| 1 | //===- OperationSupport.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains out-of-line implementations of the support types that |
| 10 | // Operation and related classes build on top of. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "mlir/IR/OperationSupport.h" |
| 15 | #include "mlir/IR/BuiltinAttributes.h" |
| 16 | #include "mlir/IR/BuiltinTypes.h" |
| 17 | #include "mlir/IR/OpDefinition.h" |
| 18 | #include "llvm/ADT/BitVector.h" |
| 19 | #include "llvm/Support/SHA1.h" |
| 20 | #include <numeric> |
| 21 | #include <optional> |
| 22 | |
| 23 | using namespace mlir; |
| 24 | |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | // NamedAttrList |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | NamedAttrList::NamedAttrList(ArrayRef<NamedAttribute> attributes) { |
| 30 | assign(inStart: attributes.begin(), inEnd: attributes.end()); |
| 31 | } |
| 32 | |
| 33 | NamedAttrList::NamedAttrList(DictionaryAttr attributes) |
| 34 | : NamedAttrList(attributes ? attributes.getValue() |
| 35 | : ArrayRef<NamedAttribute>()) { |
| 36 | dictionarySorted.setPointerAndInt(PtrVal: attributes, IntVal: true); |
| 37 | } |
| 38 | |
| 39 | NamedAttrList::NamedAttrList(const_iterator inStart, const_iterator inEnd) { |
| 40 | assign(inStart, inEnd); |
| 41 | } |
| 42 | |
| 43 | ArrayRef<NamedAttribute> NamedAttrList::getAttrs() const { return attrs; } |
| 44 | |
| 45 | std::optional<NamedAttribute> NamedAttrList::findDuplicate() const { |
| 46 | std::optional<NamedAttribute> duplicate = |
| 47 | DictionaryAttr::findDuplicate(attrs, isSorted()); |
| 48 | // DictionaryAttr::findDuplicate will sort the list, so reset the sorted |
| 49 | // state. |
| 50 | if (!isSorted()) |
| 51 | dictionarySorted.setPointerAndInt(PtrVal: nullptr, IntVal: true); |
| 52 | return duplicate; |
| 53 | } |
| 54 | |
| 55 | DictionaryAttr NamedAttrList::getDictionary(MLIRContext *context) const { |
| 56 | if (!isSorted()) { |
| 57 | DictionaryAttr::sortInPlace(attrs); |
| 58 | dictionarySorted.setPointerAndInt(PtrVal: nullptr, IntVal: true); |
| 59 | } |
| 60 | if (!dictionarySorted.getPointer()) |
| 61 | dictionarySorted.setPointer(DictionaryAttr::getWithSorted(context, attrs)); |
| 62 | return llvm::cast<DictionaryAttr>(dictionarySorted.getPointer()); |
| 63 | } |
| 64 | |
| 65 | /// Replaces the attributes with new list of attributes. |
| 66 | void NamedAttrList::assign(const_iterator inStart, const_iterator inEnd) { |
| 67 | DictionaryAttr::sort(ArrayRef<NamedAttribute>{inStart, inEnd}, attrs); |
| 68 | dictionarySorted.setPointerAndInt(PtrVal: nullptr, IntVal: true); |
| 69 | } |
| 70 | |
| 71 | void NamedAttrList::push_back(NamedAttribute newAttribute) { |
| 72 | if (isSorted()) |
| 73 | dictionarySorted.setInt(attrs.empty() || attrs.back() < newAttribute); |
| 74 | dictionarySorted.setPointer(nullptr); |
| 75 | attrs.push_back(Elt: newAttribute); |
| 76 | } |
| 77 | |
| 78 | /// Return the specified attribute if present, null otherwise. |
| 79 | Attribute NamedAttrList::get(StringRef name) const { |
| 80 | auto it = findAttr(attrs: *this, name); |
| 81 | return it.second ? it.first->getValue() : Attribute(); |
| 82 | } |
| 83 | Attribute NamedAttrList::get(StringAttr name) const { |
| 84 | auto it = findAttr(*this, name); |
| 85 | return it.second ? it.first->getValue() : Attribute(); |
| 86 | } |
| 87 | |
| 88 | /// Return the specified named attribute if present, std::nullopt otherwise. |
| 89 | std::optional<NamedAttribute> NamedAttrList::getNamed(StringRef name) const { |
| 90 | auto it = findAttr(attrs: *this, name); |
| 91 | return it.second ? *it.first : std::optional<NamedAttribute>(); |
| 92 | } |
| 93 | std::optional<NamedAttribute> NamedAttrList::getNamed(StringAttr name) const { |
| 94 | auto it = findAttr(*this, name); |
| 95 | return it.second ? *it.first : std::optional<NamedAttribute>(); |
| 96 | } |
| 97 | |
| 98 | /// If the an attribute exists with the specified name, change it to the new |
| 99 | /// value. Otherwise, add a new attribute with the specified name/value. |
| 100 | Attribute NamedAttrList::set(StringAttr name, Attribute value) { |
| 101 | assert(value && "attributes may never be null" ); |
| 102 | |
| 103 | // Look for an existing attribute with the given name, and set its value |
| 104 | // in-place. Return the previous value of the attribute, if there was one. |
| 105 | auto it = findAttr(*this, name); |
| 106 | if (it.second) { |
| 107 | // Update the existing attribute by swapping out the old value for the new |
| 108 | // value. Return the old value. |
| 109 | Attribute oldValue = it.first->getValue(); |
| 110 | if (it.first->getValue() != value) { |
| 111 | it.first->setValue(value); |
| 112 | |
| 113 | // If the attributes have changed, the dictionary is invalidated. |
| 114 | dictionarySorted.setPointer(nullptr); |
| 115 | } |
| 116 | return oldValue; |
| 117 | } |
| 118 | // Perform a string lookup to insert the new attribute into its sorted |
| 119 | // position. |
| 120 | if (isSorted()) |
| 121 | it = findAttr(*this, name.strref()); |
| 122 | attrs.insert(it.first, {name, value}); |
| 123 | // Invalidate the dictionary. Return null as there was no previous value. |
| 124 | dictionarySorted.setPointer(nullptr); |
| 125 | return Attribute(); |
| 126 | } |
| 127 | |
| 128 | Attribute NamedAttrList::set(StringRef name, Attribute value) { |
| 129 | assert(value && "attributes may never be null" ); |
| 130 | return set(mlir::StringAttr::get(value.getContext(), name), value); |
| 131 | } |
| 132 | |
| 133 | Attribute |
| 134 | NamedAttrList::eraseImpl(SmallVectorImpl<NamedAttribute>::iterator it) { |
| 135 | // Erasing does not affect the sorted property. |
| 136 | Attribute attr = it->getValue(); |
| 137 | attrs.erase(CI: it); |
| 138 | dictionarySorted.setPointer(nullptr); |
| 139 | return attr; |
| 140 | } |
| 141 | |
| 142 | Attribute NamedAttrList::erase(StringAttr name) { |
| 143 | auto it = findAttr(*this, name); |
| 144 | return it.second ? eraseImpl(it: it.first) : Attribute(); |
| 145 | } |
| 146 | |
| 147 | Attribute NamedAttrList::erase(StringRef name) { |
| 148 | auto it = findAttr(attrs&: *this, name); |
| 149 | return it.second ? eraseImpl(it: it.first) : Attribute(); |
| 150 | } |
| 151 | |
| 152 | NamedAttrList & |
| 153 | NamedAttrList::operator=(const SmallVectorImpl<NamedAttribute> &rhs) { |
| 154 | assign(inStart: rhs.begin(), inEnd: rhs.end()); |
| 155 | return *this; |
| 156 | } |
| 157 | |
| 158 | NamedAttrList::operator ArrayRef<NamedAttribute>() const { return attrs; } |
| 159 | |
| 160 | //===----------------------------------------------------------------------===// |
| 161 | // OperationState |
| 162 | //===----------------------------------------------------------------------===// |
| 163 | |
| 164 | OperationState::OperationState(Location location, StringRef name) |
| 165 | : location(location), name(name, location->getContext()) {} |
| 166 | |
| 167 | OperationState::OperationState(Location location, OperationName name) |
| 168 | : location(location), name(name) {} |
| 169 | |
| 170 | OperationState::OperationState(Location location, OperationName name, |
| 171 | ValueRange operands, TypeRange types, |
| 172 | ArrayRef<NamedAttribute> attributes, |
| 173 | BlockRange successors, |
| 174 | MutableArrayRef<std::unique_ptr<Region>> regions) |
| 175 | : location(location), name(name), |
| 176 | operands(operands.begin(), operands.end()), |
| 177 | types(types.begin(), types.end()), |
| 178 | attributes(attributes.begin(), attributes.end()), |
| 179 | successors(successors.begin(), successors.end()) { |
| 180 | for (std::unique_ptr<Region> &r : regions) |
| 181 | this->regions.push_back(Elt: std::move(r)); |
| 182 | } |
| 183 | OperationState::OperationState(Location location, StringRef name, |
| 184 | ValueRange operands, TypeRange types, |
| 185 | ArrayRef<NamedAttribute> attributes, |
| 186 | BlockRange successors, |
| 187 | MutableArrayRef<std::unique_ptr<Region>> regions) |
| 188 | : OperationState(location, OperationName(name, location.getContext()), |
| 189 | operands, types, attributes, successors, regions) {} |
| 190 | |
| 191 | OperationState::~OperationState() { |
| 192 | if (properties) |
| 193 | propertiesDeleter(properties); |
| 194 | } |
| 195 | |
| 196 | LogicalResult OperationState::setProperties( |
| 197 | Operation *op, function_ref<InFlightDiagnostic()> emitError) const { |
| 198 | if (LLVM_UNLIKELY(propertiesAttr)) { |
| 199 | assert(!properties); |
| 200 | return op->setPropertiesFromAttribute(attr: propertiesAttr, emitError); |
| 201 | } |
| 202 | if (properties) |
| 203 | propertiesSetter(op->getPropertiesStorage(), properties); |
| 204 | return success(); |
| 205 | } |
| 206 | |
| 207 | void OperationState::addOperands(ValueRange newOperands) { |
| 208 | operands.append(in_start: newOperands.begin(), in_end: newOperands.end()); |
| 209 | } |
| 210 | |
| 211 | void OperationState::addSuccessors(BlockRange newSuccessors) { |
| 212 | successors.append(in_start: newSuccessors.begin(), in_end: newSuccessors.end()); |
| 213 | } |
| 214 | |
| 215 | Region *OperationState::addRegion() { |
| 216 | regions.emplace_back(Args: new Region); |
| 217 | return regions.back().get(); |
| 218 | } |
| 219 | |
| 220 | void OperationState::addRegion(std::unique_ptr<Region> &®ion) { |
| 221 | regions.push_back(Elt: std::move(region)); |
| 222 | } |
| 223 | |
| 224 | void OperationState::addRegions( |
| 225 | MutableArrayRef<std::unique_ptr<Region>> regions) { |
| 226 | for (std::unique_ptr<Region> ®ion : regions) |
| 227 | addRegion(region: std::move(region)); |
| 228 | } |
| 229 | |
| 230 | //===----------------------------------------------------------------------===// |
| 231 | // OperandStorage |
| 232 | //===----------------------------------------------------------------------===// |
| 233 | |
| 234 | detail::OperandStorage::OperandStorage(Operation *owner, |
| 235 | OpOperand *trailingOperands, |
| 236 | ValueRange values) |
| 237 | : isStorageDynamic(false), operandStorage(trailingOperands) { |
| 238 | numOperands = capacity = values.size(); |
| 239 | for (unsigned i = 0; i < numOperands; ++i) |
| 240 | new (&operandStorage[i]) OpOperand(owner, values[i]); |
| 241 | } |
| 242 | |
| 243 | detail::OperandStorage::~OperandStorage() { |
| 244 | for (auto &operand : getOperands()) |
| 245 | operand.~OpOperand(); |
| 246 | |
| 247 | // If the storage is dynamic, deallocate it. |
| 248 | if (isStorageDynamic) |
| 249 | free(ptr: operandStorage); |
| 250 | } |
| 251 | |
| 252 | /// Replace the operands contained in the storage with the ones provided in |
| 253 | /// 'values'. |
| 254 | void detail::OperandStorage::setOperands(Operation *owner, ValueRange values) { |
| 255 | MutableArrayRef<OpOperand> storageOperands = resize(owner, newSize: values.size()); |
| 256 | for (unsigned i = 0, e = values.size(); i != e; ++i) |
| 257 | storageOperands[i].set(values[i]); |
| 258 | } |
| 259 | |
| 260 | /// Replace the operands beginning at 'start' and ending at 'start' + 'length' |
| 261 | /// with the ones provided in 'operands'. 'operands' may be smaller or larger |
| 262 | /// than the range pointed to by 'start'+'length'. |
| 263 | void detail::OperandStorage::setOperands(Operation *owner, unsigned start, |
| 264 | unsigned length, ValueRange operands) { |
| 265 | // If the new size is the same, we can update inplace. |
| 266 | unsigned newSize = operands.size(); |
| 267 | if (newSize == length) { |
| 268 | MutableArrayRef<OpOperand> storageOperands = getOperands(); |
| 269 | for (unsigned i = 0, e = length; i != e; ++i) |
| 270 | storageOperands[start + i].set(operands[i]); |
| 271 | return; |
| 272 | } |
| 273 | // If the new size is greater, remove the extra operands and set the rest |
| 274 | // inplace. |
| 275 | if (newSize < length) { |
| 276 | eraseOperands(start: start + operands.size(), length: length - newSize); |
| 277 | setOperands(owner, start, length: newSize, operands); |
| 278 | return; |
| 279 | } |
| 280 | // Otherwise, the new size is greater so we need to grow the storage. |
| 281 | auto storageOperands = resize(owner, newSize: size() + (newSize - length)); |
| 282 | |
| 283 | // Shift operands to the right to make space for the new operands. |
| 284 | unsigned rotateSize = storageOperands.size() - (start + length); |
| 285 | auto rbegin = storageOperands.rbegin(); |
| 286 | std::rotate(first: rbegin, middle: std::next(x: rbegin, n: newSize - length), last: rbegin + rotateSize); |
| 287 | |
| 288 | // Update the operands inplace. |
| 289 | for (unsigned i = 0, e = operands.size(); i != e; ++i) |
| 290 | storageOperands[start + i].set(operands[i]); |
| 291 | } |
| 292 | |
| 293 | /// Erase an operand held by the storage. |
| 294 | void detail::OperandStorage::eraseOperands(unsigned start, unsigned length) { |
| 295 | MutableArrayRef<OpOperand> operands = getOperands(); |
| 296 | assert((start + length) <= operands.size()); |
| 297 | numOperands -= length; |
| 298 | |
| 299 | // Shift all operands down if the operand to remove is not at the end. |
| 300 | if (start != numOperands) { |
| 301 | auto *indexIt = std::next(x: operands.begin(), n: start); |
| 302 | std::rotate(first: indexIt, middle: std::next(x: indexIt, n: length), last: operands.end()); |
| 303 | } |
| 304 | for (unsigned i = 0; i != length; ++i) |
| 305 | operands[numOperands + i].~OpOperand(); |
| 306 | } |
| 307 | |
| 308 | void detail::OperandStorage::eraseOperands(const BitVector &eraseIndices) { |
| 309 | MutableArrayRef<OpOperand> operands = getOperands(); |
| 310 | assert(eraseIndices.size() == operands.size()); |
| 311 | |
| 312 | // Check that at least one operand is erased. |
| 313 | int firstErasedIndice = eraseIndices.find_first(); |
| 314 | if (firstErasedIndice == -1) |
| 315 | return; |
| 316 | |
| 317 | // Shift all of the removed operands to the end, and destroy them. |
| 318 | numOperands = firstErasedIndice; |
| 319 | for (unsigned i = firstErasedIndice + 1, e = operands.size(); i < e; ++i) |
| 320 | if (!eraseIndices.test(Idx: i)) |
| 321 | operands[numOperands++] = std::move(operands[i]); |
| 322 | for (OpOperand &operand : operands.drop_front(N: numOperands)) |
| 323 | operand.~OpOperand(); |
| 324 | } |
| 325 | |
| 326 | /// Resize the storage to the given size. Returns the array containing the new |
| 327 | /// operands. |
| 328 | MutableArrayRef<OpOperand> detail::OperandStorage::resize(Operation *owner, |
| 329 | unsigned newSize) { |
| 330 | // If the number of operands is less than or equal to the current amount, we |
| 331 | // can just update in place. |
| 332 | MutableArrayRef<OpOperand> origOperands = getOperands(); |
| 333 | if (newSize <= numOperands) { |
| 334 | // If the number of new size is less than the current, remove any extra |
| 335 | // operands. |
| 336 | for (unsigned i = newSize; i != numOperands; ++i) |
| 337 | origOperands[i].~OpOperand(); |
| 338 | numOperands = newSize; |
| 339 | return origOperands.take_front(N: newSize); |
| 340 | } |
| 341 | |
| 342 | // If the new size is within the original inline capacity, grow inplace. |
| 343 | if (newSize <= capacity) { |
| 344 | OpOperand *opBegin = origOperands.data(); |
| 345 | for (unsigned e = newSize; numOperands != e; ++numOperands) |
| 346 | new (&opBegin[numOperands]) OpOperand(owner); |
| 347 | return MutableArrayRef<OpOperand>(opBegin, newSize); |
| 348 | } |
| 349 | |
| 350 | // Otherwise, we need to allocate a new storage. |
| 351 | unsigned newCapacity = |
| 352 | std::max(a: unsigned(llvm::NextPowerOf2(A: capacity + 2)), b: newSize); |
| 353 | OpOperand *newOperandStorage = |
| 354 | reinterpret_cast<OpOperand *>(malloc(size: sizeof(OpOperand) * newCapacity)); |
| 355 | |
| 356 | // Move the current operands to the new storage. |
| 357 | MutableArrayRef<OpOperand> newOperands(newOperandStorage, newSize); |
| 358 | std::uninitialized_move(first: origOperands.begin(), last: origOperands.end(), |
| 359 | result: newOperands.begin()); |
| 360 | |
| 361 | // Destroy the original operands. |
| 362 | for (auto &operand : origOperands) |
| 363 | operand.~OpOperand(); |
| 364 | |
| 365 | // Initialize any new operands. |
| 366 | for (unsigned e = newSize; numOperands != e; ++numOperands) |
| 367 | new (&newOperands[numOperands]) OpOperand(owner); |
| 368 | |
| 369 | // If the current storage is dynamic, free it. |
| 370 | if (isStorageDynamic) |
| 371 | free(ptr: operandStorage); |
| 372 | |
| 373 | // Update the storage representation to use the new dynamic storage. |
| 374 | operandStorage = newOperandStorage; |
| 375 | capacity = newCapacity; |
| 376 | isStorageDynamic = true; |
| 377 | return newOperands; |
| 378 | } |
| 379 | |
| 380 | //===----------------------------------------------------------------------===// |
| 381 | // Operation Value-Iterators |
| 382 | //===----------------------------------------------------------------------===// |
| 383 | |
| 384 | //===----------------------------------------------------------------------===// |
| 385 | // OperandRange |
| 386 | //===----------------------------------------------------------------------===// |
| 387 | |
| 388 | unsigned OperandRange::getBeginOperandIndex() const { |
| 389 | assert(!empty() && "range must not be empty" ); |
| 390 | return base->getOperandNumber(); |
| 391 | } |
| 392 | |
| 393 | OperandRangeRange OperandRange::split(DenseI32ArrayAttr segmentSizes) const { |
| 394 | return OperandRangeRange(*this, segmentSizes); |
| 395 | } |
| 396 | |
| 397 | //===----------------------------------------------------------------------===// |
| 398 | // OperandRangeRange |
| 399 | //===----------------------------------------------------------------------===// |
| 400 | |
| 401 | OperandRangeRange::OperandRangeRange(OperandRange operands, |
| 402 | Attribute operandSegments) |
| 403 | : OperandRangeRange(OwnerT(operands.getBase(), operandSegments), 0, |
| 404 | llvm::cast<DenseI32ArrayAttr>(operandSegments).size()) { |
| 405 | } |
| 406 | |
| 407 | OperandRange OperandRangeRange::join() const { |
| 408 | const OwnerT &owner = getBase(); |
| 409 | ArrayRef<int32_t> sizeData = llvm::cast<DenseI32ArrayAttr>(owner.second); |
| 410 | return OperandRange(owner.first, |
| 411 | std::accumulate(first: sizeData.begin(), last: sizeData.end(), init: 0)); |
| 412 | } |
| 413 | |
| 414 | OperandRange OperandRangeRange::dereference(const OwnerT &object, |
| 415 | ptrdiff_t index) { |
| 416 | ArrayRef<int32_t> sizeData = llvm::cast<DenseI32ArrayAttr>(object.second); |
| 417 | uint32_t startIndex = |
| 418 | std::accumulate(first: sizeData.begin(), last: sizeData.begin() + index, init: 0); |
| 419 | return OperandRange(object.first + startIndex, *(sizeData.begin() + index)); |
| 420 | } |
| 421 | |
| 422 | //===----------------------------------------------------------------------===// |
| 423 | // MutableOperandRange |
| 424 | //===----------------------------------------------------------------------===// |
| 425 | |
| 426 | /// Construct a new mutable range from the given operand, operand start index, |
| 427 | /// and range length. |
| 428 | MutableOperandRange::MutableOperandRange( |
| 429 | Operation *owner, unsigned start, unsigned length, |
| 430 | ArrayRef<OperandSegment> operandSegments) |
| 431 | : owner(owner), start(start), length(length), |
| 432 | operandSegments(operandSegments) { |
| 433 | assert((start + length) <= owner->getNumOperands() && "invalid range" ); |
| 434 | } |
| 435 | MutableOperandRange::MutableOperandRange(Operation *owner) |
| 436 | : MutableOperandRange(owner, /*start=*/0, owner->getNumOperands()) {} |
| 437 | |
| 438 | /// Construct a new mutable range for the given OpOperand. |
| 439 | MutableOperandRange::MutableOperandRange(OpOperand &opOperand) |
| 440 | : MutableOperandRange(opOperand.getOwner(), |
| 441 | /*start=*/opOperand.getOperandNumber(), |
| 442 | /*length=*/1) {} |
| 443 | |
| 444 | /// Slice this range into a sub range, with the additional operand segment. |
| 445 | MutableOperandRange |
| 446 | MutableOperandRange::slice(unsigned subStart, unsigned subLen, |
| 447 | std::optional<OperandSegment> segment) const { |
| 448 | assert((subStart + subLen) <= length && "invalid sub-range" ); |
| 449 | MutableOperandRange subSlice(owner, start + subStart, subLen, |
| 450 | operandSegments); |
| 451 | if (segment) |
| 452 | subSlice.operandSegments.push_back(Elt: *segment); |
| 453 | return subSlice; |
| 454 | } |
| 455 | |
| 456 | /// Append the given values to the range. |
| 457 | void MutableOperandRange::append(ValueRange values) { |
| 458 | if (values.empty()) |
| 459 | return; |
| 460 | owner->insertOperands(index: start + length, operands: values); |
| 461 | updateLength(newLength: length + values.size()); |
| 462 | } |
| 463 | |
| 464 | /// Assign this range to the given values. |
| 465 | void MutableOperandRange::assign(ValueRange values) { |
| 466 | owner->setOperands(start, length, operands: values); |
| 467 | if (length != values.size()) |
| 468 | updateLength(/*newLength=*/values.size()); |
| 469 | } |
| 470 | |
| 471 | /// Assign the range to the given value. |
| 472 | void MutableOperandRange::assign(Value value) { |
| 473 | if (length == 1) { |
| 474 | owner->setOperand(idx: start, value); |
| 475 | } else { |
| 476 | owner->setOperands(start, length, operands: value); |
| 477 | updateLength(/*newLength=*/1); |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | /// Erase the operands within the given sub-range. |
| 482 | void MutableOperandRange::erase(unsigned subStart, unsigned subLen) { |
| 483 | assert((subStart + subLen) <= length && "invalid sub-range" ); |
| 484 | if (length == 0) |
| 485 | return; |
| 486 | owner->eraseOperands(idx: start + subStart, length: subLen); |
| 487 | updateLength(newLength: length - subLen); |
| 488 | } |
| 489 | |
| 490 | /// Clear this range and erase all of the operands. |
| 491 | void MutableOperandRange::clear() { |
| 492 | if (length != 0) { |
| 493 | owner->eraseOperands(idx: start, length); |
| 494 | updateLength(/*newLength=*/0); |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | /// Explicit conversion to an OperandRange. |
| 499 | OperandRange MutableOperandRange::getAsOperandRange() const { |
| 500 | return owner->getOperands().slice(n: start, m: length); |
| 501 | } |
| 502 | |
| 503 | /// Allow implicit conversion to an OperandRange. |
| 504 | MutableOperandRange::operator OperandRange() const { |
| 505 | return getAsOperandRange(); |
| 506 | } |
| 507 | |
| 508 | MutableOperandRange::operator MutableArrayRef<OpOperand>() const { |
| 509 | return owner->getOpOperands().slice(N: start, M: length); |
| 510 | } |
| 511 | |
| 512 | MutableOperandRangeRange |
| 513 | MutableOperandRange::split(NamedAttribute segmentSizes) const { |
| 514 | return MutableOperandRangeRange(*this, segmentSizes); |
| 515 | } |
| 516 | |
| 517 | /// Update the length of this range to the one provided. |
| 518 | void MutableOperandRange::updateLength(unsigned newLength) { |
| 519 | int32_t diff = int32_t(newLength) - int32_t(length); |
| 520 | length = newLength; |
| 521 | |
| 522 | // Update any of the provided segment attributes. |
| 523 | for (OperandSegment &segment : operandSegments) { |
| 524 | auto attr = llvm::cast<DenseI32ArrayAttr>(segment.second.getValue()); |
| 525 | SmallVector<int32_t, 8> segments(attr.asArrayRef()); |
| 526 | segments[segment.first] += diff; |
| 527 | segment.second.setValue( |
| 528 | DenseI32ArrayAttr::get(attr.getContext(), segments)); |
| 529 | owner->setAttr(segment.second.getName(), segment.second.getValue()); |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | OpOperand &MutableOperandRange::operator[](unsigned index) const { |
| 534 | assert(index < length && "index is out of bounds" ); |
| 535 | return owner->getOpOperand(idx: start + index); |
| 536 | } |
| 537 | |
| 538 | MutableArrayRef<OpOperand>::iterator MutableOperandRange::begin() const { |
| 539 | return owner->getOpOperands().slice(N: start, M: length).begin(); |
| 540 | } |
| 541 | |
| 542 | MutableArrayRef<OpOperand>::iterator MutableOperandRange::end() const { |
| 543 | return owner->getOpOperands().slice(N: start, M: length).end(); |
| 544 | } |
| 545 | |
| 546 | //===----------------------------------------------------------------------===// |
| 547 | // MutableOperandRangeRange |
| 548 | //===----------------------------------------------------------------------===// |
| 549 | |
| 550 | MutableOperandRangeRange::MutableOperandRangeRange( |
| 551 | const MutableOperandRange &operands, NamedAttribute operandSegmentAttr) |
| 552 | : MutableOperandRangeRange( |
| 553 | OwnerT(operands, operandSegmentAttr), 0, |
| 554 | llvm::cast<DenseI32ArrayAttr>(operandSegmentAttr.getValue()).size()) { |
| 555 | } |
| 556 | |
| 557 | MutableOperandRange MutableOperandRangeRange::join() const { |
| 558 | return getBase().first; |
| 559 | } |
| 560 | |
| 561 | MutableOperandRangeRange::operator OperandRangeRange() const { |
| 562 | return OperandRangeRange(getBase().first, getBase().second.getValue()); |
| 563 | } |
| 564 | |
| 565 | MutableOperandRange MutableOperandRangeRange::dereference(const OwnerT &object, |
| 566 | ptrdiff_t index) { |
| 567 | ArrayRef<int32_t> sizeData = |
| 568 | llvm::cast<DenseI32ArrayAttr>(object.second.getValue()); |
| 569 | uint32_t startIndex = |
| 570 | std::accumulate(first: sizeData.begin(), last: sizeData.begin() + index, init: 0); |
| 571 | return object.first.slice( |
| 572 | subStart: startIndex, subLen: *(sizeData.begin() + index), |
| 573 | segment: MutableOperandRange::OperandSegment(index, object.second)); |
| 574 | } |
| 575 | |
| 576 | //===----------------------------------------------------------------------===// |
| 577 | // ResultRange |
| 578 | //===----------------------------------------------------------------------===// |
| 579 | |
| 580 | ResultRange::ResultRange(OpResult result) |
| 581 | : ResultRange(static_cast<detail::OpResultImpl *>(Value(result).getImpl()), |
| 582 | 1) {} |
| 583 | |
| 584 | ResultRange::use_range ResultRange::getUses() const { |
| 585 | return {use_begin(), use_end()}; |
| 586 | } |
| 587 | ResultRange::use_iterator ResultRange::use_begin() const { |
| 588 | return use_iterator(*this); |
| 589 | } |
| 590 | ResultRange::use_iterator ResultRange::use_end() const { |
| 591 | return use_iterator(*this, /*end=*/true); |
| 592 | } |
| 593 | ResultRange::user_range ResultRange::getUsers() { |
| 594 | return {user_begin(), user_end()}; |
| 595 | } |
| 596 | ResultRange::user_iterator ResultRange::user_begin() { |
| 597 | return user_iterator(use_begin()); |
| 598 | } |
| 599 | ResultRange::user_iterator ResultRange::user_end() { |
| 600 | return user_iterator(use_end()); |
| 601 | } |
| 602 | |
| 603 | ResultRange::UseIterator::UseIterator(ResultRange results, bool end) |
| 604 | : it(end ? results.end() : results.begin()), endIt(results.end()) { |
| 605 | // Only initialize current use if there are results/can be uses. |
| 606 | if (it != endIt) |
| 607 | skipOverResultsWithNoUsers(); |
| 608 | } |
| 609 | |
| 610 | ResultRange::UseIterator &ResultRange::UseIterator::operator++() { |
| 611 | // We increment over uses, if we reach the last use then move to next |
| 612 | // result. |
| 613 | if (use != (*it).use_end()) |
| 614 | ++use; |
| 615 | if (use == (*it).use_end()) { |
| 616 | ++it; |
| 617 | skipOverResultsWithNoUsers(); |
| 618 | } |
| 619 | return *this; |
| 620 | } |
| 621 | |
| 622 | void ResultRange::UseIterator::skipOverResultsWithNoUsers() { |
| 623 | while (it != endIt && (*it).use_empty()) |
| 624 | ++it; |
| 625 | |
| 626 | // If we are at the last result, then set use to first use of |
| 627 | // first result (sentinel value used for end). |
| 628 | if (it == endIt) |
| 629 | use = {}; |
| 630 | else |
| 631 | use = (*it).use_begin(); |
| 632 | } |
| 633 | |
| 634 | void ResultRange::replaceAllUsesWith(Operation *op) { |
| 635 | replaceAllUsesWith(values: op->getResults()); |
| 636 | } |
| 637 | |
| 638 | void ResultRange::replaceUsesWithIf( |
| 639 | Operation *op, function_ref<bool(OpOperand &)> shouldReplace) { |
| 640 | replaceUsesWithIf(values: op->getResults(), shouldReplace); |
| 641 | } |
| 642 | |
| 643 | //===----------------------------------------------------------------------===// |
| 644 | // ValueRange |
| 645 | //===----------------------------------------------------------------------===// |
| 646 | |
| 647 | ValueRange::ValueRange(ArrayRef<Value> values) |
| 648 | : ValueRange(values.data(), values.size()) {} |
| 649 | ValueRange::ValueRange(OperandRange values) |
| 650 | : ValueRange(values.begin().getBase(), values.size()) {} |
| 651 | ValueRange::ValueRange(ResultRange values) |
| 652 | : ValueRange(values.getBase(), values.size()) {} |
| 653 | |
| 654 | /// See `llvm::detail::indexed_accessor_range_base` for details. |
| 655 | ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner, |
| 656 | ptrdiff_t index) { |
| 657 | if (const auto *value = llvm::dyn_cast_if_present<const Value *>(Val: owner)) |
| 658 | return {value + index}; |
| 659 | if (auto *operand = llvm::dyn_cast_if_present<OpOperand *>(Val: owner)) |
| 660 | return {operand + index}; |
| 661 | return cast<detail::OpResultImpl *>(Val: owner)->getNextResultAtOffset(offset: index); |
| 662 | } |
| 663 | /// See `llvm::detail::indexed_accessor_range_base` for details. |
| 664 | Value ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) { |
| 665 | if (const auto *value = llvm::dyn_cast_if_present<const Value *>(Val: owner)) |
| 666 | return value[index]; |
| 667 | if (auto *operand = llvm::dyn_cast_if_present<OpOperand *>(Val: owner)) |
| 668 | return operand[index].get(); |
| 669 | return cast<detail::OpResultImpl *>(Val: owner)->getNextResultAtOffset(offset: index); |
| 670 | } |
| 671 | |
| 672 | //===----------------------------------------------------------------------===// |
| 673 | // Operation Equivalency |
| 674 | //===----------------------------------------------------------------------===// |
| 675 | |
| 676 | llvm::hash_code OperationEquivalence::computeHash( |
| 677 | Operation *op, function_ref<llvm::hash_code(Value)> hashOperands, |
| 678 | function_ref<llvm::hash_code(Value)> hashResults, Flags flags) { |
| 679 | // Hash operations based upon their: |
| 680 | // - Operation Name |
| 681 | // - Attributes |
| 682 | // - Result Types |
| 683 | DictionaryAttr dictAttrs; |
| 684 | if (!(flags & Flags::IgnoreDiscardableAttrs)) |
| 685 | dictAttrs = op->getRawDictionaryAttrs(); |
| 686 | llvm::hash_code hash = |
| 687 | llvm::hash_combine(op->getName(), dictAttrs, op->getResultTypes()); |
| 688 | if (!(flags & Flags::IgnoreProperties)) |
| 689 | hash = llvm::hash_combine(args: hash, args: op->hashProperties()); |
| 690 | |
| 691 | // - Location if required |
| 692 | if (!(flags & Flags::IgnoreLocations)) |
| 693 | hash = llvm::hash_combine(args: hash, args: op->getLoc()); |
| 694 | |
| 695 | // - Operands |
| 696 | if (op->hasTrait<mlir::OpTrait::IsCommutative>() && |
| 697 | op->getNumOperands() > 0) { |
| 698 | size_t operandHash = hashOperands(op->getOperand(idx: 0)); |
| 699 | for (auto operand : op->getOperands().drop_front()) |
| 700 | operandHash += hashOperands(operand); |
| 701 | hash = llvm::hash_combine(args: hash, args: operandHash); |
| 702 | } else { |
| 703 | for (Value operand : op->getOperands()) |
| 704 | hash = llvm::hash_combine(args: hash, args: hashOperands(operand)); |
| 705 | } |
| 706 | |
| 707 | // - Results |
| 708 | for (Value result : op->getResults()) |
| 709 | hash = llvm::hash_combine(args: hash, args: hashResults(result)); |
| 710 | return hash; |
| 711 | } |
| 712 | |
| 713 | /*static*/ bool OperationEquivalence::isRegionEquivalentTo( |
| 714 | Region *lhs, Region *rhs, |
| 715 | function_ref<LogicalResult(Value, Value)> checkEquivalent, |
| 716 | function_ref<void(Value, Value)> markEquivalent, |
| 717 | OperationEquivalence::Flags flags, |
| 718 | function_ref<LogicalResult(ValueRange, ValueRange)> |
| 719 | checkCommutativeEquivalent) { |
| 720 | DenseMap<Block *, Block *> blocksMap; |
| 721 | auto blocksEquivalent = [&](Block &lBlock, Block &rBlock) { |
| 722 | // Check block arguments. |
| 723 | if (lBlock.getNumArguments() != rBlock.getNumArguments()) |
| 724 | return false; |
| 725 | |
| 726 | // Map the two blocks. |
| 727 | auto insertion = blocksMap.insert(KV: {&lBlock, &rBlock}); |
| 728 | if (insertion.first->getSecond() != &rBlock) |
| 729 | return false; |
| 730 | |
| 731 | for (auto argPair : |
| 732 | llvm::zip(t: lBlock.getArguments(), u: rBlock.getArguments())) { |
| 733 | Value curArg = std::get<0>(t&: argPair); |
| 734 | Value otherArg = std::get<1>(t&: argPair); |
| 735 | if (curArg.getType() != otherArg.getType()) |
| 736 | return false; |
| 737 | if (!(flags & OperationEquivalence::IgnoreLocations) && |
| 738 | curArg.getLoc() != otherArg.getLoc()) |
| 739 | return false; |
| 740 | // Corresponding bbArgs are equivalent. |
| 741 | if (markEquivalent) |
| 742 | markEquivalent(curArg, otherArg); |
| 743 | } |
| 744 | |
| 745 | auto opsEquivalent = [&](Operation &lOp, Operation &rOp) { |
| 746 | // Check for op equality (recursively). |
| 747 | if (!OperationEquivalence::isEquivalentTo(lhs: &lOp, rhs: &rOp, checkEquivalent, |
| 748 | markEquivalent, flags, |
| 749 | checkCommutativeEquivalent)) |
| 750 | return false; |
| 751 | // Check successor mapping. |
| 752 | for (auto successorsPair : |
| 753 | llvm::zip(t: lOp.getSuccessors(), u: rOp.getSuccessors())) { |
| 754 | Block *curSuccessor = std::get<0>(t&: successorsPair); |
| 755 | Block *otherSuccessor = std::get<1>(t&: successorsPair); |
| 756 | auto insertion = blocksMap.insert(KV: {curSuccessor, otherSuccessor}); |
| 757 | if (insertion.first->getSecond() != otherSuccessor) |
| 758 | return false; |
| 759 | } |
| 760 | return true; |
| 761 | }; |
| 762 | return llvm::all_of_zip(argsAndPredicate&: lBlock, argsAndPredicate&: rBlock, argsAndPredicate&: opsEquivalent); |
| 763 | }; |
| 764 | return llvm::all_of_zip(argsAndPredicate&: *lhs, argsAndPredicate&: *rhs, argsAndPredicate&: blocksEquivalent); |
| 765 | } |
| 766 | |
| 767 | // Value equivalence cache to be used with `isRegionEquivalentTo` and |
| 768 | // `isEquivalentTo`. |
| 769 | struct ValueEquivalenceCache { |
| 770 | DenseMap<Value, Value> equivalentValues; |
| 771 | LogicalResult checkEquivalent(Value lhsValue, Value rhsValue) { |
| 772 | return success(IsSuccess: lhsValue == rhsValue || |
| 773 | equivalentValues.lookup(Val: lhsValue) == rhsValue); |
| 774 | } |
| 775 | LogicalResult checkCommutativeEquivalent(ValueRange lhsRange, |
| 776 | ValueRange rhsRange) { |
| 777 | // Handle simple case where sizes mismatch. |
| 778 | if (lhsRange.size() != rhsRange.size()) |
| 779 | return failure(); |
| 780 | |
| 781 | // Handle where operands in order are equivalent. |
| 782 | auto lhsIt = lhsRange.begin(); |
| 783 | auto rhsIt = rhsRange.begin(); |
| 784 | for (; lhsIt != lhsRange.end(); ++lhsIt, ++rhsIt) { |
| 785 | if (failed(Result: checkEquivalent(lhsValue: *lhsIt, rhsValue: *rhsIt))) |
| 786 | break; |
| 787 | } |
| 788 | if (lhsIt == lhsRange.end()) |
| 789 | return success(); |
| 790 | |
| 791 | // Handle another simple case where operands are just a permutation. |
| 792 | // Note: This is not sufficient, this handles simple cases relatively |
| 793 | // cheaply. |
| 794 | auto sortValues = [](ValueRange values) { |
| 795 | SmallVector<Value> sortedValues = llvm::to_vector(Range&: values); |
| 796 | llvm::sort(C&: sortedValues, Comp: [](Value a, Value b) { |
| 797 | return a.getAsOpaquePointer() < b.getAsOpaquePointer(); |
| 798 | }); |
| 799 | return sortedValues; |
| 800 | }; |
| 801 | auto lhsSorted = sortValues({lhsIt, lhsRange.end()}); |
| 802 | auto rhsSorted = sortValues({rhsIt, rhsRange.end()}); |
| 803 | return success(IsSuccess: lhsSorted == rhsSorted); |
| 804 | } |
| 805 | void markEquivalent(Value lhsResult, Value rhsResult) { |
| 806 | auto insertion = equivalentValues.insert(KV: {lhsResult, rhsResult}); |
| 807 | // Make sure that the value was not already marked equivalent to some other |
| 808 | // value. |
| 809 | (void)insertion; |
| 810 | assert(insertion.first->second == rhsResult && |
| 811 | "inconsistent OperationEquivalence state" ); |
| 812 | } |
| 813 | }; |
| 814 | |
| 815 | /*static*/ bool |
| 816 | OperationEquivalence::isRegionEquivalentTo(Region *lhs, Region *rhs, |
| 817 | OperationEquivalence::Flags flags) { |
| 818 | ValueEquivalenceCache cache; |
| 819 | return isRegionEquivalentTo( |
| 820 | lhs, rhs, |
| 821 | checkEquivalent: [&](Value lhsValue, Value rhsValue) -> LogicalResult { |
| 822 | return cache.checkEquivalent(lhsValue, rhsValue); |
| 823 | }, |
| 824 | markEquivalent: [&](Value lhsResult, Value rhsResult) { |
| 825 | cache.markEquivalent(lhsResult, rhsResult); |
| 826 | }, |
| 827 | flags, |
| 828 | checkCommutativeEquivalent: [&](ValueRange lhs, ValueRange rhs) -> LogicalResult { |
| 829 | return cache.checkCommutativeEquivalent(lhsRange: lhs, rhsRange: rhs); |
| 830 | }); |
| 831 | } |
| 832 | |
| 833 | /*static*/ bool OperationEquivalence::isEquivalentTo( |
| 834 | Operation *lhs, Operation *rhs, |
| 835 | function_ref<LogicalResult(Value, Value)> checkEquivalent, |
| 836 | function_ref<void(Value, Value)> markEquivalent, Flags flags, |
| 837 | function_ref<LogicalResult(ValueRange, ValueRange)> |
| 838 | checkCommutativeEquivalent) { |
| 839 | if (lhs == rhs) |
| 840 | return true; |
| 841 | |
| 842 | // 1. Compare the operation properties. |
| 843 | if (!(flags & IgnoreDiscardableAttrs) && |
| 844 | lhs->getRawDictionaryAttrs() != rhs->getRawDictionaryAttrs()) |
| 845 | return false; |
| 846 | |
| 847 | if (lhs->getName() != rhs->getName() || |
| 848 | lhs->getNumRegions() != rhs->getNumRegions() || |
| 849 | lhs->getNumSuccessors() != rhs->getNumSuccessors() || |
| 850 | lhs->getNumOperands() != rhs->getNumOperands() || |
| 851 | lhs->getNumResults() != rhs->getNumResults()) |
| 852 | return false; |
| 853 | if (!(flags & IgnoreProperties) && |
| 854 | !(lhs->getName().compareOpProperties(lhs: lhs->getPropertiesStorage(), |
| 855 | rhs: rhs->getPropertiesStorage()))) |
| 856 | return false; |
| 857 | if (!(flags & IgnoreLocations) && lhs->getLoc() != rhs->getLoc()) |
| 858 | return false; |
| 859 | |
| 860 | // 2. Compare operands. |
| 861 | if (checkCommutativeEquivalent && |
| 862 | lhs->hasTrait<mlir::OpTrait::IsCommutative>()) { |
| 863 | auto lhsRange = lhs->getOperands(); |
| 864 | auto rhsRange = rhs->getOperands(); |
| 865 | if (failed(Result: checkCommutativeEquivalent(lhsRange, rhsRange))) |
| 866 | return false; |
| 867 | } else { |
| 868 | // Check pair wise for equivalence. |
| 869 | for (auto operandPair : llvm::zip(t: lhs->getOperands(), u: rhs->getOperands())) { |
| 870 | Value curArg = std::get<0>(t&: operandPair); |
| 871 | Value otherArg = std::get<1>(t&: operandPair); |
| 872 | if (curArg == otherArg) |
| 873 | continue; |
| 874 | if (curArg.getType() != otherArg.getType()) |
| 875 | return false; |
| 876 | if (failed(Result: checkEquivalent(curArg, otherArg))) |
| 877 | return false; |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | // 3. Compare result types and mark results as equivalent. |
| 882 | for (auto resultPair : llvm::zip(t: lhs->getResults(), u: rhs->getResults())) { |
| 883 | Value curArg = std::get<0>(t&: resultPair); |
| 884 | Value otherArg = std::get<1>(t&: resultPair); |
| 885 | if (curArg.getType() != otherArg.getType()) |
| 886 | return false; |
| 887 | if (markEquivalent) |
| 888 | markEquivalent(curArg, otherArg); |
| 889 | } |
| 890 | |
| 891 | // 4. Compare regions. |
| 892 | for (auto regionPair : llvm::zip(t: lhs->getRegions(), u: rhs->getRegions())) |
| 893 | if (!isRegionEquivalentTo(lhs: &std::get<0>(t&: regionPair), |
| 894 | rhs: &std::get<1>(t&: regionPair), checkEquivalent, |
| 895 | markEquivalent, flags)) |
| 896 | return false; |
| 897 | |
| 898 | return true; |
| 899 | } |
| 900 | |
| 901 | /*static*/ bool OperationEquivalence::isEquivalentTo(Operation *lhs, |
| 902 | Operation *rhs, |
| 903 | Flags flags) { |
| 904 | ValueEquivalenceCache cache; |
| 905 | return OperationEquivalence::isEquivalentTo( |
| 906 | lhs, rhs, |
| 907 | checkEquivalent: [&](Value lhsValue, Value rhsValue) -> LogicalResult { |
| 908 | return cache.checkEquivalent(lhsValue, rhsValue); |
| 909 | }, |
| 910 | markEquivalent: [&](Value lhsResult, Value rhsResult) { |
| 911 | cache.markEquivalent(lhsResult, rhsResult); |
| 912 | }, |
| 913 | flags, |
| 914 | checkCommutativeEquivalent: [&](ValueRange lhs, ValueRange rhs) -> LogicalResult { |
| 915 | return cache.checkCommutativeEquivalent(lhsRange: lhs, rhsRange: rhs); |
| 916 | }); |
| 917 | } |
| 918 | |
| 919 | //===----------------------------------------------------------------------===// |
| 920 | // OperationFingerPrint |
| 921 | //===----------------------------------------------------------------------===// |
| 922 | |
| 923 | template <typename T> |
| 924 | static void addDataToHash(llvm::SHA1 &hasher, const T &data) { |
| 925 | hasher.update( |
| 926 | Data: ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&data), sizeof(T))); |
| 927 | } |
| 928 | |
| 929 | OperationFingerPrint::OperationFingerPrint(Operation *topOp, |
| 930 | bool includeNested) { |
| 931 | llvm::SHA1 hasher; |
| 932 | |
| 933 | // Helper function that hashes an operation based on its mutable bits: |
| 934 | auto addOperationToHash = [&](Operation *op) { |
| 935 | // - Operation pointer |
| 936 | addDataToHash(hasher, data: op); |
| 937 | // - Parent operation pointer (to take into account the nesting structure) |
| 938 | if (op != topOp) |
| 939 | addDataToHash(hasher, data: op->getParentOp()); |
| 940 | // - Attributes |
| 941 | addDataToHash(hasher, data: op->getRawDictionaryAttrs()); |
| 942 | // - Properties |
| 943 | addDataToHash(hasher, data: op->hashProperties()); |
| 944 | // - Blocks in Regions |
| 945 | for (Region ®ion : op->getRegions()) { |
| 946 | for (Block &block : region) { |
| 947 | addDataToHash(hasher, data: &block); |
| 948 | for (BlockArgument arg : block.getArguments()) |
| 949 | addDataToHash(hasher, data: arg); |
| 950 | } |
| 951 | } |
| 952 | // - Location |
| 953 | addDataToHash(hasher, data: op->getLoc().getAsOpaquePointer()); |
| 954 | // - Operands |
| 955 | for (Value operand : op->getOperands()) |
| 956 | addDataToHash(hasher, data: operand); |
| 957 | // - Successors |
| 958 | for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) |
| 959 | addDataToHash(hasher, data: op->getSuccessor(index: i)); |
| 960 | // - Result types |
| 961 | for (Type t : op->getResultTypes()) |
| 962 | addDataToHash(hasher, data: t); |
| 963 | }; |
| 964 | |
| 965 | if (includeNested) |
| 966 | topOp->walk(callback&: addOperationToHash); |
| 967 | else |
| 968 | addOperationToHash(topOp); |
| 969 | |
| 970 | hash = hasher.result(); |
| 971 | } |
| 972 | |