1 | //===- OperationSupport.cpp -----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains out-of-line implementations of the support types that |
10 | // Operation and related classes build on top of. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "mlir/IR/OperationSupport.h" |
15 | #include "mlir/IR/BuiltinAttributes.h" |
16 | #include "mlir/IR/BuiltinTypes.h" |
17 | #include "mlir/IR/OpDefinition.h" |
18 | #include "llvm/ADT/BitVector.h" |
19 | #include "llvm/Support/SHA1.h" |
20 | #include <numeric> |
21 | #include <optional> |
22 | |
23 | using namespace mlir; |
24 | |
25 | //===----------------------------------------------------------------------===// |
26 | // NamedAttrList |
27 | //===----------------------------------------------------------------------===// |
28 | |
29 | NamedAttrList::NamedAttrList(ArrayRef<NamedAttribute> attributes) { |
30 | assign(inStart: attributes.begin(), inEnd: attributes.end()); |
31 | } |
32 | |
33 | NamedAttrList::NamedAttrList(DictionaryAttr attributes) |
34 | : NamedAttrList(attributes ? attributes.getValue() |
35 | : ArrayRef<NamedAttribute>()) { |
36 | dictionarySorted.setPointerAndInt(PtrVal: attributes, IntVal: true); |
37 | } |
38 | |
39 | NamedAttrList::NamedAttrList(const_iterator inStart, const_iterator inEnd) { |
40 | assign(inStart, inEnd); |
41 | } |
42 | |
43 | ArrayRef<NamedAttribute> NamedAttrList::getAttrs() const { return attrs; } |
44 | |
45 | std::optional<NamedAttribute> NamedAttrList::findDuplicate() const { |
46 | std::optional<NamedAttribute> duplicate = |
47 | DictionaryAttr::findDuplicate(attrs, isSorted()); |
48 | // DictionaryAttr::findDuplicate will sort the list, so reset the sorted |
49 | // state. |
50 | if (!isSorted()) |
51 | dictionarySorted.setPointerAndInt(PtrVal: nullptr, IntVal: true); |
52 | return duplicate; |
53 | } |
54 | |
55 | DictionaryAttr NamedAttrList::getDictionary(MLIRContext *context) const { |
56 | if (!isSorted()) { |
57 | DictionaryAttr::sortInPlace(attrs); |
58 | dictionarySorted.setPointerAndInt(PtrVal: nullptr, IntVal: true); |
59 | } |
60 | if (!dictionarySorted.getPointer()) |
61 | dictionarySorted.setPointer(DictionaryAttr::getWithSorted(context, attrs)); |
62 | return llvm::cast<DictionaryAttr>(dictionarySorted.getPointer()); |
63 | } |
64 | |
65 | /// Replaces the attributes with new list of attributes. |
66 | void NamedAttrList::assign(const_iterator inStart, const_iterator inEnd) { |
67 | DictionaryAttr::sort(ArrayRef<NamedAttribute>{inStart, inEnd}, attrs); |
68 | dictionarySorted.setPointerAndInt(PtrVal: nullptr, IntVal: true); |
69 | } |
70 | |
71 | void NamedAttrList::push_back(NamedAttribute newAttribute) { |
72 | if (isSorted()) |
73 | dictionarySorted.setInt(attrs.empty() || attrs.back() < newAttribute); |
74 | dictionarySorted.setPointer(nullptr); |
75 | attrs.push_back(Elt: newAttribute); |
76 | } |
77 | |
78 | /// Return the specified attribute if present, null otherwise. |
79 | Attribute NamedAttrList::get(StringRef name) const { |
80 | auto it = findAttr(attrs: *this, name); |
81 | return it.second ? it.first->getValue() : Attribute(); |
82 | } |
83 | Attribute NamedAttrList::get(StringAttr name) const { |
84 | auto it = findAttr(*this, name); |
85 | return it.second ? it.first->getValue() : Attribute(); |
86 | } |
87 | |
88 | /// Return the specified named attribute if present, std::nullopt otherwise. |
89 | std::optional<NamedAttribute> NamedAttrList::getNamed(StringRef name) const { |
90 | auto it = findAttr(attrs: *this, name); |
91 | return it.second ? *it.first : std::optional<NamedAttribute>(); |
92 | } |
93 | std::optional<NamedAttribute> NamedAttrList::getNamed(StringAttr name) const { |
94 | auto it = findAttr(*this, name); |
95 | return it.second ? *it.first : std::optional<NamedAttribute>(); |
96 | } |
97 | |
98 | /// If the an attribute exists with the specified name, change it to the new |
99 | /// value. Otherwise, add a new attribute with the specified name/value. |
100 | Attribute NamedAttrList::set(StringAttr name, Attribute value) { |
101 | assert(value && "attributes may never be null" ); |
102 | |
103 | // Look for an existing attribute with the given name, and set its value |
104 | // in-place. Return the previous value of the attribute, if there was one. |
105 | auto it = findAttr(*this, name); |
106 | if (it.second) { |
107 | // Update the existing attribute by swapping out the old value for the new |
108 | // value. Return the old value. |
109 | Attribute oldValue = it.first->getValue(); |
110 | if (it.first->getValue() != value) { |
111 | it.first->setValue(value); |
112 | |
113 | // If the attributes have changed, the dictionary is invalidated. |
114 | dictionarySorted.setPointer(nullptr); |
115 | } |
116 | return oldValue; |
117 | } |
118 | // Perform a string lookup to insert the new attribute into its sorted |
119 | // position. |
120 | if (isSorted()) |
121 | it = findAttr(*this, name.strref()); |
122 | attrs.insert(it.first, {name, value}); |
123 | // Invalidate the dictionary. Return null as there was no previous value. |
124 | dictionarySorted.setPointer(nullptr); |
125 | return Attribute(); |
126 | } |
127 | |
128 | Attribute NamedAttrList::set(StringRef name, Attribute value) { |
129 | assert(value && "attributes may never be null" ); |
130 | return set(mlir::StringAttr::get(value.getContext(), name), value); |
131 | } |
132 | |
133 | Attribute |
134 | NamedAttrList::eraseImpl(SmallVectorImpl<NamedAttribute>::iterator it) { |
135 | // Erasing does not affect the sorted property. |
136 | Attribute attr = it->getValue(); |
137 | attrs.erase(CI: it); |
138 | dictionarySorted.setPointer(nullptr); |
139 | return attr; |
140 | } |
141 | |
142 | Attribute NamedAttrList::erase(StringAttr name) { |
143 | auto it = findAttr(*this, name); |
144 | return it.second ? eraseImpl(it: it.first) : Attribute(); |
145 | } |
146 | |
147 | Attribute NamedAttrList::erase(StringRef name) { |
148 | auto it = findAttr(attrs&: *this, name); |
149 | return it.second ? eraseImpl(it: it.first) : Attribute(); |
150 | } |
151 | |
152 | NamedAttrList & |
153 | NamedAttrList::operator=(const SmallVectorImpl<NamedAttribute> &rhs) { |
154 | assign(inStart: rhs.begin(), inEnd: rhs.end()); |
155 | return *this; |
156 | } |
157 | |
158 | NamedAttrList::operator ArrayRef<NamedAttribute>() const { return attrs; } |
159 | |
160 | //===----------------------------------------------------------------------===// |
161 | // OperationState |
162 | //===----------------------------------------------------------------------===// |
163 | |
164 | OperationState::OperationState(Location location, StringRef name) |
165 | : location(location), name(name, location->getContext()) {} |
166 | |
167 | OperationState::OperationState(Location location, OperationName name) |
168 | : location(location), name(name) {} |
169 | |
170 | OperationState::OperationState(Location location, OperationName name, |
171 | ValueRange operands, TypeRange types, |
172 | ArrayRef<NamedAttribute> attributes, |
173 | BlockRange successors, |
174 | MutableArrayRef<std::unique_ptr<Region>> regions) |
175 | : location(location), name(name), |
176 | operands(operands.begin(), operands.end()), |
177 | types(types.begin(), types.end()), |
178 | attributes(attributes.begin(), attributes.end()), |
179 | successors(successors.begin(), successors.end()) { |
180 | for (std::unique_ptr<Region> &r : regions) |
181 | this->regions.push_back(Elt: std::move(r)); |
182 | } |
183 | OperationState::OperationState(Location location, StringRef name, |
184 | ValueRange operands, TypeRange types, |
185 | ArrayRef<NamedAttribute> attributes, |
186 | BlockRange successors, |
187 | MutableArrayRef<std::unique_ptr<Region>> regions) |
188 | : OperationState(location, OperationName(name, location.getContext()), |
189 | operands, types, attributes, successors, regions) {} |
190 | |
191 | OperationState::~OperationState() { |
192 | if (properties) |
193 | propertiesDeleter(properties); |
194 | } |
195 | |
196 | LogicalResult OperationState::setProperties( |
197 | Operation *op, function_ref<InFlightDiagnostic()> emitError) const { |
198 | if (LLVM_UNLIKELY(propertiesAttr)) { |
199 | assert(!properties); |
200 | return op->setPropertiesFromAttribute(attr: propertiesAttr, emitError); |
201 | } |
202 | if (properties) |
203 | propertiesSetter(op->getPropertiesStorage(), properties); |
204 | return success(); |
205 | } |
206 | |
207 | void OperationState::addOperands(ValueRange newOperands) { |
208 | operands.append(in_start: newOperands.begin(), in_end: newOperands.end()); |
209 | } |
210 | |
211 | void OperationState::addSuccessors(BlockRange newSuccessors) { |
212 | successors.append(in_start: newSuccessors.begin(), in_end: newSuccessors.end()); |
213 | } |
214 | |
215 | Region *OperationState::addRegion() { |
216 | regions.emplace_back(Args: new Region); |
217 | return regions.back().get(); |
218 | } |
219 | |
220 | void OperationState::addRegion(std::unique_ptr<Region> &®ion) { |
221 | regions.push_back(Elt: std::move(region)); |
222 | } |
223 | |
224 | void OperationState::addRegions( |
225 | MutableArrayRef<std::unique_ptr<Region>> regions) { |
226 | for (std::unique_ptr<Region> ®ion : regions) |
227 | addRegion(region: std::move(region)); |
228 | } |
229 | |
230 | //===----------------------------------------------------------------------===// |
231 | // OperandStorage |
232 | //===----------------------------------------------------------------------===// |
233 | |
234 | detail::OperandStorage::OperandStorage(Operation *owner, |
235 | OpOperand *trailingOperands, |
236 | ValueRange values) |
237 | : isStorageDynamic(false), operandStorage(trailingOperands) { |
238 | numOperands = capacity = values.size(); |
239 | for (unsigned i = 0; i < numOperands; ++i) |
240 | new (&operandStorage[i]) OpOperand(owner, values[i]); |
241 | } |
242 | |
243 | detail::OperandStorage::~OperandStorage() { |
244 | for (auto &operand : getOperands()) |
245 | operand.~OpOperand(); |
246 | |
247 | // If the storage is dynamic, deallocate it. |
248 | if (isStorageDynamic) |
249 | free(ptr: operandStorage); |
250 | } |
251 | |
252 | /// Replace the operands contained in the storage with the ones provided in |
253 | /// 'values'. |
254 | void detail::OperandStorage::setOperands(Operation *owner, ValueRange values) { |
255 | MutableArrayRef<OpOperand> storageOperands = resize(owner, newSize: values.size()); |
256 | for (unsigned i = 0, e = values.size(); i != e; ++i) |
257 | storageOperands[i].set(values[i]); |
258 | } |
259 | |
260 | /// Replace the operands beginning at 'start' and ending at 'start' + 'length' |
261 | /// with the ones provided in 'operands'. 'operands' may be smaller or larger |
262 | /// than the range pointed to by 'start'+'length'. |
263 | void detail::OperandStorage::setOperands(Operation *owner, unsigned start, |
264 | unsigned length, ValueRange operands) { |
265 | // If the new size is the same, we can update inplace. |
266 | unsigned newSize = operands.size(); |
267 | if (newSize == length) { |
268 | MutableArrayRef<OpOperand> storageOperands = getOperands(); |
269 | for (unsigned i = 0, e = length; i != e; ++i) |
270 | storageOperands[start + i].set(operands[i]); |
271 | return; |
272 | } |
273 | // If the new size is greater, remove the extra operands and set the rest |
274 | // inplace. |
275 | if (newSize < length) { |
276 | eraseOperands(start: start + operands.size(), length: length - newSize); |
277 | setOperands(owner, start, length: newSize, operands); |
278 | return; |
279 | } |
280 | // Otherwise, the new size is greater so we need to grow the storage. |
281 | auto storageOperands = resize(owner, newSize: size() + (newSize - length)); |
282 | |
283 | // Shift operands to the right to make space for the new operands. |
284 | unsigned rotateSize = storageOperands.size() - (start + length); |
285 | auto rbegin = storageOperands.rbegin(); |
286 | std::rotate(first: rbegin, middle: std::next(x: rbegin, n: newSize - length), last: rbegin + rotateSize); |
287 | |
288 | // Update the operands inplace. |
289 | for (unsigned i = 0, e = operands.size(); i != e; ++i) |
290 | storageOperands[start + i].set(operands[i]); |
291 | } |
292 | |
293 | /// Erase an operand held by the storage. |
294 | void detail::OperandStorage::eraseOperands(unsigned start, unsigned length) { |
295 | MutableArrayRef<OpOperand> operands = getOperands(); |
296 | assert((start + length) <= operands.size()); |
297 | numOperands -= length; |
298 | |
299 | // Shift all operands down if the operand to remove is not at the end. |
300 | if (start != numOperands) { |
301 | auto *indexIt = std::next(x: operands.begin(), n: start); |
302 | std::rotate(first: indexIt, middle: std::next(x: indexIt, n: length), last: operands.end()); |
303 | } |
304 | for (unsigned i = 0; i != length; ++i) |
305 | operands[numOperands + i].~OpOperand(); |
306 | } |
307 | |
308 | void detail::OperandStorage::eraseOperands(const BitVector &eraseIndices) { |
309 | MutableArrayRef<OpOperand> operands = getOperands(); |
310 | assert(eraseIndices.size() == operands.size()); |
311 | |
312 | // Check that at least one operand is erased. |
313 | int firstErasedIndice = eraseIndices.find_first(); |
314 | if (firstErasedIndice == -1) |
315 | return; |
316 | |
317 | // Shift all of the removed operands to the end, and destroy them. |
318 | numOperands = firstErasedIndice; |
319 | for (unsigned i = firstErasedIndice + 1, e = operands.size(); i < e; ++i) |
320 | if (!eraseIndices.test(Idx: i)) |
321 | operands[numOperands++] = std::move(operands[i]); |
322 | for (OpOperand &operand : operands.drop_front(N: numOperands)) |
323 | operand.~OpOperand(); |
324 | } |
325 | |
326 | /// Resize the storage to the given size. Returns the array containing the new |
327 | /// operands. |
328 | MutableArrayRef<OpOperand> detail::OperandStorage::resize(Operation *owner, |
329 | unsigned newSize) { |
330 | // If the number of operands is less than or equal to the current amount, we |
331 | // can just update in place. |
332 | MutableArrayRef<OpOperand> origOperands = getOperands(); |
333 | if (newSize <= numOperands) { |
334 | // If the number of new size is less than the current, remove any extra |
335 | // operands. |
336 | for (unsigned i = newSize; i != numOperands; ++i) |
337 | origOperands[i].~OpOperand(); |
338 | numOperands = newSize; |
339 | return origOperands.take_front(N: newSize); |
340 | } |
341 | |
342 | // If the new size is within the original inline capacity, grow inplace. |
343 | if (newSize <= capacity) { |
344 | OpOperand *opBegin = origOperands.data(); |
345 | for (unsigned e = newSize; numOperands != e; ++numOperands) |
346 | new (&opBegin[numOperands]) OpOperand(owner); |
347 | return MutableArrayRef<OpOperand>(opBegin, newSize); |
348 | } |
349 | |
350 | // Otherwise, we need to allocate a new storage. |
351 | unsigned newCapacity = |
352 | std::max(a: unsigned(llvm::NextPowerOf2(A: capacity + 2)), b: newSize); |
353 | OpOperand *newOperandStorage = |
354 | reinterpret_cast<OpOperand *>(malloc(size: sizeof(OpOperand) * newCapacity)); |
355 | |
356 | // Move the current operands to the new storage. |
357 | MutableArrayRef<OpOperand> newOperands(newOperandStorage, newSize); |
358 | std::uninitialized_move(first: origOperands.begin(), last: origOperands.end(), |
359 | result: newOperands.begin()); |
360 | |
361 | // Destroy the original operands. |
362 | for (auto &operand : origOperands) |
363 | operand.~OpOperand(); |
364 | |
365 | // Initialize any new operands. |
366 | for (unsigned e = newSize; numOperands != e; ++numOperands) |
367 | new (&newOperands[numOperands]) OpOperand(owner); |
368 | |
369 | // If the current storage is dynamic, free it. |
370 | if (isStorageDynamic) |
371 | free(ptr: operandStorage); |
372 | |
373 | // Update the storage representation to use the new dynamic storage. |
374 | operandStorage = newOperandStorage; |
375 | capacity = newCapacity; |
376 | isStorageDynamic = true; |
377 | return newOperands; |
378 | } |
379 | |
380 | //===----------------------------------------------------------------------===// |
381 | // Operation Value-Iterators |
382 | //===----------------------------------------------------------------------===// |
383 | |
384 | //===----------------------------------------------------------------------===// |
385 | // OperandRange |
386 | //===----------------------------------------------------------------------===// |
387 | |
388 | unsigned OperandRange::getBeginOperandIndex() const { |
389 | assert(!empty() && "range must not be empty" ); |
390 | return base->getOperandNumber(); |
391 | } |
392 | |
393 | OperandRangeRange OperandRange::split(DenseI32ArrayAttr segmentSizes) const { |
394 | return OperandRangeRange(*this, segmentSizes); |
395 | } |
396 | |
397 | //===----------------------------------------------------------------------===// |
398 | // OperandRangeRange |
399 | //===----------------------------------------------------------------------===// |
400 | |
401 | OperandRangeRange::OperandRangeRange(OperandRange operands, |
402 | Attribute operandSegments) |
403 | : OperandRangeRange(OwnerT(operands.getBase(), operandSegments), 0, |
404 | llvm::cast<DenseI32ArrayAttr>(operandSegments).size()) { |
405 | } |
406 | |
407 | OperandRange OperandRangeRange::join() const { |
408 | const OwnerT &owner = getBase(); |
409 | ArrayRef<int32_t> sizeData = llvm::cast<DenseI32ArrayAttr>(owner.second); |
410 | return OperandRange(owner.first, |
411 | std::accumulate(first: sizeData.begin(), last: sizeData.end(), init: 0)); |
412 | } |
413 | |
414 | OperandRange OperandRangeRange::dereference(const OwnerT &object, |
415 | ptrdiff_t index) { |
416 | ArrayRef<int32_t> sizeData = llvm::cast<DenseI32ArrayAttr>(object.second); |
417 | uint32_t startIndex = |
418 | std::accumulate(first: sizeData.begin(), last: sizeData.begin() + index, init: 0); |
419 | return OperandRange(object.first + startIndex, *(sizeData.begin() + index)); |
420 | } |
421 | |
422 | //===----------------------------------------------------------------------===// |
423 | // MutableOperandRange |
424 | //===----------------------------------------------------------------------===// |
425 | |
426 | /// Construct a new mutable range from the given operand, operand start index, |
427 | /// and range length. |
428 | MutableOperandRange::MutableOperandRange( |
429 | Operation *owner, unsigned start, unsigned length, |
430 | ArrayRef<OperandSegment> operandSegments) |
431 | : owner(owner), start(start), length(length), |
432 | operandSegments(operandSegments) { |
433 | assert((start + length) <= owner->getNumOperands() && "invalid range" ); |
434 | } |
435 | MutableOperandRange::MutableOperandRange(Operation *owner) |
436 | : MutableOperandRange(owner, /*start=*/0, owner->getNumOperands()) {} |
437 | |
438 | /// Construct a new mutable range for the given OpOperand. |
439 | MutableOperandRange::MutableOperandRange(OpOperand &opOperand) |
440 | : MutableOperandRange(opOperand.getOwner(), |
441 | /*start=*/opOperand.getOperandNumber(), |
442 | /*length=*/1) {} |
443 | |
444 | /// Slice this range into a sub range, with the additional operand segment. |
445 | MutableOperandRange |
446 | MutableOperandRange::slice(unsigned subStart, unsigned subLen, |
447 | std::optional<OperandSegment> segment) const { |
448 | assert((subStart + subLen) <= length && "invalid sub-range" ); |
449 | MutableOperandRange subSlice(owner, start + subStart, subLen, |
450 | operandSegments); |
451 | if (segment) |
452 | subSlice.operandSegments.push_back(Elt: *segment); |
453 | return subSlice; |
454 | } |
455 | |
456 | /// Append the given values to the range. |
457 | void MutableOperandRange::append(ValueRange values) { |
458 | if (values.empty()) |
459 | return; |
460 | owner->insertOperands(index: start + length, operands: values); |
461 | updateLength(newLength: length + values.size()); |
462 | } |
463 | |
464 | /// Assign this range to the given values. |
465 | void MutableOperandRange::assign(ValueRange values) { |
466 | owner->setOperands(start, length, operands: values); |
467 | if (length != values.size()) |
468 | updateLength(/*newLength=*/values.size()); |
469 | } |
470 | |
471 | /// Assign the range to the given value. |
472 | void MutableOperandRange::assign(Value value) { |
473 | if (length == 1) { |
474 | owner->setOperand(idx: start, value); |
475 | } else { |
476 | owner->setOperands(start, length, operands: value); |
477 | updateLength(/*newLength=*/1); |
478 | } |
479 | } |
480 | |
481 | /// Erase the operands within the given sub-range. |
482 | void MutableOperandRange::erase(unsigned subStart, unsigned subLen) { |
483 | assert((subStart + subLen) <= length && "invalid sub-range" ); |
484 | if (length == 0) |
485 | return; |
486 | owner->eraseOperands(idx: start + subStart, length: subLen); |
487 | updateLength(newLength: length - subLen); |
488 | } |
489 | |
490 | /// Clear this range and erase all of the operands. |
491 | void MutableOperandRange::clear() { |
492 | if (length != 0) { |
493 | owner->eraseOperands(idx: start, length); |
494 | updateLength(/*newLength=*/0); |
495 | } |
496 | } |
497 | |
498 | /// Explicit conversion to an OperandRange. |
499 | OperandRange MutableOperandRange::getAsOperandRange() const { |
500 | return owner->getOperands().slice(n: start, m: length); |
501 | } |
502 | |
503 | /// Allow implicit conversion to an OperandRange. |
504 | MutableOperandRange::operator OperandRange() const { |
505 | return getAsOperandRange(); |
506 | } |
507 | |
508 | MutableOperandRange::operator MutableArrayRef<OpOperand>() const { |
509 | return owner->getOpOperands().slice(N: start, M: length); |
510 | } |
511 | |
512 | MutableOperandRangeRange |
513 | MutableOperandRange::split(NamedAttribute segmentSizes) const { |
514 | return MutableOperandRangeRange(*this, segmentSizes); |
515 | } |
516 | |
517 | /// Update the length of this range to the one provided. |
518 | void MutableOperandRange::updateLength(unsigned newLength) { |
519 | int32_t diff = int32_t(newLength) - int32_t(length); |
520 | length = newLength; |
521 | |
522 | // Update any of the provided segment attributes. |
523 | for (OperandSegment &segment : operandSegments) { |
524 | auto attr = llvm::cast<DenseI32ArrayAttr>(segment.second.getValue()); |
525 | SmallVector<int32_t, 8> segments(attr.asArrayRef()); |
526 | segments[segment.first] += diff; |
527 | segment.second.setValue( |
528 | DenseI32ArrayAttr::get(attr.getContext(), segments)); |
529 | owner->setAttr(segment.second.getName(), segment.second.getValue()); |
530 | } |
531 | } |
532 | |
533 | OpOperand &MutableOperandRange::operator[](unsigned index) const { |
534 | assert(index < length && "index is out of bounds" ); |
535 | return owner->getOpOperand(idx: start + index); |
536 | } |
537 | |
538 | MutableArrayRef<OpOperand>::iterator MutableOperandRange::begin() const { |
539 | return owner->getOpOperands().slice(N: start, M: length).begin(); |
540 | } |
541 | |
542 | MutableArrayRef<OpOperand>::iterator MutableOperandRange::end() const { |
543 | return owner->getOpOperands().slice(N: start, M: length).end(); |
544 | } |
545 | |
546 | //===----------------------------------------------------------------------===// |
547 | // MutableOperandRangeRange |
548 | //===----------------------------------------------------------------------===// |
549 | |
550 | MutableOperandRangeRange::MutableOperandRangeRange( |
551 | const MutableOperandRange &operands, NamedAttribute operandSegmentAttr) |
552 | : MutableOperandRangeRange( |
553 | OwnerT(operands, operandSegmentAttr), 0, |
554 | llvm::cast<DenseI32ArrayAttr>(operandSegmentAttr.getValue()).size()) { |
555 | } |
556 | |
557 | MutableOperandRange MutableOperandRangeRange::join() const { |
558 | return getBase().first; |
559 | } |
560 | |
561 | MutableOperandRangeRange::operator OperandRangeRange() const { |
562 | return OperandRangeRange(getBase().first, getBase().second.getValue()); |
563 | } |
564 | |
565 | MutableOperandRange MutableOperandRangeRange::dereference(const OwnerT &object, |
566 | ptrdiff_t index) { |
567 | ArrayRef<int32_t> sizeData = |
568 | llvm::cast<DenseI32ArrayAttr>(object.second.getValue()); |
569 | uint32_t startIndex = |
570 | std::accumulate(first: sizeData.begin(), last: sizeData.begin() + index, init: 0); |
571 | return object.first.slice( |
572 | subStart: startIndex, subLen: *(sizeData.begin() + index), |
573 | segment: MutableOperandRange::OperandSegment(index, object.second)); |
574 | } |
575 | |
576 | //===----------------------------------------------------------------------===// |
577 | // ResultRange |
578 | //===----------------------------------------------------------------------===// |
579 | |
580 | ResultRange::ResultRange(OpResult result) |
581 | : ResultRange(static_cast<detail::OpResultImpl *>(Value(result).getImpl()), |
582 | 1) {} |
583 | |
584 | ResultRange::use_range ResultRange::getUses() const { |
585 | return {use_begin(), use_end()}; |
586 | } |
587 | ResultRange::use_iterator ResultRange::use_begin() const { |
588 | return use_iterator(*this); |
589 | } |
590 | ResultRange::use_iterator ResultRange::use_end() const { |
591 | return use_iterator(*this, /*end=*/true); |
592 | } |
593 | ResultRange::user_range ResultRange::getUsers() { |
594 | return {user_begin(), user_end()}; |
595 | } |
596 | ResultRange::user_iterator ResultRange::user_begin() { |
597 | return user_iterator(use_begin()); |
598 | } |
599 | ResultRange::user_iterator ResultRange::user_end() { |
600 | return user_iterator(use_end()); |
601 | } |
602 | |
603 | ResultRange::UseIterator::UseIterator(ResultRange results, bool end) |
604 | : it(end ? results.end() : results.begin()), endIt(results.end()) { |
605 | // Only initialize current use if there are results/can be uses. |
606 | if (it != endIt) |
607 | skipOverResultsWithNoUsers(); |
608 | } |
609 | |
610 | ResultRange::UseIterator &ResultRange::UseIterator::operator++() { |
611 | // We increment over uses, if we reach the last use then move to next |
612 | // result. |
613 | if (use != (*it).use_end()) |
614 | ++use; |
615 | if (use == (*it).use_end()) { |
616 | ++it; |
617 | skipOverResultsWithNoUsers(); |
618 | } |
619 | return *this; |
620 | } |
621 | |
622 | void ResultRange::UseIterator::skipOverResultsWithNoUsers() { |
623 | while (it != endIt && (*it).use_empty()) |
624 | ++it; |
625 | |
626 | // If we are at the last result, then set use to first use of |
627 | // first result (sentinel value used for end). |
628 | if (it == endIt) |
629 | use = {}; |
630 | else |
631 | use = (*it).use_begin(); |
632 | } |
633 | |
634 | void ResultRange::replaceAllUsesWith(Operation *op) { |
635 | replaceAllUsesWith(values: op->getResults()); |
636 | } |
637 | |
638 | void ResultRange::replaceUsesWithIf( |
639 | Operation *op, function_ref<bool(OpOperand &)> shouldReplace) { |
640 | replaceUsesWithIf(values: op->getResults(), shouldReplace); |
641 | } |
642 | |
643 | //===----------------------------------------------------------------------===// |
644 | // ValueRange |
645 | //===----------------------------------------------------------------------===// |
646 | |
647 | ValueRange::ValueRange(ArrayRef<Value> values) |
648 | : ValueRange(values.data(), values.size()) {} |
649 | ValueRange::ValueRange(OperandRange values) |
650 | : ValueRange(values.begin().getBase(), values.size()) {} |
651 | ValueRange::ValueRange(ResultRange values) |
652 | : ValueRange(values.getBase(), values.size()) {} |
653 | |
654 | /// See `llvm::detail::indexed_accessor_range_base` for details. |
655 | ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner, |
656 | ptrdiff_t index) { |
657 | if (const auto *value = llvm::dyn_cast_if_present<const Value *>(Val: owner)) |
658 | return {value + index}; |
659 | if (auto *operand = llvm::dyn_cast_if_present<OpOperand *>(Val: owner)) |
660 | return {operand + index}; |
661 | return cast<detail::OpResultImpl *>(Val: owner)->getNextResultAtOffset(offset: index); |
662 | } |
663 | /// See `llvm::detail::indexed_accessor_range_base` for details. |
664 | Value ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) { |
665 | if (const auto *value = llvm::dyn_cast_if_present<const Value *>(Val: owner)) |
666 | return value[index]; |
667 | if (auto *operand = llvm::dyn_cast_if_present<OpOperand *>(Val: owner)) |
668 | return operand[index].get(); |
669 | return cast<detail::OpResultImpl *>(Val: owner)->getNextResultAtOffset(offset: index); |
670 | } |
671 | |
672 | //===----------------------------------------------------------------------===// |
673 | // Operation Equivalency |
674 | //===----------------------------------------------------------------------===// |
675 | |
676 | llvm::hash_code OperationEquivalence::computeHash( |
677 | Operation *op, function_ref<llvm::hash_code(Value)> hashOperands, |
678 | function_ref<llvm::hash_code(Value)> hashResults, Flags flags) { |
679 | // Hash operations based upon their: |
680 | // - Operation Name |
681 | // - Attributes |
682 | // - Result Types |
683 | DictionaryAttr dictAttrs; |
684 | if (!(flags & Flags::IgnoreDiscardableAttrs)) |
685 | dictAttrs = op->getRawDictionaryAttrs(); |
686 | llvm::hash_code hash = |
687 | llvm::hash_combine(op->getName(), dictAttrs, op->getResultTypes()); |
688 | if (!(flags & Flags::IgnoreProperties)) |
689 | hash = llvm::hash_combine(args: hash, args: op->hashProperties()); |
690 | |
691 | // - Location if required |
692 | if (!(flags & Flags::IgnoreLocations)) |
693 | hash = llvm::hash_combine(args: hash, args: op->getLoc()); |
694 | |
695 | // - Operands |
696 | if (op->hasTrait<mlir::OpTrait::IsCommutative>() && |
697 | op->getNumOperands() > 0) { |
698 | size_t operandHash = hashOperands(op->getOperand(idx: 0)); |
699 | for (auto operand : op->getOperands().drop_front()) |
700 | operandHash += hashOperands(operand); |
701 | hash = llvm::hash_combine(args: hash, args: operandHash); |
702 | } else { |
703 | for (Value operand : op->getOperands()) |
704 | hash = llvm::hash_combine(args: hash, args: hashOperands(operand)); |
705 | } |
706 | |
707 | // - Results |
708 | for (Value result : op->getResults()) |
709 | hash = llvm::hash_combine(args: hash, args: hashResults(result)); |
710 | return hash; |
711 | } |
712 | |
713 | /*static*/ bool OperationEquivalence::isRegionEquivalentTo( |
714 | Region *lhs, Region *rhs, |
715 | function_ref<LogicalResult(Value, Value)> checkEquivalent, |
716 | function_ref<void(Value, Value)> markEquivalent, |
717 | OperationEquivalence::Flags flags, |
718 | function_ref<LogicalResult(ValueRange, ValueRange)> |
719 | checkCommutativeEquivalent) { |
720 | DenseMap<Block *, Block *> blocksMap; |
721 | auto blocksEquivalent = [&](Block &lBlock, Block &rBlock) { |
722 | // Check block arguments. |
723 | if (lBlock.getNumArguments() != rBlock.getNumArguments()) |
724 | return false; |
725 | |
726 | // Map the two blocks. |
727 | auto insertion = blocksMap.insert(KV: {&lBlock, &rBlock}); |
728 | if (insertion.first->getSecond() != &rBlock) |
729 | return false; |
730 | |
731 | for (auto argPair : |
732 | llvm::zip(t: lBlock.getArguments(), u: rBlock.getArguments())) { |
733 | Value curArg = std::get<0>(t&: argPair); |
734 | Value otherArg = std::get<1>(t&: argPair); |
735 | if (curArg.getType() != otherArg.getType()) |
736 | return false; |
737 | if (!(flags & OperationEquivalence::IgnoreLocations) && |
738 | curArg.getLoc() != otherArg.getLoc()) |
739 | return false; |
740 | // Corresponding bbArgs are equivalent. |
741 | if (markEquivalent) |
742 | markEquivalent(curArg, otherArg); |
743 | } |
744 | |
745 | auto opsEquivalent = [&](Operation &lOp, Operation &rOp) { |
746 | // Check for op equality (recursively). |
747 | if (!OperationEquivalence::isEquivalentTo(lhs: &lOp, rhs: &rOp, checkEquivalent, |
748 | markEquivalent, flags, |
749 | checkCommutativeEquivalent)) |
750 | return false; |
751 | // Check successor mapping. |
752 | for (auto successorsPair : |
753 | llvm::zip(t: lOp.getSuccessors(), u: rOp.getSuccessors())) { |
754 | Block *curSuccessor = std::get<0>(t&: successorsPair); |
755 | Block *otherSuccessor = std::get<1>(t&: successorsPair); |
756 | auto insertion = blocksMap.insert(KV: {curSuccessor, otherSuccessor}); |
757 | if (insertion.first->getSecond() != otherSuccessor) |
758 | return false; |
759 | } |
760 | return true; |
761 | }; |
762 | return llvm::all_of_zip(argsAndPredicate&: lBlock, argsAndPredicate&: rBlock, argsAndPredicate&: opsEquivalent); |
763 | }; |
764 | return llvm::all_of_zip(argsAndPredicate&: *lhs, argsAndPredicate&: *rhs, argsAndPredicate&: blocksEquivalent); |
765 | } |
766 | |
767 | // Value equivalence cache to be used with `isRegionEquivalentTo` and |
768 | // `isEquivalentTo`. |
769 | struct ValueEquivalenceCache { |
770 | DenseMap<Value, Value> equivalentValues; |
771 | LogicalResult checkEquivalent(Value lhsValue, Value rhsValue) { |
772 | return success(IsSuccess: lhsValue == rhsValue || |
773 | equivalentValues.lookup(Val: lhsValue) == rhsValue); |
774 | } |
775 | LogicalResult checkCommutativeEquivalent(ValueRange lhsRange, |
776 | ValueRange rhsRange) { |
777 | // Handle simple case where sizes mismatch. |
778 | if (lhsRange.size() != rhsRange.size()) |
779 | return failure(); |
780 | |
781 | // Handle where operands in order are equivalent. |
782 | auto lhsIt = lhsRange.begin(); |
783 | auto rhsIt = rhsRange.begin(); |
784 | for (; lhsIt != lhsRange.end(); ++lhsIt, ++rhsIt) { |
785 | if (failed(Result: checkEquivalent(lhsValue: *lhsIt, rhsValue: *rhsIt))) |
786 | break; |
787 | } |
788 | if (lhsIt == lhsRange.end()) |
789 | return success(); |
790 | |
791 | // Handle another simple case where operands are just a permutation. |
792 | // Note: This is not sufficient, this handles simple cases relatively |
793 | // cheaply. |
794 | auto sortValues = [](ValueRange values) { |
795 | SmallVector<Value> sortedValues = llvm::to_vector(Range&: values); |
796 | llvm::sort(C&: sortedValues, Comp: [](Value a, Value b) { |
797 | return a.getAsOpaquePointer() < b.getAsOpaquePointer(); |
798 | }); |
799 | return sortedValues; |
800 | }; |
801 | auto lhsSorted = sortValues({lhsIt, lhsRange.end()}); |
802 | auto rhsSorted = sortValues({rhsIt, rhsRange.end()}); |
803 | return success(IsSuccess: lhsSorted == rhsSorted); |
804 | } |
805 | void markEquivalent(Value lhsResult, Value rhsResult) { |
806 | auto insertion = equivalentValues.insert(KV: {lhsResult, rhsResult}); |
807 | // Make sure that the value was not already marked equivalent to some other |
808 | // value. |
809 | (void)insertion; |
810 | assert(insertion.first->second == rhsResult && |
811 | "inconsistent OperationEquivalence state" ); |
812 | } |
813 | }; |
814 | |
815 | /*static*/ bool |
816 | OperationEquivalence::isRegionEquivalentTo(Region *lhs, Region *rhs, |
817 | OperationEquivalence::Flags flags) { |
818 | ValueEquivalenceCache cache; |
819 | return isRegionEquivalentTo( |
820 | lhs, rhs, |
821 | checkEquivalent: [&](Value lhsValue, Value rhsValue) -> LogicalResult { |
822 | return cache.checkEquivalent(lhsValue, rhsValue); |
823 | }, |
824 | markEquivalent: [&](Value lhsResult, Value rhsResult) { |
825 | cache.markEquivalent(lhsResult, rhsResult); |
826 | }, |
827 | flags, |
828 | checkCommutativeEquivalent: [&](ValueRange lhs, ValueRange rhs) -> LogicalResult { |
829 | return cache.checkCommutativeEquivalent(lhsRange: lhs, rhsRange: rhs); |
830 | }); |
831 | } |
832 | |
833 | /*static*/ bool OperationEquivalence::isEquivalentTo( |
834 | Operation *lhs, Operation *rhs, |
835 | function_ref<LogicalResult(Value, Value)> checkEquivalent, |
836 | function_ref<void(Value, Value)> markEquivalent, Flags flags, |
837 | function_ref<LogicalResult(ValueRange, ValueRange)> |
838 | checkCommutativeEquivalent) { |
839 | if (lhs == rhs) |
840 | return true; |
841 | |
842 | // 1. Compare the operation properties. |
843 | if (!(flags & IgnoreDiscardableAttrs) && |
844 | lhs->getRawDictionaryAttrs() != rhs->getRawDictionaryAttrs()) |
845 | return false; |
846 | |
847 | if (lhs->getName() != rhs->getName() || |
848 | lhs->getNumRegions() != rhs->getNumRegions() || |
849 | lhs->getNumSuccessors() != rhs->getNumSuccessors() || |
850 | lhs->getNumOperands() != rhs->getNumOperands() || |
851 | lhs->getNumResults() != rhs->getNumResults()) |
852 | return false; |
853 | if (!(flags & IgnoreProperties) && |
854 | !(lhs->getName().compareOpProperties(lhs: lhs->getPropertiesStorage(), |
855 | rhs: rhs->getPropertiesStorage()))) |
856 | return false; |
857 | if (!(flags & IgnoreLocations) && lhs->getLoc() != rhs->getLoc()) |
858 | return false; |
859 | |
860 | // 2. Compare operands. |
861 | if (checkCommutativeEquivalent && |
862 | lhs->hasTrait<mlir::OpTrait::IsCommutative>()) { |
863 | auto lhsRange = lhs->getOperands(); |
864 | auto rhsRange = rhs->getOperands(); |
865 | if (failed(Result: checkCommutativeEquivalent(lhsRange, rhsRange))) |
866 | return false; |
867 | } else { |
868 | // Check pair wise for equivalence. |
869 | for (auto operandPair : llvm::zip(t: lhs->getOperands(), u: rhs->getOperands())) { |
870 | Value curArg = std::get<0>(t&: operandPair); |
871 | Value otherArg = std::get<1>(t&: operandPair); |
872 | if (curArg == otherArg) |
873 | continue; |
874 | if (curArg.getType() != otherArg.getType()) |
875 | return false; |
876 | if (failed(Result: checkEquivalent(curArg, otherArg))) |
877 | return false; |
878 | } |
879 | } |
880 | |
881 | // 3. Compare result types and mark results as equivalent. |
882 | for (auto resultPair : llvm::zip(t: lhs->getResults(), u: rhs->getResults())) { |
883 | Value curArg = std::get<0>(t&: resultPair); |
884 | Value otherArg = std::get<1>(t&: resultPair); |
885 | if (curArg.getType() != otherArg.getType()) |
886 | return false; |
887 | if (markEquivalent) |
888 | markEquivalent(curArg, otherArg); |
889 | } |
890 | |
891 | // 4. Compare regions. |
892 | for (auto regionPair : llvm::zip(t: lhs->getRegions(), u: rhs->getRegions())) |
893 | if (!isRegionEquivalentTo(lhs: &std::get<0>(t&: regionPair), |
894 | rhs: &std::get<1>(t&: regionPair), checkEquivalent, |
895 | markEquivalent, flags)) |
896 | return false; |
897 | |
898 | return true; |
899 | } |
900 | |
901 | /*static*/ bool OperationEquivalence::isEquivalentTo(Operation *lhs, |
902 | Operation *rhs, |
903 | Flags flags) { |
904 | ValueEquivalenceCache cache; |
905 | return OperationEquivalence::isEquivalentTo( |
906 | lhs, rhs, |
907 | checkEquivalent: [&](Value lhsValue, Value rhsValue) -> LogicalResult { |
908 | return cache.checkEquivalent(lhsValue, rhsValue); |
909 | }, |
910 | markEquivalent: [&](Value lhsResult, Value rhsResult) { |
911 | cache.markEquivalent(lhsResult, rhsResult); |
912 | }, |
913 | flags, |
914 | checkCommutativeEquivalent: [&](ValueRange lhs, ValueRange rhs) -> LogicalResult { |
915 | return cache.checkCommutativeEquivalent(lhsRange: lhs, rhsRange: rhs); |
916 | }); |
917 | } |
918 | |
919 | //===----------------------------------------------------------------------===// |
920 | // OperationFingerPrint |
921 | //===----------------------------------------------------------------------===// |
922 | |
923 | template <typename T> |
924 | static void addDataToHash(llvm::SHA1 &hasher, const T &data) { |
925 | hasher.update( |
926 | Data: ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&data), sizeof(T))); |
927 | } |
928 | |
929 | OperationFingerPrint::OperationFingerPrint(Operation *topOp, |
930 | bool includeNested) { |
931 | llvm::SHA1 hasher; |
932 | |
933 | // Helper function that hashes an operation based on its mutable bits: |
934 | auto addOperationToHash = [&](Operation *op) { |
935 | // - Operation pointer |
936 | addDataToHash(hasher, data: op); |
937 | // - Parent operation pointer (to take into account the nesting structure) |
938 | if (op != topOp) |
939 | addDataToHash(hasher, data: op->getParentOp()); |
940 | // - Attributes |
941 | addDataToHash(hasher, data: op->getRawDictionaryAttrs()); |
942 | // - Properties |
943 | addDataToHash(hasher, data: op->hashProperties()); |
944 | // - Blocks in Regions |
945 | for (Region ®ion : op->getRegions()) { |
946 | for (Block &block : region) { |
947 | addDataToHash(hasher, data: &block); |
948 | for (BlockArgument arg : block.getArguments()) |
949 | addDataToHash(hasher, data: arg); |
950 | } |
951 | } |
952 | // - Location |
953 | addDataToHash(hasher, data: op->getLoc().getAsOpaquePointer()); |
954 | // - Operands |
955 | for (Value operand : op->getOperands()) |
956 | addDataToHash(hasher, data: operand); |
957 | // - Successors |
958 | for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) |
959 | addDataToHash(hasher, data: op->getSuccessor(index: i)); |
960 | // - Result types |
961 | for (Type t : op->getResultTypes()) |
962 | addDataToHash(hasher, data: t); |
963 | }; |
964 | |
965 | if (includeNested) |
966 | topOp->walk(callback&: addOperationToHash); |
967 | else |
968 | addOperationToHash(topOp); |
969 | |
970 | hash = hasher.result(); |
971 | } |
972 | |