| 1 | //===- XeGPUSubgroupDistribute.cpp - XeGPU Subgroup Distribute Pass -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | #include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h" |
| 9 | #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" |
| 10 | #include "mlir/Analysis/DataFlow/SparseAnalysis.h" |
| 11 | #include "mlir/Analysis/DataFlowFramework.h" |
| 12 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| 13 | #include "mlir/Dialect/GPU/Utils/DistributionUtils.h" |
| 14 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 15 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 16 | #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h" |
| 17 | #include "mlir/Dialect/XeGPU/IR/XeGPU.h" |
| 18 | #include "mlir/Dialect/XeGPU/Transforms/Passes.h" |
| 19 | #include "mlir/Dialect/XeGPU/Transforms/Transforms.h" |
| 20 | #include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h" |
| 21 | #include "mlir/IR/AffineMap.h" |
| 22 | #include "mlir/IR/Attributes.h" |
| 23 | #include "mlir/IR/Builders.h" |
| 24 | #include "mlir/IR/BuiltinAttributes.h" |
| 25 | #include "mlir/IR/BuiltinOps.h" |
| 26 | #include "mlir/IR/BuiltinTypes.h" |
| 27 | #include "mlir/IR/Operation.h" |
| 28 | #include "mlir/IR/PatternMatch.h" |
| 29 | #include "mlir/IR/TypeRange.h" |
| 30 | #include "mlir/IR/Value.h" |
| 31 | #include "mlir/IR/Visitors.h" |
| 32 | #include "mlir/Interfaces/FunctionInterfaces.h" |
| 33 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 34 | #include "mlir/Transforms/InliningUtils.h" |
| 35 | #include "llvm/ADT/ArrayRef.h" |
| 36 | #include "llvm/ADT/STLExtras.h" |
| 37 | #include "llvm/ADT/SmallVector.h" |
| 38 | #include "llvm/ADT/TypeSwitch.h" |
| 39 | #include "llvm/Support/FormatVariadic.h" |
| 40 | #include "llvm/Support/InterleavedRange.h" |
| 41 | #include "llvm/Support/raw_ostream.h" |
| 42 | |
| 43 | namespace mlir { |
| 44 | namespace xegpu { |
| 45 | #define GEN_PASS_DEF_XEGPUSUBGROUPDISTRIBUTE |
| 46 | #include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc" |
| 47 | } // namespace xegpu |
| 48 | } // namespace mlir |
| 49 | |
| 50 | #define DEBUG_TYPE "xegpu-subgroup-distribute" |
| 51 | #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ") |
| 52 | |
| 53 | using namespace mlir; |
| 54 | using namespace mlir::dataflow; |
| 55 | |
| 56 | /// HW dependent constants. |
| 57 | /// TODO: These constants should be queried from the target information. |
| 58 | constexpr unsigned subgroupSize = 16; // How many lanes in a subgroup. |
| 59 | /// If DPAS A or B operands have low precision element types they must be packed |
| 60 | /// according to the following sizes. |
| 61 | constexpr unsigned packedSizeInBitsForDefault = |
| 62 | 16; // Minimum packing size per register for DPAS A. |
| 63 | constexpr unsigned packedSizeInBitsForDpasB = |
| 64 | 32; // Minimum packing size per register for DPAS B. |
| 65 | |
| 66 | namespace { |
| 67 | |
| 68 | //===----------------------------------------------------------------------===// |
| 69 | // Layout |
| 70 | //===----------------------------------------------------------------------===// |
| 71 | |
| 72 | /// Helper class to store the ND layout of lanes within a subgroup and data |
| 73 | /// owned by each lane. |
| 74 | struct Layout { |
| 75 | SmallVector<int64_t, 3> layout; |
| 76 | Layout() = default; |
| 77 | Layout(std::initializer_list<int64_t> list) : layout(list) {} |
| 78 | void print(llvm::raw_ostream &os) const; |
| 79 | size_t size() const { return layout.size(); } |
| 80 | int64_t operator[](size_t idx) const; |
| 81 | }; |
| 82 | |
| 83 | void Layout::print(llvm::raw_ostream &os) const { |
| 84 | os << llvm::interleaved_array(R: layout); |
| 85 | } |
| 86 | |
| 87 | int64_t Layout::operator[](size_t idx) const { |
| 88 | assert(idx < layout.size() && "Index out of bounds." ); |
| 89 | return layout[idx]; |
| 90 | } |
| 91 | |
| 92 | /// LaneLayout represents the logical layout of lanes within a subgroup when it |
| 93 | /// accesses some value. LaneData represents the logical layout of data owned by |
| 94 | /// each work item. |
| 95 | using LaneLayout = Layout; |
| 96 | using LaneData = Layout; |
| 97 | |
| 98 | //===----------------------------------------------------------------------===// |
| 99 | // LayoutInfo |
| 100 | //===----------------------------------------------------------------------===// |
| 101 | |
| 102 | /// Helper class for tracking the analysis state of an mlir value. For layout |
| 103 | /// propagation, the analysis state is simply the lane_layout and lane_data of |
| 104 | /// each value. Purpose of this analysis to propagate some unique layout for |
| 105 | /// each value in the program starting from a set of anchor operations (like |
| 106 | /// DPAS, StoreNd, etc.). |
| 107 | /// |
| 108 | /// Given this, LayoutInfo satisifies the following properties: |
| 109 | /// 1) A LayoutInfo value can be in one of two states - `assigned` or `not |
| 110 | /// assigned`. |
| 111 | /// 2) Two LayoutInfo values are equal if they are both assigned or |
| 112 | /// both not assigned. The concrete value of assigned state does not matter. |
| 113 | /// 3) The meet operator works as follows: |
| 114 | /// - If current state is assigned, return the current state. (already |
| 115 | /// a unique layout is assigned. don't change it) |
| 116 | /// - Otherwise, return the other state. |
| 117 | |
| 118 | struct LayoutInfo { |
| 119 | private: |
| 120 | LaneLayout laneLayout; |
| 121 | LaneData laneData; |
| 122 | |
| 123 | public: |
| 124 | LayoutInfo() = default; |
| 125 | LayoutInfo(const LaneLayout &layout, const LaneData &data) |
| 126 | : laneLayout(layout), laneData(data) {} |
| 127 | |
| 128 | // Two lattice values are equal if they have `some` layout. The actual |
| 129 | // content of the layout does not matter. |
| 130 | bool operator==(const LayoutInfo &other) const { |
| 131 | return this->isAssigned() == other.isAssigned(); |
| 132 | } |
| 133 | |
| 134 | static LayoutInfo meet(const LayoutInfo &lhs, const LayoutInfo &rhs); |
| 135 | |
| 136 | static LayoutInfo join(const LayoutInfo &lhs, const LayoutInfo &rhs); |
| 137 | |
| 138 | void print(raw_ostream &os) const; |
| 139 | |
| 140 | bool isAssigned() const { |
| 141 | return laneLayout.size() > 0 && laneData.size() > 0; |
| 142 | } |
| 143 | |
| 144 | LayoutInfo getTransposedLayout(ArrayRef<int64_t> permutation) const; |
| 145 | |
| 146 | const LaneLayout &getLayout() const { return laneLayout; } |
| 147 | const LaneData &getData() const { return laneData; } |
| 148 | ArrayRef<int64_t> getLayoutAsArrayRef() const { return laneLayout.layout; } |
| 149 | ArrayRef<int64_t> getDataAsArrayRef() const { return laneData.layout; } |
| 150 | }; |
| 151 | |
| 152 | void LayoutInfo::print(raw_ostream &os) const { |
| 153 | if (isAssigned()) { |
| 154 | os << "lane_layout: " ; |
| 155 | laneLayout.print(os); |
| 156 | os << ", lane_data: " ; |
| 157 | laneData.print(os); |
| 158 | } else { |
| 159 | os << "Not assigned." ; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | LayoutInfo LayoutInfo::meet(const LayoutInfo &lhs, const LayoutInfo &rhs) { |
| 164 | if (!lhs.isAssigned()) |
| 165 | return rhs; |
| 166 | return lhs; |
| 167 | } |
| 168 | |
| 169 | /// Since this is a backward analysis, join method is not used. |
| 170 | LayoutInfo LayoutInfo::join(const LayoutInfo &lhs, const LayoutInfo &rhs) { |
| 171 | llvm_unreachable("Join should not be triggered by layout propagation." ); |
| 172 | } |
| 173 | |
| 174 | /// Get the transposed layout according to the given permutation. |
| 175 | LayoutInfo |
| 176 | LayoutInfo::getTransposedLayout(ArrayRef<int64_t> permutation) const { |
| 177 | if (!isAssigned()) |
| 178 | return {}; |
| 179 | LaneLayout newLayout; |
| 180 | LaneData newData; |
| 181 | for (int64_t idx : permutation) { |
| 182 | newLayout.layout.push_back(Elt: laneLayout.layout[idx]); |
| 183 | newData.layout.push_back(Elt: laneData.layout[idx]); |
| 184 | } |
| 185 | return LayoutInfo(newLayout, newData); |
| 186 | } |
| 187 | |
| 188 | //===----------------------------------------------------------------------===// |
| 189 | // LayoutInfoLattice |
| 190 | //===----------------------------------------------------------------------===// |
| 191 | |
| 192 | /// Lattice holding the LayoutInfo for each value. |
| 193 | struct LayoutInfoLattice : public Lattice<LayoutInfo> { |
| 194 | MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LayoutInfoLattice) |
| 195 | using Lattice::Lattice; |
| 196 | }; |
| 197 | |
| 198 | /// Helper Functions to get default layouts. A `default layout` is a layout that |
| 199 | /// is assigned to a value when the layout is not fixed by some anchor operation |
| 200 | /// (like DPAS). |
| 201 | |
| 202 | /// Helper Function to get the default layout for uniform values like constants. |
| 203 | /// For 1D vector, lane_layout is [subgroupSize] and lane_data is [1]. |
| 204 | /// For 2D vector, lane_layout is [1, subgroupSize] and lane_data is [1, 1]. |
| 205 | static LayoutInfo getDefaultLayoutInfo(unsigned rank) { |
| 206 | assert((rank == 1 || rank == 2) && "Expected 1D or 2D vector." ); |
| 207 | if (rank == 1) |
| 208 | return LayoutInfo(LaneLayout({subgroupSize}), LaneData({1})); |
| 209 | return LayoutInfo(LaneLayout({1, subgroupSize}), LaneData({1, 1})); |
| 210 | } |
| 211 | |
| 212 | /// Helper to get the default layout for a vector type. |
| 213 | static LayoutInfo getDefaultLayoutInfo(VectorType vectorTy) { |
| 214 | // Expecting a 1D or 2D vector. |
| 215 | assert((vectorTy.getRank() == 1 || vectorTy.getRank() == 2) && |
| 216 | "Expected 1D or 2D vector." ); |
| 217 | // Expecting int or float element type. |
| 218 | assert(vectorTy.getElementType().isIntOrFloat() && |
| 219 | "Expected int or float element type." ); |
| 220 | // If the rank is 1, then return default layout for 1D vector. |
| 221 | if (vectorTy.getRank() == 1) |
| 222 | return getDefaultLayoutInfo(rank: 1); |
| 223 | // Packing factor is determined by the element type bitwidth. |
| 224 | int packingFactor = 1; |
| 225 | unsigned bitwidth = vectorTy.getElementType().getIntOrFloatBitWidth(); |
| 226 | if (bitwidth < packedSizeInBitsForDefault) |
| 227 | packingFactor = packedSizeInBitsForDefault / bitwidth; |
| 228 | return LayoutInfo(LaneLayout({1, subgroupSize}), |
| 229 | LaneData({1, packingFactor})); |
| 230 | } |
| 231 | |
| 232 | /// Helper Function to get the expected layouts for DPAS operands. `lane_data` |
| 233 | /// is set according to the following criteria: |
| 234 | /// * For A operand, the data must be packed in minimum |
| 235 | /// `packedSizeInBitsForDefault` |
| 236 | /// * For B operand, the data must be packed in minimum |
| 237 | /// `packedSizeInBitsForDpasB` |
| 238 | static LayoutInfo getLayoutInfoForDPASOperand(VectorType vectorTy, |
| 239 | unsigned operandNum) { |
| 240 | Type elementTy = vectorTy.getElementType(); |
| 241 | assert(elementTy.isIntOrFloat() && |
| 242 | "Expected int or float type in DPAS operands" ); |
| 243 | LaneLayout layout({1, subgroupSize}); |
| 244 | // For B operand, data must be packed in minimum `packedDpasBSizeInBits` and |
| 245 | // must have the VNNI format. |
| 246 | if (operandNum == 1 && |
| 247 | elementTy.getIntOrFloatBitWidth() < packedSizeInBitsForDpasB) { |
| 248 | LaneData data( |
| 249 | {packedSizeInBitsForDpasB / elementTy.getIntOrFloatBitWidth(), 1}); |
| 250 | return LayoutInfo(layout, data); |
| 251 | } |
| 252 | // Otherwise, return the default layout for the vector type. |
| 253 | return getDefaultLayoutInfo(vectorTy); |
| 254 | } |
| 255 | |
| 256 | //===----------------------------------------------------------------------===// |
| 257 | // LayoutInfoPropagation |
| 258 | //===----------------------------------------------------------------------===// |
| 259 | |
| 260 | /// Backward data flow analysis to propagate the lane_layout and lane_data of |
| 261 | /// each value in the program. Currently, the layouts for operands DPAS, |
| 262 | /// StoreNd, and StoreScatter are fixed (known before propagation). Purpose of |
| 263 | /// this analysis is to propagate those known layouts to all their producers and |
| 264 | /// (other) consumers. |
| 265 | class LayoutInfoPropagation |
| 266 | : public SparseBackwardDataFlowAnalysis<LayoutInfoLattice> { |
| 267 | private: |
| 268 | void visitDpasOp(xegpu::DpasOp dpas, ArrayRef<LayoutInfoLattice *> operands, |
| 269 | ArrayRef<const LayoutInfoLattice *> results); |
| 270 | |
| 271 | void visitStoreNdOp(xegpu::StoreNdOp store, |
| 272 | ArrayRef<LayoutInfoLattice *> operands, |
| 273 | ArrayRef<const LayoutInfoLattice *> results); |
| 274 | |
| 275 | void visitStoreScatterOp(xegpu::StoreScatterOp storeScatter, |
| 276 | ArrayRef<LayoutInfoLattice *> operands, |
| 277 | ArrayRef<const LayoutInfoLattice *> results); |
| 278 | |
| 279 | void visitLoadNdOp(xegpu::LoadNdOp load, |
| 280 | ArrayRef<LayoutInfoLattice *> operands, |
| 281 | ArrayRef<const LayoutInfoLattice *> results); |
| 282 | |
| 283 | void visitLoadGatherOp(xegpu::LoadGatherOp load, |
| 284 | ArrayRef<LayoutInfoLattice *> operands, |
| 285 | ArrayRef<const LayoutInfoLattice *> results); |
| 286 | |
| 287 | void visitTransposeOp(vector::TransposeOp transpose, |
| 288 | ArrayRef<LayoutInfoLattice *> operands, |
| 289 | ArrayRef<const LayoutInfoLattice *> results); |
| 290 | |
| 291 | void visitVectorBitcastOp(vector::BitCastOp bitcast, |
| 292 | ArrayRef<LayoutInfoLattice *> operands, |
| 293 | ArrayRef<const LayoutInfoLattice *> results); |
| 294 | |
| 295 | void visitCreateDescOp(xegpu::CreateDescOp createDesc, |
| 296 | ArrayRef<LayoutInfoLattice *> operands, |
| 297 | ArrayRef<const LayoutInfoLattice *> results); |
| 298 | |
| 299 | void visitUpdateNdOffsetOp(xegpu::UpdateNdOffsetOp updateNdOffset, |
| 300 | ArrayRef<LayoutInfoLattice *> operands, |
| 301 | ArrayRef<const LayoutInfoLattice *> results); |
| 302 | |
| 303 | void visitPrefetchNdOp(xegpu::PrefetchNdOp prefetch, |
| 304 | ArrayRef<LayoutInfoLattice *> operands, |
| 305 | ArrayRef<const LayoutInfoLattice *> results); |
| 306 | |
| 307 | void visitVectorMultiReductionOp(vector::MultiDimReductionOp reduction, |
| 308 | ArrayRef<LayoutInfoLattice *> operands, |
| 309 | ArrayRef<const LayoutInfoLattice *> results); |
| 310 | |
| 311 | public: |
| 312 | LayoutInfoPropagation(DataFlowSolver &solver, |
| 313 | SymbolTableCollection &symbolTable) |
| 314 | : SparseBackwardDataFlowAnalysis(solver, symbolTable) {} |
| 315 | using SparseBackwardDataFlowAnalysis::SparseBackwardDataFlowAnalysis; |
| 316 | |
| 317 | LogicalResult |
| 318 | visitOperation(Operation *op, ArrayRef<LayoutInfoLattice *> operands, |
| 319 | ArrayRef<const LayoutInfoLattice *> results) override; |
| 320 | |
| 321 | void visitBranchOperand(OpOperand &operand) override {}; |
| 322 | |
| 323 | void visitCallOperand(OpOperand &operand) override {}; |
| 324 | |
| 325 | void visitExternalCall(CallOpInterface call, |
| 326 | ArrayRef<LayoutInfoLattice *> operands, |
| 327 | ArrayRef<const LayoutInfoLattice *> results) override { |
| 328 | }; |
| 329 | |
| 330 | void setToExitState(LayoutInfoLattice *lattice) override { |
| 331 | (void)lattice->meet(rhs: LayoutInfo()); |
| 332 | } |
| 333 | }; |
| 334 | } // namespace |
| 335 | |
| 336 | LogicalResult LayoutInfoPropagation::visitOperation( |
| 337 | Operation *op, ArrayRef<LayoutInfoLattice *> operands, |
| 338 | ArrayRef<const LayoutInfoLattice *> results) { |
| 339 | TypeSwitch<Operation *>(op) |
| 340 | .Case<xegpu::DpasOp>( |
| 341 | [&](auto dpasOp) { visitDpasOp(dpasOp, operands, results); }) |
| 342 | .Case<xegpu::StoreNdOp>( |
| 343 | [&](auto storeNdOp) { visitStoreNdOp(storeNdOp, operands, results); }) |
| 344 | .Case<xegpu::StoreScatterOp>([&](auto storeScatterOp) { |
| 345 | visitStoreScatterOp(storeScatterOp, operands, results); |
| 346 | }) |
| 347 | .Case<xegpu::LoadNdOp>( |
| 348 | [&](auto loadNdOp) { visitLoadNdOp(loadNdOp, operands, results); }) |
| 349 | .Case<xegpu::LoadGatherOp>([&](auto loadGatherOp) { |
| 350 | visitLoadGatherOp(loadGatherOp, operands, results); |
| 351 | }) |
| 352 | .Case<xegpu::CreateDescOp>([&](auto createDescOp) { |
| 353 | visitCreateDescOp(createDescOp, operands, results); |
| 354 | }) |
| 355 | .Case<xegpu::UpdateNdOffsetOp>([&](auto updateNdOffsetOp) { |
| 356 | visitUpdateNdOffsetOp(updateNdOffsetOp, operands, results); |
| 357 | }) |
| 358 | .Case<xegpu::PrefetchNdOp>([&](auto prefetchNdOp) { |
| 359 | visitPrefetchNdOp(prefetchNdOp, operands, results); |
| 360 | }) |
| 361 | // No need to propagate the layout to operands in CreateNdDescOp because |
| 362 | // they are scalars (offsets, sizes, etc.). |
| 363 | .Case<xegpu::CreateNdDescOp>([&](auto createNdDescOp) {}) |
| 364 | .Case<vector::TransposeOp>([&](auto transposeOp) { |
| 365 | visitTransposeOp(transposeOp, operands, results); |
| 366 | }) |
| 367 | .Case<vector::BitCastOp>([&](auto bitcastOp) { |
| 368 | visitVectorBitcastOp(bitcastOp, operands, results); |
| 369 | }) |
| 370 | .Case<vector::MultiDimReductionOp>([&](auto reductionOp) { |
| 371 | visitVectorMultiReductionOp(reductionOp, operands, results); |
| 372 | }) |
| 373 | // All other ops. |
| 374 | .Default([&](Operation *op) { |
| 375 | for (const LayoutInfoLattice *r : results) { |
| 376 | for (LayoutInfoLattice *operand : operands) { |
| 377 | // Propagate the layout of the result to the operand. |
| 378 | if (r->getValue().isAssigned()) |
| 379 | meet(operand, *r); |
| 380 | } |
| 381 | } |
| 382 | }); |
| 383 | // Add a dependency from each result to program point after the operation. |
| 384 | for (const LayoutInfoLattice *r : results) { |
| 385 | addDependency(state: const_cast<LayoutInfoLattice *>(r), point: getProgramPointAfter(op)); |
| 386 | } |
| 387 | return success(); |
| 388 | } |
| 389 | |
| 390 | void LayoutInfoPropagation::visitPrefetchNdOp( |
| 391 | xegpu::PrefetchNdOp prefetch, ArrayRef<LayoutInfoLattice *> operands, |
| 392 | ArrayRef<const LayoutInfoLattice *> results) { |
| 393 | // Here we assign the default layout to the tensor descriptor operand of |
| 394 | // prefetch. |
| 395 | auto tdescTy = prefetch.getTensorDescType(); |
| 396 | auto prefetchLayout = getDefaultLayoutInfo( |
| 397 | VectorType::get(tdescTy.getShape(), tdescTy.getElementType())); |
| 398 | // Propagate the layout to the source tensor descriptor. |
| 399 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(prefetchLayout)); |
| 400 | } |
| 401 | |
| 402 | void LayoutInfoPropagation::visitVectorMultiReductionOp( |
| 403 | vector::MultiDimReductionOp reduction, |
| 404 | ArrayRef<LayoutInfoLattice *> operands, |
| 405 | ArrayRef<const LayoutInfoLattice *> results) { |
| 406 | // The layout of the result must be present. |
| 407 | LayoutInfo resultLayout = results[0]->getValue(); |
| 408 | if (!resultLayout.isAssigned()) |
| 409 | return; |
| 410 | // We only consider 2D -> 1D reductions at this point. |
| 411 | assert(resultLayout.getLayout().size() == 1 && |
| 412 | "Expected 1D layout for reduction result." ); |
| 413 | // Given that the result is 1D, the layout of the operand should be 2D with |
| 414 | // default layout. |
| 415 | LayoutInfo operandLayout = getDefaultLayoutInfo(rank: 2); |
| 416 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(rhs: operandLayout)); |
| 417 | // Accumulator should have the same layout as the result. |
| 418 | propagateIfChanged(state: operands[1], changed: operands[1]->meet(rhs: resultLayout)); |
| 419 | } |
| 420 | |
| 421 | /// Propagate the layout of the result tensor to the source tensor descriptor in |
| 422 | /// UpdateNdOffsetOp. |
| 423 | void LayoutInfoPropagation::visitUpdateNdOffsetOp( |
| 424 | xegpu::UpdateNdOffsetOp updateNdOffset, |
| 425 | ArrayRef<LayoutInfoLattice *> operands, |
| 426 | ArrayRef<const LayoutInfoLattice *> results) { |
| 427 | // The layout of the result must be present. |
| 428 | LayoutInfo resultLayout = results[0]->getValue(); |
| 429 | if (!resultLayout.isAssigned()) |
| 430 | return; |
| 431 | // Propagate the layout to the source operand. |
| 432 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(rhs: resultLayout)); |
| 433 | } |
| 434 | |
| 435 | /// Set the layouts for DPAS A, B, and C operands. |
| 436 | void LayoutInfoPropagation::visitDpasOp( |
| 437 | xegpu::DpasOp dpas, ArrayRef<LayoutInfoLattice *> operands, |
| 438 | ArrayRef<const LayoutInfoLattice *> results) { |
| 439 | VectorType aTy = dpas.getLhsType(); |
| 440 | VectorType bTy = dpas.getRhsType(); |
| 441 | propagateIfChanged(state: operands[0], |
| 442 | changed: operands[0]->meet(getLayoutInfoForDPASOperand(aTy, 0))); |
| 443 | propagateIfChanged(state: operands[1], |
| 444 | changed: operands[1]->meet(getLayoutInfoForDPASOperand(bTy, 1))); |
| 445 | if (operands.size() > 2) { |
| 446 | VectorType cTy = dpas.getAccType(); |
| 447 | propagateIfChanged(state: operands[2], |
| 448 | changed: operands[2]->meet(getLayoutInfoForDPASOperand(cTy, 2))); |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | /// Set the layout for the value and tensor descriptor operands in StoreNdOp. |
| 453 | void LayoutInfoPropagation::visitStoreNdOp( |
| 454 | xegpu::StoreNdOp store, ArrayRef<LayoutInfoLattice *> operands, |
| 455 | ArrayRef<const LayoutInfoLattice *> results) { |
| 456 | LayoutInfo storeLayout = getDefaultLayoutInfo(store.getValueType()); |
| 457 | // Both operands should have the same layout |
| 458 | for (LayoutInfoLattice *operand : operands) { |
| 459 | propagateIfChanged(state: operand, changed: operand->meet(rhs: storeLayout)); |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /// Propagate the layout of the value to the tensor descriptor operand in |
| 464 | /// LoadNdOp. |
| 465 | void LayoutInfoPropagation::visitLoadNdOp( |
| 466 | xegpu::LoadNdOp load, ArrayRef<LayoutInfoLattice *> operands, |
| 467 | ArrayRef<const LayoutInfoLattice *> results) { |
| 468 | LayoutInfo valueLayout = results[0]->getValue(); |
| 469 | // Need the layout of the value to propagate to the tensor descriptor. |
| 470 | if (!valueLayout.isAssigned()) |
| 471 | return; |
| 472 | LayoutInfo tensorDescLayout = valueLayout; |
| 473 | // LoadNdOp has the transpose effect. However, at the stage of this analysis |
| 474 | // this effect is not expected and should be abstracted away. Emit a warning. |
| 475 | if (auto transpose = load.getTranspose()) { |
| 476 | load.emitWarning("Transpose effect is not expected for LoadNdOp at " |
| 477 | "LayoutInfoPropagation stage." ); |
| 478 | tensorDescLayout = valueLayout.getTransposedLayout(permutation: transpose.value()); |
| 479 | } |
| 480 | // Propagate the new layout to the tensor descriptor operand. |
| 481 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(rhs: tensorDescLayout)); |
| 482 | } |
| 483 | |
| 484 | /// For vector::TransposeOp, the layout of the result is transposed and |
| 485 | /// propagated to the operand. |
| 486 | void LayoutInfoPropagation::visitTransposeOp( |
| 487 | vector::TransposeOp transpose, ArrayRef<LayoutInfoLattice *> operands, |
| 488 | ArrayRef<const LayoutInfoLattice *> results) { |
| 489 | // Need the layout of transpose result to propagate to the operands. |
| 490 | LayoutInfo resultLayout = results[0]->getValue(); |
| 491 | if (!resultLayout.isAssigned()) |
| 492 | return; |
| 493 | LayoutInfo newLayout = |
| 494 | resultLayout.getTransposedLayout(permutation: transpose.getPermutation()); |
| 495 | // Propagate the new layout to the vector operand. |
| 496 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(rhs: newLayout)); |
| 497 | } |
| 498 | |
| 499 | /// For vector::BitCastOp, the lane_data of the source layout is changed based |
| 500 | /// on the bit width of the source and result types. |
| 501 | void LayoutInfoPropagation::visitVectorBitcastOp( |
| 502 | vector::BitCastOp bitcast, ArrayRef<LayoutInfoLattice *> operands, |
| 503 | ArrayRef<const LayoutInfoLattice *> results) { |
| 504 | // Need the layout of bitcast result to propagate to the operands. |
| 505 | LayoutInfo resultLayout = results[0]->getValue(); |
| 506 | if (!resultLayout.isAssigned()) |
| 507 | return; |
| 508 | int inElemTyBitWidth = |
| 509 | bitcast.getSourceVectorType().getElementType().getIntOrFloatBitWidth(); |
| 510 | int outElemTyBitWidth = |
| 511 | bitcast.getResultVectorType().getElementType().getIntOrFloatBitWidth(); |
| 512 | |
| 513 | // LaneLayout does not change. |
| 514 | const LaneLayout &newLaneLayout = resultLayout.getLayout(); |
| 515 | const LaneData &currData = resultLayout.getData(); |
| 516 | LaneData newLaneData; |
| 517 | // It's a widening bitcast |
| 518 | if (inElemTyBitWidth < outElemTyBitWidth) { |
| 519 | int ratio = outElemTyBitWidth / inElemTyBitWidth; |
| 520 | newLaneData = resultLayout.getData()[0] == 1 |
| 521 | ? LaneData({1, currData[1] * ratio}) |
| 522 | : LaneData({currData[0] * ratio, 1}); |
| 523 | } else { |
| 524 | // It's a narrowing bitcast |
| 525 | int ratio = inElemTyBitWidth / outElemTyBitWidth; |
| 526 | newLaneData = resultLayout.getData()[0] == 1 |
| 527 | ? LaneData({1, currData[1] / ratio}) |
| 528 | : LaneData({currData[0] / ratio, 1}); |
| 529 | } |
| 530 | |
| 531 | propagateIfChanged(state: operands[0], |
| 532 | changed: operands[0]->meet(rhs: LayoutInfo(newLaneLayout, newLaneData))); |
| 533 | } |
| 534 | |
| 535 | /// Propagate the layout of the result to the tensor descriptor and mask |
| 536 | /// operands in LoadGatherOp. |
| 537 | void LayoutInfoPropagation::visitLoadGatherOp( |
| 538 | xegpu::LoadGatherOp load, ArrayRef<LayoutInfoLattice *> operands, |
| 539 | ArrayRef<const LayoutInfoLattice *> results) { |
| 540 | LayoutInfo valueLayout = results[0]->getValue(); |
| 541 | // Need the layout of the value to propagate to the tensor descriptor. |
| 542 | if (!valueLayout.isAssigned()) |
| 543 | return; |
| 544 | |
| 545 | LayoutInfo tensorDescLayout = valueLayout; |
| 546 | if (load.getTranspose()) { |
| 547 | // LoadGatherOp has the transpose effect. However, at the stage of this |
| 548 | // analyis this effect is not expected and should be abstracted away. Emit |
| 549 | // a warning. |
| 550 | load.emitWarning("Transpose effect is not expected for LoadGatherOp at " |
| 551 | "LayoutInfoPropagation stage." ); |
| 552 | tensorDescLayout = valueLayout.getTransposedLayout(permutation: {1, 0}); |
| 553 | } |
| 554 | // Mask operand should have 1D default layout. |
| 555 | LayoutInfo maskLayout = getDefaultLayoutInfo(rank: 1); |
| 556 | // Propagate the new layout to the tensor descriptor operand. |
| 557 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(rhs: tensorDescLayout)); |
| 558 | // Propagate the new layout to the mask operand. |
| 559 | propagateIfChanged(state: operands[1], changed: operands[1]->meet(rhs: maskLayout)); |
| 560 | } |
| 561 | |
| 562 | /// Propagate the layout of the descriptor to the vector offset operand in |
| 563 | /// CreateDescOp. |
| 564 | void LayoutInfoPropagation::visitCreateDescOp( |
| 565 | xegpu::CreateDescOp createDesc, ArrayRef<LayoutInfoLattice *> operands, |
| 566 | ArrayRef<const LayoutInfoLattice *> results) { |
| 567 | LayoutInfo descLayout = results[0]->getValue(); |
| 568 | // Need the layout of the descriptor to propagate to the operands. |
| 569 | if (!descLayout.isAssigned()) |
| 570 | return; |
| 571 | // For offset operand propagate 1D default layout. |
| 572 | LayoutInfo layout = getDefaultLayoutInfo(rank: 1); |
| 573 | propagateIfChanged(state: operands[1], changed: operands[1]->meet(rhs: layout)); |
| 574 | } |
| 575 | |
| 576 | /// Set the layout for the value, tensor descriptor, and mask operands in the |
| 577 | /// StoreScatterOp. |
| 578 | void LayoutInfoPropagation::visitStoreScatterOp( |
| 579 | xegpu::StoreScatterOp storeScatter, ArrayRef<LayoutInfoLattice *> operands, |
| 580 | ArrayRef<const LayoutInfoLattice *> results) { |
| 581 | // Currently, for 2D StoreScatterOp we expect that the height dimension of |
| 582 | // the tensor descriptor is equal to the subgroup size. This is ensured by |
| 583 | // the op verifier. |
| 584 | ArrayRef<int64_t> tdescShape = storeScatter.getTensorDescType().getShape(); |
| 585 | if (tdescShape.size() > 1) |
| 586 | assert( |
| 587 | tdescShape[0] == subgroupSize && |
| 588 | "Expected the first dimension of 2D tensor descriptor to be equal to " |
| 589 | "subgroup size." ); |
| 590 | |
| 591 | LayoutInfo valueLayout = getDefaultLayoutInfo(storeScatter.getValueType()); |
| 592 | LayoutInfo storeScatterLayout = valueLayout; |
| 593 | if (storeScatter.getTranspose()) { |
| 594 | // StoreScatteOp allows transpose effect. However, at the stage of this |
| 595 | // analyis this effect is not expected and should be abstracted away. Emit |
| 596 | // a warning. |
| 597 | storeScatter.emitWarning("Transpose effect is not expected for " |
| 598 | "StoreScatterOp at LayoutInfoPropagation stage." ); |
| 599 | storeScatterLayout = valueLayout.getTransposedLayout(permutation: {1, 0}); |
| 600 | } |
| 601 | // Propagate the value layout. |
| 602 | propagateIfChanged(state: operands[0], changed: operands[0]->meet(rhs: valueLayout)); |
| 603 | // Propagate the tensor descriptor layout. |
| 604 | propagateIfChanged(state: operands[1], changed: operands[1]->meet(rhs: storeScatterLayout)); |
| 605 | // Use default 1D layout for mask operand. |
| 606 | LayoutInfo maskLayout = getDefaultLayoutInfo(rank: 1); |
| 607 | propagateIfChanged(state: operands[2], changed: operands[2]->meet(rhs: maskLayout)); |
| 608 | } |
| 609 | |
| 610 | namespace { |
| 611 | |
| 612 | //===----------------------------------------------------------------------===// |
| 613 | // RunLayoutInfoPropagation |
| 614 | //===----------------------------------------------------------------------===// |
| 615 | |
| 616 | /// Driver class for running the LayoutInfoPropagation analysis. |
| 617 | class RunLayoutInfoPropagation { |
| 618 | public: |
| 619 | MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(RunLayoutInfoPropagation) |
| 620 | |
| 621 | RunLayoutInfoPropagation(Operation *op) : target(op) { |
| 622 | SymbolTableCollection symbolTable; |
| 623 | solver.load<DeadCodeAnalysis>(); |
| 624 | solver.load<SparseConstantPropagation>(); |
| 625 | solver.load<LayoutInfoPropagation>(args&: symbolTable); |
| 626 | (void)solver.initializeAndRun(top: op); |
| 627 | } |
| 628 | |
| 629 | LayoutInfo getLayoutInfo(Value val); |
| 630 | |
| 631 | void printAnalysisResult(llvm::raw_ostream &os); |
| 632 | |
| 633 | private: |
| 634 | DataFlowSolver solver; |
| 635 | const Operation *target; |
| 636 | }; |
| 637 | } // namespace |
| 638 | |
| 639 | LayoutInfo RunLayoutInfoPropagation::getLayoutInfo(Value val) { |
| 640 | auto *state = solver.lookupState<LayoutInfoLattice>(anchor: val); |
| 641 | if (!state) |
| 642 | return {}; |
| 643 | return state->getValue(); |
| 644 | } |
| 645 | |
| 646 | void RunLayoutInfoPropagation::printAnalysisResult(llvm::raw_ostream &os) { |
| 647 | auto printFunctionResult = [&](FunctionOpInterface funcOp) { |
| 648 | os << "function: " << funcOp.getName() << ":\n" ; |
| 649 | // Function arguments |
| 650 | for (BlockArgument arg : funcOp.getArguments()) { |
| 651 | LayoutInfo layout = getLayoutInfo(arg); |
| 652 | os << "argument: " << arg << "\n" ; |
| 653 | os << "layout : " ; |
| 654 | layout.print(os); |
| 655 | os << "\n" ; |
| 656 | } |
| 657 | // Function ops |
| 658 | funcOp.walk([&](Operation *op) { |
| 659 | // Skip ops that do not have results |
| 660 | if (op->getResults().empty()) |
| 661 | return; |
| 662 | os << "op : " ; |
| 663 | // For control-flow ops, print the op name only. |
| 664 | if (isa<BranchOpInterface>(Val: op) || isa<RegionBranchOpInterface>(Val: op)) |
| 665 | os << op->getName(); |
| 666 | else |
| 667 | op->print(os); |
| 668 | os << "\n" ; |
| 669 | // Print the layout for each result. |
| 670 | for (auto [i, r] : llvm::enumerate(First: op->getResults())) { |
| 671 | LayoutInfo layout = getLayoutInfo(val: r); |
| 672 | os << "layout for result #" << i << ": " ; |
| 673 | layout.print(os); |
| 674 | os << "\n" ; |
| 675 | } |
| 676 | }); |
| 677 | }; |
| 678 | |
| 679 | SmallVector<FunctionOpInterface> funcOps; |
| 680 | if (auto modOp = dyn_cast<ModuleOp>(target)) { |
| 681 | for (auto funcOp : modOp.getOps<FunctionOpInterface>()) { |
| 682 | funcOps.push_back(funcOp); |
| 683 | } |
| 684 | // Collect all GpuFuncOps in the module. |
| 685 | for (auto gpuModOp : modOp.getOps<gpu::GPUModuleOp>()) { |
| 686 | for (auto gpuFuncOp : gpuModOp.getOps<FunctionOpInterface>()) { |
| 687 | funcOps.push_back(gpuFuncOp); |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | // Print the analysis result for each function. |
| 692 | for (FunctionOpInterface funcOp : funcOps) { |
| 693 | printFunctionResult(funcOp); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | namespace { |
| 698 | |
| 699 | //===----------------------------------------------------------------------===// |
| 700 | // LayoutAttrAssignment |
| 701 | //===----------------------------------------------------------------------===// |
| 702 | |
| 703 | /// This class is responsible for assigning the layout attributes to the ops and |
| 704 | /// their users based on the layout propagation analysis result. |
| 705 | class LayoutAttrAssignment { |
| 706 | public: |
| 707 | LayoutAttrAssignment(Operation *top, |
| 708 | function_ref<LayoutInfo(Value)> getLayout) |
| 709 | : getAnalysisResult(getLayout), top(top) {} |
| 710 | |
| 711 | LogicalResult run(); |
| 712 | |
| 713 | private: |
| 714 | LogicalResult assign(Operation *op); |
| 715 | void assignToUsers(Value v, xegpu::LayoutAttr layout); |
| 716 | xegpu::LayoutAttr getLayoutAttrForValue(Value v); |
| 717 | LogicalResult resolveConflicts(); |
| 718 | // Callable to get the layout of a value based on the layout propagation |
| 719 | // analysis. |
| 720 | function_ref<LayoutInfo(Value)> getAnalysisResult; |
| 721 | Operation *top; |
| 722 | }; |
| 723 | |
| 724 | } // namespace |
| 725 | |
| 726 | /// Helper to assign the layout attribute to the users of the value. |
| 727 | void LayoutAttrAssignment::assignToUsers(Value v, xegpu::LayoutAttr layout) { |
| 728 | for (OpOperand &user : v.getUses()) { |
| 729 | Operation *owner = user.getOwner(); |
| 730 | std::string attrName = xegpu::getLayoutName(operand: user); |
| 731 | owner->setAttr(attrName, layout); |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | /// Convert the layout assigned to a value to xegpu::LayoutAttr. |
| 736 | xegpu::LayoutAttr LayoutAttrAssignment::getLayoutAttrForValue(Value v) { |
| 737 | LayoutInfo layout = getAnalysisResult(v); |
| 738 | if (!layout.isAssigned()) |
| 739 | return {}; |
| 740 | SmallVector<int, 2> laneLayout, laneData; |
| 741 | for (auto [layout, data] : llvm::zip_equal(t: layout.getLayoutAsArrayRef(), |
| 742 | u: layout.getDataAsArrayRef())) { |
| 743 | laneLayout.push_back(Elt: static_cast<int>(layout)); |
| 744 | laneData.push_back(Elt: static_cast<int>(data)); |
| 745 | } |
| 746 | return xegpu::LayoutAttr::get(v.getContext(), laneLayout, laneData); |
| 747 | } |
| 748 | |
| 749 | /// Assign xegpu::LayoutAttr to the op and its users. The layout is assigned |
| 750 | /// based on the layout propagation analysis result. |
| 751 | LogicalResult LayoutAttrAssignment::assign(Operation *op) { |
| 752 | // For function ops, propagate the function argument layout to the users. |
| 753 | if (auto func = dyn_cast<FunctionOpInterface>(op)) { |
| 754 | for (BlockArgument arg : func.getArguments()) { |
| 755 | xegpu::LayoutAttr layoutInfo = getLayoutAttrForValue(arg); |
| 756 | if (layoutInfo) { |
| 757 | assignToUsers(arg, layoutInfo); |
| 758 | } |
| 759 | } |
| 760 | return success(); |
| 761 | } |
| 762 | // If no results, move on. |
| 763 | if (op->getNumResults() == 0) |
| 764 | return success(); |
| 765 | // If all the results are scalars, move on. |
| 766 | if (llvm::all_of(Range: op->getResultTypes(), |
| 767 | P: [](Type t) { return t.isIntOrIndexOrFloat(); })) |
| 768 | return success(); |
| 769 | // If the op has more than one result and at least one result is a tensor |
| 770 | // descriptor, exit. This case is not supported yet. |
| 771 | // TODO: Support this case. |
| 772 | if (op->getNumResults() > 1 && llvm::any_of(Range: op->getResultTypes(), P: [](Type t) { |
| 773 | return isa<xegpu::TensorDescType>(Val: t); |
| 774 | })) { |
| 775 | LLVM_DEBUG( |
| 776 | DBGS() << op->getName() |
| 777 | << " op has more than one result and at least one is a tensor " |
| 778 | "descriptor. This case is not handled.\n" ); |
| 779 | return failure(); |
| 780 | } |
| 781 | // If the result is a tensor descriptor, attach the layout to the tensor |
| 782 | // descriptor itself. |
| 783 | if (auto tensorDescTy = |
| 784 | dyn_cast<xegpu::TensorDescType>(op->getResultTypes()[0])) { |
| 785 | xegpu::LayoutAttr layoutInfo = getLayoutAttrForValue(op->getResult(0)); |
| 786 | if (!layoutInfo) { |
| 787 | LLVM_DEBUG(DBGS() << "No layout for result of " << *op << "\n" ); |
| 788 | return failure(); |
| 789 | } |
| 790 | |
| 791 | // Clone the op, attach the layout to the result tensor descriptor, and |
| 792 | // remove the original op. |
| 793 | OpBuilder builder(op); |
| 794 | Operation *newOp = builder.clone(op&: *op); |
| 795 | auto newTensorDescTy = xegpu::TensorDescType::get( |
| 796 | tensorDescTy.getContext(), tensorDescTy.getShape(), |
| 797 | tensorDescTy.getElementType(), tensorDescTy.getEncoding(), layoutInfo); |
| 798 | newOp->getResult(idx: 0).setType(newTensorDescTy); |
| 799 | op->replaceAllUsesWith(values: newOp->getResults()); |
| 800 | op->erase(); |
| 801 | return success(); |
| 802 | } |
| 803 | // Otherwise simply attach the layout to the op itself. |
| 804 | for (auto r : op->getOpResults()) { |
| 805 | xegpu::LayoutAttr layoutInfo = getLayoutAttrForValue(r); |
| 806 | if (layoutInfo) { |
| 807 | std::string attrName = xegpu::getLayoutName(result: r); |
| 808 | op->setAttr(attrName, layoutInfo); |
| 809 | // Attach the layout attribute to the users of the result. |
| 810 | assignToUsers(v: r, layout: layoutInfo); |
| 811 | } |
| 812 | } |
| 813 | return success(); |
| 814 | } |
| 815 | |
| 816 | /// Walk the IR and attach xegpu::LayoutAttr to all ops and their users. |
| 817 | LogicalResult LayoutAttrAssignment::run() { |
| 818 | auto walkResult = top->walk(callback: [&](Operation *op) { |
| 819 | if (failed(Result: assign(op))) |
| 820 | return WalkResult::interrupt(); |
| 821 | return WalkResult::advance(); |
| 822 | }); |
| 823 | |
| 824 | if (walkResult.wasInterrupted()) |
| 825 | return failure(); |
| 826 | |
| 827 | return resolveConflicts(); |
| 828 | } |
| 829 | |
| 830 | /// TODO: Implement the layout conflict resolution. This must ensure mainly two |
| 831 | /// things: |
| 832 | /// 1) Is a given layout supported by the op? (need to query the target |
| 833 | /// HW info). Otherwise can we achieve this layout using a layout conversion? |
| 834 | /// 2) Do all the operands have the required layout? If not, can it |
| 835 | /// be resolved using a layout conversion? |
| 836 | LogicalResult LayoutAttrAssignment::resolveConflicts() { return success(); } |
| 837 | |
| 838 | namespace { |
| 839 | |
| 840 | //===----------------------------------------------------------------------===// |
| 841 | // SIMT Distribution Patterns |
| 842 | //===----------------------------------------------------------------------===// |
| 843 | |
| 844 | /// Helper function to get distributed vector type for a source vector type |
| 845 | /// according to the lane_layout. We simply divide each dimension of tensor |
| 846 | /// descriptor shape by corresponding lane_layout dimension. If |
| 847 | /// array_length > 1, that is appended to the front of the ditributed shape. |
| 848 | /// NOTE: This is the vector type that will be returned by the |
| 849 | /// gpu.warp_execute_on_lane0 op. |
| 850 | /// |
| 851 | /// Examples: |
| 852 | /// | original vector shape | lane_layout | distributed vector shape | |
| 853 | /// |-----------------------|-------------|--------------------------| |
| 854 | /// | 32x16 | [1, 16] | 32x1 | |
| 855 | /// | 32x16 | [2, 8] | 16x2 | |
| 856 | /// | 2x32x16 | [1, 16] | 2x32x1 | |
| 857 | static FailureOr<VectorType> |
| 858 | getDistVecTypeBasedOnLaneLayout(xegpu::LayoutAttr layout, |
| 859 | VectorType originalType) { |
| 860 | if (!layout) |
| 861 | return failure(); |
| 862 | |
| 863 | auto laneLayout = layout.getLaneLayout().asArrayRef(); |
| 864 | assert(originalType.getShape().size() >= laneLayout.size() && |
| 865 | "Rank of the original vector type should be greater or equal to the " |
| 866 | "size of the lane layout to distribute the vector type." ); |
| 867 | SmallVector<int64_t> distributedShape(originalType.getShape()); |
| 868 | // Only distribute the last `laneLayout.size()` dimensions. The remaining |
| 869 | // dimensions are not distributed. |
| 870 | unsigned distributionStart = originalType.getRank() - laneLayout.size(); |
| 871 | for (auto [i, dim] : llvm::enumerate(originalType.getShape())) { |
| 872 | if (i < distributionStart) { |
| 873 | continue; |
| 874 | } |
| 875 | // Check if the dimension can be distributed evenly. |
| 876 | if (dim % laneLayout[i - distributionStart] != 0) |
| 877 | return failure(); |
| 878 | distributedShape[i] = dim / laneLayout[i - distributionStart]; |
| 879 | } |
| 880 | return VectorType::get(distributedShape, originalType.getElementType()); |
| 881 | } |
| 882 | |
| 883 | /// Helper function to resolve types if the distributed type out of |
| 884 | /// gpu.warp_execute_on_lane0 is different from the expected xegpu SIMT type. |
| 885 | /// Example 1: |
| 886 | /// distributed type: vector<8x1xf32> |
| 887 | /// expected type: vector<8xf32> |
| 888 | /// resolved using, |
| 889 | /// %0 = vector.shape_cast %1 : vector<8x1xf32> to vector<8xf32> |
| 890 | /// Example 2: |
| 891 | /// distributed type: xegpu.tensor_desc<8x16xf32, #xegpu.layout<...>> |
| 892 | /// expected type: xegpu.tensor_desc<8x16xf32> |
| 893 | /// resolved using, |
| 894 | /// %0 = unrealized_conversion_cast %1 : |
| 895 | /// xegpu.tensor_desc<8x16xf32, #xegpu.layout<..>> -> |
| 896 | /// xegpu.tensor_desc<8x16xf32> |
| 897 | template <typename T> |
| 898 | static Value resolveDistributedTy(Value orig, T expected, |
| 899 | PatternRewriter &rewriter) { |
| 900 | // If orig and expected types are the same, return orig. |
| 901 | if (orig.getType() == expected) |
| 902 | return orig; |
| 903 | // If orig is a vector type, create a shape cast op to reconcile the types. |
| 904 | if (isa<VectorType>(Val: orig.getType())) { |
| 905 | auto castOp = |
| 906 | rewriter.create<vector::ShapeCastOp>(orig.getLoc(), expected, orig); |
| 907 | return castOp.getResult(); |
| 908 | } |
| 909 | // If orig is a tensor descriptor type, create an unrealized conversion cast |
| 910 | // op to reconcile the types. |
| 911 | if (isa<xegpu::TensorDescType>(Val: orig.getType())) { |
| 912 | auto castOp = rewriter.create<UnrealizedConversionCastOp>(orig.getLoc(), |
| 913 | expected, orig); |
| 914 | return castOp.getResult(0); |
| 915 | } |
| 916 | llvm_unreachable("Unsupported type for reconciliation" ); |
| 917 | return orig; |
| 918 | } |
| 919 | |
| 920 | /// Helper function to filter out the temporary layout attributes attached |
| 921 | /// during the layout assignment process. These are not needed after going to |
| 922 | /// SIMT. |
| 923 | static SmallVector<NamedAttribute> |
| 924 | removeTemporaryLayoutAttributes(ArrayRef<NamedAttribute> attrs) { |
| 925 | SmallVector<NamedAttribute> newAttrs; |
| 926 | for (NamedAttribute attr : attrs) { |
| 927 | if (!isa<xegpu::LayoutAttr>(Val: attr.getValue())) |
| 928 | newAttrs.push_back(Elt: attr); |
| 929 | } |
| 930 | return newAttrs; |
| 931 | } |
| 932 | |
| 933 | /// Helper function to check if the layout is packed. Layout is packed if it is |
| 934 | /// 2D and lane_data[0] != 1 (data packed from col dimension). |
| 935 | static bool hasPackedLayout(xegpu::LayoutAttr layout) { |
| 936 | if (layout == xegpu::LayoutAttr()) |
| 937 | return false; |
| 938 | DenseI32ArrayAttr laneData = layout.getLaneData(); |
| 939 | if (!laneData || laneData.size() != 2) |
| 940 | return false; |
| 941 | return laneData.asArrayRef()[0] != 1; |
| 942 | } |
| 943 | |
| 944 | /// Given a GPUFuncOp, this pattern creates a new GPUFuncOp and moves the body |
| 945 | /// of the original GPUFuncOp to the new GPUFuncOp such that entire body is |
| 946 | /// contained within a WarpExecuteOnLane0Op. |
| 947 | /// Example: |
| 948 | /// |
| 949 | /// ``` |
| 950 | /// gpu.func @foo(%arg0: memref<*xf16>) -> vector<8x16xf32> { |
| 951 | /// ... |
| 952 | /// ... |
| 953 | /// gpu.return %result: vector<8x16xf32> |
| 954 | /// } |
| 955 | /// ``` |
| 956 | /// To |
| 957 | /// ``` |
| 958 | /// gpu.func @foo(%arg0: memref<*xf16>) -> vector<8x16xf32> { |
| 959 | /// %laneid = gpu.lane_id : index |
| 960 | /// %0 = gpu.warp_execute_on_lane_0(%laneid) -> vector<8x16xf32> { |
| 961 | /// ... |
| 962 | /// ... |
| 963 | /// gpu.yield %result: vector<8x16xf32> |
| 964 | /// } |
| 965 | /// return %0 |
| 966 | /// } |
| 967 | struct MoveFuncBodyToWarpExecuteOnLane0 |
| 968 | : public OpRewritePattern<gpu::GPUFuncOp> { |
| 969 | using OpRewritePattern<gpu::GPUFuncOp>::OpRewritePattern; |
| 970 | LogicalResult matchAndRewrite(gpu::GPUFuncOp gpuFuncOp, |
| 971 | PatternRewriter &rewriter) const override { |
| 972 | // If the function only contains a single void return, skip. |
| 973 | if (llvm::all_of(gpuFuncOp.getBody().getOps(), [](Operation &op) { |
| 974 | return isa<gpu::ReturnOp>(op) && !op.getNumOperands(); |
| 975 | })) |
| 976 | return failure(); |
| 977 | // If the function already moved inside a warp_execute_on_lane0, skip. |
| 978 | if (llvm::any_of(gpuFuncOp.getBody().getOps(), [](Operation &op) { |
| 979 | return isa<gpu::WarpExecuteOnLane0Op>(op); |
| 980 | })) |
| 981 | return failure(); |
| 982 | // Create a new function with the same signature. |
| 983 | auto newGpuFunc = rewriter.create<gpu::GPUFuncOp>( |
| 984 | gpuFuncOp.getLoc(), gpuFuncOp.getName(), gpuFuncOp.getFunctionType()); |
| 985 | // Create a WarpExecuteOnLane0Op with same arguments and results as the |
| 986 | // original gpuFuncOp. |
| 987 | rewriter.setInsertionPointToEnd(&newGpuFunc.getFunctionBody().front()); |
| 988 | auto laneId = rewriter.create<gpu::LaneIdOp>( |
| 989 | newGpuFunc.getLoc(), rewriter.getIndexType(), |
| 990 | /** upperBound = **/ mlir::IntegerAttr()); |
| 991 | ArrayRef<Type> gpuFuncResultType = gpuFuncOp.getFunctionType().getResults(); |
| 992 | auto warpOp = rewriter.create<gpu::WarpExecuteOnLane0Op>( |
| 993 | laneId.getLoc(), gpuFuncResultType, laneId, subgroupSize, |
| 994 | newGpuFunc.getArguments(), newGpuFunc.getArgumentTypes()); |
| 995 | Block &warpBodyBlock = warpOp.getBodyRegion().front(); |
| 996 | // Replace the ReturnOp of the original gpu function with a YieldOp. |
| 997 | auto origRetunOp = |
| 998 | cast<gpu::ReturnOp>(gpuFuncOp.getBlocks().back().getTerminator()); |
| 999 | rewriter.setInsertionPointAfter(origRetunOp); |
| 1000 | rewriter.create<gpu::YieldOp>(origRetunOp.getLoc(), |
| 1001 | origRetunOp.getOperands()); |
| 1002 | rewriter.eraseOp(op: origRetunOp); |
| 1003 | // Move the original function body to the WarpExecuteOnLane0Op body. |
| 1004 | rewriter.inlineRegionBefore(gpuFuncOp.getBody(), warpOp.getBodyRegion(), |
| 1005 | warpOp.getBodyRegion().begin()); |
| 1006 | rewriter.eraseBlock(block: &warpBodyBlock); |
| 1007 | // Insert a new ReturnOp after the WarpExecuteOnLane0Op. |
| 1008 | rewriter.setInsertionPointAfter(warpOp); |
| 1009 | rewriter.create<gpu::ReturnOp>(newGpuFunc.getLoc(), warpOp.getResults()); |
| 1010 | rewriter.replaceOp(gpuFuncOp, newGpuFunc); |
| 1011 | return success(); |
| 1012 | } |
| 1013 | }; |
| 1014 | |
| 1015 | /// Distribute a create_nd_tdesc feeding into vector.yield op of the enclosing |
| 1016 | /// `gpu.warp_execute_on_lane_0` region. After the sinking, the warp op will |
| 1017 | /// still contain the original op that will not be used by the yield op (and |
| 1018 | /// should be cleaned up later). The yield op will bypass the create_nd_tdesc's |
| 1019 | /// arguments. Tensor descriptor shape is not distributed because it is a |
| 1020 | /// uniform value across all work items within the subgroup. However, the |
| 1021 | /// layout information is dropped in the new tensor descriptor type. |
| 1022 | /// |
| 1023 | /// Example: |
| 1024 | /// |
| 1025 | /// ``` |
| 1026 | /// #layout0 = #xegpu.layout<wi_layout = [1, 8], wi_data = [1, 1]> |
| 1027 | /// %r = gpu.warp_execute_on_lane_0(%laneid) -> |
| 1028 | /// (!xegpu.tensor_desc<4x8xf32, #layout0>) { |
| 1029 | /// ... |
| 1030 | /// %td = xegpu.create_nd_tdesc %arg0[0, 0] |
| 1031 | /// : memref<4x8xf32> -> !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1032 | /// vector.yield %td |
| 1033 | /// } |
| 1034 | /// ``` |
| 1035 | /// To |
| 1036 | /// ``` |
| 1037 | /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> (...) { |
| 1038 | /// ... |
| 1039 | /// %dead = xegpu.create_nd_tdesc %arg0[0, 0] |
| 1040 | /// : memref<4x8xf32> -> !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1041 | /// vector.yield %arg0, %dead |
| 1042 | /// } |
| 1043 | /// %td = xegpu.create_nd_tdesc %r#0[0, 0]: memref<4x8xf32> |
| 1044 | /// -> !xegpu.tensor_desc<4x8xf32> |
| 1045 | /// |
| 1046 | /// ``` |
| 1047 | struct CreateNdDescDistribution final : public gpu::WarpDistributionPattern { |
| 1048 | using gpu::WarpDistributionPattern::WarpDistributionPattern; |
| 1049 | LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op subgroupOp, |
| 1050 | PatternRewriter &rewriter) const override { |
| 1051 | OpOperand *operand = |
| 1052 | getWarpResult(subgroupOp, llvm::IsaPred<xegpu::CreateNdDescOp>); |
| 1053 | if (!operand) |
| 1054 | return rewriter.notifyMatchFailure( |
| 1055 | subgroupOp, "warp result is not a xegpu::CreateNdDesc op" ); |
| 1056 | auto descOp = operand->get().getDefiningOp<xegpu::CreateNdDescOp>(); |
| 1057 | unsigned operandIdx = operand->getOperandNumber(); |
| 1058 | |
| 1059 | xegpu::LayoutAttr layout = descOp.getType().getLayoutAttr(); |
| 1060 | if (!layout) |
| 1061 | return rewriter.notifyMatchFailure( |
| 1062 | descOp, "the tensor descriptor lacks layout attribute" ); |
| 1063 | |
| 1064 | SmallVector<size_t> newRetIndices; |
| 1065 | SmallVector<Value> newYieldValues; |
| 1066 | SmallVector<Type> newYieldTypes; |
| 1067 | |
| 1068 | for (Value operand : descOp->getOperands()) { |
| 1069 | newYieldValues.push_back(operand); |
| 1070 | newYieldTypes.push_back(operand.getType()); |
| 1071 | } |
| 1072 | rewriter.setInsertionPoint(subgroupOp); |
| 1073 | gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1074 | rewriter, subgroupOp, /* new yieled values = */ newYieldValues, |
| 1075 | /* new yielded types = */ newYieldTypes, newRetIndices); |
| 1076 | |
| 1077 | SmallVector<Value> newDescOperands; |
| 1078 | for (size_t i : newRetIndices) { |
| 1079 | newDescOperands.push_back(Elt: newWarpOp.getResult(i)); |
| 1080 | } |
| 1081 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1082 | xegpu::TensorDescType distributedTensorDescTy = |
| 1083 | descOp.getType().dropLayouts(); // Distributed tensor descriptor type |
| 1084 | // does not contain layout info. |
| 1085 | auto newDescOp = rewriter.create<xegpu::CreateNdDescOp>( |
| 1086 | newWarpOp.getLoc(), distributedTensorDescTy, newDescOperands, |
| 1087 | descOp->getAttrs()); |
| 1088 | |
| 1089 | Value distributedVal = newWarpOp.getResult(operandIdx); |
| 1090 | rewriter.replaceAllUsesWith(distributedVal, newDescOp); |
| 1091 | return success(); |
| 1092 | } |
| 1093 | }; |
| 1094 | |
| 1095 | /// Distribute a store_nd op at the end of enclosing |
| 1096 | /// `gpu.warp_execute_on_lane_0`. In case arguments for the store are passed |
| 1097 | /// through the warp op interface they would be propagated as returned values. |
| 1098 | /// Source vector is distributed based on lane layout. Appropriate cast ops are |
| 1099 | /// inserted if the distributed types does not match expected xegpu SIMT types. |
| 1100 | /// |
| 1101 | /// Example: |
| 1102 | /// |
| 1103 | /// ``` |
| 1104 | /// #layout0 = #xegpu.layout<wi_layout = [1, 8], wi_data = [1, 1]> |
| 1105 | /// gpu.warp_execute_on_lane_0(%laneid) -> () { |
| 1106 | /// ... |
| 1107 | /// xegpu.store_nd %arg0, %arg1: vector<4x8xf32>, |
| 1108 | /// !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1109 | /// } |
| 1110 | /// ``` |
| 1111 | /// To |
| 1112 | /// ``` |
| 1113 | /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> (vector<4x1xf32>, |
| 1114 | /// !xegpu.tensor_desc<4x8xf32, #layout0>) { |
| 1115 | /// gpu.yield %arg0, %arg1: vector<4x8xf32>, !xegpu.tensor_desc<4x8xf32, |
| 1116 | /// #layout0> |
| 1117 | /// } |
| 1118 | /// %0 = vector.shape_cast %r#0: vector<4x1xf32> to vector<4xf32> |
| 1119 | /// %1 = unrealized_conversion_cast %r#1: !xegpu.tensor_desc<4x8xf32, |
| 1120 | /// #layout0> |
| 1121 | /// -> !xegpu.tensor_desc<4x8xf32> |
| 1122 | /// xegpu.store_nd %0, %1: vector<4xf32>, |
| 1123 | /// !xegpu.tensor_desc<4x8xf32> |
| 1124 | /// |
| 1125 | /// ``` |
| 1126 | struct StoreNdDistribution final : public gpu::WarpDistributionPattern { |
| 1127 | using gpu::WarpDistributionPattern::WarpDistributionPattern; |
| 1128 | LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op subgroupOp, |
| 1129 | PatternRewriter &rewriter) const override { |
| 1130 | auto yield = cast<gpu::YieldOp>( |
| 1131 | subgroupOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 1132 | Operation *lastNode = yield->getPrevNode(); |
| 1133 | auto storeOp = dyn_cast_or_null<xegpu::StoreNdOp>(lastNode); |
| 1134 | if (!storeOp) |
| 1135 | return failure(); |
| 1136 | |
| 1137 | xegpu::TensorDescType tensorDescTy = storeOp.getTensorDescType(); |
| 1138 | xegpu::LayoutAttr layout = tensorDescTy.getLayoutAttr(); |
| 1139 | if (!layout) |
| 1140 | return rewriter.notifyMatchFailure( |
| 1141 | storeOp, "the source tensor descriptor lacks layout attribute" ); |
| 1142 | |
| 1143 | FailureOr<VectorType> distributedTypeByWarpOpOrFailure = |
| 1144 | getDistVecTypeBasedOnLaneLayout(layout, storeOp.getValueType()); |
| 1145 | if (failed(Result: distributedTypeByWarpOpOrFailure)) |
| 1146 | return rewriter.notifyMatchFailure(storeOp, |
| 1147 | "Failed to distribute the type" ); |
| 1148 | VectorType distributedTypeByWarpOp = |
| 1149 | distributedTypeByWarpOpOrFailure.value(); |
| 1150 | |
| 1151 | SmallVector<size_t> newRetIndices; |
| 1152 | gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1153 | rewriter, subgroupOp, |
| 1154 | /* new yielded values = */ |
| 1155 | ValueRange{storeOp.getValue(), storeOp.getTensorDesc()}, |
| 1156 | /* new yielded types = */ |
| 1157 | TypeRange{distributedTypeByWarpOp, storeOp.getTensorDescType()}, |
| 1158 | newRetIndices); |
| 1159 | // Create a new store op outside the warp op with the distributed vector |
| 1160 | // type. Tensor descriptor is not distributed. |
| 1161 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1162 | SmallVector<Value> newStoreOperands; |
| 1163 | |
| 1164 | // For the value operand, there can be a mismatch between the vector type |
| 1165 | // distributed by the warp op and (xegpu-specific) distributed type |
| 1166 | // supported by the store op. Type mismatch must be resolved using |
| 1167 | // appropriate cast op. |
| 1168 | FailureOr<VectorType> storeNdDistributedValueTyOrFailure = |
| 1169 | xegpu::getDistributedVectorType(storeOp.getTensorDescType()); |
| 1170 | if (failed(Result: storeNdDistributedValueTyOrFailure)) |
| 1171 | return rewriter.notifyMatchFailure( |
| 1172 | storeOp, "Failed to get distributed vector type for the store op" ); |
| 1173 | newStoreOperands.push_back(Elt: resolveDistributedTy( |
| 1174 | newWarpOp.getResult(newRetIndices[0]), |
| 1175 | storeNdDistributedValueTyOrFailure.value(), rewriter)); |
| 1176 | // For the tensor descriptor operand, the layout attribute is dropped after |
| 1177 | // distribution. Types needs to be resolved in this case also. |
| 1178 | xegpu::TensorDescType distributedTensorDescTy = |
| 1179 | storeOp.getTensorDescType().dropLayouts(); |
| 1180 | newStoreOperands.push_back( |
| 1181 | Elt: resolveDistributedTy(newWarpOp.getResult(newRetIndices[1]), |
| 1182 | distributedTensorDescTy, rewriter)); |
| 1183 | |
| 1184 | rewriter.create<xegpu::StoreNdOp>( |
| 1185 | newWarpOp.getLoc(), TypeRange{}, newStoreOperands, |
| 1186 | removeTemporaryLayoutAttributes(storeOp->getAttrs())); |
| 1187 | rewriter.eraseOp(op: storeOp); |
| 1188 | return success(); |
| 1189 | } |
| 1190 | }; |
| 1191 | |
| 1192 | /// Distribute a load_nd op feeding into vector.yield op for the enclosing |
| 1193 | /// `gpu.warp_execute_on_lane_0` and put it after the warp op. |
| 1194 | /// The warp op will still contain the original op that will not be used by |
| 1195 | /// the yield op (and should be cleaned up later). The yield op will |
| 1196 | /// bypass the load's arguments. Only the loaded vector is distributed |
| 1197 | /// according to lane layout and, tensor descriptor types is not |
| 1198 | /// distributed. Appropriate cast ops are inserted if the distributed types does |
| 1199 | /// not match expected xegpu SIMT types. |
| 1200 | /// |
| 1201 | /// Example: |
| 1202 | /// |
| 1203 | /// ``` |
| 1204 | /// #layout0 = #xegpu.layout<wi_layout = [1, 8], wi_data = [1, 1]> |
| 1205 | /// %r = gpu.warp_execute_on_lane_0(%laneid) -> |
| 1206 | /// (vector<4x1xf32>) { |
| 1207 | /// ... |
| 1208 | /// %ld = xegpu.load_nd %arg0, %arg1: !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1209 | /// -> |
| 1210 | /// vector<4x8xf32> |
| 1211 | /// gpu.yield %ld |
| 1212 | /// } |
| 1213 | /// ``` |
| 1214 | /// To |
| 1215 | /// ``` |
| 1216 | /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> (vector<4x1xf32>, |
| 1217 | /// !xegpu.tensor_desc<4x8xf32, #layout0>) { |
| 1218 | /// ... |
| 1219 | /// %dead = xegpu.load_nd %arg0: !xegpu.tensor_desc<4x8xf32, #layout0> -> |
| 1220 | /// vector<4x8xf32> gpu.yield %dead, %arg0 |
| 1221 | /// } |
| 1222 | /// %0 = unrealized_conversion_cast %r#1: !xegpu.tensor_desc<4x8xf32, |
| 1223 | /// #layout0> -> !xegpu.tensor_desc<4x8xf32> |
| 1224 | /// %1 = xegpu.load_nd %0: !xegpu.tensor_desc<4x8xf32> -> vector<4xf32> |
| 1225 | /// %2 = vector.shape_cast %r#0: vector<4xf32> to vector<4x1xf32> |
| 1226 | /// |
| 1227 | /// ``` |
| 1228 | struct LoadNdDistribution final : public gpu::WarpDistributionPattern { |
| 1229 | using gpu::WarpDistributionPattern::WarpDistributionPattern; |
| 1230 | LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op subgroupOp, |
| 1231 | PatternRewriter &rewriter) const override { |
| 1232 | OpOperand *operand = |
| 1233 | getWarpResult(subgroupOp, llvm::IsaPred<xegpu::LoadNdOp>); |
| 1234 | if (!operand) |
| 1235 | return rewriter.notifyMatchFailure( |
| 1236 | subgroupOp, "warp result is not a xegpu::LoadNd op" ); |
| 1237 | |
| 1238 | auto loadOp = operand->get().getDefiningOp<xegpu::LoadNdOp>(); |
| 1239 | xegpu::TensorDescType tensorDescTy = loadOp.getTensorDescType(); |
| 1240 | xegpu::LayoutAttr layout = tensorDescTy.getLayoutAttr(); |
| 1241 | if (!layout) |
| 1242 | return rewriter.notifyMatchFailure( |
| 1243 | loadOp, "the source tensor descriptor lacks layout attribute" ); |
| 1244 | |
| 1245 | unsigned operandIdx = operand->getOperandNumber(); |
| 1246 | VectorType distributedTypeByWarpOp = |
| 1247 | cast<VectorType>(subgroupOp.getResult(operandIdx).getType()); |
| 1248 | |
| 1249 | SmallVector<size_t> newRetIndices; |
| 1250 | gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1251 | rewriter, subgroupOp, |
| 1252 | /* new yielded values = */ loadOp.getTensorDesc(), |
| 1253 | /* new yielded types = */ tensorDescTy, newRetIndices); |
| 1254 | |
| 1255 | // Create a new load op outside the warp op with the distributed vector |
| 1256 | // type. |
| 1257 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1258 | FailureOr<VectorType> loadNdDistValueTyOrFailure = |
| 1259 | xegpu::getDistributedVectorType(loadOp.getTensorDescType()); |
| 1260 | if (failed(Result: loadNdDistValueTyOrFailure)) |
| 1261 | return rewriter.notifyMatchFailure( |
| 1262 | loadOp, "Failed to get distributed vector type for the load op" ); |
| 1263 | xegpu::TensorDescType distributedTensorDescTy = |
| 1264 | loadOp.getTensorDescType().dropLayouts(); // Distributed tensor |
| 1265 | // descriptor type does not |
| 1266 | // contain layout info. |
| 1267 | auto newLoadOp = rewriter.create<xegpu::LoadNdOp>( |
| 1268 | newWarpOp.getLoc(), loadNdDistValueTyOrFailure.value(), |
| 1269 | resolveDistributedTy(newWarpOp->getResult(newRetIndices[0]), |
| 1270 | distributedTensorDescTy, rewriter), |
| 1271 | removeTemporaryLayoutAttributes(loadOp->getAttrs())); |
| 1272 | // Set the packed attribute if the layout requires it. |
| 1273 | newLoadOp.setPacked(hasPackedLayout(layout)); |
| 1274 | Value distributedVal = newWarpOp.getResult(operandIdx); |
| 1275 | // There can be a conflict between the vector type distributed by the |
| 1276 | // warp op and (xegpu-specific) distributed type supported by the load |
| 1277 | // op. Resolve these mismatches by inserting a cast. |
| 1278 | Value tyResolvedVal = resolveDistributedTy( |
| 1279 | newLoadOp.getResult(), distributedTypeByWarpOp, rewriter); |
| 1280 | rewriter.replaceAllUsesWith(from: distributedVal, to: tyResolvedVal); |
| 1281 | return success(); |
| 1282 | } |
| 1283 | }; |
| 1284 | |
| 1285 | /// Distribute a dpas op feeding into vector.yield op for the enclosing |
| 1286 | /// `gpu.warp_execute_on_lane_0` and put it after the warp op. |
| 1287 | /// The warp op will still contain the original op that will not be used by |
| 1288 | /// the yield op (and should be cleaned up later). The yield op will |
| 1289 | /// bypass the dpas's arguments. Appropriate cast ops are inserted if the |
| 1290 | /// distributed types does not match expected xegpu SIMT types. |
| 1291 | /// Example: |
| 1292 | /// ``` |
| 1293 | /// #lo_a = #xegpu.layout<wi_layout = [1, 16], wi_data = [1, 1]> |
| 1294 | /// #lo_b = #xegpu.layout<wi_layout = [1, 16], wi_data = [2, 1]> |
| 1295 | /// #lo_c = #xegpu.layout<wi_layout = [1, 16], wi_data = [1, 1]> |
| 1296 | /// %r = gpu.warp_execute_on_lane_0(%laneid) -> |
| 1297 | /// (vector<8x1xf32>) { |
| 1298 | /// ... |
| 1299 | /// %dpas = xegpu.dpas %arg0, %arg1: vector<8x16xf16>, vector<16x16xf16> -> |
| 1300 | /// vector<8x16xf32> |
| 1301 | /// gpu.yield %dpas |
| 1302 | /// } |
| 1303 | /// ``` |
| 1304 | /// To |
| 1305 | /// ``` |
| 1306 | /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> (vector<8x1xf32>, |
| 1307 | /// vector<8x1xf16>, vector<16x1xf16>) { |
| 1308 | /// ... |
| 1309 | /// %dead = xegpu.dpas %arg0, %arg1: vector<8x16xf16>, vector<16x16xf16> |
| 1310 | /// -> vector<8x16xf32> |
| 1311 | /// gpu.yield %dead, %arg0, %arg1 |
| 1312 | /// } |
| 1313 | /// %0 = vector.shape_cast %r#1: vector<8x1xf16> to vector<8xf16> |
| 1314 | /// %1 = vector.shape_cast %r#2: vector<16x1xf16> to vector<16xf16> |
| 1315 | /// %2 = xegpu.dpas %0, %1: vector<8xf16>, vector<16xf16> -> |
| 1316 | /// vector<8xf32> |
| 1317 | /// %dpas = vector.shape_cast %2: vector<8xf32> to vector<8x1xf32> |
| 1318 | /// ``` |
| 1319 | struct DpasDistribution final : public gpu::WarpDistributionPattern { |
| 1320 | using gpu::WarpDistributionPattern::WarpDistributionPattern; |
| 1321 | LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op subgroupOp, |
| 1322 | PatternRewriter &rewriter) const override { |
| 1323 | OpOperand *operand = |
| 1324 | getWarpResult(subgroupOp, llvm::IsaPred<xegpu::DpasOp>); |
| 1325 | if (!operand) |
| 1326 | return rewriter.notifyMatchFailure(subgroupOp, |
| 1327 | "warp result is not a xegpu::Dpas op" ); |
| 1328 | |
| 1329 | auto dpasOp = operand->get().getDefiningOp<xegpu::DpasOp>(); |
| 1330 | unsigned operandIdx = operand->getOperandNumber(); |
| 1331 | std::string layoutAName = xegpu::getLayoutName(dpasOp->getOpOperand(0)); |
| 1332 | std::string layoutBName = xegpu::getLayoutName(dpasOp->getOpOperand(1)); |
| 1333 | std::string layoutCName = xegpu::getLayoutName(dpasOp->getOpResult(0)); |
| 1334 | |
| 1335 | xegpu::LayoutAttr layoutA = |
| 1336 | dpasOp->getAttrOfType<xegpu::LayoutAttr>(layoutAName); |
| 1337 | xegpu::LayoutAttr layoutB = |
| 1338 | dpasOp->getAttrOfType<xegpu::LayoutAttr>(layoutBName); |
| 1339 | xegpu::LayoutAttr layoutOut = |
| 1340 | dpasOp->getAttrOfType<xegpu::LayoutAttr>(layoutCName); |
| 1341 | if (!layoutA || !layoutB || !layoutOut) |
| 1342 | return rewriter.notifyMatchFailure( |
| 1343 | dpasOp, |
| 1344 | "the xegpu::Dpas op lacks layout attribute for A, B or output" ); |
| 1345 | |
| 1346 | FailureOr<VectorType> distLhsTypeByWarpOpOrFailure = |
| 1347 | getDistVecTypeBasedOnLaneLayout(layoutA, dpasOp.getLhsType()); |
| 1348 | FailureOr<VectorType> distRhsTypeByWarpOpOrFailure = |
| 1349 | getDistVecTypeBasedOnLaneLayout(layoutB, dpasOp.getRhsType()); |
| 1350 | FailureOr<VectorType> distResultTypeByWarpOpOrFailure = |
| 1351 | getDistVecTypeBasedOnLaneLayout(layoutOut, dpasOp.getResultType()); |
| 1352 | if (failed(Result: distLhsTypeByWarpOpOrFailure) || |
| 1353 | failed(Result: distRhsTypeByWarpOpOrFailure) || |
| 1354 | failed(Result: distResultTypeByWarpOpOrFailure)) |
| 1355 | return rewriter.notifyMatchFailure( |
| 1356 | dpasOp, |
| 1357 | "Failed to distribute the A, B or output types in xegpu::Dpas op" ); |
| 1358 | |
| 1359 | llvm::SmallVector<Value, 3> newYieldValues{dpasOp.getLhs(), |
| 1360 | dpasOp.getRhs()}; |
| 1361 | llvm::SmallVector<Type, 3> newYieldTypes{ |
| 1362 | distLhsTypeByWarpOpOrFailure.value(), |
| 1363 | distRhsTypeByWarpOpOrFailure.value()}; |
| 1364 | // Dpas acc operand is optional. |
| 1365 | if (dpasOp.getAcc()) { |
| 1366 | newYieldValues.push_back(Elt: dpasOp.getAcc()); |
| 1367 | newYieldTypes.push_back(Elt: distResultTypeByWarpOpOrFailure.value()); |
| 1368 | } |
| 1369 | // Create a new warp op without the dpas. |
| 1370 | SmallVector<size_t> newRetIndices; |
| 1371 | gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1372 | rewriter, subgroupOp, newYieldValues, newYieldTypes, newRetIndices); |
| 1373 | |
| 1374 | FailureOr<VectorType> expectedDistLhsTyOrFailure = |
| 1375 | xegpu::getDistributedVectorType(dpasOp.getLhsType(), layoutA); |
| 1376 | FailureOr<VectorType> expectedDistRhsTyOrFailure = |
| 1377 | xegpu::getDistributedVectorType(dpasOp.getRhsType(), layoutB); |
| 1378 | FailureOr<VectorType> expectedDistResultTyOrFailure = |
| 1379 | xegpu::getDistributedVectorType(dpasOp.getResultType(), layoutOut); |
| 1380 | if (failed(Result: expectedDistLhsTyOrFailure) || |
| 1381 | failed(Result: expectedDistRhsTyOrFailure) || |
| 1382 | failed(Result: expectedDistResultTyOrFailure)) |
| 1383 | return rewriter.notifyMatchFailure( |
| 1384 | dpasOp, |
| 1385 | "Failed to get distributed vector type for the dpas operands." ); |
| 1386 | // Create a new dpas op outside the warp op. |
| 1387 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1388 | SmallVector<Value> newDpasOperands; |
| 1389 | SmallVector<VectorType> newDpasOperandExpectedTypes; |
| 1390 | |
| 1391 | // Resolve the distributed types with the original types. |
| 1392 | newDpasOperandExpectedTypes.push_back(expectedDistLhsTyOrFailure.value()); |
| 1393 | newDpasOperandExpectedTypes.push_back(expectedDistRhsTyOrFailure.value()); |
| 1394 | VectorType distributedResultTy = expectedDistResultTyOrFailure.value(); |
| 1395 | if (dpasOp.getAcc()) |
| 1396 | newDpasOperandExpectedTypes.push_back(distributedResultTy); |
| 1397 | |
| 1398 | for (unsigned i = 0; i < newRetIndices.size(); i++) { |
| 1399 | newDpasOperands.push_back( |
| 1400 | Elt: resolveDistributedTy(newWarpOp.getResult(newRetIndices[i]), |
| 1401 | newDpasOperandExpectedTypes[i], rewriter)); |
| 1402 | } |
| 1403 | Value newDpasOp = rewriter.create<xegpu::DpasOp>( |
| 1404 | newWarpOp->getLoc(), distributedResultTy, newDpasOperands, |
| 1405 | removeTemporaryLayoutAttributes(dpasOp->getAttrs())); |
| 1406 | Value distributedVal = newWarpOp.getResult(operandIdx); |
| 1407 | // Resolve the output type. |
| 1408 | newDpasOp = resolveDistributedTy( |
| 1409 | newDpasOp, distResultTypeByWarpOpOrFailure.value(), rewriter); |
| 1410 | rewriter.replaceAllUsesWith(from: distributedVal, to: newDpasOp); |
| 1411 | return success(); |
| 1412 | } |
| 1413 | }; |
| 1414 | |
| 1415 | /// Sink an update_nd_offset op feeding into yield op of an enclosing |
| 1416 | /// `gpu.warp_execute_on_lane_0` region. The warp op will still contain the |
| 1417 | /// original op that will not be used by the yield op (and should be cleaned |
| 1418 | /// up later). The yield op will bypass the updateOp's arguments. The tensor |
| 1419 | /// descriptor type is not distributed. Appropriate cast ops are inserted if |
| 1420 | /// the distributed types does not match expected xegpu SIMT types. |
| 1421 | /// Example: |
| 1422 | /// ``` |
| 1423 | /// #layout0 = #xegpu.layout<wi_layout = [1, 8], wi_data = [1, 1]> |
| 1424 | /// %r = gpu.warp_execute_on_lane_0(%laneid) -> |
| 1425 | /// (!xegpu.tensor_desc<4x8xf32, #layout0>) { |
| 1426 | /// ... |
| 1427 | /// %update = xegpu.update_nd_offset %arg0, [%c32, %c16]: |
| 1428 | /// !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1429 | /// gpu.yield %update |
| 1430 | /// } |
| 1431 | /// ... |
| 1432 | /// ``` |
| 1433 | /// To |
| 1434 | /// ``` |
| 1435 | /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> ( |
| 1436 | /// !xegpu.tensor_desc<4x8xf32, #layout0>, |
| 1437 | /// !xegpu.tensor_desc<4x8xf32, #layout0>, index, index) { |
| 1438 | /// ... |
| 1439 | /// %dead = xegpu.update_nd_offset %arg0, [%c32, %c16]: |
| 1440 | /// !xegpu.tensor_desc<4x8xf32, #layout0> gpu.yield %dead, %arg0 |
| 1441 | /// gpu.yield %dead, %arg0, %c32, %c16 |
| 1442 | /// } |
| 1443 | /// %0 = xegpu.unrealized_conversion_cast %r#1: !xegpu.tensor_desc<4x8xf32, |
| 1444 | /// #layout0> -> !xegpu.tensor_desc<4x8xf32> |
| 1445 | /// %1 = xegpu.update_nd_offset %0, [%r#2, %r#3]: |
| 1446 | /// !xegpu.tensor_desc<4x8xf32> |
| 1447 | /// ... |
| 1448 | /// ``` |
| 1449 | struct UpdateNdOffsetDistribution final : public gpu::WarpDistributionPattern { |
| 1450 | using gpu::WarpDistributionPattern::WarpDistributionPattern; |
| 1451 | LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op subgroupOp, |
| 1452 | PatternRewriter &rewriter) const override { |
| 1453 | OpOperand *operand = |
| 1454 | getWarpResult(subgroupOp, llvm::IsaPred<xegpu::UpdateNdOffsetOp>); |
| 1455 | if (!operand) |
| 1456 | return rewriter.notifyMatchFailure( |
| 1457 | subgroupOp, "warp result is not a xegpu::UpdateNdOffset op" ); |
| 1458 | auto updateOp = operand->get().getDefiningOp<xegpu::UpdateNdOffsetOp>(); |
| 1459 | unsigned operandIdx = operand->getOperandNumber(); |
| 1460 | // new update op does not have layout attribute. |
| 1461 | xegpu::TensorDescType newTensorDescTy = |
| 1462 | updateOp.getTensorDescType().dropLayouts(); |
| 1463 | |
| 1464 | SmallVector<Value, 3> newYieldValues; |
| 1465 | SmallVector<Type, 3> newYieldTypes; |
| 1466 | for (Value operand : updateOp->getOperands()) { |
| 1467 | newYieldValues.push_back(operand); |
| 1468 | if (isa<xegpu::TensorDescType>(operand.getType())) { |
| 1469 | newYieldTypes.push_back(newTensorDescTy); |
| 1470 | } else { |
| 1471 | newYieldTypes.push_back(operand.getType()); |
| 1472 | } |
| 1473 | } |
| 1474 | SmallVector<size_t> newRetIndices; |
| 1475 | gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1476 | rewriter, subgroupOp, newYieldValues, newYieldTypes, newRetIndices); |
| 1477 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1478 | SmallVector<Value> newUpdateOperands; |
| 1479 | for (size_t i : newRetIndices) { |
| 1480 | // For the tensor descriptor operand, the layout attribute is dropped |
| 1481 | // after distribution. Types needs to be resolved in this case. |
| 1482 | if (isa<xegpu::TensorDescType>(newWarpOp.getResult(i).getType())) { |
| 1483 | newUpdateOperands.push_back(Elt: resolveDistributedTy( |
| 1484 | newWarpOp.getResult(i), newTensorDescTy, rewriter)); |
| 1485 | } else { |
| 1486 | newUpdateOperands.push_back(Elt: newWarpOp.getResult(i)); |
| 1487 | } |
| 1488 | } |
| 1489 | // Create a new update op outside the warp op. |
| 1490 | auto newUpdateOp = rewriter.create<xegpu::UpdateNdOffsetOp>( |
| 1491 | newWarpOp.getLoc(), newTensorDescTy, newUpdateOperands, |
| 1492 | removeTemporaryLayoutAttributes(updateOp->getAttrs())); |
| 1493 | Value distributedVal = newWarpOp.getResult(operandIdx); |
| 1494 | rewriter.replaceAllUsesWith(distributedVal, newUpdateOp); |
| 1495 | return success(); |
| 1496 | } |
| 1497 | }; |
| 1498 | |
| 1499 | /// Distribute a prefetch_nd op at the end of enclosing |
| 1500 | /// `gpu.warp_execute_on_lane_0`. In case arguments for the prefetch are passed |
| 1501 | /// through the warp op interface they would be propagated as returned values. |
| 1502 | /// Tensor descriptor shape is not distributed because it is a uniform value |
| 1503 | /// across all work items within the subgroup. Appropriate cast ops are inserted |
| 1504 | /// if the distributed types does not match expected xegpu SIMT types. |
| 1505 | /// |
| 1506 | /// Example: |
| 1507 | /// |
| 1508 | /// ``` |
| 1509 | /// #layout0 = #xegpu.layout<wi_layout = [1, 8], wi_data = [1, 1]> |
| 1510 | /// gpu.warp_execute_on_lane_0(%laneid) -> () { |
| 1511 | /// ... |
| 1512 | /// xegpu.prefetch_nd %arg0 : !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1513 | /// } |
| 1514 | /// ``` |
| 1515 | /// To |
| 1516 | /// ``` |
| 1517 | /// %r:1 = gpu.warp_execute_on_lane_0(%laneid) -> ( |
| 1518 | /// !xegpu.tensor_desc<4x8xf32, #layout0>) { |
| 1519 | /// gpu.yield %arg0: !xegpu.tensor_desc<4x8xf32, #layout0> |
| 1520 | /// } |
| 1521 | /// %1 = unrealized_conversion_cast %r#0: !xegpu.tensor_desc<4x8xf32, |
| 1522 | /// #layout0> -> !xegpu.tensor_desc<4x8xf32> |
| 1523 | /// xegpu.prefetch_nd %1 : !xegpu.tensor_desc<4x8xf32> |
| 1524 | /// |
| 1525 | /// ``` |
| 1526 | struct PrefetchNdDistribution final : public gpu::WarpDistributionPattern { |
| 1527 | using gpu::WarpDistributionPattern::WarpDistributionPattern; |
| 1528 | LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op subgroupOp, |
| 1529 | PatternRewriter &rewriter) const override { |
| 1530 | auto yield = cast<gpu::YieldOp>( |
| 1531 | subgroupOp.getBodyRegion().getBlocks().begin()->getTerminator()); |
| 1532 | Operation *lastNode = yield->getPrevNode(); |
| 1533 | auto prefetchOp = dyn_cast_or_null<xegpu::PrefetchNdOp>(lastNode); |
| 1534 | if (!prefetchOp) |
| 1535 | return failure(); |
| 1536 | xegpu::LayoutAttr layout = prefetchOp.getTensorDescType().getLayoutAttr(); |
| 1537 | if (!layout) |
| 1538 | return rewriter.notifyMatchFailure( |
| 1539 | prefetchOp, "the source tensor descriptor lacks layout attribute" ); |
| 1540 | |
| 1541 | SmallVector<Value, 1> newYieldValues = {prefetchOp.getTensorDesc()}; |
| 1542 | SmallVector<Type, 1> newYieldTypes = {prefetchOp.getTensorDescType()}; |
| 1543 | SmallVector<size_t> newRetIndices; |
| 1544 | gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( |
| 1545 | rewriter, subgroupOp, newYieldValues, newYieldTypes, newRetIndices); |
| 1546 | // Create a new prefetch op outside the warp op with updated tensor |
| 1547 | // descriptor type. Source tensor descriptor require type resolution. |
| 1548 | xegpu::TensorDescType newTensorDescTy = |
| 1549 | prefetchOp.getTensorDescType().dropLayouts(); |
| 1550 | rewriter.setInsertionPointAfter(newWarpOp); |
| 1551 | SmallVector<Value> newPrefetchOperands = {resolveDistributedTy( |
| 1552 | newWarpOp.getResult(newRetIndices[0]), newTensorDescTy, rewriter)}; |
| 1553 | rewriter.create<xegpu::PrefetchNdOp>( |
| 1554 | newWarpOp.getLoc(), TypeRange{}, newPrefetchOperands, |
| 1555 | removeTemporaryLayoutAttributes(prefetchOp->getAttrs())); |
| 1556 | rewriter.eraseOp(op: prefetchOp); |
| 1557 | return success(); |
| 1558 | } |
| 1559 | }; |
| 1560 | |
| 1561 | } // namespace |
| 1562 | |
| 1563 | namespace { |
| 1564 | struct XeGPUSubgroupDistributePass final |
| 1565 | : public xegpu::impl::XeGPUSubgroupDistributeBase< |
| 1566 | XeGPUSubgroupDistributePass> { |
| 1567 | XeGPUSubgroupDistributePass() = default; |
| 1568 | XeGPUSubgroupDistributePass(const XeGPUSubgroupDistributePass &other) = |
| 1569 | default; |
| 1570 | XeGPUSubgroupDistributePass(xegpu::XeGPUSubgroupDistributeOptions options) |
| 1571 | : XeGPUSubgroupDistributeBase(options) {} |
| 1572 | void runOnOperation() override; |
| 1573 | }; |
| 1574 | } // namespace |
| 1575 | |
| 1576 | void xegpu::populateXeGPUSubgroupDistributePatterns( |
| 1577 | RewritePatternSet &patterns) { |
| 1578 | patterns.add<CreateNdDescDistribution, StoreNdDistribution, |
| 1579 | LoadNdDistribution, DpasDistribution, PrefetchNdDistribution, |
| 1580 | UpdateNdOffsetDistribution>(arg: patterns.getContext()); |
| 1581 | } |
| 1582 | |
| 1583 | void XeGPUSubgroupDistributePass::runOnOperation() { |
| 1584 | auto &analyis = getAnalysis<RunLayoutInfoPropagation>(); |
| 1585 | // Print the analysis result and exit. (for testing purposes) |
| 1586 | if (printOnly) { |
| 1587 | auto &os = llvm::outs(); |
| 1588 | analyis.printAnalysisResult(os); |
| 1589 | return; |
| 1590 | } |
| 1591 | auto getPropagatedLayout = [&](Value val) { |
| 1592 | return analyis.getLayoutInfo(val); |
| 1593 | }; |
| 1594 | |
| 1595 | // Assign xegpu::LayoutAttr to all ops and their users based on the layout |
| 1596 | // propagation analysis result. |
| 1597 | LayoutAttrAssignment layoutAssignment(getOperation(), getPropagatedLayout); |
| 1598 | if (failed(Result: layoutAssignment.run())) { |
| 1599 | signalPassFailure(); |
| 1600 | return; |
| 1601 | } |
| 1602 | |
| 1603 | // Move all operations of a GPU function inside gpu.warp_execute_on_lane_0 |
| 1604 | // operation. |
| 1605 | { |
| 1606 | RewritePatternSet patterns(&getContext()); |
| 1607 | patterns.add<MoveFuncBodyToWarpExecuteOnLane0>(&getContext()); |
| 1608 | |
| 1609 | if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) { |
| 1610 | signalPassFailure(); |
| 1611 | return; |
| 1612 | } |
| 1613 | // At this point, we have moved the entire function body inside the warpOp. |
| 1614 | // Now move any scalar uniform code outside of the warpOp (like GPU index |
| 1615 | // ops, scalar constants, etc.). This will simplify the later lowering and |
| 1616 | // avoid custom patterns for these ops. |
| 1617 | getOperation()->walk([&](Operation *op) { |
| 1618 | if (auto warpOp = dyn_cast<gpu::WarpExecuteOnLane0Op>(op)) { |
| 1619 | vector::moveScalarUniformCode(warpOp); |
| 1620 | } |
| 1621 | }); |
| 1622 | } |
| 1623 | // Finally, do the SIMD to SIMT distribution. |
| 1624 | RewritePatternSet patterns(&getContext()); |
| 1625 | xegpu::populateXeGPUSubgroupDistributePatterns(patterns); |
| 1626 | // TODO: distributionFn and shuffleFn are not used at this point. |
| 1627 | auto distributionFn = [](Value val) { |
| 1628 | VectorType vecType = dyn_cast<VectorType>(val.getType()); |
| 1629 | int64_t vecRank = vecType ? vecType.getRank() : 0; |
| 1630 | OpBuilder builder(val.getContext()); |
| 1631 | if (vecRank == 0) |
| 1632 | return AffineMap::get(context: val.getContext()); |
| 1633 | return AffineMap::getMultiDimIdentityMap(vecRank, val.getContext()); |
| 1634 | }; |
| 1635 | auto shuffleFn = [](Location loc, OpBuilder &builder, Value val, Value srcIdx, |
| 1636 | int64_t warpSz) { return Value(); }; |
| 1637 | vector::populatePropagateWarpVectorDistributionPatterns( |
| 1638 | patterns, distributionFn, shuffleFn); |
| 1639 | if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) { |
| 1640 | signalPassFailure(); |
| 1641 | return; |
| 1642 | } |
| 1643 | } |
| 1644 | |