| 1 | //===- VectorDistribute.cpp - patterns to do vector distribution ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 10 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 11 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| 12 | #include "mlir/Dialect/GPU/Utils/DistributionUtils.h" |
| 13 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 14 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 15 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 16 | #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h" |
| 17 | #include "mlir/IR/AffineExpr.h" |
| 18 | #include "mlir/Interfaces/SideEffectInterfaces.h" |
| 19 | #include "mlir/Transforms/RegionUtils.h" |
| 20 | #include "llvm/ADT/SetVector.h" |
| 21 | #include "llvm/Support/FormatVariadic.h" |
| 22 | #include <utility> |
| 23 | |
| 24 | using namespace mlir; |
| 25 | using namespace mlir::vector; |
| 26 | using namespace mlir::gpu; |
| 27 | |
| 28 | /// Currently the distribution map is implicit based on the vector shape. In the |
| 29 | /// future it will be part of the op. |
| 30 | /// Example: |
| 31 | /// ``` |
| 32 | /// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1x16x2xf32>) { |
| 33 | /// ... |
| 34 | /// gpu.yield %3 : vector<32x16x64xf32> |
| 35 | /// } |
| 36 | /// ``` |
| 37 | /// Would have an implicit map of: |
| 38 | /// `(d0, d1, d2) -> (d0, d2)` |
| 39 | static AffineMap calculateImplicitMap(VectorType sequentialType, |
| 40 | VectorType distributedType) { |
| 41 | SmallVector<AffineExpr> perm; |
| 42 | perm.reserve(N: 1); |
| 43 | // Check which dimensions of the sequential type are different than the |
| 44 | // dimensions of the distributed type to know the distributed dimensions. Then |
| 45 | // associate each distributed dimension to an ID in order. |
| 46 | for (unsigned i = 0, e = sequentialType.getRank(); i < e; i++) { |
| 47 | if (sequentialType.getDimSize(i) != distributedType.getDimSize(i)) |
| 48 | perm.push_back(Elt: getAffineDimExpr(i, distributedType.getContext())); |
| 49 | } |
| 50 | auto map = AffineMap::get(sequentialType.getRank(), 0, perm, |
| 51 | distributedType.getContext()); |
| 52 | return map; |
| 53 | } |
| 54 | |
| 55 | namespace { |
| 56 | |
| 57 | /// Helper struct to create the load / store operations that permit transit |
| 58 | /// through the parallel / sequential and the sequential / parallel boundaries |
| 59 | /// when performing `rewriteWarpOpToScfFor`. |
| 60 | /// |
| 61 | /// The vector distribution dimension is inferred from the vector types. |
| 62 | struct DistributedLoadStoreHelper { |
| 63 | DistributedLoadStoreHelper(Value sequentialVal, Value distributedVal, |
| 64 | Value laneId, Value zero) |
| 65 | : sequentialVal(sequentialVal), distributedVal(distributedVal), |
| 66 | laneId(laneId), zero(zero) { |
| 67 | sequentialVectorType = dyn_cast<VectorType>(sequentialVal.getType()); |
| 68 | distributedVectorType = dyn_cast<VectorType>(distributedVal.getType()); |
| 69 | if (sequentialVectorType && distributedVectorType) |
| 70 | distributionMap = |
| 71 | calculateImplicitMap(sequentialVectorType, distributedVectorType); |
| 72 | } |
| 73 | |
| 74 | Value buildDistributedOffset(RewriterBase &b, Location loc, int64_t index) { |
| 75 | int64_t distributedSize = distributedVectorType.getDimSize(index); |
| 76 | AffineExpr tid = getAffineSymbolExpr(position: 0, context: b.getContext()); |
| 77 | return b.createOrFold<affine::AffineApplyOp>(loc, tid * distributedSize, |
| 78 | ArrayRef<Value>{laneId}); |
| 79 | } |
| 80 | |
| 81 | /// Create a store during the process of distributing the |
| 82 | /// `vector.warp_execute_on_thread_0` op. |
| 83 | /// Vector distribution assumes the following convention regarding the |
| 84 | /// temporary buffers that are created to transition values. This **must** |
| 85 | /// be properly specified in the `options.warpAllocationFn`: |
| 86 | /// 1. scalars of type T transit through a memref<1xT>. |
| 87 | /// 2. vectors of type V<shapexT> transit through a memref<shapexT> |
| 88 | Operation *buildStore(RewriterBase &b, Location loc, Value val, |
| 89 | Value buffer) { |
| 90 | assert((val == distributedVal || val == sequentialVal) && |
| 91 | "Must store either the preregistered distributed or the " |
| 92 | "preregistered sequential value." ); |
| 93 | // Scalar case can directly use memref.store. |
| 94 | if (!isa<VectorType>(val.getType())) |
| 95 | return b.create<memref::StoreOp>(loc, val, buffer, zero); |
| 96 | |
| 97 | // Vector case must use vector::TransferWriteOp which will later lower to |
| 98 | // vector.store of memref.store depending on further lowerings. |
| 99 | int64_t rank = sequentialVectorType.getRank(); |
| 100 | SmallVector<Value> indices(rank, zero); |
| 101 | if (val == distributedVal) { |
| 102 | for (auto dimExpr : distributionMap.getResults()) { |
| 103 | int64_t index = cast<AffineDimExpr>(Val&: dimExpr).getPosition(); |
| 104 | indices[index] = buildDistributedOffset(b, loc, index); |
| 105 | } |
| 106 | } |
| 107 | SmallVector<bool> inBounds(indices.size(), true); |
| 108 | return b.create<vector::TransferWriteOp>( |
| 109 | loc, val, buffer, indices, |
| 110 | ArrayRef<bool>(inBounds.begin(), inBounds.end())); |
| 111 | } |
| 112 | |
| 113 | /// Create a load during the process of distributing the |
| 114 | /// `vector.warp_execute_on_thread_0` op. |
| 115 | /// Vector distribution assumes the following convention regarding the |
| 116 | /// temporary buffers that are created to transition values. This **must** |
| 117 | /// be properly specified in the `options.warpAllocationFn`: |
| 118 | /// 1. scalars of type T transit through a memref<1xT>. |
| 119 | /// 2. vectors of type V<shapexT> transit through a memref<shapexT> |
| 120 | /// |
| 121 | /// When broadcastMode is true, the load is not distributed to account for |
| 122 | /// the broadcast semantics of the `gpu.warp_execute_on_lane_0` op. |
| 123 | /// |
| 124 | /// Example: |
| 125 | /// |
| 126 | /// ``` |
| 127 | /// %r = gpu.warp_execute_on_lane_0(...) -> (f32) { |
| 128 | /// gpu.yield %cst : f32 |
| 129 | /// } |
| 130 | /// // Both types are f32. The constant %cst is broadcasted to all lanes. |
| 131 | /// ``` |
| 132 | /// This behavior described in more detail in the documentation of the op. |
| 133 | Value buildLoad(RewriterBase &b, Location loc, Type type, Value buffer) { |
| 134 | |
| 135 | // Scalar case can directly use memref.store. |
| 136 | if (!isa<VectorType>(type)) |
| 137 | return b.create<memref::LoadOp>(loc, buffer, zero); |
| 138 | |
| 139 | // Other cases must be vector atm. |
| 140 | // Vector case must use vector::TransferReadOp which will later lower to |
| 141 | // vector.read of memref.read depending on further lowerings. |
| 142 | assert((type == distributedVectorType || type == sequentialVectorType) && |
| 143 | "Must store either the preregistered distributed or the " |
| 144 | "preregistered sequential type." ); |
| 145 | SmallVector<Value> indices(sequentialVectorType.getRank(), zero); |
| 146 | if (type == distributedVectorType) { |
| 147 | for (auto dimExpr : distributionMap.getResults()) { |
| 148 | int64_t index = cast<AffineDimExpr>(Val&: dimExpr).getPosition(); |
| 149 | indices[index] = buildDistributedOffset(b, loc, index); |
| 150 | } |
| 151 | } |
| 152 | SmallVector<bool> inBounds(indices.size(), true); |
| 153 | return b.create<vector::TransferReadOp>( |
| 154 | loc, cast<VectorType>(type), buffer, indices, |
| 155 | ArrayRef<bool>(inBounds.begin(), inBounds.end())); |
| 156 | } |
| 157 | |
| 158 | Value sequentialVal, distributedVal, laneId, zero; |
| 159 | VectorType sequentialVectorType, distributedVectorType; |
| 160 | AffineMap distributionMap; |
| 161 | }; |
| 162 | |
| 163 | } // namespace |
| 164 | |
| 165 | // Clones `op` into a new operation that takes `operands` and returns |
| 166 | // `resultTypes`. |
| 167 | static Operation *cloneOpWithOperandsAndTypes(RewriterBase &rewriter, |
| 168 | Location loc, Operation *op, |
| 169 | ArrayRef<Value> operands, |
| 170 | ArrayRef<Type> resultTypes) { |
| 171 | OperationState res(loc, op->getName().getStringRef(), operands, resultTypes, |
| 172 | op->getAttrs()); |
| 173 | return rewriter.create(state: res); |
| 174 | } |
| 175 | |
| 176 | namespace { |
| 177 | |
| 178 | /// Rewrite a WarpExecuteOnLane0Op into a predicated scf.if op where the single |
| 179 | /// thread `laneId` executes the entirety of the computation. |
| 180 | /// |
| 181 | /// After the transformation: |
| 182 | /// - the IR within the scf.if op can be thought of as executing sequentially |
| 183 | /// (from the point of view of threads along `laneId`). |
| 184 | /// - the IR outside of the scf.if op can be thought of as executing in |
| 185 | /// parallel (from the point of view of threads along `laneId`). |
| 186 | /// |
| 187 | /// Values that need to transit through the parallel / sequential and the |
| 188 | /// sequential / parallel boundaries do so via reads and writes to a temporary |
| 189 | /// memory location. |
| 190 | /// |
| 191 | /// The transformation proceeds in multiple steps: |
| 192 | /// 1. Create the scf.if op. |
| 193 | /// 2. Insert appropriate (alloc, write)-pairs before the scf.if and reads |
| 194 | /// within the scf.if to transit the values captured from above. |
| 195 | /// 3. Synchronize before the scf.if to ensure all writes inserted in 2. are |
| 196 | /// consistent within the scf.if. |
| 197 | /// 4. Move the body of the WarpExecuteOnLane0Op inside the scf.if. |
| 198 | /// 5. Insert appropriate writes within scf.if and reads after the scf.if to |
| 199 | /// transit the values returned by the op. |
| 200 | /// 6. Synchronize after the scf.if to ensure all writes inserted in 5. are |
| 201 | /// consistent after the scf.if. |
| 202 | /// 7. Perform late cleanups. |
| 203 | /// |
| 204 | /// All this assumes the vector distribution occurs along the most minor |
| 205 | /// distributed vector dimension. |
| 206 | struct WarpOpToScfIfPattern : public WarpDistributionPattern { |
| 207 | WarpOpToScfIfPattern(MLIRContext *context, |
| 208 | const WarpExecuteOnLane0LoweringOptions &options, |
| 209 | PatternBenefit benefit = 1) |
| 210 | : WarpDistributionPattern(context, benefit), options(options) {} |
| 211 | |
| 212 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 213 | PatternRewriter &rewriter) const override { |
| 214 | assert(warpOp.getBodyRegion().hasOneBlock() && |
| 215 | "expected WarpOp with single block" ); |
| 216 | Block *warpOpBody = &warpOp.getBodyRegion().front(); |
| 217 | Location loc = warpOp.getLoc(); |
| 218 | |
| 219 | // Passed all checks. Start rewriting. |
| 220 | OpBuilder::InsertionGuard g(rewriter); |
| 221 | rewriter.setInsertionPoint(warpOp); |
| 222 | |
| 223 | // Step 1: Create scf.if op. |
| 224 | Value c0 = rewriter.create<arith::ConstantIndexOp>(location: loc, args: 0); |
| 225 | Value isLane0 = rewriter.create<arith::CmpIOp>( |
| 226 | loc, arith::CmpIPredicate::eq, warpOp.getLaneid(), c0); |
| 227 | auto ifOp = rewriter.create<scf::IfOp>(loc, isLane0, |
| 228 | /*withElseRegion=*/false); |
| 229 | rewriter.eraseOp(op: ifOp.thenBlock()->getTerminator()); |
| 230 | |
| 231 | // Step 2: insert appropriate (alloc, write)-pairs before the scf.if and |
| 232 | // reads within the scf.if to transit the values captured from above. |
| 233 | SmallVector<Value> bbArgReplacements; |
| 234 | for (const auto &it : llvm::enumerate(warpOp.getArgs())) { |
| 235 | Value sequentialVal = warpOpBody->getArgument(it.index()); |
| 236 | Value distributedVal = it.value(); |
| 237 | DistributedLoadStoreHelper helper(sequentialVal, distributedVal, |
| 238 | warpOp.getLaneid(), c0); |
| 239 | |
| 240 | // Create buffer before the ifOp. |
| 241 | rewriter.setInsertionPoint(ifOp); |
| 242 | Value buffer = options.warpAllocationFn(loc, rewriter, warpOp, |
| 243 | sequentialVal.getType()); |
| 244 | // Store distributed vector into buffer, before the ifOp. |
| 245 | helper.buildStore(rewriter, loc, distributedVal, buffer); |
| 246 | // Load sequential vector from buffer, inside the ifOp. |
| 247 | rewriter.setInsertionPointToStart(ifOp.thenBlock()); |
| 248 | bbArgReplacements.push_back( |
| 249 | helper.buildLoad(rewriter, loc, sequentialVal.getType(), buffer)); |
| 250 | } |
| 251 | |
| 252 | // Step 3. Insert sync after all the stores and before all the loads. |
| 253 | if (!warpOp.getArgs().empty()) { |
| 254 | rewriter.setInsertionPoint(ifOp); |
| 255 | options.warpSyncronizationFn(loc, rewriter, warpOp); |
| 256 | } |
| 257 | |
| 258 | // Step 4. Move body of warpOp to ifOp. |
| 259 | rewriter.mergeBlocks(source: warpOpBody, dest: ifOp.thenBlock(), argValues: bbArgReplacements); |
| 260 | |
| 261 | // Step 5. Insert appropriate writes within scf.if and reads after the |
| 262 | // scf.if to transit the values returned by the op. |
| 263 | // TODO: at this point, we can reuse the shared memory from previous |
| 264 | // buffers. |
| 265 | SmallVector<Value> replacements; |
| 266 | auto yieldOp = cast<gpu::YieldOp>(ifOp.thenBlock()->getTerminator()); |
| 267 | Location yieldLoc = yieldOp.getLoc(); |
| 268 | for (const auto &it : llvm::enumerate(yieldOp.getOperands())) { |
| 269 | Value sequentialVal = it.value(); |
| 270 | Value distributedVal = warpOp->getResult(it.index()); |
| 271 | DistributedLoadStoreHelper helper(sequentialVal, distributedVal, |
| 272 | warpOp.getLaneid(), c0); |
| 273 | |
| 274 | // Create buffer before the ifOp. |
| 275 | rewriter.setInsertionPoint(ifOp); |
| 276 | Value buffer = options.warpAllocationFn(loc, rewriter, warpOp, |
| 277 | sequentialVal.getType()); |
| 278 | |
| 279 | // Store yielded value into buffer, inside the ifOp, before the |
| 280 | // terminator. |
| 281 | rewriter.setInsertionPoint(yieldOp); |
| 282 | helper.buildStore(rewriter, loc, sequentialVal, buffer); |
| 283 | |
| 284 | // Load distributed value from buffer, after the warpOp. |
| 285 | rewriter.setInsertionPointAfter(ifOp); |
| 286 | // Result type and yielded value type are the same. This is a broadcast. |
| 287 | // E.g.: |
| 288 | // %r = gpu.warp_execute_on_lane_0(...) -> (f32) { |
| 289 | // gpu.yield %cst : f32 |
| 290 | // } |
| 291 | // Both types are f32. The constant %cst is broadcasted to all lanes. |
| 292 | // This is described in more detail in the documentation of the op. |
| 293 | replacements.push_back( |
| 294 | helper.buildLoad(rewriter, loc, distributedVal.getType(), buffer)); |
| 295 | } |
| 296 | |
| 297 | // Step 6. Insert sync after all the stores and before all the loads. |
| 298 | if (!yieldOp.getOperands().empty()) { |
| 299 | rewriter.setInsertionPointAfter(ifOp); |
| 300 | options.warpSyncronizationFn(loc, rewriter, warpOp); |
| 301 | } |
| 302 | |
| 303 | // Step 7. Delete terminator and add empty scf.yield. |
| 304 | rewriter.eraseOp(op: yieldOp); |
| 305 | rewriter.setInsertionPointToEnd(ifOp.thenBlock()); |
| 306 | rewriter.create<scf::YieldOp>(yieldLoc); |
| 307 | |
| 308 | // Compute replacements for WarpOp results. |
| 309 | rewriter.replaceOp(warpOp, replacements); |
| 310 | |
| 311 | return success(); |
| 312 | } |
| 313 | |
| 314 | private: |
| 315 | const WarpExecuteOnLane0LoweringOptions &options; |
| 316 | }; |
| 317 | |
| 318 | /// Return the distributed vector type based on the original type and the |
| 319 | /// distribution map. The map is expected to have a dimension equal to the |
| 320 | /// original type rank and should be a projection where the results are the |
| 321 | /// distributed dimensions. The number of results should be equal to the number |
| 322 | /// of warp sizes which is currently limited to 1. |
| 323 | /// Example: For a vector<16x32x64> distributed with a map(d0, d1, d2) -> (d1) |
| 324 | /// and a warp size of 16 would distribute the second dimension (associated to |
| 325 | /// d1) and return vector<16x2x64> |
| 326 | static VectorType getDistributedType(VectorType originalType, AffineMap map, |
| 327 | int64_t warpSize) { |
| 328 | SmallVector<int64_t> targetShape(originalType.getShape()); |
| 329 | for (unsigned i = 0, e = map.getNumResults(); i < e; i++) { |
| 330 | unsigned position = map.getDimPosition(idx: i); |
| 331 | if (targetShape[position] % warpSize != 0) { |
| 332 | if (warpSize % targetShape[position] != 0) { |
| 333 | return VectorType(); |
| 334 | } |
| 335 | warpSize /= targetShape[position]; |
| 336 | targetShape[position] = 1; |
| 337 | continue; |
| 338 | } |
| 339 | targetShape[position] = targetShape[position] / warpSize; |
| 340 | warpSize = 1; |
| 341 | break; |
| 342 | } |
| 343 | if (warpSize != 1) { |
| 344 | return VectorType(); |
| 345 | } |
| 346 | VectorType targetType = |
| 347 | VectorType::get(targetShape, originalType.getElementType()); |
| 348 | return targetType; |
| 349 | } |
| 350 | |
| 351 | /// Distribute transfer_write ops based on the affine map returned by |
| 352 | /// `distributionMapFn`. Writes of size more than `maxNumElementToExtract` |
| 353 | /// will not be distributed (it should be less than the warp size). |
| 354 | /// |
| 355 | /// Example: |
| 356 | /// ``` |
| 357 | /// %0 = gpu.warp_execute_on_lane_0(%id){ |
| 358 | /// ... |
| 359 | /// vector.transfer_write %v, %A[%c0] : vector<32xf32>, memref<128xf32> |
| 360 | /// gpu.yield |
| 361 | /// } |
| 362 | /// ``` |
| 363 | /// To |
| 364 | /// ``` |
| 365 | /// %r:3 = gpu.warp_execute_on_lane_0(%id) -> (vector<1xf32>) { |
| 366 | /// ... |
| 367 | /// gpu.yield %v : vector<32xf32> |
| 368 | /// } |
| 369 | /// vector.transfer_write %v, %A[%id] : vector<1xf32>, memref<128xf32> |
| 370 | struct WarpOpTransferWrite : public WarpDistributionPattern { |
| 371 | WarpOpTransferWrite(MLIRContext *ctx, DistributionMapFn fn, |
| 372 | unsigned , PatternBenefit b = 1) |
| 373 | : WarpDistributionPattern(ctx, b), distributionMapFn(std::move(fn)), |
| 374 | maxNumElementsToExtract(maxNumElementsToExtract) {} |
| 375 | |
| 376 | /// Distribute the TransferWriteOp. Only 1D distributions and vector dims that |
| 377 | /// are multiples of the distribution ratio are supported at the moment. |
| 378 | LogicalResult tryDistributeOp(RewriterBase &rewriter, |
| 379 | vector::TransferWriteOp writeOp, |
| 380 | WarpExecuteOnLane0Op warpOp) const { |
| 381 | VectorType writtenVectorType = writeOp.getVectorType(); |
| 382 | |
| 383 | // 1. If the write is 0-D, we just clone it into a new WarpExecuteOnLane0Op |
| 384 | // to separate it from the rest. |
| 385 | if (writtenVectorType.getRank() == 0) |
| 386 | return failure(); |
| 387 | |
| 388 | // 2. Compute the distributed type. |
| 389 | AffineMap map = distributionMapFn(writeOp.getVector()); |
| 390 | VectorType targetType = |
| 391 | getDistributedType(writtenVectorType, map, warpOp.getWarpSize()); |
| 392 | if (!targetType) |
| 393 | return failure(); |
| 394 | |
| 395 | // 2.5 Compute the distributed type for the new mask; |
| 396 | VectorType maskType; |
| 397 | if (writeOp.getMask()) { |
| 398 | // TODO: Distribution of masked writes with non-trivial permutation maps |
| 399 | // requires the distribution of the mask to elementwise match the |
| 400 | // distribution of the permuted written vector. Currently the details |
| 401 | // of which lane is responsible for which element is captured strictly |
| 402 | // by shape information on the warp op, and thus requires materializing |
| 403 | // the permutation in IR. |
| 404 | if (!writeOp.getPermutationMap().isMinorIdentity()) |
| 405 | return failure(); |
| 406 | maskType = |
| 407 | getDistributedType(writeOp.getMaskType(), map, warpOp.getWarpSize()); |
| 408 | } |
| 409 | |
| 410 | // 3. clone the write into a new WarpExecuteOnLane0Op to separate it from |
| 411 | // the rest. |
| 412 | vector::TransferWriteOp newWriteOp = |
| 413 | cloneWriteOp(rewriter, warpOp, writeOp, targetType, maskType); |
| 414 | |
| 415 | // 4. Reindex the write using the distribution map. |
| 416 | auto newWarpOp = |
| 417 | newWriteOp.getVector().getDefiningOp<WarpExecuteOnLane0Op>(); |
| 418 | |
| 419 | // Delinearize the lane id based on the way threads are divided across the |
| 420 | // vector. To get the number of threads per vector dimension, divide the |
| 421 | // sequential size by the distributed size along each dim. |
| 422 | rewriter.setInsertionPoint(newWriteOp); |
| 423 | SmallVector<OpFoldResult> delinearizedIdSizes; |
| 424 | for (auto [seqSize, distSize] : |
| 425 | llvm::zip_equal(writtenVectorType.getShape(), targetType.getShape())) { |
| 426 | assert(seqSize % distSize == 0 && "Invalid distributed vector shape" ); |
| 427 | delinearizedIdSizes.push_back(rewriter.getIndexAttr(seqSize / distSize)); |
| 428 | } |
| 429 | SmallVector<Value> delinearized; |
| 430 | if (map.getNumResults() > 1) { |
| 431 | delinearized = rewriter |
| 432 | .create<mlir::affine::AffineDelinearizeIndexOp>( |
| 433 | newWarpOp.getLoc(), newWarpOp.getLaneid(), |
| 434 | delinearizedIdSizes) |
| 435 | .getResults(); |
| 436 | } else { |
| 437 | // If there is only one map result, we can elide the delinearization |
| 438 | // op and use the lane id directly. |
| 439 | delinearized.append(targetType.getRank(), newWarpOp.getLaneid()); |
| 440 | } |
| 441 | |
| 442 | AffineMap indexMap = map.compose(newWriteOp.getPermutationMap()); |
| 443 | Location loc = newWriteOp.getLoc(); |
| 444 | SmallVector<Value> indices(newWriteOp.getIndices().begin(), |
| 445 | newWriteOp.getIndices().end()); |
| 446 | for (auto it : llvm::zip(indexMap.getResults(), map.getResults())) { |
| 447 | AffineExpr d0, d1; |
| 448 | bindDims(newWarpOp.getContext(), d0, d1); |
| 449 | auto indexExpr = dyn_cast<AffineDimExpr>(std::get<0>(it)); |
| 450 | if (!indexExpr) |
| 451 | continue; |
| 452 | unsigned indexPos = indexExpr.getPosition(); |
| 453 | unsigned vectorPos = cast<AffineDimExpr>(std::get<1>(it)).getPosition(); |
| 454 | Value laneId = delinearized[vectorPos]; |
| 455 | auto scale = |
| 456 | rewriter.getAffineConstantExpr(targetType.getDimSize(vectorPos)); |
| 457 | indices[indexPos] = affine::makeComposedAffineApply( |
| 458 | rewriter, loc, d0 + scale * d1, {indices[indexPos], laneId}); |
| 459 | } |
| 460 | newWriteOp.getIndicesMutable().assign(indices); |
| 461 | |
| 462 | return success(); |
| 463 | } |
| 464 | |
| 465 | /// Extract TransferWriteOps of vector<1x> into a separate warp op. |
| 466 | LogicalResult (RewriterBase &rewriter, |
| 467 | vector::TransferWriteOp writeOp, |
| 468 | WarpExecuteOnLane0Op warpOp) const { |
| 469 | Location loc = writeOp.getLoc(); |
| 470 | VectorType vecType = writeOp.getVectorType(); |
| 471 | |
| 472 | if (vecType.getNumElements() > maxNumElementsToExtract) { |
| 473 | return rewriter.notifyMatchFailure( |
| 474 | warpOp, |
| 475 | llvm::formatv( |
| 476 | "writes more elements ({0}) than allowed to extract ({1})" , |
| 477 | vecType.getNumElements(), maxNumElementsToExtract)); |
| 478 | } |
| 479 | |
| 480 | // Do not process warp ops that contain only TransferWriteOps. |
| 481 | if (llvm::all_of(warpOp.getOps(), |
| 482 | llvm::IsaPred<vector::TransferWriteOp, gpu::YieldOp>)) |
| 483 | return failure(); |
| 484 | |
| 485 | SmallVector<Value> yieldValues = {writeOp.getVector()}; |
| 486 | SmallVector<Type> retTypes = {vecType}; |
| 487 | SmallVector<size_t> newRetIndices; |
| 488 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 489 | rewriter, warpOp, yieldValues, retTypes, newRetIndices); |
| 490 | rewriter.setInsertionPointAfter(newWarpOp); |
| 491 | |
| 492 | // Create a second warp op that contains only writeOp. |
| 493 | auto secondWarpOp = rewriter.create<WarpExecuteOnLane0Op>( |
| 494 | loc, TypeRange(), newWarpOp.getLaneid(), newWarpOp.getWarpSize()); |
| 495 | Block &body = secondWarpOp.getBodyRegion().front(); |
| 496 | rewriter.setInsertionPointToStart(&body); |
| 497 | auto newWriteOp = |
| 498 | cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation())); |
| 499 | newWriteOp.getValueToStoreMutable().assign( |
| 500 | newWarpOp.getResult(newRetIndices[0])); |
| 501 | rewriter.eraseOp(op: writeOp); |
| 502 | rewriter.create<gpu::YieldOp>(newWarpOp.getLoc()); |
| 503 | return success(); |
| 504 | } |
| 505 | |
| 506 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 507 | PatternRewriter &rewriter) const override { |
| 508 | auto yield = cast<gpu::YieldOp>( |
| 509 | warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 510 | Operation *lastNode = yield->getPrevNode(); |
| 511 | auto writeOp = dyn_cast_or_null<vector::TransferWriteOp>(lastNode); |
| 512 | if (!writeOp) |
| 513 | return failure(); |
| 514 | |
| 515 | Value maybeMask = writeOp.getMask(); |
| 516 | if (!llvm::all_of(writeOp->getOperands(), [&](Value value) { |
| 517 | return writeOp.getVector() == value || |
| 518 | (maybeMask && maybeMask == value) || |
| 519 | warpOp.isDefinedOutsideOfRegion(value); |
| 520 | })) |
| 521 | return failure(); |
| 522 | |
| 523 | if (succeeded(tryDistributeOp(rewriter, writeOp, warpOp))) |
| 524 | return success(); |
| 525 | |
| 526 | // Masked writes not supported for extraction. |
| 527 | if (writeOp.getMask()) |
| 528 | return failure(); |
| 529 | |
| 530 | if (succeeded(tryExtractOp(rewriter, writeOp, warpOp))) |
| 531 | return success(); |
| 532 | |
| 533 | return failure(); |
| 534 | } |
| 535 | |
| 536 | private: |
| 537 | /// Clone `writeOp` assumed to be nested under `warpOp` into a new warp |
| 538 | /// execute op with the proper return type. The new write op is updated to |
| 539 | /// write the result of the new warp execute op. The old `writeOp` is deleted. |
| 540 | vector::TransferWriteOp cloneWriteOp(RewriterBase &rewriter, |
| 541 | WarpExecuteOnLane0Op warpOp, |
| 542 | vector::TransferWriteOp writeOp, |
| 543 | VectorType targetType, |
| 544 | VectorType maybeMaskType) const { |
| 545 | assert(writeOp->getParentOp() == warpOp && |
| 546 | "write must be nested immediately under warp" ); |
| 547 | OpBuilder::InsertionGuard g(rewriter); |
| 548 | SmallVector<size_t> newRetIndices; |
| 549 | WarpExecuteOnLane0Op newWarpOp; |
| 550 | if (maybeMaskType) { |
| 551 | newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 552 | rewriter, warpOp, ValueRange{writeOp.getVector(), writeOp.getMask()}, |
| 553 | TypeRange{targetType, maybeMaskType}, newRetIndices); |
| 554 | } else { |
| 555 | newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 556 | rewriter, warpOp, ValueRange{{writeOp.getVector()}}, |
| 557 | TypeRange{targetType}, newRetIndices); |
| 558 | } |
| 559 | rewriter.setInsertionPointAfter(newWarpOp); |
| 560 | auto newWriteOp = |
| 561 | cast<vector::TransferWriteOp>(rewriter.clone(*writeOp.getOperation())); |
| 562 | rewriter.eraseOp(op: writeOp); |
| 563 | newWriteOp.getValueToStoreMutable().assign( |
| 564 | newWarpOp.getResult(newRetIndices[0])); |
| 565 | if (maybeMaskType) |
| 566 | newWriteOp.getMaskMutable().assign(newWarpOp.getResult(newRetIndices[1])); |
| 567 | return newWriteOp; |
| 568 | } |
| 569 | |
| 570 | DistributionMapFn distributionMapFn; |
| 571 | unsigned = 1; |
| 572 | }; |
| 573 | |
| 574 | /// Sink out elementwise op feeding into a warp op yield. |
| 575 | /// ``` |
| 576 | /// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) { |
| 577 | /// ... |
| 578 | /// %3 = arith.addf %1, %2 : vector<32xf32> |
| 579 | /// gpu.yield %3 : vector<32xf32> |
| 580 | /// } |
| 581 | /// ``` |
| 582 | /// To |
| 583 | /// ``` |
| 584 | /// %r:3 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>, |
| 585 | /// vector<1xf32>, vector<1xf32>) { |
| 586 | /// ... |
| 587 | /// %4 = arith.addf %2, %3 : vector<32xf32> |
| 588 | /// gpu.yield %4, %2, %3 : vector<32xf32>, vector<32xf32>, |
| 589 | /// vector<32xf32> |
| 590 | /// } |
| 591 | /// %0 = arith.addf %r#1, %r#2 : vector<1xf32> |
| 592 | struct WarpOpElementwise : public WarpDistributionPattern { |
| 593 | using Base::Base; |
| 594 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 595 | PatternRewriter &rewriter) const override { |
| 596 | OpOperand *yieldOperand = getWarpResult(warpOp, [](Operation *op) { |
| 597 | return OpTrait::hasElementwiseMappableTraits(op); |
| 598 | }); |
| 599 | if (!yieldOperand) |
| 600 | return failure(); |
| 601 | |
| 602 | Operation *elementWise = yieldOperand->get().getDefiningOp(); |
| 603 | unsigned operandIndex = yieldOperand->getOperandNumber(); |
| 604 | Value distributedVal = warpOp.getResult(operandIndex); |
| 605 | SmallVector<Value> yieldValues; |
| 606 | SmallVector<Type> retTypes; |
| 607 | Location loc = warpOp.getLoc(); |
| 608 | for (OpOperand &operand : elementWise->getOpOperands()) { |
| 609 | Type targetType; |
| 610 | if (auto vecType = dyn_cast<VectorType>(distributedVal.getType())) { |
| 611 | // If the result type is a vector, the operands must also be vectors. |
| 612 | auto operandType = cast<VectorType>(operand.get().getType()); |
| 613 | targetType = |
| 614 | VectorType::get(vecType.getShape(), operandType.getElementType()); |
| 615 | } else { |
| 616 | auto operandType = operand.get().getType(); |
| 617 | assert(!isa<VectorType>(operandType) && |
| 618 | "unexpected yield of vector from op with scalar result type" ); |
| 619 | targetType = operandType; |
| 620 | } |
| 621 | retTypes.push_back(Elt: targetType); |
| 622 | yieldValues.push_back(Elt: operand.get()); |
| 623 | } |
| 624 | SmallVector<size_t> newRetIndices; |
| 625 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 626 | rewriter, warpOp, yieldValues, retTypes, newRetIndices); |
| 627 | rewriter.setInsertionPointAfter(newWarpOp); |
| 628 | SmallVector<Value> newOperands(elementWise->getOperands().begin(), |
| 629 | elementWise->getOperands().end()); |
| 630 | for (unsigned i : llvm::seq(Begin: unsigned(0), End: elementWise->getNumOperands())) { |
| 631 | newOperands[i] = newWarpOp.getResult(newRetIndices[i]); |
| 632 | } |
| 633 | OpBuilder::InsertionGuard g(rewriter); |
| 634 | rewriter.setInsertionPointAfter(newWarpOp); |
| 635 | Operation *newOp = cloneOpWithOperandsAndTypes( |
| 636 | rewriter, loc, elementWise, newOperands, |
| 637 | {newWarpOp.getResult(operandIndex).getType()}); |
| 638 | rewriter.replaceAllUsesWith(newWarpOp.getResult(operandIndex), |
| 639 | newOp->getResult(idx: 0)); |
| 640 | return success(); |
| 641 | } |
| 642 | }; |
| 643 | |
| 644 | /// Sink out splat constant op feeding into a warp op yield. |
| 645 | /// ``` |
| 646 | /// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) { |
| 647 | /// ... |
| 648 | /// %cst = arith.constant dense<2.0> : vector<32xf32> |
| 649 | /// gpu.yield %cst : vector<32xf32> |
| 650 | /// } |
| 651 | /// ``` |
| 652 | /// To |
| 653 | /// ``` |
| 654 | /// gpu.warp_execute_on_lane_0(%arg0 { |
| 655 | /// ... |
| 656 | /// } |
| 657 | /// %0 = arith.constant dense<2.0> : vector<1xf32> |
| 658 | struct WarpOpConstant : public WarpDistributionPattern { |
| 659 | using Base::Base; |
| 660 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 661 | PatternRewriter &rewriter) const override { |
| 662 | OpOperand *yieldOperand = |
| 663 | getWarpResult(warpOp, llvm::IsaPred<arith::ConstantOp>); |
| 664 | if (!yieldOperand) |
| 665 | return failure(); |
| 666 | auto constantOp = yieldOperand->get().getDefiningOp<arith::ConstantOp>(); |
| 667 | auto dense = dyn_cast<SplatElementsAttr>(constantOp.getValue()); |
| 668 | if (!dense) |
| 669 | return failure(); |
| 670 | // Notify the rewriter that the warp op is changing (see the comment on |
| 671 | // the WarpOpTransferRead pattern). |
| 672 | rewriter.startOpModification(op: warpOp); |
| 673 | unsigned operandIndex = yieldOperand->getOperandNumber(); |
| 674 | Attribute scalarAttr = dense.getSplatValue<Attribute>(); |
| 675 | auto newAttr = DenseElementsAttr::get( |
| 676 | cast<ShapedType>(warpOp.getResult(operandIndex).getType()), scalarAttr); |
| 677 | Location loc = warpOp.getLoc(); |
| 678 | rewriter.setInsertionPointAfter(warpOp); |
| 679 | Value distConstant = rewriter.create<arith::ConstantOp>(loc, newAttr); |
| 680 | rewriter.replaceAllUsesWith(warpOp.getResult(operandIndex), distConstant); |
| 681 | rewriter.finalizeOpModification(op: warpOp); |
| 682 | return success(); |
| 683 | } |
| 684 | }; |
| 685 | |
| 686 | /// Sink out transfer_read op feeding into a warp op yield. |
| 687 | /// ``` |
| 688 | /// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) { |
| 689 | /// ... |
| 690 | // %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, |
| 691 | // vector<32xf32> |
| 692 | /// gpu.yield %2 : vector<32xf32> |
| 693 | /// } |
| 694 | /// ``` |
| 695 | /// To |
| 696 | /// ``` |
| 697 | /// %dead = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>, |
| 698 | /// vector<1xf32>, vector<1xf32>) { |
| 699 | /// ... |
| 700 | /// %2 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, |
| 701 | /// vector<32xf32> gpu.yield %2 : vector<32xf32> |
| 702 | /// } |
| 703 | /// %0 = vector.transfer_read %src[%c0], %cst : memref<1024xf32>, vector<1xf32> |
| 704 | struct WarpOpTransferRead : public WarpDistributionPattern { |
| 705 | using Base::Base; |
| 706 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 707 | PatternRewriter &rewriter) const override { |
| 708 | // Try to find a distributable yielded read. Note that this pattern can |
| 709 | // still fail at the end after distribution, in which case this might have |
| 710 | // missed another distributable read. |
| 711 | OpOperand *operand = getWarpResult(warpOp, [](Operation *op) { |
| 712 | // Don't duplicate transfer_read ops when distributing. |
| 713 | return isa<vector::TransferReadOp>(op) && op->hasOneUse(); |
| 714 | }); |
| 715 | if (!operand) |
| 716 | return rewriter.notifyMatchFailure( |
| 717 | warpOp, "warp result is not a vector.transfer_read op" ); |
| 718 | auto read = operand->get().getDefiningOp<vector::TransferReadOp>(); |
| 719 | |
| 720 | // Source must be defined outside of the region. |
| 721 | if (!warpOp.isDefinedOutsideOfRegion(read.getBase())) |
| 722 | return rewriter.notifyMatchFailure( |
| 723 | read, "source must be defined outside of the region" ); |
| 724 | |
| 725 | unsigned operandIndex = operand->getOperandNumber(); |
| 726 | Value distributedVal = warpOp.getResult(operandIndex); |
| 727 | |
| 728 | SmallVector<Value, 4> indices(read.getIndices().begin(), |
| 729 | read.getIndices().end()); |
| 730 | auto sequentialType = cast<VectorType>(read.getResult().getType()); |
| 731 | auto distributedType = cast<VectorType>(distributedVal.getType()); |
| 732 | AffineMap map = calculateImplicitMap(sequentialType, distributedType); |
| 733 | AffineMap indexMap = map.compose(read.getPermutationMap()); |
| 734 | |
| 735 | // Try to delinearize the lane ID to match the rank expected for |
| 736 | // distribution. |
| 737 | SmallVector<Value> delinearizedIds; |
| 738 | if (!delinearizeLaneId(builder&: rewriter, loc: read.getLoc(), originalShape: sequentialType.getShape(), |
| 739 | distributedShape: distributedType.getShape(), warpSize: warpOp.getWarpSize(), |
| 740 | laneId: warpOp.getLaneid(), delinearizedIds)) { |
| 741 | return rewriter.notifyMatchFailure( |
| 742 | read, "cannot delinearize lane ID for distribution" ); |
| 743 | } |
| 744 | assert(!delinearizedIds.empty() || map.getNumResults() == 0); |
| 745 | |
| 746 | // Distribute indices and the mask (if present). |
| 747 | OpBuilder::InsertionGuard g(rewriter); |
| 748 | SmallVector<Value> additionalResults(indices.begin(), indices.end()); |
| 749 | SmallVector<Type> additionalResultTypes(indices.size(), |
| 750 | rewriter.getIndexType()); |
| 751 | additionalResults.push_back(Elt: read.getPadding()); |
| 752 | additionalResultTypes.push_back(Elt: read.getPadding().getType()); |
| 753 | |
| 754 | bool hasMask = false; |
| 755 | if (read.getMask()) { |
| 756 | hasMask = true; |
| 757 | // TODO: Distribution of masked reads with non-trivial permutation maps |
| 758 | // requires the distribution of the mask to elementwise match the |
| 759 | // distribution of the permuted written vector. Currently the details |
| 760 | // of which lane is responsible for which element is captured strictly |
| 761 | // by shape information on the warp op, and thus requires materializing |
| 762 | // the permutation in IR. |
| 763 | if (!mlir::compressUnusedDims(read.getPermutationMap()).isIdentity()) |
| 764 | return rewriter.notifyMatchFailure( |
| 765 | read, "non-trivial permutation maps not supported" ); |
| 766 | VectorType maskType = |
| 767 | getDistributedType(read.getMaskType(), map, warpOp.getWarpSize()); |
| 768 | additionalResults.push_back(Elt: read.getMask()); |
| 769 | additionalResultTypes.push_back(Elt: maskType); |
| 770 | } |
| 771 | |
| 772 | SmallVector<size_t> newRetIndices; |
| 773 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 774 | rewriter, warpOp, additionalResults, additionalResultTypes, |
| 775 | newRetIndices); |
| 776 | distributedVal = newWarpOp.getResult(operandIndex); |
| 777 | |
| 778 | // Distributed indices were appended first. |
| 779 | SmallVector<Value> newIndices; |
| 780 | for (int64_t i = 0, e = indices.size(); i < e; ++i) |
| 781 | newIndices.push_back(Elt: newWarpOp.getResult(newRetIndices[i])); |
| 782 | |
| 783 | rewriter.setInsertionPointAfter(newWarpOp); |
| 784 | for (auto it : llvm::zip_equal(indexMap.getResults(), map.getResults())) { |
| 785 | AffineExpr d0, d1; |
| 786 | bindDims(read.getContext(), d0, d1); |
| 787 | auto indexExpr = dyn_cast<AffineDimExpr>(std::get<0>(it)); |
| 788 | if (!indexExpr) |
| 789 | continue; |
| 790 | unsigned indexPos = indexExpr.getPosition(); |
| 791 | unsigned vectorPos = cast<AffineDimExpr>(std::get<1>(it)).getPosition(); |
| 792 | int64_t scale = distributedType.getDimSize(vectorPos); |
| 793 | newIndices[indexPos] = affine::makeComposedAffineApply( |
| 794 | rewriter, read.getLoc(), d0 + scale * d1, |
| 795 | {newIndices[indexPos], delinearizedIds[vectorPos]}); |
| 796 | } |
| 797 | |
| 798 | // Distributed padding value was appended right after the indices. |
| 799 | Value newPadding = newWarpOp.getResult(newRetIndices[indices.size()]); |
| 800 | // Distributed mask value was added at the end (if the op has a mask). |
| 801 | Value newMask = |
| 802 | hasMask ? newWarpOp.getResult(newRetIndices[newRetIndices.size() - 1]) |
| 803 | : Value(); |
| 804 | auto newRead = rewriter.create<vector::TransferReadOp>( |
| 805 | read.getLoc(), distributedVal.getType(), read.getBase(), newIndices, |
| 806 | read.getPermutationMapAttr(), newPadding, newMask, |
| 807 | read.getInBoundsAttr()); |
| 808 | |
| 809 | rewriter.replaceAllUsesWith(distributedVal, newRead); |
| 810 | return success(); |
| 811 | } |
| 812 | }; |
| 813 | |
| 814 | /// Remove any result that has no use along with the matching yieldOp operand. |
| 815 | // TODO: Move this in WarpExecuteOnLane0Op canonicalization. |
| 816 | struct WarpOpDeadResult : public WarpDistributionPattern { |
| 817 | using Base::Base; |
| 818 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 819 | PatternRewriter &rewriter) const override { |
| 820 | SmallVector<Type> newResultTypes; |
| 821 | newResultTypes.reserve(N: warpOp->getNumResults()); |
| 822 | SmallVector<Value> newYieldValues; |
| 823 | newYieldValues.reserve(N: warpOp->getNumResults()); |
| 824 | DenseMap<Value, int64_t> dedupYieldOperandPositionMap; |
| 825 | DenseMap<OpResult, int64_t> dedupResultPositionMap; |
| 826 | auto yield = cast<gpu::YieldOp>( |
| 827 | warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 828 | |
| 829 | // Some values may be yielded multiple times and correspond to multiple |
| 830 | // results. Deduplicating occurs by taking each result with its matching |
| 831 | // yielded value, and: |
| 832 | // 1. recording the unique first position at which the value is yielded. |
| 833 | // 2. recording for the result, the first position at which the dedup'ed |
| 834 | // value is yielded. |
| 835 | // 3. skipping from the new result types / new yielded values any result |
| 836 | // that has no use or whose yielded value has already been seen. |
| 837 | for (OpResult result : warpOp.getResults()) { |
| 838 | Value yieldOperand = yield.getOperand(result.getResultNumber()); |
| 839 | auto it = dedupYieldOperandPositionMap.insert( |
| 840 | std::make_pair(yieldOperand, newResultTypes.size())); |
| 841 | dedupResultPositionMap.insert(std::make_pair(result, it.first->second)); |
| 842 | if (result.use_empty() || !it.second) |
| 843 | continue; |
| 844 | newResultTypes.push_back(result.getType()); |
| 845 | newYieldValues.push_back(yieldOperand); |
| 846 | } |
| 847 | // No modification, exit early. |
| 848 | if (yield.getNumOperands() == newYieldValues.size()) |
| 849 | return failure(); |
| 850 | // Move the body of the old warpOp to a new warpOp. |
| 851 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndReplaceReturns( |
| 852 | rewriter, warpOp, newYieldValues, newResultTypes); |
| 853 | |
| 854 | // Simplify the new warp op after dropping dead results. |
| 855 | newWarpOp.getBody()->walk([&](Operation *op) { |
| 856 | if (isOpTriviallyDead(op)) |
| 857 | rewriter.eraseOp(op); |
| 858 | }); |
| 859 | |
| 860 | // Replace results of the old warpOp by the new, deduplicated results. |
| 861 | SmallVector<Value> newValues; |
| 862 | newValues.reserve(N: warpOp->getNumResults()); |
| 863 | for (OpResult result : warpOp.getResults()) { |
| 864 | if (result.use_empty()) |
| 865 | newValues.push_back(Value()); |
| 866 | else |
| 867 | newValues.push_back( |
| 868 | newWarpOp.getResult(dedupResultPositionMap.lookup(result))); |
| 869 | } |
| 870 | rewriter.replaceOp(warpOp, newValues); |
| 871 | return success(); |
| 872 | } |
| 873 | }; |
| 874 | |
| 875 | // If an operand is directly yielded out of the region we can forward it |
| 876 | // directly and it doesn't need to go through the region. |
| 877 | struct WarpOpForwardOperand : public WarpDistributionPattern { |
| 878 | using Base::Base; |
| 879 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 880 | PatternRewriter &rewriter) const override { |
| 881 | auto yield = cast<gpu::YieldOp>( |
| 882 | warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 883 | Value valForwarded; |
| 884 | unsigned resultIndex; |
| 885 | for (OpOperand &operand : yield->getOpOperands()) { |
| 886 | Value result = warpOp.getResult(operand.getOperandNumber()); |
| 887 | if (result.use_empty()) |
| 888 | continue; |
| 889 | |
| 890 | // Assume all the values coming from above are uniform. |
| 891 | if (!warpOp.getBodyRegion().isAncestor(operand.get().getParentRegion())) { |
| 892 | if (result.getType() != operand.get().getType()) |
| 893 | continue; |
| 894 | valForwarded = operand.get(); |
| 895 | resultIndex = operand.getOperandNumber(); |
| 896 | break; |
| 897 | } |
| 898 | auto arg = dyn_cast<BlockArgument>(operand.get()); |
| 899 | if (!arg || arg.getOwner()->getParentOp() != warpOp.getOperation()) |
| 900 | continue; |
| 901 | Value warpOperand = warpOp.getArgs()[arg.getArgNumber()]; |
| 902 | if (result.getType() != warpOperand.getType()) |
| 903 | continue; |
| 904 | valForwarded = warpOperand; |
| 905 | resultIndex = operand.getOperandNumber(); |
| 906 | break; |
| 907 | } |
| 908 | if (!valForwarded) |
| 909 | return failure(); |
| 910 | // Notify the rewriter that the warp op is changing (see the comment on |
| 911 | // the WarpOpTransferRead pattern). |
| 912 | rewriter.startOpModification(op: warpOp); |
| 913 | rewriter.replaceAllUsesWith(warpOp.getResult(resultIndex), valForwarded); |
| 914 | rewriter.finalizeOpModification(op: warpOp); |
| 915 | return success(); |
| 916 | } |
| 917 | }; |
| 918 | |
| 919 | struct WarpOpBroadcast : public WarpDistributionPattern { |
| 920 | using Base::Base; |
| 921 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 922 | PatternRewriter &rewriter) const override { |
| 923 | OpOperand *operand = |
| 924 | getWarpResult(warpOp, llvm::IsaPred<vector::BroadcastOp>); |
| 925 | if (!operand) |
| 926 | return failure(); |
| 927 | unsigned int operandNumber = operand->getOperandNumber(); |
| 928 | auto broadcastOp = operand->get().getDefiningOp<vector::BroadcastOp>(); |
| 929 | Location loc = broadcastOp.getLoc(); |
| 930 | auto destVecType = |
| 931 | cast<VectorType>(warpOp->getResultTypes()[operandNumber]); |
| 932 | Value broadcastSrc = broadcastOp.getSource(); |
| 933 | Type broadcastSrcType = broadcastSrc.getType(); |
| 934 | |
| 935 | // Check that the broadcast actually spans a set of values uniformly across |
| 936 | // all threads. In other words, check that each thread can reconstruct |
| 937 | // their own broadcast. |
| 938 | // For that we simply check that the broadcast we want to build makes sense. |
| 939 | if (vector::isBroadcastableTo(srcType: broadcastSrcType, dstVectorType: destVecType) != |
| 940 | vector::BroadcastableToResult::Success) |
| 941 | return failure(); |
| 942 | SmallVector<size_t> newRetIndices; |
| 943 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 944 | rewriter, warpOp, {broadcastSrc}, {broadcastSrcType}, newRetIndices); |
| 945 | rewriter.setInsertionPointAfter(newWarpOp); |
| 946 | Value broadcasted = rewriter.create<vector::BroadcastOp>( |
| 947 | loc, destVecType, newWarpOp->getResult(newRetIndices[0])); |
| 948 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), |
| 949 | broadcasted); |
| 950 | return success(); |
| 951 | } |
| 952 | }; |
| 953 | |
| 954 | /// Pattern to move shape cast out of the warp op. shape cast is basically a |
| 955 | /// no-op for warp distribution; we need to handle the shape though. |
| 956 | struct WarpOpShapeCast : public WarpDistributionPattern { |
| 957 | using Base::Base; |
| 958 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 959 | PatternRewriter &rewriter) const override { |
| 960 | OpOperand *operand = |
| 961 | getWarpResult(warpOp, llvm::IsaPred<vector::ShapeCastOp>); |
| 962 | if (!operand) |
| 963 | return failure(); |
| 964 | |
| 965 | auto oldCastOp = operand->get().getDefiningOp<vector::ShapeCastOp>(); |
| 966 | |
| 967 | unsigned int operandNumber = operand->getOperandNumber(); |
| 968 | auto castDistributedType = |
| 969 | cast<VectorType>(warpOp->getResultTypes()[operandNumber]); |
| 970 | VectorType castOriginalType = oldCastOp.getSourceVectorType(); |
| 971 | VectorType castResultType = castDistributedType; |
| 972 | |
| 973 | // We expect the distributed type to have a smaller rank than the original |
| 974 | // type. Prepend with size-one dimensions to make them the same. |
| 975 | unsigned castDistributedRank = castDistributedType.getRank(); |
| 976 | unsigned castOriginalRank = castOriginalType.getRank(); |
| 977 | if (castDistributedRank < castOriginalRank) { |
| 978 | SmallVector<int64_t> shape(castOriginalRank - castDistributedRank, 1); |
| 979 | llvm::append_range(shape, castDistributedType.getShape()); |
| 980 | castDistributedType = |
| 981 | VectorType::get(shape, castDistributedType.getElementType()); |
| 982 | } |
| 983 | |
| 984 | SmallVector<size_t> newRetIndices; |
| 985 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 986 | rewriter, warpOp, {oldCastOp.getSource()}, {castDistributedType}, |
| 987 | newRetIndices); |
| 988 | rewriter.setInsertionPointAfter(newWarpOp); |
| 989 | Value newCast = rewriter.create<vector::ShapeCastOp>( |
| 990 | oldCastOp.getLoc(), castResultType, |
| 991 | newWarpOp->getResult(newRetIndices[0])); |
| 992 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newCast); |
| 993 | return success(); |
| 994 | } |
| 995 | }; |
| 996 | |
| 997 | /// Sink out vector.create_mask op feeding into a warp op yield. |
| 998 | /// ``` |
| 999 | /// %0 = ... |
| 1000 | /// %1 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<1xf32>) { |
| 1001 | /// ... |
| 1002 | /// %mask = vector.create_mask %0 : vector<32xi1> |
| 1003 | /// gpu.yield %mask : vector<32xi1> |
| 1004 | /// } |
| 1005 | /// ``` |
| 1006 | /// To |
| 1007 | /// ``` |
| 1008 | /// %0 = ... |
| 1009 | /// gpu.warp_execute_on_lane_0(%arg0) { |
| 1010 | /// ... |
| 1011 | /// } |
| 1012 | /// %cmp = arith.cmpi ult, %laneid, %0 |
| 1013 | /// %ub = arith.select %cmp, %c0, %c1 |
| 1014 | /// %1 = vector.create_mask %ub : vector<1xi1> |
| 1015 | struct WarpOpCreateMask : public WarpDistributionPattern { |
| 1016 | using Base::Base; |
| 1017 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1018 | PatternRewriter &rewriter) const override { |
| 1019 | OpOperand *yieldOperand = |
| 1020 | getWarpResult(warpOp, llvm::IsaPred<vector::CreateMaskOp>); |
| 1021 | if (!yieldOperand) |
| 1022 | return failure(); |
| 1023 | |
| 1024 | auto mask = yieldOperand->get().getDefiningOp<vector::CreateMaskOp>(); |
| 1025 | |
| 1026 | // Early exit if any values needed for calculating the new mask indices |
| 1027 | // are defined inside the warp op. |
| 1028 | if (!llvm::all_of(mask->getOperands(), [&](Value value) { |
| 1029 | return warpOp.isDefinedOutsideOfRegion(value); |
| 1030 | })) |
| 1031 | return failure(); |
| 1032 | |
| 1033 | Location loc = mask.getLoc(); |
| 1034 | unsigned operandIndex = yieldOperand->getOperandNumber(); |
| 1035 | |
| 1036 | auto distType = cast<VectorType>(warpOp.getResult(operandIndex).getType()); |
| 1037 | VectorType seqType = mask.getVectorType(); |
| 1038 | ArrayRef<int64_t> seqShape = seqType.getShape(); |
| 1039 | ArrayRef<int64_t> distShape = distType.getShape(); |
| 1040 | |
| 1041 | rewriter.setInsertionPointAfter(warpOp); |
| 1042 | |
| 1043 | // Delinearize the lane ID for constructing the distributed mask sizes. |
| 1044 | SmallVector<Value> delinearizedIds; |
| 1045 | if (!delinearizeLaneId(builder&: rewriter, loc, originalShape: seqShape, distributedShape: distShape, |
| 1046 | warpSize: warpOp.getWarpSize(), laneId: warpOp.getLaneid(), |
| 1047 | delinearizedIds)) |
| 1048 | return rewriter.notifyMatchFailure( |
| 1049 | mask, "cannot delinearize lane ID for distribution" ); |
| 1050 | assert(!delinearizedIds.empty()); |
| 1051 | |
| 1052 | // Notify the rewriter that the warp op is changing (see the comment on |
| 1053 | // the WarpOpTransferRead pattern). |
| 1054 | rewriter.startOpModification(op: warpOp); |
| 1055 | |
| 1056 | AffineExpr s0, s1; |
| 1057 | bindSymbols(ctx: rewriter.getContext(), exprs&: s0, exprs&: s1); |
| 1058 | SmallVector<Value> newOperands; |
| 1059 | for (int i = 0, e = distShape.size(); i < e; ++i) { |
| 1060 | // Get `mask_dim_range_upper_limit[i] - lane_id[i] * dist_sizes[i]` to |
| 1061 | // find the distance from the largest mask index owned by this lane to the |
| 1062 | // original mask size. `vector.create_mask` implicitly clamps mask |
| 1063 | // operands to the range [0, mask_vector_size[i]], or in other words, the |
| 1064 | // mask sizes are always in the range [0, mask_vector_size[i]). |
| 1065 | Value maskDimIdx = affine::makeComposedAffineApply( |
| 1066 | rewriter, loc, s1 - s0 * distShape[i], |
| 1067 | {delinearizedIds[i], mask.getOperand(i)}); |
| 1068 | newOperands.push_back(Elt: maskDimIdx); |
| 1069 | } |
| 1070 | |
| 1071 | auto newMask = |
| 1072 | rewriter.create<vector::CreateMaskOp>(loc, distType, newOperands); |
| 1073 | rewriter.replaceAllUsesWith(warpOp.getResult(operandIndex), newMask); |
| 1074 | rewriter.finalizeOpModification(op: warpOp); |
| 1075 | return success(); |
| 1076 | } |
| 1077 | }; |
| 1078 | |
| 1079 | /// Pattern to move out vector.extract of single element vector. Those don't |
| 1080 | /// need to be distributed and can just be propagated outside of the region. |
| 1081 | struct : public WarpDistributionPattern { |
| 1082 | using Base::Base; |
| 1083 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1084 | PatternRewriter &rewriter) const override { |
| 1085 | OpOperand *operand = |
| 1086 | getWarpResult(warpOp, llvm::IsaPred<vector::ExtractOp>); |
| 1087 | if (!operand) |
| 1088 | return failure(); |
| 1089 | unsigned int operandNumber = operand->getOperandNumber(); |
| 1090 | auto = operand->get().getDefiningOp<vector::ExtractOp>(); |
| 1091 | VectorType = extractOp.getSourceVectorType(); |
| 1092 | Location loc = extractOp.getLoc(); |
| 1093 | |
| 1094 | // For 1-d or 0-d source cases, we rely on WarpOpExtractScalar pattern. |
| 1095 | if (extractSrcType.getRank() <= 1) { |
| 1096 | return failure(); |
| 1097 | } |
| 1098 | |
| 1099 | // All following cases are 2d or higher dimensional source vectors. |
| 1100 | |
| 1101 | if (warpOp.getResult(operandNumber).getType() == operand->get().getType()) { |
| 1102 | // There is no distribution, this is a broadcast. Simply move the extract |
| 1103 | // out of the warp op. |
| 1104 | // TODO: This could be optimized. E.g., in case of a scalar result, let |
| 1105 | // one lane extract and shuffle the result to all other lanes (same as |
| 1106 | // the 1d case). |
| 1107 | SmallVector<size_t> newRetIndices; |
| 1108 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1109 | rewriter, warpOp, {extractOp.getVector()}, |
| 1110 | {extractOp.getSourceVectorType()}, newRetIndices); |
| 1111 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1112 | Value distributedVec = newWarpOp->getResult(newRetIndices[0]); |
| 1113 | // Extract from distributed vector. |
| 1114 | Value = rewriter.create<vector::ExtractOp>( |
| 1115 | loc, distributedVec, extractOp.getMixedPosition()); |
| 1116 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), |
| 1117 | newExtract); |
| 1118 | return success(); |
| 1119 | } |
| 1120 | |
| 1121 | // Find the distributed dimension. There should be exactly one. |
| 1122 | auto distributedType = |
| 1123 | cast<VectorType>(warpOp.getResult(operandNumber).getType()); |
| 1124 | auto yieldedType = cast<VectorType>(operand->get().getType()); |
| 1125 | int64_t distributedDim = -1; |
| 1126 | for (int64_t i = 0; i < yieldedType.getRank(); ++i) { |
| 1127 | if (distributedType.getDimSize(i) != yieldedType.getDimSize(i)) { |
| 1128 | // Keep this assert here in case WarpExecuteOnLane0Op gets extended to |
| 1129 | // support distributing multiple dimensions in the future. |
| 1130 | assert(distributedDim == -1 && "found multiple distributed dims" ); |
| 1131 | distributedDim = i; |
| 1132 | } |
| 1133 | } |
| 1134 | assert(distributedDim != -1 && "could not find distributed dimension" ); |
| 1135 | (void)distributedDim; |
| 1136 | |
| 1137 | // Yield source vector from warp op. |
| 1138 | SmallVector<int64_t> newDistributedShape(extractSrcType.getShape()); |
| 1139 | for (int i = 0; i < distributedType.getRank(); ++i) |
| 1140 | newDistributedShape[i + extractOp.getNumIndices()] = |
| 1141 | distributedType.getDimSize(i); |
| 1142 | auto newDistributedType = |
| 1143 | VectorType::get(newDistributedShape, distributedType.getElementType()); |
| 1144 | SmallVector<size_t> newRetIndices; |
| 1145 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1146 | rewriter, warpOp, {extractOp.getVector()}, {newDistributedType}, |
| 1147 | newRetIndices); |
| 1148 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1149 | Value distributedVec = newWarpOp->getResult(newRetIndices[0]); |
| 1150 | // Extract from distributed vector. |
| 1151 | Value = rewriter.create<vector::ExtractOp>( |
| 1152 | loc, distributedVec, extractOp.getMixedPosition()); |
| 1153 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), |
| 1154 | newExtract); |
| 1155 | return success(); |
| 1156 | } |
| 1157 | }; |
| 1158 | |
| 1159 | /// Pattern to move out vector.extract with a scalar result. |
| 1160 | /// Only supports 1-D and 0-D sources for now. |
| 1161 | struct : public WarpDistributionPattern { |
| 1162 | (MLIRContext *ctx, WarpShuffleFromIdxFn fn, |
| 1163 | PatternBenefit b = 1) |
| 1164 | : WarpDistributionPattern(ctx, b), warpShuffleFromIdxFn(std::move(fn)) {} |
| 1165 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1166 | PatternRewriter &rewriter) const override { |
| 1167 | OpOperand *operand = |
| 1168 | getWarpResult(warpOp, llvm::IsaPred<vector::ExtractOp>); |
| 1169 | if (!operand) |
| 1170 | return failure(); |
| 1171 | unsigned int operandNumber = operand->getOperandNumber(); |
| 1172 | auto = operand->get().getDefiningOp<vector::ExtractOp>(); |
| 1173 | VectorType = extractOp.getSourceVectorType(); |
| 1174 | // Only supports 1-D or 0-D sources for now. |
| 1175 | if (extractSrcType.getRank() > 1) { |
| 1176 | return rewriter.notifyMatchFailure( |
| 1177 | extractOp, "only 0-D or 1-D source supported for now" ); |
| 1178 | } |
| 1179 | // TODO: Supported shuffle types should be parameterizable, similar to |
| 1180 | // `WarpShuffleFromIdxFn`. |
| 1181 | if (!extractSrcType.getElementType().isF32() && |
| 1182 | !extractSrcType.getElementType().isInteger(32)) |
| 1183 | return rewriter.notifyMatchFailure( |
| 1184 | extractOp, "only f32/i32 element types are supported" ); |
| 1185 | bool = extractSrcType.getNumElements() == 1; |
| 1186 | Type elType = extractSrcType.getElementType(); |
| 1187 | VectorType distributedVecType; |
| 1188 | if (!is0dOrVec1Extract) { |
| 1189 | assert(extractSrcType.getRank() == 1 && |
| 1190 | "expected that extract src rank is 0 or 1" ); |
| 1191 | if (extractSrcType.getShape()[0] % warpOp.getWarpSize() != 0) |
| 1192 | return failure(); |
| 1193 | int64_t elementsPerLane = |
| 1194 | extractSrcType.getShape()[0] / warpOp.getWarpSize(); |
| 1195 | distributedVecType = VectorType::get({elementsPerLane}, elType); |
| 1196 | } else { |
| 1197 | distributedVecType = extractSrcType; |
| 1198 | } |
| 1199 | // Yield source vector and position (if present) from warp op. |
| 1200 | SmallVector<Value> additionalResults{extractOp.getVector()}; |
| 1201 | SmallVector<Type> additionalResultTypes{distributedVecType}; |
| 1202 | additionalResults.append( |
| 1203 | RHS: SmallVector<Value>(extractOp.getDynamicPosition())); |
| 1204 | additionalResultTypes.append( |
| 1205 | RHS: SmallVector<Type>(extractOp.getDynamicPosition().getTypes())); |
| 1206 | |
| 1207 | Location loc = extractOp.getLoc(); |
| 1208 | SmallVector<size_t> newRetIndices; |
| 1209 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1210 | rewriter, warpOp, additionalResults, additionalResultTypes, |
| 1211 | newRetIndices); |
| 1212 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1213 | Value distributedVec = newWarpOp->getResult(newRetIndices[0]); |
| 1214 | |
| 1215 | // 0d extract: The new warp op broadcasts the source vector to all lanes. |
| 1216 | // All lanes extract the scalar. |
| 1217 | if (is0dOrVec1Extract) { |
| 1218 | Value ; |
| 1219 | SmallVector<int64_t> indices(extractSrcType.getRank(), 0); |
| 1220 | newExtract = |
| 1221 | rewriter.create<vector::ExtractOp>(loc, distributedVec, indices); |
| 1222 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), |
| 1223 | newExtract); |
| 1224 | return success(); |
| 1225 | } |
| 1226 | |
| 1227 | int64_t staticPos = extractOp.getStaticPosition()[0]; |
| 1228 | OpFoldResult pos = ShapedType::isDynamic(staticPos) |
| 1229 | ? (newWarpOp->getResult(newRetIndices[1])) |
| 1230 | : OpFoldResult(rewriter.getIndexAttr(staticPos)); |
| 1231 | // 1d extract: Distribute the source vector. One lane extracts and shuffles |
| 1232 | // the value to all other lanes. |
| 1233 | int64_t elementsPerLane = distributedVecType.getShape()[0]; |
| 1234 | AffineExpr sym0 = getAffineSymbolExpr(position: 0, context: rewriter.getContext()); |
| 1235 | // tid of extracting thread: pos / elementsPerLane |
| 1236 | Value broadcastFromTid = affine::makeComposedAffineApply( |
| 1237 | rewriter, loc, sym0.ceilDiv(v: elementsPerLane), pos); |
| 1238 | // Extract at position: pos % elementsPerLane |
| 1239 | Value newPos = |
| 1240 | elementsPerLane == 1 |
| 1241 | ? rewriter.create<arith::ConstantIndexOp>(location: loc, args: 0).getResult() |
| 1242 | : affine::makeComposedAffineApply(rewriter, loc, |
| 1243 | sym0 % elementsPerLane, pos); |
| 1244 | Value = |
| 1245 | rewriter.create<vector::ExtractOp>(loc, distributedVec, newPos); |
| 1246 | |
| 1247 | // Shuffle the extracted value to all lanes. |
| 1248 | Value shuffled = warpShuffleFromIdxFn( |
| 1249 | loc, rewriter, extracted, broadcastFromTid, newWarpOp.getWarpSize()); |
| 1250 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), shuffled); |
| 1251 | return success(); |
| 1252 | } |
| 1253 | |
| 1254 | private: |
| 1255 | WarpShuffleFromIdxFn ; |
| 1256 | }; |
| 1257 | |
| 1258 | /// Pattern to convert vector.extractelement to vector.extract. |
| 1259 | struct : public WarpDistributionPattern { |
| 1260 | using Base::Base; |
| 1261 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1262 | PatternRewriter &rewriter) const override { |
| 1263 | OpOperand *operand = |
| 1264 | getWarpResult(warpOp, llvm::IsaPred<vector::ExtractElementOp>); |
| 1265 | if (!operand) |
| 1266 | return failure(); |
| 1267 | auto = operand->get().getDefiningOp<vector::ExtractElementOp>(); |
| 1268 | SmallVector<OpFoldResult> indices; |
| 1269 | if (auto pos = extractOp.getPosition()) { |
| 1270 | indices.push_back(Elt: pos); |
| 1271 | } |
| 1272 | rewriter.setInsertionPoint(extractOp); |
| 1273 | rewriter.replaceOpWithNewOp<vector::ExtractOp>( |
| 1274 | extractOp, extractOp.getVector(), indices); |
| 1275 | return success(); |
| 1276 | } |
| 1277 | }; |
| 1278 | |
| 1279 | /// Pattern to move out vector.insert with a scalar input. |
| 1280 | /// Only supports 1-D and 0-D destinations for now. |
| 1281 | struct WarpOpInsertScalar : public WarpDistributionPattern { |
| 1282 | using Base::Base; |
| 1283 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1284 | PatternRewriter &rewriter) const override { |
| 1285 | OpOperand *operand = getWarpResult(warpOp, llvm::IsaPred<vector::InsertOp>); |
| 1286 | if (!operand) |
| 1287 | return failure(); |
| 1288 | unsigned int operandNumber = operand->getOperandNumber(); |
| 1289 | auto insertOp = operand->get().getDefiningOp<vector::InsertOp>(); |
| 1290 | VectorType vecType = insertOp.getDestVectorType(); |
| 1291 | VectorType distrType = |
| 1292 | cast<VectorType>(warpOp.getResult(operandNumber).getType()); |
| 1293 | |
| 1294 | // Only supports 1-D or 0-D destinations for now. |
| 1295 | if (vecType.getRank() > 1) { |
| 1296 | return rewriter.notifyMatchFailure( |
| 1297 | insertOp, "only 0-D or 1-D source supported for now" ); |
| 1298 | } |
| 1299 | |
| 1300 | // Yield destination vector, source scalar and position from warp op. |
| 1301 | SmallVector<Value> additionalResults{insertOp.getDest(), |
| 1302 | insertOp.getValueToStore()}; |
| 1303 | SmallVector<Type> additionalResultTypes{ |
| 1304 | distrType, insertOp.getValueToStore().getType()}; |
| 1305 | additionalResults.append(RHS: SmallVector<Value>(insertOp.getDynamicPosition())); |
| 1306 | additionalResultTypes.append( |
| 1307 | RHS: SmallVector<Type>(insertOp.getDynamicPosition().getTypes())); |
| 1308 | |
| 1309 | Location loc = insertOp.getLoc(); |
| 1310 | SmallVector<size_t> newRetIndices; |
| 1311 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1312 | rewriter, warpOp, additionalResults, additionalResultTypes, |
| 1313 | newRetIndices); |
| 1314 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1315 | Value distributedVec = newWarpOp->getResult(newRetIndices[0]); |
| 1316 | Value newSource = newWarpOp->getResult(newRetIndices[1]); |
| 1317 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1318 | |
| 1319 | OpFoldResult pos; |
| 1320 | if (vecType.getRank() != 0) { |
| 1321 | int64_t staticPos = insertOp.getStaticPosition()[0]; |
| 1322 | pos = ShapedType::isDynamic(staticPos) |
| 1323 | ? (newWarpOp->getResult(newRetIndices[2])) |
| 1324 | : OpFoldResult(rewriter.getIndexAttr(staticPos)); |
| 1325 | } |
| 1326 | |
| 1327 | // This condition is always true for 0-d vectors. |
| 1328 | if (vecType == distrType) { |
| 1329 | Value newInsert; |
| 1330 | SmallVector<OpFoldResult> indices; |
| 1331 | if (pos) { |
| 1332 | indices.push_back(Elt: pos); |
| 1333 | } |
| 1334 | newInsert = rewriter.create<vector::InsertOp>(loc, newSource, |
| 1335 | distributedVec, indices); |
| 1336 | // Broadcast: Simply move the vector.insert op out. |
| 1337 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), |
| 1338 | newInsert); |
| 1339 | return success(); |
| 1340 | } |
| 1341 | |
| 1342 | // This is a distribution. Only one lane should insert. |
| 1343 | int64_t elementsPerLane = distrType.getShape()[0]; |
| 1344 | AffineExpr sym0 = getAffineSymbolExpr(position: 0, context: rewriter.getContext()); |
| 1345 | // tid of extracting thread: pos / elementsPerLane |
| 1346 | Value insertingLane = affine::makeComposedAffineApply( |
| 1347 | rewriter, loc, sym0.ceilDiv(v: elementsPerLane), pos); |
| 1348 | // Insert position: pos % elementsPerLane |
| 1349 | OpFoldResult newPos = affine::makeComposedFoldedAffineApply( |
| 1350 | b&: rewriter, loc, expr: sym0 % elementsPerLane, operands: pos); |
| 1351 | Value isInsertingLane = rewriter.create<arith::CmpIOp>( |
| 1352 | loc, arith::CmpIPredicate::eq, newWarpOp.getLaneid(), insertingLane); |
| 1353 | Value newResult = |
| 1354 | rewriter |
| 1355 | .create<scf::IfOp>( |
| 1356 | loc, isInsertingLane, |
| 1357 | /*thenBuilder=*/ |
| 1358 | [&](OpBuilder &builder, Location loc) { |
| 1359 | Value newInsert = builder.create<vector::InsertOp>( |
| 1360 | loc, newSource, distributedVec, newPos); |
| 1361 | builder.create<scf::YieldOp>(loc, newInsert); |
| 1362 | }, |
| 1363 | /*elseBuilder=*/ |
| 1364 | [&](OpBuilder &builder, Location loc) { |
| 1365 | builder.create<scf::YieldOp>(loc, distributedVec); |
| 1366 | }) |
| 1367 | .getResult(0); |
| 1368 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newResult); |
| 1369 | return success(); |
| 1370 | } |
| 1371 | }; |
| 1372 | |
| 1373 | struct WarpOpInsert : public WarpDistributionPattern { |
| 1374 | using Base::Base; |
| 1375 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1376 | PatternRewriter &rewriter) const override { |
| 1377 | OpOperand *operand = getWarpResult(warpOp, llvm::IsaPred<vector::InsertOp>); |
| 1378 | if (!operand) |
| 1379 | return failure(); |
| 1380 | unsigned int operandNumber = operand->getOperandNumber(); |
| 1381 | auto insertOp = operand->get().getDefiningOp<vector::InsertOp>(); |
| 1382 | Location loc = insertOp.getLoc(); |
| 1383 | |
| 1384 | // For 1-d or 0-d destination cases, we rely on WarpOpInsertScalar pattern. |
| 1385 | if (insertOp.getDestVectorType().getRank() <= 1) { |
| 1386 | return failure(); |
| 1387 | } |
| 1388 | |
| 1389 | // All following cases are 2d or higher dimensional source vectors. |
| 1390 | |
| 1391 | if (warpOp.getResult(operandNumber).getType() == operand->get().getType()) { |
| 1392 | // There is no distribution, this is a broadcast. Simply move the insert |
| 1393 | // out of the warp op. |
| 1394 | SmallVector<size_t> newRetIndices; |
| 1395 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1396 | rewriter, warpOp, {insertOp.getValueToStore(), insertOp.getDest()}, |
| 1397 | {insertOp.getValueToStoreType(), insertOp.getDestVectorType()}, |
| 1398 | newRetIndices); |
| 1399 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1400 | Value distributedSrc = newWarpOp->getResult(newRetIndices[0]); |
| 1401 | Value distributedDest = newWarpOp->getResult(newRetIndices[1]); |
| 1402 | Value newResult = rewriter.create<vector::InsertOp>( |
| 1403 | loc, distributedSrc, distributedDest, insertOp.getMixedPosition()); |
| 1404 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), |
| 1405 | newResult); |
| 1406 | return success(); |
| 1407 | } |
| 1408 | |
| 1409 | // Find the distributed dimension. There should be exactly one. |
| 1410 | auto distrDestType = |
| 1411 | cast<VectorType>(warpOp.getResult(operandNumber).getType()); |
| 1412 | auto yieldedType = cast<VectorType>(operand->get().getType()); |
| 1413 | int64_t distrDestDim = -1; |
| 1414 | for (int64_t i = 0; i < yieldedType.getRank(); ++i) { |
| 1415 | if (distrDestType.getDimSize(i) != yieldedType.getDimSize(i)) { |
| 1416 | // Keep this assert here in case WarpExecuteOnLane0Op gets extended to |
| 1417 | // support distributing multiple dimensions in the future. |
| 1418 | assert(distrDestDim == -1 && "found multiple distributed dims" ); |
| 1419 | distrDestDim = i; |
| 1420 | } |
| 1421 | } |
| 1422 | assert(distrDestDim != -1 && "could not find distributed dimension" ); |
| 1423 | |
| 1424 | // Compute the distributed source vector type. |
| 1425 | VectorType srcVecType = cast<VectorType>(insertOp.getValueToStoreType()); |
| 1426 | SmallVector<int64_t> distrSrcShape(srcVecType.getShape()); |
| 1427 | // E.g.: vector.insert %s, %d [2] : vector<96xf32> into vector<128x96xf32> |
| 1428 | // Case 1: distrDestDim = 1 (dim of size 96). In that case, each lane will |
| 1429 | // insert a smaller vector<3xf32>. |
| 1430 | // Case 2: distrDestDim = 0 (dim of size 128) => distrSrcDim = -1. In that |
| 1431 | // case, one lane will insert the source vector<96xf32>. The other |
| 1432 | // lanes will not do anything. |
| 1433 | int64_t distrSrcDim = distrDestDim - insertOp.getNumIndices(); |
| 1434 | if (distrSrcDim >= 0) |
| 1435 | distrSrcShape[distrSrcDim] = distrDestType.getDimSize(distrDestDim); |
| 1436 | auto distrSrcType = |
| 1437 | VectorType::get(distrSrcShape, distrDestType.getElementType()); |
| 1438 | |
| 1439 | // Yield source and dest vectors from warp op. |
| 1440 | SmallVector<size_t> newRetIndices; |
| 1441 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1442 | rewriter, warpOp, {insertOp.getValueToStore(), insertOp.getDest()}, |
| 1443 | {distrSrcType, distrDestType}, newRetIndices); |
| 1444 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1445 | Value distributedSrc = newWarpOp->getResult(newRetIndices[0]); |
| 1446 | Value distributedDest = newWarpOp->getResult(newRetIndices[1]); |
| 1447 | |
| 1448 | // Insert into the distributed vector. |
| 1449 | Value newResult; |
| 1450 | if (distrSrcDim >= 0) { |
| 1451 | // Every lane inserts a small piece. |
| 1452 | newResult = rewriter.create<vector::InsertOp>( |
| 1453 | loc, distributedSrc, distributedDest, insertOp.getMixedPosition()); |
| 1454 | } else { |
| 1455 | // One lane inserts the entire source vector. |
| 1456 | int64_t elementsPerLane = distrDestType.getDimSize(distrDestDim); |
| 1457 | SmallVector<OpFoldResult> pos = insertOp.getMixedPosition(); |
| 1458 | SmallVector<int64_t> newPos = getAsIntegers(foldResults: pos); |
| 1459 | // tid of inserting lane: pos / elementsPerLane |
| 1460 | Value insertingLane = rewriter.create<arith::ConstantIndexOp>( |
| 1461 | location: loc, args: newPos[distrDestDim] / elementsPerLane); |
| 1462 | Value isInsertingLane = rewriter.create<arith::CmpIOp>( |
| 1463 | loc, arith::CmpIPredicate::eq, newWarpOp.getLaneid(), insertingLane); |
| 1464 | // Insert position: pos % elementsPerLane |
| 1465 | newPos[distrDestDim] %= elementsPerLane; |
| 1466 | auto insertingBuilder = [&](OpBuilder &builder, Location loc) { |
| 1467 | Value newInsert = builder.create<vector::InsertOp>( |
| 1468 | loc, distributedSrc, distributedDest, newPos); |
| 1469 | builder.create<scf::YieldOp>(loc, newInsert); |
| 1470 | }; |
| 1471 | auto nonInsertingBuilder = [&](OpBuilder &builder, Location loc) { |
| 1472 | builder.create<scf::YieldOp>(loc, distributedDest); |
| 1473 | }; |
| 1474 | newResult = rewriter |
| 1475 | .create<scf::IfOp>(loc, isInsertingLane, |
| 1476 | /*thenBuilder=*/insertingBuilder, |
| 1477 | /*elseBuilder=*/nonInsertingBuilder) |
| 1478 | .getResult(0); |
| 1479 | } |
| 1480 | |
| 1481 | rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newResult); |
| 1482 | return success(); |
| 1483 | } |
| 1484 | }; |
| 1485 | |
| 1486 | struct WarpOpInsertElement : public WarpDistributionPattern { |
| 1487 | using Base::Base; |
| 1488 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1489 | PatternRewriter &rewriter) const override { |
| 1490 | OpOperand *operand = |
| 1491 | getWarpResult(warpOp, llvm::IsaPred<vector::InsertElementOp>); |
| 1492 | if (!operand) |
| 1493 | return failure(); |
| 1494 | auto insertOp = operand->get().getDefiningOp<vector::InsertElementOp>(); |
| 1495 | SmallVector<OpFoldResult> indices; |
| 1496 | if (auto pos = insertOp.getPosition()) { |
| 1497 | indices.push_back(Elt: pos); |
| 1498 | } |
| 1499 | rewriter.setInsertionPoint(insertOp); |
| 1500 | rewriter.replaceOpWithNewOp<vector::InsertOp>( |
| 1501 | insertOp, insertOp.getSource(), insertOp.getDest(), indices); |
| 1502 | return success(); |
| 1503 | } |
| 1504 | }; |
| 1505 | |
| 1506 | /// Sink scf.for region out of WarpExecuteOnLane0Op. This can be done only if |
| 1507 | /// the scf.ForOp is the last operation in the region so that it doesn't |
| 1508 | /// change the order of execution. This creates a new scf.for region after the |
| 1509 | /// WarpExecuteOnLane0Op. The new scf.for region will contain a new |
| 1510 | /// WarpExecuteOnLane0Op region. Example: |
| 1511 | /// ``` |
| 1512 | /// %w = gpu.warp_execute_on_lane_0(%laneid) -> (vector<4xf32>) { |
| 1513 | /// ... |
| 1514 | /// %v1 = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%arg4 = %v) |
| 1515 | /// -> (vector<128xf32>) { |
| 1516 | /// ... |
| 1517 | /// scf.yield %r : vector<128xf32> |
| 1518 | /// } |
| 1519 | /// gpu.yield %v1 : vector<128xf32> |
| 1520 | /// } |
| 1521 | /// ``` |
| 1522 | /// To: |
| 1523 | /// %w0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<4xf32>) { |
| 1524 | /// ... |
| 1525 | /// gpu.yield %v : vector<128xf32> |
| 1526 | /// } |
| 1527 | /// %w = scf.for %arg3 = %c0 to %c128 step %c1 iter_args(%varg = %q0) |
| 1528 | /// -> (vector<4xf32>) { |
| 1529 | /// %iw = gpu.warp_execute_on_lane_0(%laneid) |
| 1530 | /// args(%varg : vector<4xf32>) -> (vector<4xf32>) { |
| 1531 | /// ^bb0(%arg: vector<128xf32>): |
| 1532 | /// ... |
| 1533 | /// gpu.yield %ir : vector<128xf32> |
| 1534 | /// } |
| 1535 | /// scf.yield %iw : vector<4xf32> |
| 1536 | /// } |
| 1537 | /// ``` |
| 1538 | struct WarpOpScfForOp : public WarpDistributionPattern { |
| 1539 | |
| 1540 | WarpOpScfForOp(MLIRContext *ctx, DistributionMapFn fn, PatternBenefit b = 1) |
| 1541 | : WarpDistributionPattern(ctx, b), distributionMapFn(std::move(fn)) {} |
| 1542 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1543 | PatternRewriter &rewriter) const override { |
| 1544 | auto yield = cast<gpu::YieldOp>( |
| 1545 | warpOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 1546 | // Only pick up forOp if it is the last op in the region. |
| 1547 | Operation *lastNode = yield->getPrevNode(); |
| 1548 | auto forOp = dyn_cast_or_null<scf::ForOp>(lastNode); |
| 1549 | if (!forOp) |
| 1550 | return failure(); |
| 1551 | // Collect Values that come from the warp op but are outside the forOp. |
| 1552 | // Those Value needs to be returned by the original warpOp and passed to |
| 1553 | // the new op. |
| 1554 | llvm::SmallSetVector<Value, 32> escapingValues; |
| 1555 | SmallVector<Type> inputTypes; |
| 1556 | SmallVector<Type> distTypes; |
| 1557 | auto collectEscapingValues = [&](Value value) { |
| 1558 | if (!escapingValues.insert(X: value)) |
| 1559 | return; |
| 1560 | Type distType = value.getType(); |
| 1561 | if (auto vecType = dyn_cast<VectorType>(distType)) { |
| 1562 | AffineMap map = distributionMapFn(value); |
| 1563 | distType = getDistributedType(vecType, map, warpOp.getWarpSize()); |
| 1564 | } |
| 1565 | inputTypes.push_back(Elt: value.getType()); |
| 1566 | distTypes.push_back(Elt: distType); |
| 1567 | }; |
| 1568 | |
| 1569 | mlir::visitUsedValuesDefinedAbove( |
| 1570 | forOp.getBodyRegion(), [&](OpOperand *operand) { |
| 1571 | Operation *parent = operand->get().getParentRegion()->getParentOp(); |
| 1572 | if (warpOp->isAncestor(parent)) { |
| 1573 | collectEscapingValues(operand->get()); |
| 1574 | } |
| 1575 | }); |
| 1576 | |
| 1577 | // Any forOp result that is not already yielded by the warpOp |
| 1578 | // region is also considered escaping and must be returned by the |
| 1579 | // original warpOp. |
| 1580 | for (OpResult forResult : forOp.getResults()) { |
| 1581 | // Check if this forResult is already yielded by the yield op. |
| 1582 | if (llvm::is_contained(yield->getOperands(), forResult)) |
| 1583 | continue; |
| 1584 | collectEscapingValues(forResult); |
| 1585 | } |
| 1586 | |
| 1587 | if (llvm::is_contained(Range&: distTypes, Element: Type{})) |
| 1588 | return failure(); |
| 1589 | |
| 1590 | SmallVector<size_t> newRetIndices; |
| 1591 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1592 | rewriter, warpOp, escapingValues.getArrayRef(), distTypes, |
| 1593 | newRetIndices); |
| 1594 | yield = cast<gpu::YieldOp>( |
| 1595 | newWarpOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 1596 | |
| 1597 | SmallVector<Value> newOperands; |
| 1598 | SmallVector<unsigned> resultIdx; |
| 1599 | // Collect all the outputs coming from the forOp. |
| 1600 | for (OpOperand &yieldOperand : yield->getOpOperands()) { |
| 1601 | if (yieldOperand.get().getDefiningOp() != forOp.getOperation()) |
| 1602 | continue; |
| 1603 | auto forResult = cast<OpResult>(yieldOperand.get()); |
| 1604 | newOperands.push_back( |
| 1605 | newWarpOp.getResult(yieldOperand.getOperandNumber())); |
| 1606 | yieldOperand.set(forOp.getInitArgs()[forResult.getResultNumber()]); |
| 1607 | resultIdx.push_back(yieldOperand.getOperandNumber()); |
| 1608 | } |
| 1609 | |
| 1610 | OpBuilder::InsertionGuard g(rewriter); |
| 1611 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1612 | |
| 1613 | // Create a new for op outside the region with a WarpExecuteOnLane0Op |
| 1614 | // region inside. |
| 1615 | auto newForOp = rewriter.create<scf::ForOp>( |
| 1616 | forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(), |
| 1617 | forOp.getStep(), newOperands); |
| 1618 | rewriter.setInsertionPointToStart(newForOp.getBody()); |
| 1619 | |
| 1620 | SmallVector<Value> warpInput(newForOp.getRegionIterArgs().begin(), |
| 1621 | newForOp.getRegionIterArgs().end()); |
| 1622 | SmallVector<Type> warpInputType(forOp.getResultTypes().begin(), |
| 1623 | forOp.getResultTypes().end()); |
| 1624 | llvm::SmallDenseMap<Value, int64_t> argIndexMapping; |
| 1625 | for (auto [i, retIdx] : llvm::enumerate(First&: newRetIndices)) { |
| 1626 | auto newWarpResult = newWarpOp.getResult(retIdx); |
| 1627 | // Unused forOp results yielded by the warpOp region are already included |
| 1628 | // in the new ForOp. |
| 1629 | if (llvm::is_contained(newOperands, newWarpResult)) |
| 1630 | continue; |
| 1631 | warpInput.push_back(Elt: newWarpResult); |
| 1632 | argIndexMapping[escapingValues[i]] = warpInputType.size(); |
| 1633 | warpInputType.push_back(Elt: inputTypes[i]); |
| 1634 | } |
| 1635 | auto innerWarp = rewriter.create<WarpExecuteOnLane0Op>( |
| 1636 | newWarpOp.getLoc(), newForOp.getResultTypes(), newWarpOp.getLaneid(), |
| 1637 | newWarpOp.getWarpSize(), warpInput, warpInputType); |
| 1638 | |
| 1639 | SmallVector<Value> argMapping; |
| 1640 | argMapping.push_back(Elt: newForOp.getInductionVar()); |
| 1641 | for (Value args : innerWarp.getBody()->getArguments()) { |
| 1642 | argMapping.push_back(args); |
| 1643 | } |
| 1644 | argMapping.resize(forOp.getBody()->getNumArguments()); |
| 1645 | SmallVector<Value> yieldOperands; |
| 1646 | for (Value operand : forOp.getBody()->getTerminator()->getOperands()) |
| 1647 | yieldOperands.push_back(operand); |
| 1648 | rewriter.eraseOp(op: forOp.getBody()->getTerminator()); |
| 1649 | rewriter.mergeBlocks(source: forOp.getBody(), dest: innerWarp.getBody(), argValues: argMapping); |
| 1650 | rewriter.setInsertionPointToEnd(innerWarp.getBody()); |
| 1651 | rewriter.create<gpu::YieldOp>(innerWarp.getLoc(), yieldOperands); |
| 1652 | rewriter.setInsertionPointAfter(innerWarp); |
| 1653 | if (!innerWarp.getResults().empty()) |
| 1654 | rewriter.create<scf::YieldOp>(forOp.getLoc(), innerWarp.getResults()); |
| 1655 | rewriter.eraseOp(op: forOp); |
| 1656 | // Replace the warpOp result coming from the original ForOp. |
| 1657 | for (const auto &res : llvm::enumerate(First&: resultIdx)) { |
| 1658 | rewriter.replaceAllUsesWith(newWarpOp.getResult(res.value()), |
| 1659 | newForOp.getResult(res.index())); |
| 1660 | newForOp->setOperand(res.index() + 3, newWarpOp.getResult(res.value())); |
| 1661 | } |
| 1662 | newForOp.walk([&](Operation *op) { |
| 1663 | for (OpOperand &operand : op->getOpOperands()) { |
| 1664 | auto it = argIndexMapping.find(Val: operand.get()); |
| 1665 | if (it == argIndexMapping.end()) |
| 1666 | continue; |
| 1667 | operand.set(innerWarp.getBodyRegion().getArgument(it->second)); |
| 1668 | } |
| 1669 | }); |
| 1670 | |
| 1671 | // Finally, hoist out any now uniform code from the inner warp op. |
| 1672 | mlir::vector::moveScalarUniformCode(innerWarp); |
| 1673 | return success(); |
| 1674 | } |
| 1675 | |
| 1676 | private: |
| 1677 | DistributionMapFn distributionMapFn; |
| 1678 | }; |
| 1679 | |
| 1680 | /// A pattern that extracts vector.reduction ops from a WarpExecuteOnLane0Op. |
| 1681 | /// The vector is reduced in parallel. Currently limited to vector size |
| 1682 | /// matching the warpOp size. E.g.: |
| 1683 | /// ``` |
| 1684 | /// %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (f32) { |
| 1685 | /// %0 = "some_def"() : () -> (vector<32xf32>) |
| 1686 | /// %1 = vector.reduction "add", %0 : vector<32xf32> into f32 |
| 1687 | /// gpu.yield %1 : f32 |
| 1688 | /// } |
| 1689 | /// ``` |
| 1690 | /// is lowered to: |
| 1691 | /// ``` |
| 1692 | /// %0 = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<1xf32>) { |
| 1693 | /// %1 = "some_def"() : () -> (vector<32xf32>) |
| 1694 | /// gpu.yield %1 : vector<32xf32> |
| 1695 | /// } |
| 1696 | /// %a = vector.extract %0[0] : f32 from vector<1xf32> |
| 1697 | /// %r = ("warp.reduction %a") |
| 1698 | /// ``` |
| 1699 | struct WarpOpReduction : public WarpDistributionPattern { |
| 1700 | WarpOpReduction(MLIRContext *context, |
| 1701 | DistributedReductionFn distributedReductionFn, |
| 1702 | PatternBenefit benefit = 1) |
| 1703 | : WarpDistributionPattern(context, benefit), |
| 1704 | distributedReductionFn(std::move(distributedReductionFn)) {} |
| 1705 | |
| 1706 | LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, |
| 1707 | PatternRewriter &rewriter) const override { |
| 1708 | OpOperand *yieldOperand = |
| 1709 | getWarpResult(warpOp, llvm::IsaPred<vector::ReductionOp>); |
| 1710 | if (!yieldOperand) |
| 1711 | return failure(); |
| 1712 | |
| 1713 | auto reductionOp = |
| 1714 | cast<vector::ReductionOp>(yieldOperand->get().getDefiningOp()); |
| 1715 | auto vectorType = cast<VectorType>(reductionOp.getVector().getType()); |
| 1716 | // Only rank 1 vectors supported. |
| 1717 | if (vectorType.getRank() != 1) |
| 1718 | return rewriter.notifyMatchFailure( |
| 1719 | warpOp, "Only rank 1 reductions can be distributed." ); |
| 1720 | // Only warp_size-sized vectors supported. |
| 1721 | if (vectorType.getShape()[0] % warpOp.getWarpSize() != 0) |
| 1722 | return rewriter.notifyMatchFailure( |
| 1723 | warpOp, "Reduction vector dimension must match was size." ); |
| 1724 | if (!reductionOp.getType().isIntOrFloat()) |
| 1725 | return rewriter.notifyMatchFailure( |
| 1726 | warpOp, "Reduction distribution currently only supports floats and " |
| 1727 | "integer types." ); |
| 1728 | |
| 1729 | int64_t numElements = vectorType.getShape()[0] / warpOp.getWarpSize(); |
| 1730 | // Return vector that will be reduced from the WarpExecuteOnLane0Op. |
| 1731 | unsigned operandIndex = yieldOperand->getOperandNumber(); |
| 1732 | SmallVector<Value> yieldValues = {reductionOp.getVector()}; |
| 1733 | SmallVector<Type> retTypes = { |
| 1734 | VectorType::get({numElements}, reductionOp.getType())}; |
| 1735 | if (reductionOp.getAcc()) { |
| 1736 | yieldValues.push_back(Elt: reductionOp.getAcc()); |
| 1737 | retTypes.push_back(Elt: reductionOp.getAcc().getType()); |
| 1738 | } |
| 1739 | SmallVector<size_t> newRetIndices; |
| 1740 | WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1741 | rewriter, warpOp, yieldValues, retTypes, newRetIndices); |
| 1742 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1743 | |
| 1744 | // Obtain data to reduce for a single lane. |
| 1745 | Value laneValVec = newWarpOp.getResult(newRetIndices[0]); |
| 1746 | // Distribute and reduce across threads. |
| 1747 | Value fullReduce = |
| 1748 | distributedReductionFn(reductionOp.getLoc(), rewriter, laneValVec, |
| 1749 | reductionOp.getKind(), newWarpOp.getWarpSize()); |
| 1750 | if (reductionOp.getAcc()) { |
| 1751 | fullReduce = vector::makeArithReduction( |
| 1752 | rewriter, reductionOp.getLoc(), reductionOp.getKind(), fullReduce, |
| 1753 | newWarpOp.getResult(newRetIndices[1])); |
| 1754 | } |
| 1755 | rewriter.replaceAllUsesWith(newWarpOp.getResult(operandIndex), fullReduce); |
| 1756 | return success(); |
| 1757 | } |
| 1758 | |
| 1759 | private: |
| 1760 | DistributedReductionFn distributedReductionFn; |
| 1761 | }; |
| 1762 | |
| 1763 | } // namespace |
| 1764 | |
| 1765 | void mlir::vector::populateWarpExecuteOnLane0OpToScfForPattern( |
| 1766 | RewritePatternSet &patterns, |
| 1767 | const WarpExecuteOnLane0LoweringOptions &options, PatternBenefit benefit) { |
| 1768 | patterns.add<WarpOpToScfIfPattern>(arg: patterns.getContext(), args: options, args&: benefit); |
| 1769 | } |
| 1770 | |
| 1771 | void mlir::vector::populateDistributeTransferWriteOpPatterns( |
| 1772 | RewritePatternSet &patterns, const DistributionMapFn &distributionMapFn, |
| 1773 | unsigned , PatternBenefit benefit) { |
| 1774 | patterns.add<WarpOpTransferWrite>(arg: patterns.getContext(), args: distributionMapFn, |
| 1775 | args&: maxNumElementsToExtract, args&: benefit); |
| 1776 | } |
| 1777 | |
| 1778 | void mlir::vector::populatePropagateWarpVectorDistributionPatterns( |
| 1779 | RewritePatternSet &patterns, const DistributionMapFn &distributionMapFn, |
| 1780 | const WarpShuffleFromIdxFn &warpShuffleFromIdxFn, PatternBenefit benefit, |
| 1781 | PatternBenefit readBenefit) { |
| 1782 | patterns.add<WarpOpTransferRead>(arg: patterns.getContext(), args&: readBenefit); |
| 1783 | patterns.add<WarpOpElementwise, WarpOpDeadResult, WarpOpBroadcast, |
| 1784 | WarpOpShapeCast, WarpOpExtract, WarpOpForwardOperand, |
| 1785 | WarpOpConstant, WarpOpExtractElement, WarpOpInsertElement, |
| 1786 | WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask>( |
| 1787 | arg: patterns.getContext(), args&: benefit); |
| 1788 | patterns.add<WarpOpExtractScalar>(arg: patterns.getContext(), args: warpShuffleFromIdxFn, |
| 1789 | args&: benefit); |
| 1790 | patterns.add<WarpOpScfForOp>(arg: patterns.getContext(), args: distributionMapFn, |
| 1791 | args&: benefit); |
| 1792 | } |
| 1793 | |
| 1794 | void mlir::vector::populateDistributeReduction( |
| 1795 | RewritePatternSet &patterns, |
| 1796 | const DistributedReductionFn &distributedReductionFn, |
| 1797 | PatternBenefit benefit) { |
| 1798 | patterns.add<WarpOpReduction>(arg: patterns.getContext(), args: distributedReductionFn, |
| 1799 | args&: benefit); |
| 1800 | } |
| 1801 | |
| 1802 | /// Helper to know if an op can be hoisted out of the region. |
| 1803 | static bool canBeHoisted(Operation *op, |
| 1804 | function_ref<bool(Value)> definedOutside) { |
| 1805 | return llvm::all_of(Range: op->getOperands(), P: definedOutside) && |
| 1806 | isMemoryEffectFree(op) && op->getNumRegions() == 0; |
| 1807 | } |
| 1808 | |
| 1809 | void mlir::vector::moveScalarUniformCode(WarpExecuteOnLane0Op warpOp) { |
| 1810 | Block *body = warpOp.getBody(); |
| 1811 | |
| 1812 | // Keep track of the ops we want to hoist. |
| 1813 | llvm::SmallSetVector<Operation *, 8> opsToMove; |
| 1814 | |
| 1815 | // Helper to check if a value is or will be defined outside of the region. |
| 1816 | auto isDefinedOutsideOfBody = [&](Value value) { |
| 1817 | auto *definingOp = value.getDefiningOp(); |
| 1818 | return (definingOp && opsToMove.count(definingOp)) || |
| 1819 | warpOp.isDefinedOutsideOfRegion(value); |
| 1820 | }; |
| 1821 | |
| 1822 | // Do not use walk here, as we do not want to go into nested regions and hoist |
| 1823 | // operations from there. |
| 1824 | for (auto &op : body->without_terminator()) { |
| 1825 | bool hasVectorResult = llvm::any_of(op.getResults(), [](Value result) { |
| 1826 | return isa<VectorType>(result.getType()); |
| 1827 | }); |
| 1828 | if (!hasVectorResult && canBeHoisted(&op, isDefinedOutsideOfBody)) |
| 1829 | opsToMove.insert(&op); |
| 1830 | } |
| 1831 | |
| 1832 | // Move all the ops marked as uniform outside of the region. |
| 1833 | for (Operation *op : opsToMove) |
| 1834 | op->moveBefore(warpOp); |
| 1835 | } |
| 1836 | |