size to be 1, got ") |
2837 | << outputShape[reduceAxis]; |
2838 | return failure(); |
2839 | } |
2840 | } |
2841 | } |
2842 | return success(); |
2843 | } |
2844 | |
2845 | LogicalResult tosa::ReduceAllOp::verify() { return verifyReduceOp(*this); } |
2846 | LogicalResult tosa::ReduceAnyOp::verify() { return verifyReduceOp(*this); } |
2847 | LogicalResult tosa::ReduceMaxOp::verify() { return verifyReduceOp(*this); } |
2848 | LogicalResult tosa::ReduceMinOp::verify() { return verifyReduceOp(*this); } |
2849 | LogicalResult tosa::ReduceProductOp::verify() { return verifyReduceOp(*this); } |
2850 | LogicalResult tosa::ReduceSumOp::verify() { return verifyReduceOp(*this); } |
2851 | |
2852 | static LogicalResult NAryInferReturnTypes( |
2853 | const ValueShapeRange &operands, |
2854 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2855 | llvm::SmallVector<int64_t> outShape; |
2856 | if (resolveBroadcastShape(operands, outShape).failed()) { |
2857 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents()); |
2858 | } else { |
2859 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outShape)); |
2860 | } |
2861 | return success(); |
2862 | } |
2863 | |
2864 | #define NARY_SHAPE_INFER(OP) \ |
2865 | LogicalResult OP::inferReturnTypeComponents( \ |
2866 | MLIRContext *context, ::std::optional<Location> location, \ |
2867 | ValueShapeRange operands, DictionaryAttr attributes, \ |
2868 | OpaqueProperties properties, RegionRange regions, \ |
2869 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \ |
2870 | return NAryInferReturnTypes(operands, inferredReturnShapes); \ |
2871 | } |
2872 | |
2873 | NARY_SHAPE_INFER(tosa::AbsOp) |
2874 | NARY_SHAPE_INFER(tosa::AddOp) |
2875 | NARY_SHAPE_INFER(tosa::ArithmeticRightShiftOp) |
2876 | NARY_SHAPE_INFER(tosa::BitwiseAndOp) |
2877 | NARY_SHAPE_INFER(tosa::BitwiseOrOp) |
2878 | NARY_SHAPE_INFER(tosa::BitwiseXorOp) |
2879 | NARY_SHAPE_INFER(tosa::BitwiseNotOp) |
2880 | NARY_SHAPE_INFER(tosa::CastOp) |
2881 | NARY_SHAPE_INFER(tosa::CeilOp) |
2882 | NARY_SHAPE_INFER(tosa::ClampOp) |
2883 | NARY_SHAPE_INFER(tosa::ClzOp) |
2884 | NARY_SHAPE_INFER(tosa::CosOp) |
2885 | NARY_SHAPE_INFER(tosa::ExpOp) |
2886 | NARY_SHAPE_INFER(tosa::FloorOp) |
2887 | NARY_SHAPE_INFER(tosa::GreaterEqualOp) |
2888 | NARY_SHAPE_INFER(tosa::GreaterOp) |
2889 | NARY_SHAPE_INFER(tosa::IdentityOp) |
2890 | NARY_SHAPE_INFER(tosa::IntDivOp) |
2891 | NARY_SHAPE_INFER(tosa::LogOp) |
2892 | NARY_SHAPE_INFER(tosa::LogicalAndOp) |
2893 | NARY_SHAPE_INFER(tosa::LogicalLeftShiftOp) |
2894 | NARY_SHAPE_INFER(tosa::LogicalNotOp) |
2895 | NARY_SHAPE_INFER(tosa::LogicalOrOp) |
2896 | NARY_SHAPE_INFER(tosa::LogicalRightShiftOp) |
2897 | NARY_SHAPE_INFER(tosa::LogicalXorOp) |
2898 | NARY_SHAPE_INFER(tosa::MaximumOp) |
2899 | NARY_SHAPE_INFER(tosa::MinimumOp) |
2900 | NARY_SHAPE_INFER(tosa::PowOp) |
2901 | NARY_SHAPE_INFER(tosa::ReciprocalOp) |
2902 | NARY_SHAPE_INFER(tosa::ReverseOp) |
2903 | NARY_SHAPE_INFER(tosa::RsqrtOp) |
2904 | NARY_SHAPE_INFER(tosa::SinOp) |
2905 | NARY_SHAPE_INFER(tosa::SelectOp) |
2906 | NARY_SHAPE_INFER(tosa::SubOp) |
2907 | NARY_SHAPE_INFER(tosa::TanhOp) |
2908 | NARY_SHAPE_INFER(tosa::ErfOp) |
2909 | NARY_SHAPE_INFER(tosa::SigmoidOp) |
2910 | #undef PRED_SHAPE_INFER |
2911 | |
2912 | LogicalResult tosa::NegateOp::inferReturnTypeComponents( |
2913 | MLIRContext *context, ::std::optional<Location> location, |
2914 | NegateOp::Adaptor adaptor, |
2915 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2916 | ShapeAdaptor inputShape(adaptor.getInput1().getType()); |
2917 | inferredReturnShapes.push_back(ShapedTypeComponents(inputShape)); |
2918 | return success(); |
2919 | } |
2920 | |
2921 | LogicalResult tosa::NegateOp::verify() { |
2922 | // Verify same element type |
2923 | const Type input1Type = getInput1().getType(); |
2924 | const Type outputType = getOutput().getType(); |
2925 | if (verifySameElementTypes(*this, input1Type, outputType).failed()) |
2926 | return failure(); |
2927 | |
2928 | // Verify same shape |
2929 | const SmallVector<Type, 2> types = {input1Type, outputType}; |
2930 | if (failed(verifyCompatibleShapes(types))) |
2931 | return emitOpError() << "requires the same shape for input1 and output"; |
2932 | |
2933 | const Type input1EType = getStorageElementTypeOrSelf(getInput1().getType()); |
2934 | const Type input1ZpEType = |
2935 | getStorageElementTypeOrSelf(getInput1Zp().getType()); |
2936 | if (input1EType != input1ZpEType) { |
2937 | return emitOpError("expect both input1 and its zero point are the same " |
2938 | "element type, got ") |
2939 | << input1EType << " and "<< input1ZpEType; |
2940 | } |
2941 | const Type outputEType = getStorageElementTypeOrSelf(getOutput().getType()); |
2942 | const Type outputZpEType = |
2943 | getStorageElementTypeOrSelf(getOutputZp().getType()); |
2944 | if (outputEType != outputZpEType) { |
2945 | return emitOpError("expect both output and its zero point are the same " |
2946 | "element type, got ") |
2947 | << outputEType << " and "<< outputZpEType; |
2948 | } |
2949 | |
2950 | FailureOr<int64_t> maybeIZp = getInput1ZeroPoint(); |
2951 | if (succeeded(maybeIZp) && verifyInput1ZeroPoint(*maybeIZp).failed()) |
2952 | return failure(); |
2953 | |
2954 | FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
2955 | if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed()) |
2956 | return failure(); |
2957 | |
2958 | return success(); |
2959 | } |
2960 | |
2961 | static LogicalResult poolingInferReturnTypes( |
2962 | ShapeAdaptor inputShape, ArrayRef<int64_t> kernel, ArrayRef<int64_t> stride, |
2963 | ArrayRef<int64_t> pad, |
2964 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2965 | llvm::SmallVector<int64_t> outputShape; |
2966 | outputShape.resize(4, ShapedType::kDynamic); |
2967 | |
2968 | // We only know the rank if the input type is unranked. |
2969 | if (!inputShape) { |
2970 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outputShape)); |
2971 | return success(); |
2972 | } |
2973 | |
2974 | // Batch and number of channels are identical for pooling layer. |
2975 | outputShape[0] = inputShape.getDimSize(index: 0); |
2976 | outputShape[3] = inputShape.getDimSize(index: 3); |
2977 | |
2978 | int64_t height = inputShape.getDimSize(index: 1); |
2979 | int64_t width = inputShape.getDimSize(index: 2); |
2980 | |
2981 | if (!ShapedType::isDynamic(height)) { |
2982 | int64_t padded = height + pad[0] + pad[1] - kernel[0]; |
2983 | outputShape[1] = padded / stride[0] + 1; |
2984 | } |
2985 | |
2986 | if (!ShapedType::isDynamic(width)) { |
2987 | int64_t padded = width + pad[2] + pad[3] - kernel[1]; |
2988 | outputShape[2] = padded / stride[1] + 1; |
2989 | } |
2990 | |
2991 | inferredReturnShapes.push_back(Elt: ShapedTypeComponents(outputShape)); |
2992 | return success(); |
2993 | } |
2994 | |
2995 | LogicalResult Conv2DOp::inferReturnTypeComponents( |
2996 | MLIRContext *context, ::std::optional<Location> location, |
2997 | Conv2DOp::Adaptor adaptor, |
2998 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
2999 | llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic); |
3000 | |
3001 | int64_t inputWidth = ShapedType::kDynamic; |
3002 | int64_t inputHeight = ShapedType::kDynamic; |
3003 | int64_t weightWidth = ShapedType::kDynamic; |
3004 | int64_t weightHeight = ShapedType::kDynamic; |
3005 | |
3006 | // Input shape describes input width/height and batch. |
3007 | |
3008 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3009 | if (inputShape.hasRank()) { |
3010 | outputShape[0] = inputShape.getDimSize(0); |
3011 | inputHeight = inputShape.getDimSize(1); |
3012 | inputWidth = inputShape.getDimSize(2); |
3013 | } |
3014 | |
3015 | // Weight shapes describes the filter width/height and the output channels. |
3016 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
3017 | if (weightShape.hasRank()) { |
3018 | outputShape[3] = weightShape.getDimSize(0); |
3019 | weightHeight = weightShape.getDimSize(1); |
3020 | weightWidth = weightShape.getDimSize(2); |
3021 | } |
3022 | |
3023 | // Bias shape can describe the output channels. |
3024 | ShapeAdaptor biasShape(adaptor.getBias().getType()); |
3025 | if (biasShape.hasRank()) { |
3026 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
3027 | ? biasShape.getDimSize(0) |
3028 | : outputShape[3]; |
3029 | } |
3030 | |
3031 | llvm::ArrayRef<int64_t> dilation = adaptor.getDilation(); |
3032 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
3033 | llvm::ArrayRef<int64_t> padding = adaptor.getPad(); |
3034 | |
3035 | if (!ShapedType::isDynamic(inputHeight) && |
3036 | !ShapedType::isDynamic(weightHeight)) { |
3037 | int64_t inputSize = inputHeight + padding[0] + padding[1]; |
3038 | int64_t filterSize = (weightHeight - 1) * dilation[0] + 1; |
3039 | int64_t unstridedResult = inputSize - filterSize + 1; |
3040 | outputShape[1] = (unstridedResult - 1) / stride[0] + 1; |
3041 | } |
3042 | |
3043 | if (!ShapedType::isDynamic(inputWidth) && |
3044 | !ShapedType::isDynamic(weightWidth)) { |
3045 | int64_t inputSize = inputWidth + padding[2] + padding[3]; |
3046 | int64_t filterSize = (weightWidth - 1) * dilation[1] + 1; |
3047 | int64_t unstridedResult = inputSize - filterSize + 1; |
3048 | outputShape[2] = (unstridedResult - 1) / stride[1] + 1; |
3049 | } |
3050 | |
3051 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
3052 | return success(); |
3053 | } |
3054 | |
3055 | LogicalResult Conv2DOp::verify() { |
3056 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() || |
3057 | verifyConvOpErrorIf(*this).failed()) |
3058 | return failure(); |
3059 | return success(); |
3060 | } |
3061 | |
3062 | LogicalResult Conv3DOp::inferReturnTypeComponents( |
3063 | MLIRContext *context, ::std::optional<Location> location, |
3064 | Conv3DOp::Adaptor adaptor, |
3065 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3066 | llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamic); |
3067 | |
3068 | int64_t inputWidth = ShapedType::kDynamic; |
3069 | int64_t inputHeight = ShapedType::kDynamic; |
3070 | int64_t inputDepth = ShapedType::kDynamic; |
3071 | |
3072 | int64_t weightWidth = ShapedType::kDynamic; |
3073 | int64_t weightHeight = ShapedType::kDynamic; |
3074 | int64_t weightDepth = ShapedType::kDynamic; |
3075 | |
3076 | // Input shape describes input width/height and batch. |
3077 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3078 | if (inputShape.hasRank()) { |
3079 | outputShape[0] = inputShape.getDimSize(0); |
3080 | inputDepth = inputShape.getDimSize(1); |
3081 | inputHeight = inputShape.getDimSize(2); |
3082 | inputWidth = inputShape.getDimSize(3); |
3083 | } |
3084 | |
3085 | // Weight shapes describes the filter width/height and the output channels. |
3086 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
3087 | if (weightShape.hasRank()) { |
3088 | outputShape[4] = weightShape.getDimSize(0); |
3089 | weightDepth = weightShape.getDimSize(1); |
3090 | weightHeight = weightShape.getDimSize(2); |
3091 | weightWidth = weightShape.getDimSize(3); |
3092 | } |
3093 | |
3094 | // Bias shape can describe the output channels. |
3095 | ShapeAdaptor biasShape(adaptor.getBias().getType()); |
3096 | if (biasShape.hasRank() && ShapedType::isDynamic(outputShape[4])) { |
3097 | outputShape[4] = biasShape.getDimSize(0); |
3098 | } |
3099 | |
3100 | llvm::ArrayRef<int64_t> dilation = adaptor.getDilation(); |
3101 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
3102 | llvm::ArrayRef<int64_t> pad = adaptor.getPad(); |
3103 | |
3104 | if (!ShapedType::isDynamic(inputDepth) && |
3105 | !ShapedType::isDynamic(weightDepth)) { |
3106 | int32_t inputSize = inputDepth + pad[0] + pad[1]; |
3107 | int32_t filterSize = (weightDepth - 1) * dilation[0] + 1; |
3108 | int32_t unstridedResult = inputSize - filterSize + 1; |
3109 | outputShape[1] = (unstridedResult - 1) / stride[0] + 1; |
3110 | } |
3111 | |
3112 | if (!ShapedType::isDynamic(inputHeight) && |
3113 | !ShapedType::isDynamic(weightHeight)) { |
3114 | int32_t inputSize = inputHeight + pad[2] + pad[3]; |
3115 | int32_t filterSize = (weightHeight - 1) * dilation[1] + 1; |
3116 | int32_t unstridedResult = inputSize - filterSize + 1; |
3117 | outputShape[2] = (unstridedResult - 1) / stride[1] + 1; |
3118 | } |
3119 | |
3120 | if (!ShapedType::isDynamic(inputWidth) && |
3121 | !ShapedType::isDynamic(weightWidth)) { |
3122 | int32_t inputSize = inputWidth + pad[4] + pad[5]; |
3123 | int32_t filterSize = (weightWidth - 1) * dilation[2] + 1; |
3124 | int32_t unstridedResult = inputSize - filterSize + 1; |
3125 | outputShape[3] = (unstridedResult - 1) / stride[2] + 1; |
3126 | } |
3127 | |
3128 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
3129 | return success(); |
3130 | } |
3131 | |
3132 | LogicalResult Conv3DOp::verify() { |
3133 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() || |
3134 | verifyConvOpErrorIf(*this).failed()) |
3135 | return failure(); |
3136 | return success(); |
3137 | } |
3138 | |
3139 | LogicalResult AvgPool2dOp::inferReturnTypeComponents( |
3140 | MLIRContext *context, ::std::optional<Location> location, |
3141 | AvgPool2dOp::Adaptor adaptor, |
3142 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3143 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3144 | const Properties &prop = adaptor.getProperties(); |
3145 | return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad, |
3146 | inferredReturnShapes); |
3147 | } |
3148 | |
3149 | LogicalResult MaxPool2dOp::inferReturnTypeComponents( |
3150 | MLIRContext *context, ::std::optional<Location> location, |
3151 | MaxPool2dOp::Adaptor adaptor, |
3152 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3153 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3154 | const Properties &prop = adaptor.getProperties(); |
3155 | return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad, |
3156 | inferredReturnShapes); |
3157 | } |
3158 | |
3159 | LogicalResult MaxPool2dOp::verify() { |
3160 | if (failed(verifySameElementTypes(*this, /* intype = */ getInput().getType(), |
3161 | /* outType = */ getOutput().getType()))) |
3162 | return failure(); |
3163 | |
3164 | if (failed(verifyPoolingOp(*this))) |
3165 | return failure(); |
3166 | |
3167 | return success(); |
3168 | } |
3169 | |
3170 | LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents( |
3171 | MLIRContext *context, ::std::optional<Location> location, |
3172 | DepthwiseConv2DOp::Adaptor adaptor, |
3173 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3174 | llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic); |
3175 | |
3176 | int64_t inputWidth = ShapedType::kDynamic; |
3177 | int64_t inputHeight = ShapedType::kDynamic; |
3178 | int64_t inputChannels = ShapedType::kDynamic; |
3179 | |
3180 | int64_t weightWidth = ShapedType::kDynamic; |
3181 | int64_t weightHeight = ShapedType::kDynamic; |
3182 | int64_t depthChannels = ShapedType::kDynamic; |
3183 | |
3184 | // Input shape describes input width/height and batch. |
3185 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3186 | if (inputShape.hasRank()) { |
3187 | outputShape[0] = inputShape.getDimSize(0); |
3188 | inputHeight = inputShape.getDimSize(1); |
3189 | inputWidth = inputShape.getDimSize(2); |
3190 | inputChannels = inputShape.getDimSize(3); |
3191 | } |
3192 | |
3193 | // Weight shapes describes the filter width/height and the output channels. |
3194 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
3195 | if (weightShape.hasRank()) { |
3196 | weightHeight = weightShape.getDimSize(0); |
3197 | weightWidth = weightShape.getDimSize(1); |
3198 | inputChannels = ShapedType::isDynamic(inputChannels) |
3199 | ? weightShape.getDimSize(2) |
3200 | : inputChannels; |
3201 | depthChannels = weightShape.getDimSize(3); |
3202 | } |
3203 | |
3204 | // If both inputChannels and depthChannels are available we can determine |
3205 | // the output channels. |
3206 | if (!ShapedType::isDynamic(inputChannels) && |
3207 | !ShapedType::isDynamic(depthChannels)) { |
3208 | outputShape[3] = inputChannels * depthChannels; |
3209 | } |
3210 | |
3211 | // Bias shape can describe the output channels. |
3212 | ShapeAdaptor biasShape(adaptor.getBias().getType()); |
3213 | if (biasShape.hasRank()) { |
3214 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
3215 | ? biasShape.getDimSize(0) |
3216 | : outputShape[3]; |
3217 | } |
3218 | |
3219 | llvm::ArrayRef<int64_t> dilation = adaptor.getDilation(); |
3220 | llvm::ArrayRef<int64_t> padding = adaptor.getPad(); |
3221 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
3222 | |
3223 | if (!ShapedType::isDynamic(inputHeight) && |
3224 | !ShapedType::isDynamic(weightHeight)) { |
3225 | int64_t inputSize = inputHeight + padding[0] + padding[1]; |
3226 | int64_t filterSize = (weightHeight - 1) * dilation[0] + 1; |
3227 | int64_t unstridedResult = inputSize - filterSize + 1; |
3228 | outputShape[1] = (unstridedResult - 1) / stride[0] + 1; |
3229 | } |
3230 | |
3231 | if (!ShapedType::isDynamic(inputWidth) && |
3232 | !ShapedType::isDynamic(weightWidth)) { |
3233 | int64_t inputSize = inputWidth + padding[2] + padding[3]; |
3234 | int64_t filterSize = (weightWidth - 1) * dilation[1] + 1; |
3235 | int64_t unstridedResult = inputSize - filterSize + 1; |
3236 | outputShape[2] = (unstridedResult - 1) / stride[1] + 1; |
3237 | } |
3238 | |
3239 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
3240 | return success(); |
3241 | } |
3242 | |
3243 | LogicalResult DepthwiseConv2DOp::verify() { |
3244 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() || |
3245 | verifyConvOpErrorIf(*this).failed()) |
3246 | return failure(); |
3247 | return success(); |
3248 | } |
3249 | |
3250 | LogicalResult TransposeConv2DOp::inferReturnTypeComponents( |
3251 | MLIRContext *context, ::std::optional<Location> location, |
3252 | TransposeConv2DOp::Adaptor adaptor, |
3253 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3254 | llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic); |
3255 | |
3256 | int64_t inputWidth = ShapedType::kDynamic; |
3257 | int64_t inputHeight = ShapedType::kDynamic; |
3258 | int64_t weightWidth = ShapedType::kDynamic; |
3259 | int64_t weightHeight = ShapedType::kDynamic; |
3260 | |
3261 | // Input shape describes input width/height and batch. |
3262 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3263 | if (inputShape.hasRank()) { |
3264 | outputShape[0] = ShapedType::isDynamic(outputShape[0]) |
3265 | ? inputShape.getDimSize(0) |
3266 | : outputShape[0]; |
3267 | inputHeight = inputShape.getDimSize(1); |
3268 | inputWidth = inputShape.getDimSize(2); |
3269 | } |
3270 | |
3271 | // Weight shapes describes the filter width/height and the output channels. |
3272 | ShapeAdaptor weightShape(adaptor.getWeight().getType()); |
3273 | if (weightShape.hasRank()) { |
3274 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
3275 | ? weightShape.getDimSize(0) |
3276 | : outputShape[3]; |
3277 | weightHeight = weightShape.getDimSize(1); |
3278 | weightWidth = weightShape.getDimSize(2); |
3279 | } |
3280 | |
3281 | // Bias shape can describe the output channels. |
3282 | ShapeAdaptor biasShape(adaptor.getInput().getType()); |
3283 | if (biasShape.hasRank()) { |
3284 | outputShape[3] = ShapedType::isDynamic(outputShape[3]) |
3285 | ? biasShape.getDimSize(0) |
3286 | : outputShape[3]; |
3287 | } |
3288 | |
3289 | llvm::ArrayRef<int64_t> padding = adaptor.getOutPad(); |
3290 | llvm::ArrayRef<int64_t> stride = adaptor.getStride(); |
3291 | |
3292 | if (!ShapedType::isDynamic(inputHeight) && |
3293 | !ShapedType::isDynamic(weightHeight)) { |
3294 | int64_t calculateSize = |
3295 | (inputHeight - 1) * stride[0] + padding[0] + padding[1] + weightHeight; |
3296 | outputShape[1] = |
3297 | ShapedType::isDynamic(outputShape[1]) ? calculateSize : outputShape[1]; |
3298 | } |
3299 | |
3300 | if (!ShapedType::isDynamic(inputWidth) && |
3301 | !ShapedType::isDynamic(weightWidth)) { |
3302 | int64_t calculateSize = |
3303 | (inputWidth - 1) * stride[1] + padding[2] + padding[3] + weightWidth; |
3304 | outputShape[2] = |
3305 | ShapedType::isDynamic(outputShape[2]) ? calculateSize : outputShape[2]; |
3306 | } |
3307 | |
3308 | inferredReturnShapes.push_back(ShapedTypeComponents(outputShape)); |
3309 | return success(); |
3310 | } |
3311 | |
3312 | LogicalResult TransposeConv2DOp::verify() { |
3313 | if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed()) |
3314 | return failure(); |
3315 | |
3316 | const llvm::ArrayRef<int64_t> strides = getStride(); |
3317 | const int64_t strideY = strides[0]; |
3318 | const int64_t strideX = strides[1]; |
3319 | |
3320 | if (strideY < 1 || strideX < 1) |
3321 | return emitOpError("expect all stride values to be >= 1, got [") |
3322 | << strides << "]"; |
3323 | |
3324 | const auto checkPadAgainstKernelDim = |
3325 | [this](int64_t pad_value, int64_t kernel_dim_size, |
3326 | llvm::StringRef pad_name, |
3327 | llvm::StringRef kernel_dim_name) -> LogicalResult { |
3328 | if (pad_value <= -kernel_dim_size) |
3329 | return emitOpError("expected ") |
3330 | << pad_name << " > -"<< kernel_dim_name |
3331 | << ", but got: "<< pad_name << "="<< pad_value << " and " |
3332 | << kernel_dim_name << "="<< kernel_dim_size; |
3333 | return success(); |
3334 | }; |
3335 | |
3336 | const llvm::ArrayRef<int64_t> padding = getOutPad(); |
3337 | const int64_t outPadTop = padding[0]; |
3338 | const int64_t outPadBottom = padding[1]; |
3339 | const int64_t outPadLeft = padding[2]; |
3340 | const int64_t outPadRight = padding[3]; |
3341 | |
3342 | const auto weightType = |
3343 | llvm::dyn_cast<RankedTensorType>(getWeight().getType()); |
3344 | |
3345 | if (weightType) { |
3346 | const int64_t kernelHeight = weightType.getDimSize(1); |
3347 | if (!ShapedType::isDynamic(kernelHeight)) { |
3348 | if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, |
3349 | "out_pad_top", "KH"))) |
3350 | return failure(); |
3351 | |
3352 | if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight, |
3353 | "out_pad_bottom", "KH"))) |
3354 | return failure(); |
3355 | } |
3356 | |
3357 | const int64_t kernelWidth = weightType.getDimSize(2); |
3358 | if (!ShapedType::isDynamic(kernelWidth)) { |
3359 | if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, |
3360 | "out_pad_left", "KW"))) |
3361 | return failure(); |
3362 | |
3363 | if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth, |
3364 | "out_pad_right", "KW"))) |
3365 | return failure(); |
3366 | } |
3367 | } |
3368 | |
3369 | // Rest of the checks depend on the output type being a RankedTensorType |
3370 | const auto outputType = |
3371 | llvm::dyn_cast<RankedTensorType>(getOutput().getType()); |
3372 | if (!outputType) |
3373 | return success(); |
3374 | |
3375 | const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType()); |
3376 | if (inputType && weightType) { |
3377 | const int64_t inputHeight = inputType.getDimSize(1); |
3378 | const int64_t kernelHeight = weightType.getDimSize(1); |
3379 | const int64_t outputHeight = outputType.getDimSize(1); |
3380 | |
3381 | if (!ShapedType::isDynamic(inputHeight) && |
3382 | !ShapedType::isDynamic(outputHeight)) { |
3383 | if (outputHeight != |
3384 | (inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight) |
3385 | return emitOpError( |
3386 | "dimension mismatch: expected OH == (IH - 1) * stride_y " |
3387 | "+ out_pad_top + out_pad_bottom + KH, but got ") |
3388 | << outputHeight << " != ("<< inputHeight << " - 1) * " |
3389 | << strideY << " + "<< outPadTop << " + "<< outPadBottom |
3390 | << " + "<< kernelHeight; |
3391 | } |
3392 | |
3393 | const int64_t inputWidth = inputType.getDimSize(2); |
3394 | const int64_t kernelWidth = weightType.getDimSize(2); |
3395 | const int64_t outputWidth = outputType.getDimSize(2); |
3396 | |
3397 | if (!ShapedType::isDynamic(inputWidth) && |
3398 | !ShapedType::isDynamic(outputWidth)) { |
3399 | if (outputWidth != |
3400 | (inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth) |
3401 | return emitOpError( |
3402 | "dimension mismatch: expected OW == (IW - 1) * stride_x " |
3403 | "+ out_pad_left + out_pad_right + KW, but got ") |
3404 | << outputWidth << " != ("<< inputWidth << " - 1) * "<< strideX |
3405 | << " + "<< outPadLeft << " + "<< outPadRight << " + " |
3406 | << kernelWidth; |
3407 | } |
3408 | } |
3409 | |
3410 | const auto biasType = llvm::dyn_cast<RankedTensorType>(getBias().getType()); |
3411 | |
3412 | if (!biasType) |
3413 | return success(); |
3414 | |
3415 | const int64_t biasChannels = biasType.getDimSize(0); |
3416 | |
3417 | // Skip further checks if bias is dynamic |
3418 | if (biasChannels == ShapedType::kDynamic) |
3419 | return success(); |
3420 | |
3421 | const int64_t outputChannels = outputType.getDimSize(3); |
3422 | if (biasChannels != outputChannels && biasChannels != 1) |
3423 | return emitOpError( |
3424 | "bias channels expected to be equal to output channels (") |
3425 | << outputChannels << ") or 1, got "<< biasChannels; |
3426 | |
3427 | return success(); |
3428 | } |
3429 | |
3430 | LogicalResult RescaleOp::verify() { |
3431 | auto inputType = llvm::dyn_cast<ShapedType>(getInput().getType()); |
3432 | if (!inputType) { |
3433 | emitOpError("expect shaped tensor for input, got ") << getInput().getType(); |
3434 | return failure(); |
3435 | } |
3436 | |
3437 | auto inputElementType = |
3438 | getStorageElementTypeOrSelf(inputType.getElementType()); |
3439 | if (!mlir::isa<IntegerType>(inputElementType)) { |
3440 | emitOpError("expect input to have integer element type, got ") |
3441 | << inputElementType; |
3442 | return failure(); |
3443 | } |
3444 | |
3445 | auto outputType = llvm::dyn_cast<ShapedType>(getOutput().getType()); |
3446 | if (!outputType) { |
3447 | emitOpError("expect shaped tensor for output, got ") |
3448 | << getOutput().getType(); |
3449 | return failure(); |
3450 | } |
3451 | |
3452 | auto outputElementType = |
3453 | getStorageElementTypeOrSelf(outputType.getElementType()); |
3454 | if (!mlir::isa<IntegerType>(outputElementType)) { |
3455 | emitOpError("expect output to have integer element type, got ") |
3456 | << outputElementType; |
3457 | return failure(); |
3458 | } |
3459 | |
3460 | if (verifyRescaleValueAndZpTypes(*this, getInput(), getInputZp(), "input") |
3461 | .failed()) |
3462 | return failure(); |
3463 | |
3464 | if (verifyRescaleValueAndZpTypes(*this, getOutput(), getOutputZp(), "output") |
3465 | .failed()) |
3466 | return failure(); |
3467 | |
3468 | FailureOr<int64_t> maybeIZp = getInputZeroPoint(); |
3469 | if (succeeded(maybeIZp) && verifyInputZeroPoint(*maybeIZp).failed()) |
3470 | return failure(); |
3471 | |
3472 | FailureOr<int64_t> maybeOZp = getOutputZeroPoint(); |
3473 | if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed()) |
3474 | return failure(); |
3475 | |
3476 | auto multiplierType = llvm::dyn_cast<ShapedType>(getMultiplier().getType()); |
3477 | if (!multiplierType) { |
3478 | emitOpError("expect shaped tensor for multiplier, got ") |
3479 | << getMultiplier().getType(); |
3480 | return failure(); |
3481 | } |
3482 | |
3483 | auto shiftType = llvm::dyn_cast<ShapedType>(getShift().getType()); |
3484 | if (!shiftType) { |
3485 | emitOpError("expect shaped tensor for shift, got ") << getShift().getType(); |
3486 | return failure(); |
3487 | } |
3488 | |
3489 | // multiplier element type must be i32 for scale32 = true |
3490 | if (getScale32() && !multiplierType.getElementType().isInteger(32)) { |
3491 | emitOpError("expect i32 element type for multiplier for scale32=true, got ") |
3492 | << multiplierType.getElementType(); |
3493 | return failure(); |
3494 | } |
3495 | |
3496 | // multiplier element type must be i16 for scale32 = false |
3497 | if (!getScale32() && !multiplierType.getElementType().isInteger(16)) { |
3498 | emitOpError( |
3499 | "expect i16 element type for multiplier for scale32=false, got ") |
3500 | << multiplierType.getElementType(); |
3501 | return failure(); |
3502 | } |
3503 | |
3504 | if (!inputType.hasRank()) |
3505 | return success(); |
3506 | |
3507 | // multiplier/shift must have shape = {numChannels}, |
3508 | // where numChannel is 1 if per_channel = false |
3509 | // otherwise numChannel is dimension in input shape's last axis |
3510 | int64_t numChannels = 1; |
3511 | if (getPerChannel()) { |
3512 | if (inputType.getRank() < 1) { |
3513 | emitOpError("requires input to be at least rank 1 when per_channel is " |
3514 | "true, but got rank ") |
3515 | << inputType.getRank(); |
3516 | return failure(); |
3517 | } |
3518 | numChannels = inputType.getDimSize(inputType.getRank() - 1); |
3519 | } |
3520 | |
3521 | if (!multiplierType.hasRank()) |
3522 | return success(); |
3523 | |
3524 | ArrayRef<int64_t> multiplierShape = multiplierType.getShape(); |
3525 | // multiplier input has rank 1 by dialect definition |
3526 | if (multiplierShape[0] != ShapedType::kDynamic && |
3527 | multiplierShape[0] != numChannels) { |
3528 | emitOpError("expect shape of { ") |
3529 | << numChannels << " } for multiplier input, got { " |
3530 | << multiplierShape[0] << " }"; |
3531 | return failure(); |
3532 | } |
3533 | |
3534 | if (!shiftType.hasRank()) |
3535 | return success(); |
3536 | |
3537 | ArrayRef<int64_t> shiftShape = shiftType.getShape(); |
3538 | // shift input has rank 1 by dialect definition |
3539 | if (shiftShape[0] != ShapedType::kDynamic && shiftShape[0] != numChannels) { |
3540 | emitOpError("expect shape of { ") |
3541 | << numChannels << " } for shift input, got { "<< shiftShape[0] << " }"; |
3542 | return failure(); |
3543 | } |
3544 | |
3545 | return success(); |
3546 | } |
3547 | |
3548 | LogicalResult RescaleOp::inferReturnTypeComponents( |
3549 | MLIRContext *context, ::std::optional<Location> location, |
3550 | RescaleOp::Adaptor adaptor, |
3551 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3552 | ShapeAdaptor inputShape(adaptor.getInput().getType()); |
3553 | inferredReturnShapes.push_back(ShapedTypeComponents(inputShape)); |
3554 | return success(); |
3555 | } |
3556 | |
3557 | LogicalResult IfOp::inferReturnTypeComponents( |
3558 | MLIRContext *context, ::std::optional<Location> location, |
3559 | IfOp::Adaptor adaptor, |
3560 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3561 | llvm::SmallVector<tosa::YieldOp> yieldOps; |
3562 | for (Region *region : adaptor.getRegions()) { |
3563 | for (auto &block : *region) |
3564 | if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator())) |
3565 | yieldOps.push_back(returnOp); |
3566 | } |
3567 | |
3568 | if (yieldOps.empty()) |
3569 | return failure(); |
3570 | |
3571 | // Get the initial type information for the yield op. |
3572 | llvm::SmallVector<ValueKnowledge> resultKnowledge; |
3573 | resultKnowledge.reserve(yieldOps.front().getNumOperands()); |
3574 | for (auto operand : yieldOps.front().getOperands()) { |
3575 | resultKnowledge.push_back( |
3576 | ValueKnowledge::getKnowledgeFromType(operand.getType())); |
3577 | } |
3578 | |
3579 | for (auto yieldOp : yieldOps) { |
3580 | if (resultKnowledge.size() != yieldOp.getNumOperands()) |
3581 | return failure(); |
3582 | |
3583 | for (const auto &it : llvm::enumerate(yieldOp.getOperands())) { |
3584 | int32_t index = it.index(); |
3585 | auto meet = ValueKnowledge::meet( |
3586 | resultKnowledge[index], |
3587 | ValueKnowledge::getKnowledgeFromType(it.value().getType())); |
3588 | if (!meet) |
3589 | continue; |
3590 | resultKnowledge[index] = meet; |
3591 | } |
3592 | } |
3593 | |
3594 | for (const ValueKnowledge &result : resultKnowledge) { |
3595 | inferredReturnShapes.push_back(result.getShapedTypeComponents()); |
3596 | } |
3597 | |
3598 | return success(); |
3599 | } |
3600 | |
3601 | LogicalResult WhileOp::inferReturnTypeComponents( |
3602 | MLIRContext *context, ::std::optional<Location> location, |
3603 | WhileOp::Adaptor adaptor, |
3604 | SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { |
3605 | llvm::SmallVector<tosa::YieldOp> yieldOps; |
3606 | for (auto &block : adaptor.getBodyGraph()) |
3607 | if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator())) |
3608 | yieldOps.push_back(returnOp); |
3609 | |
3610 | // TOSA's while must have a tosa.yield as its terminator. If not found this |
3611 | // tosa.while is invalid. |
3612 | if (yieldOps.empty()) |
3613 | return failure(); |
3614 | |
3615 | // Get the initial type information from the operand types. |
3616 | llvm::SmallVector<ValueKnowledge> resultKnowledge; |
3617 | resultKnowledge.reserve(yieldOps.front().getNumOperands()); |
3618 | for (auto operand : yieldOps.front().getOperands()) { |
3619 | resultKnowledge.push_back( |
3620 | ValueKnowledge::getKnowledgeFromType(operand.getType())); |
3621 | } |
3622 | |
3623 | for (auto yieldOp : yieldOps) { |
3624 | if (resultKnowledge.size() != yieldOp.getNumOperands()) |
3625 | return failure(); |
3626 | |
3627 | for (const auto &it : llvm::enumerate(yieldOp.getOperands())) { |
3628 | int32_t index = it.index(); |
3629 | if (auto meet = ValueKnowledge::meet( |
3630 | resultKnowledge[index], |
3631 | ValueKnowledge::getKnowledgeFromType(it.value().getType()))) { |
3632 | resultKnowledge[index] = meet; |
3633 | } |
3634 | } |
3635 | } |
3636 | |
3637 | for (const ValueKnowledge &result : resultKnowledge) { |
3638 | inferredReturnShapes.push_back(result.getShapedTypeComponents()); |
3639 | } |
3640 | |
3641 | return success(); |
3642 | } |
3643 | |
3644 | std::optional<SmallVector<int64_t, 4>> ApplyScaleOp::getShapeForUnroll() { |
3645 | if (auto vt = llvm::dyn_cast<VectorType>(getType())) |
3646 | return llvm::to_vector<4>(vt.getShape()); |
3647 | return std::nullopt; |
3648 | } |
3649 | |
3650 | // parse and print of IfOp refer to the implementation of SCF dialect. |
3651 | ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) { |
3652 | // Create the regions for 'then'. |
3653 | result.regions.reserve(2); |
3654 | Region *thenRegion = result.addRegion(); |
3655 | Region *elseRegion = result.addRegion(); |
3656 | |
3657 | auto &builder = parser.getBuilder(); |
3658 | OpAsmParser::UnresolvedOperand cond; |
3659 | // Create a i1 tensor type for the boolean condition. |
3660 | Type i1Type = RankedTensorType::get({}, builder.getIntegerType(1)); |
3661 | if (parser.parseOperand(cond) || |
3662 | parser.resolveOperand(cond, i1Type, result.operands)) |
3663 | return failure(); |
3664 | // Parse optional results type list. |
3665 | if (parser.parseOptionalArrowTypeList(result.types)) |
3666 | return failure(); |
3667 | // Parse the 'then' region. |
3668 | if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{})) |
3669 | return failure(); |
3670 | |
3671 | // If we find an 'else' keyword then parse the 'else' region. |
3672 | if (!parser.parseOptionalKeyword("else")) { |
3673 | if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{})) |
3674 | return failure(); |
3675 | } |
3676 | |
3677 | // Parse the optional attribute list. |
3678 | if (parser.parseOptionalAttrDict(result.attributes)) |
3679 | return failure(); |
3680 | return success(); |
3681 | } |
3682 | |
3683 | void IfOp::print(OpAsmPrinter &p) { |
3684 | bool printBlockTerminators = false; |
3685 | |
3686 | p << " "<< getCondition(); |
3687 | if (!getResults().empty()) { |
3688 | p << " -> ("<< getResultTypes() << ")"; |
3689 | // Print yield explicitly if the op defines values. |
3690 | printBlockTerminators = true; |
3691 | } |
3692 | p << ' '; |
3693 | p.printRegion(getThenGraph(), |
3694 | /*printEntryBlockArgs=*/false, |
3695 | /*printBlockTerminators=*/printBlockTerminators); |
3696 | |
3697 | // Print the 'else' regions if it exists and has a block. |
3698 | auto &elseRegion = getElseGraph(); |
3699 | if (!elseRegion.empty()) { |
3700 | p << " else "; |
3701 | p.printRegion(elseRegion, |
3702 | /*printEntryBlockArgs=*/false, |
3703 | /*printBlockTerminators=*/printBlockTerminators); |
3704 | } |
3705 | |
3706 | p.printOptionalAttrDict((*this)->getAttrs()); |
3707 | } |
3708 | |
3709 | LogicalResult IfOp::verify() { |
3710 | if (errorIfTypeOrShapeMismatch(*this, getThenGraph().front().getArguments(), |
3711 | "'then_graph' arguments", getInputList(), |
3712 | "'input_list'") |
3713 | .failed()) |
3714 | return failure(); |
3715 | |
3716 | if (errorIfTypeOrShapeMismatch(*this, getElseGraph().front().getArguments(), |
3717 | "'else_graph' arguments", getInputList(), |
3718 | "'input_list'") |
3719 | .failed()) |
3720 | return failure(); |
3721 | |
3722 | auto thenYield = cast<tosa::YieldOp>(getThenGraph().front().getTerminator()); |
3723 | if (errorIfTypeOrShapeMismatch(*this, thenYield.getInputs(), |
3724 | "'then_graph' results", getOutputList(), |
3725 | "'output_list'") |
3726 | .failed()) |
3727 | return failure(); |
3728 | |
3729 | auto elseYield = cast<tosa::YieldOp>(getElseGraph().front().getTerminator()); |
3730 | if (errorIfTypeOrShapeMismatch(*this, elseYield.getInputs(), |
3731 | "'else_graph' results", getOutputList(), |
3732 | "'output_list'") |
3733 | .failed()) |
3734 | return failure(); |
3735 | |
3736 | auto condType = getCondition().getType(); |
3737 | if (errorIfShapeNotSizeOne(*this, condType).failed()) |
3738 | return emitOpError() << "'condition' must be a size 1 tensor, got " |
3739 | << condType; |
3740 | |
3741 | return success(); |
3742 | } |
3743 | |
3744 | LogicalResult WhileOp::verify() { |
3745 | if (errorIfTypeOrShapeMismatch(*this, getInputList(), "'input_list'", |
3746 | getOutputList(), "'output_list'") |
3747 | .failed()) |
3748 | return failure(); |
3749 | |
3750 | if (errorIfTypeOrShapeMismatch(*this, getCondGraph().front().getArguments(), |
3751 | "'cond_graph' arguments", getInputList(), |
3752 | "'input_list'") |
3753 | .failed()) |
3754 | return failure(); |
3755 | |
3756 | if (errorIfTypeOrShapeMismatch(*this, getBodyGraph().front().getArguments(), |
3757 | "'body_graph' arguments", getInputList(), |
3758 | "'input_list'") |
3759 | .failed()) |
3760 | return failure(); |
3761 | |
3762 | auto bodyYield = cast<tosa::YieldOp>(getBodyGraph().front().getTerminator()); |
3763 | if (errorIfTypeOrShapeMismatch(*this, bodyYield.getInputs(), |
3764 | "'body_graph' results", getInputList(), |
3765 | "'input_list'") |
3766 | .failed()) |
3767 | return failure(); |
3768 | |
3769 | // Condition block output must be a single element tensor with a single bool |
3770 | // value. |
3771 | auto condYield = cast<tosa::YieldOp>(getCondGraph().front().getTerminator()); |
3772 | if (condYield.getInputs().size() != 1) |
3773 | return emitOpError() << "require 'cond_graph' only have one result"; |
3774 | |
3775 | auto condOutType = condYield.getInputs()[0].getType(); |
3776 | if (errorIfShapeNotSizeOne(*this, condOutType).failed()) |
3777 | return emitOpError() << "'cond_graph' result must be a size 1 tensor, got " |
3778 | << condOutType; |
3779 | |
3780 | if (!getElementTypeOrSelf(condOutType).isInteger(1)) |
3781 | return emitOpError() << "'cond_graph' result must be a boolean tensor, got " |
3782 | << condOutType; |
3783 | |
3784 | return success(); |
3785 | } |
3786 | |
3787 | LogicalResult ReverseOp::verify() { |
3788 | if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(), |
3789 | /* outType = */ getOutput().getType()) |
3790 | .failed()) |
3791 | return failure(); |
3792 | TensorType inputType = getInput1().getType(); |
3793 | TensorType outputType = getOutput().getType(); |
3794 | int32_t reverseAxis = getAxis(); |
3795 | |
3796 | if (reverseAxis < 0) |
3797 | return emitOpError("expected non-negative reverse axis"); |
3798 | if (inputType.hasRank()) { |
3799 | int64_t inputRank = inputType.getRank(); |
3800 | // We allow for a special case where the input/output shape has rank 0 and |
3801 | // axis is also 0. |
3802 | if (reverseAxis >= inputRank && !(reverseAxis == 0 && inputRank == 0)) |
3803 | return emitOpError("expect input tensor rank (") |
3804 | << inputRank << ") to be larger than reverse axis ("<< reverseAxis |
3805 | << ")"; |
3806 | } |
3807 | if (outputType.hasRank()) { |
3808 | int64_t outputRank = outputType.getRank(); |
3809 | if (inputType.hasRank() && outputRank != inputType.getRank()) |
3810 | return emitOpError( |
3811 | "expect output tensor rank to be equal to input tensor rank"); |
3812 | if (reverseAxis >= outputRank && !(reverseAxis == 0 && outputRank == 0)) |
3813 | return emitOpError("expect output tensor rank (") |
3814 | << outputRank << ") to be larger than reverse axis (" |
3815 | << reverseAxis << ")"; |
3816 | } |
3817 | return success(); |
3818 | } |
3819 | |
3820 | LogicalResult tosa::SelectOp::verify() { |
3821 | // verify input2 and input3 have same element type as output |
3822 | if (verifySameElementTypes(*this, /* inType = */ getInput2().getType(), |
3823 | /* outType = */ getOutput().getType()) |
3824 | .failed() || |
3825 | verifySameElementTypes(*this, /* inType = */ getInput3().getType(), |
3826 | /* outType = */ getOutput().getType()) |
3827 | .failed()) { |
3828 | return failure(); |
3829 | } |
3830 | // verify input1 has element type of bool |
3831 | auto predicateType = llvm::dyn_cast<ShapedType>(getInput1().getType()); |
3832 | if (!predicateType) { |
3833 | return emitOpError("expect shaped tensor for input1, got ") |
3834 | << getInput1().getType(); |
3835 | } |
3836 | auto predicateElementType = predicateType.getElementType(); |
3837 | if (!predicateElementType.isInteger(1)) { |
3838 | return emitOpError("expect element type of bool for input1, got ") |
3839 | << predicateElementType; |
3840 | } |
3841 | |
3842 | return success(); |
3843 | } |
3844 | |
3845 | LogicalResult tosa::VariableOp::verify() { |
3846 | StringRef symName = getName(); |
3847 | FailureOr<tosa::VariableOp> varOp = findVariableDecl(*this, symName); |
3848 | if (succeeded(varOp)) |
3849 | return emitOpError("illegal to have multiple declaration of '") |
3850 | << symName << "'"; |
3851 | |
3852 | return success(); |
3853 | } |
3854 | |
3855 | LogicalResult tosa::VariableReadOp::verify() { |
3856 | if (verifyVariableOpErrorIf(*this, getOutput1().getType(), "'output1'") |
3857 | .failed()) |
3858 | return failure(); |
3859 | |
3860 | return success(); |
3861 | } |
3862 | |
3863 | LogicalResult tosa::VariableWriteOp::verify() { |
3864 | if (verifyVariableOpErrorIf(*this, getInput1().getType(), "'input1'") |
3865 | .failed()) |
3866 | return failure(); |
3867 | |
3868 | return success(); |
3869 | } |
3870 | |
3871 | // parse and print of WhileOp refer to the implementation of SCF dialect. |
3872 | ParseResult WhileOp::parse(OpAsmParser &parser, OperationState &result) { |
3873 | SmallVector<OpAsmParser::Argument, 4> regionArgs; |
3874 | SmallVector<OpAsmParser::UnresolvedOperand, 4> operands; |
3875 | Region *cond = result.addRegion(); |
3876 | Region *body = result.addRegion(); |
3877 | |
3878 | OptionalParseResult listResult = |
3879 | parser.parseOptionalAssignmentList(regionArgs, operands); |
3880 | if (listResult.has_value() && failed(listResult.value())) |
3881 | return failure(); |
3882 | |
3883 | FunctionType functionType; |
3884 | SMLoc typeLoc = parser.getCurrentLocation(); |
3885 | if (failed(parser.parseColonType(functionType))) |
3886 | return failure(); |
3887 | |
3888 | result.addTypes(functionType.getResults()); |
3889 | |
3890 | if (functionType.getNumInputs() != operands.size()) { |
3891 | return parser.emitError(typeLoc) |
3892 | << "expected as many input types as operands " |
3893 | << "(expected "<< operands.size() << " got " |
3894 | << functionType.getNumInputs() << ")"; |
3895 | } |
3896 | |
3897 | // Resolve input operands. |
3898 | if (failed(parser.resolveOperands(operands, functionType.getInputs(), |
3899 | parser.getCurrentLocation(), |
3900 | result.operands))) |
3901 | return failure(); |
3902 | |
3903 | // Propagate the types into the region arguments. |
3904 | for (size_t i = 0, e = regionArgs.size(); i != e; ++i) |
3905 | regionArgs[i].type = functionType.getInput(i); |
3906 | |
3907 | return failure(parser.parseRegion(*cond, regionArgs) || |
3908 | parser.parseKeyword("do") || parser.parseRegion(*body) || |
3909 | parser.parseOptionalAttrDictWithKeyword(result.attributes)); |
3910 | } |
3911 | |
3912 | static void printInitializationList(OpAsmPrinter &parser, |
3913 | Block::BlockArgListType blocksArgs, |
3914 | ValueRange initializers, |
3915 | StringRef prefix = "") { |
3916 | assert(blocksArgs.size() == initializers.size() && |
3917 | "expected same length of arguments and initializers"); |
3918 | if (initializers.empty()) |
3919 | return; |
3920 | |
3921 | parser << prefix << '('; |
3922 | llvm::interleaveComma( |
3923 | c: llvm::zip(t&: blocksArgs, u&: initializers), os&: parser, |
3924 | each_fn: [&](auto it) { parser << std::get<0>(it) << " = "<< std::get<1>(it); }); |
3925 | parser << ")"; |
3926 | } |
3927 | |
3928 | void WhileOp::print(OpAsmPrinter &parser) { |
3929 | printInitializationList(parser, getCondGraph().front().getArguments(), |
3930 | getInputList(), " "); |
3931 | parser << " : "; |
3932 | parser.printFunctionalType(getInputList().getTypes(), |
3933 | getResults().getTypes()); |
3934 | parser << ' '; |
3935 | parser.printRegion(getCondGraph(), /*printEntryBlockArgs=*/false); |
3936 | parser << " do "; |
3937 | parser.printRegion(getBodyGraph()); |
3938 | parser.printOptionalAttrDictWithKeyword((*this)->getAttrs()); |
3939 | } |
3940 | |
3941 | // Create a rank-1 const tensor for zero point of the source tensor. |
3942 | std::optional<Value> mlir::tosa::createZeroPointTensor(OpBuilder &builder, |
3943 | Location loc, |
3944 | Type srcElemType, |
3945 | int64_t zp) { |
3946 | srcElemType = getStorageElementTypeOrSelf(type: srcElemType); |
3947 | auto zpType = mlir::RankedTensorType::get({1}, srcElemType); |
3948 | if (llvm::isa<FloatType>(Val: srcElemType)) { |
3949 | auto zpAttr = DenseElementsAttr::get( |
3950 | zpType, builder.getFloatAttr(srcElemType, static_cast<double>(zp))); |
3951 | return builder.create<tosa::ConstOp>(loc, zpType, zpAttr); |
3952 | } |
3953 | if (llvm::isa<IntegerType>(Val: srcElemType)) { |
3954 | auto zpAttr = |
3955 | DenseElementsAttr::get(zpType, builder.getIntegerAttr(srcElemType, zp)); |
3956 | return builder.create<tosa::ConstOp>(loc, zpType, zpAttr); |
3957 | } |
3958 | llvm::errs() << "zero point is not allowed for unsupported data types\n"; |
3959 | return std::nullopt; |
3960 | } |
3961 | |
3962 | //===----------------------------------------------------------------------===// |
3963 | // TOSA Shape and Shape Operators Helper functions. |
3964 | //===----------------------------------------------------------------------===// |
3965 | |
3966 | bool mlir::tosa::isa_tosa_shape_type(mlir::Type t) { |
3967 | return mlir::isa<tosa::shapeType>(t); |
3968 | } |
3969 | |
3970 | LogicalResult |
3971 | mlir::tosa::shapeType::verify(function_ref<InFlightDiagnostic()> emitError, |
3972 | int rank) { |
3973 | if (rank < 0) |
3974 | return emitError() << "invalid rank (must be >= 0): "<< rank; |
3975 | return success(); |
3976 | } |
3977 | |
3978 | LogicalResult OpTrait::tosa::verifyTosaResolvableShapeOperands(Operation *op) { |
3979 | for (auto v : op->getOperands()) { |
3980 | if (mlir::isa<::mlir::tosa::shapeType>(v.getType())) { |
3981 | Operation *definingOp = v.getDefiningOp(); |
3982 | if (!definingOp || !definingOp->hasTrait<TosaShapeOperator>()) { |
3983 | return op->emitOpError(message: "shape operand is not compile time resolvable"); |
3984 | } |
3985 | } |
3986 | } |
3987 | return success(); |
3988 | } |
3989 | |
3990 | LogicalResult OpTrait::tosa::verifyTosaShapeOperator(Operation *op) { |
3991 | for (auto type : op->getOperandTypes()) { |
3992 | if (!mlir::isa<mlir::tosa::shapeType>(type)) { |
3993 | return op->emitOpError(message: "must have operands with tosa shape type"); |
3994 | } |
3995 | } |
3996 | for (auto type : op->getResultTypes()) { |
3997 | if (!mlir::isa<mlir::tosa::shapeType>(type)) { |
3998 | return op->emitOpError(message: "must have result with tosa shape type"); |
3999 | } |
4000 | } |
4001 | return success(); |
4002 | } |
4003 | |
4004 | LogicalResult |
4005 | OpTrait::tosa::verifyTosaShapeOperatorWithSameRanks(Operation *op) { |
4006 | if (failed(Result: OpTrait::impl::verifyAtLeastNOperands(op, numOperands: 1)) || |
4007 | failed(Result: verifyTosaShapeOperator(op))) |
4008 | return failure(); |
4009 | |
4010 | // delegate function that returns rank of shape type |
4011 | auto getRank = [](const Type type) { |
4012 | return mlir::cast<mlir::tosa::shapeType>(type).getRank(); |
4013 | }; |
4014 | auto operandTypes = op->getOperandTypes(); |
4015 | auto resultTypes = op->getResultTypes(); |
4016 | |
4017 | auto rank = getRank(*op->getOperandTypes().begin()); |
4018 | for (auto type : operandTypes) { |
4019 | if (getRank(type) != rank) { |
4020 | return op->emitOpError(message: "operands don't have matching ranks"); |
4021 | } |
4022 | } |
4023 | for (auto type : resultTypes) { |
4024 | if (getRank(type) != rank) { |
4025 | return op->emitOpError(message: "result shape has different rank than operands"); |
4026 | } |
4027 | } |
4028 | return success(); |
4029 | } |
4030 | |
4031 | //===----------------------------------------------------------------------===// |
4032 | // TOSA Shape Operators verify functions. |
4033 | //===----------------------------------------------------------------------===// |
4034 | |
4035 | LogicalResult tosa::ConstShapeOp::verify() { |
4036 | // check one dimensional rank |
4037 | auto valuesRank = getValues().getType().getRank(); |
4038 | if (valuesRank != 1) |
4039 | return emitOpError("expect elements in attribute values with rank 1"); |
4040 | // check that number of elements in values attr equal to rank of result shape |
4041 | auto count = getValues().getNumElements(); |
4042 | auto rank = (cast<tosa::shapeType>(getResult().getType())).getRank(); |
4043 | if (!(count == rank || (count == 1 && rank == 0))) { |
4044 | return emitOpError("expect number of elements in attribute values (") |
4045 | << count << ") to be equal to the rank ("<< rank |
4046 | << ") for the result shape type"; |
4047 | } |
4048 | return success(); |
4049 | } |
4050 | |
4051 | //===----------------------------------------------------------------------===// |
4052 | // TOSA Attribute Definitions. |
4053 | //===----------------------------------------------------------------------===// |
4054 | |
4055 | #define GET_ATTRDEF_CLASSES |
4056 | #include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc" |
4057 | |
4058 | //===----------------------------------------------------------------------===// |
4059 | // TOSA Type Definitions. |
4060 | //===----------------------------------------------------------------------===// |
4061 | #define GET_TYPEDEF_CLASSES |
4062 | #include "mlir/Dialect/Tosa/IR/TosaOpsTypesBase.cpp.inc" |
4063 | |
4064 | //===----------------------------------------------------------------------===// |
4065 | // TOSA Operator Definitions. |
4066 | //===----------------------------------------------------------------------===// |
4067 | |
4068 | #define GET_OP_CLASSES |
4069 | #include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc" |
4070 |
Definitions
- TosaInlinerInterface
- isLegalToInline
- isLegalToInline
- TosaDialectBytecodeInterface
- TosaDialectBytecodeInterface
- readAttribute
- writeAttribute
- readType
- writeType
- writeVersion
- readVersion
- upgradeFromVersion
- convertToMlirShape
- getVariableType
- getShapeAndElementType
- parseVariableOpTypeOrInitialValue
- printVariableOpTypeOrInitialValue
- idivCheck
- getStorageElementTypeOrSelf
- getStorageElementTypeOrSelf
- verifyRescaleValueAndZpTypes
- createPadConstTensor
- verifyConvOp
- verifyConvOpModes
- verifyConvOpErrorIf
- errorIfTypeOrShapeMismatch
- errorIfTypeOrShapeMismatch
- errorIfShapeNotSizeOne
- findVariableDecl
- verifyVariableOpErrorIf
- verifySameElementTypes
- verifyPoolingOp
- buildConvOpWithQuantInfo
- buildTransConvOpWithQuantInfo
- buildMatMulOpWithQuantInfo
- buildAvgPool2dOpWithQuantInfo
- buildNegateOpWithQuantInfo
- buildPadOpWithQuantInfo
- buildVariableOp
- resolveBroadcastShape
- verifyDimIsPowerOfTwo
- getZeroPoint
- verifyZeroPoint
- verifyZeroPoint
- ReduceInferReturnTypes
- verifyReduceOp
- NAryInferReturnTypes
- poolingInferReturnTypes
- printInitializationList
- createZeroPointTensor
- isa_tosa_shape_type
- verifyTosaResolvableShapeOperands
- verifyTosaShapeOperator
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more