| 1 | //===- TestDecomposeCallGraphTypes.cpp - Test CG type decomposition -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "TestDialect.h" |
| 10 | #include "TestOps.h" |
| 11 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 12 | #include "mlir/Dialect/Func/Transforms/FuncConversions.h" |
| 13 | #include "mlir/IR/Builders.h" |
| 14 | #include "mlir/Pass/Pass.h" |
| 15 | #include "mlir/Transforms/DialectConversion.h" |
| 16 | |
| 17 | using namespace mlir; |
| 18 | |
| 19 | namespace { |
| 20 | /// Creates a sequence of `test.get_tuple_element` ops for all elements of a |
| 21 | /// given tuple value. If some tuple elements are, in turn, tuples, the elements |
| 22 | /// of those are extracted recursively such that the returned values have the |
| 23 | /// same types as `resultTypes.getFlattenedTypes()`. |
| 24 | static SmallVector<Value> buildDecomposeTuple(OpBuilder &builder, |
| 25 | TypeRange resultTypes, |
| 26 | ValueRange inputs, Location loc) { |
| 27 | // Skip materialization if the single input value is not a tuple. |
| 28 | if (inputs.size() != 1) |
| 29 | return {}; |
| 30 | Value tuple = inputs.front(); |
| 31 | auto tupleType = dyn_cast<TupleType>(tuple.getType()); |
| 32 | if (!tupleType) |
| 33 | return {}; |
| 34 | // Skip materialization if the flattened types do not match the requested |
| 35 | // result types. |
| 36 | SmallVector<Type> flattenedTypes; |
| 37 | tupleType.getFlattenedTypes(flattenedTypes); |
| 38 | if (TypeRange(resultTypes) != TypeRange(flattenedTypes)) |
| 39 | return {}; |
| 40 | // Recursively decompose the tuple. |
| 41 | SmallVector<Value> result; |
| 42 | std::function<void(Value)> decompose = [&](Value tuple) { |
| 43 | auto tupleType = dyn_cast<TupleType>(tuple.getType()); |
| 44 | if (!tupleType) { |
| 45 | // This is not a tuple. |
| 46 | result.push_back(Elt: tuple); |
| 47 | return; |
| 48 | } |
| 49 | for (unsigned i = 0, e = tupleType.size(); i < e; ++i) { |
| 50 | Type elementType = tupleType.getType(i); |
| 51 | Value element = builder.create<test::GetTupleElementOp>( |
| 52 | loc, elementType, tuple, builder.getI32IntegerAttr(i)); |
| 53 | decompose(element); |
| 54 | } |
| 55 | }; |
| 56 | decompose(tuple); |
| 57 | return result; |
| 58 | } |
| 59 | |
| 60 | /// Creates a `test.make_tuple` op out of the given inputs building a tuple of |
| 61 | /// type `resultType`. If that type is nested, each nested tuple is built |
| 62 | /// recursively with another `test.make_tuple` op. |
| 63 | static Value buildMakeTupleOp(OpBuilder &builder, TupleType resultType, |
| 64 | ValueRange inputs, Location loc) { |
| 65 | // Build one value for each element at this nesting level. |
| 66 | SmallVector<Value> elements; |
| 67 | elements.reserve(N: resultType.getTypes().size()); |
| 68 | ValueRange::iterator inputIt = inputs.begin(); |
| 69 | for (Type elementType : resultType.getTypes()) { |
| 70 | if (auto nestedTupleType = dyn_cast<TupleType>(elementType)) { |
| 71 | // Determine how many input values are needed for the nested elements of |
| 72 | // the nested TupleType and advance inputIt by that number. |
| 73 | // TODO: We only need the *number* of nested types, not the types itself. |
| 74 | // Maybe it's worth adding a more efficient overload? |
| 75 | SmallVector<Type> nestedFlattenedTypes; |
| 76 | nestedTupleType.getFlattenedTypes(nestedFlattenedTypes); |
| 77 | size_t numNestedFlattenedTypes = nestedFlattenedTypes.size(); |
| 78 | ValueRange nestedFlattenedelements(inputIt, |
| 79 | inputIt + numNestedFlattenedTypes); |
| 80 | inputIt += numNestedFlattenedTypes; |
| 81 | |
| 82 | // Recurse on the values for the nested TupleType. |
| 83 | Value res = buildMakeTupleOp(builder, nestedTupleType, |
| 84 | nestedFlattenedelements, loc); |
| 85 | if (!res) |
| 86 | return Value(); |
| 87 | |
| 88 | // The tuple constructed by the conversion is the element value. |
| 89 | elements.push_back(res); |
| 90 | } else { |
| 91 | // Base case: take one input as is. |
| 92 | elements.push_back(*inputIt++); |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // Assemble the tuple from the elements. |
| 97 | return builder.create<test::MakeTupleOp>(loc, resultType, elements); |
| 98 | } |
| 99 | |
| 100 | /// A pass for testing call graph type decomposition. |
| 101 | /// |
| 102 | /// This instantiates the patterns with a TypeConverter that splits tuple types |
| 103 | /// into their respective element types. |
| 104 | /// For example, `tuple<T1, T2, T3> --> T1, T2, T3`. |
| 105 | struct TestDecomposeCallGraphTypes |
| 106 | : public PassWrapper<TestDecomposeCallGraphTypes, OperationPass<ModuleOp>> { |
| 107 | MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDecomposeCallGraphTypes) |
| 108 | |
| 109 | void getDependentDialects(DialectRegistry ®istry) const override { |
| 110 | registry.insert<test::TestDialect>(); |
| 111 | } |
| 112 | StringRef getArgument() const final { |
| 113 | return "test-decompose-call-graph-types" ; |
| 114 | } |
| 115 | StringRef getDescription() const final { |
| 116 | return "Decomposes types at call graph boundaries." ; |
| 117 | } |
| 118 | void runOnOperation() override { |
| 119 | ModuleOp module = getOperation(); |
| 120 | auto *context = &getContext(); |
| 121 | TypeConverter typeConverter; |
| 122 | ConversionTarget target(*context); |
| 123 | RewritePatternSet patterns(context); |
| 124 | |
| 125 | target.addLegalDialect<test::TestDialect>(); |
| 126 | |
| 127 | target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) { |
| 128 | return typeConverter.isLegal(op.getOperandTypes()); |
| 129 | }); |
| 130 | target.addDynamicallyLegalOp<func::CallOp>( |
| 131 | [&](func::CallOp op) { return typeConverter.isLegal(op); }); |
| 132 | target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { |
| 133 | return typeConverter.isSignatureLegal(op.getFunctionType()); |
| 134 | }); |
| 135 | |
| 136 | typeConverter.addConversion(callback: [](Type type) { return type; }); |
| 137 | typeConverter.addConversion( |
| 138 | callback: [](TupleType tupleType, SmallVectorImpl<Type> &types) { |
| 139 | tupleType.getFlattenedTypes(types); |
| 140 | return success(); |
| 141 | }); |
| 142 | typeConverter.addSourceMaterialization(callback&: buildMakeTupleOp); |
| 143 | typeConverter.addTargetMaterialization(callback&: buildDecomposeTuple); |
| 144 | |
| 145 | populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>( |
| 146 | patterns, typeConverter); |
| 147 | populateReturnOpTypeConversionPattern(patterns, converter: typeConverter); |
| 148 | populateCallOpTypeConversionPattern(patterns, converter: typeConverter); |
| 149 | |
| 150 | if (failed(applyPartialConversion(module, target, std::move(patterns)))) |
| 151 | return signalPassFailure(); |
| 152 | } |
| 153 | }; |
| 154 | |
| 155 | } // namespace |
| 156 | |
| 157 | namespace mlir { |
| 158 | namespace test { |
| 159 | void registerTestDecomposeCallGraphTypes() { |
| 160 | PassRegistration<TestDecomposeCallGraphTypes>(); |
| 161 | } |
| 162 | } // namespace test |
| 163 | } // namespace mlir |
| 164 | |