1 | /* |
2 | * kmp_dispatch.h: dynamic scheduling - iteration initialization and dispatch. |
3 | */ |
4 | |
5 | //===----------------------------------------------------------------------===// |
6 | // |
7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
8 | // See https://llvm.org/LICENSE.txt for license information. |
9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef KMP_DISPATCH_H |
14 | #define KMP_DISPATCH_H |
15 | |
16 | /* ------------------------------------------------------------------------ */ |
17 | /* ------------------------------------------------------------------------ */ |
18 | |
19 | #include "kmp.h" |
20 | #include "kmp_error.h" |
21 | #include "kmp_i18n.h" |
22 | #include "kmp_itt.h" |
23 | #include "kmp_stats.h" |
24 | #include "kmp_str.h" |
25 | #if KMP_OS_WINDOWS && KMP_ARCH_X86 |
26 | #include <float.h> |
27 | #endif |
28 | |
29 | #if OMPT_SUPPORT |
30 | #include "ompt-internal.h" |
31 | #include "ompt-specific.h" |
32 | #endif |
33 | |
34 | /* ------------------------------------------------------------------------ */ |
35 | /* ------------------------------------------------------------------------ */ |
36 | #if KMP_USE_HIER_SCHED |
37 | // Forward declarations of some hierarchical scheduling data structures |
38 | template <typename T> struct kmp_hier_t; |
39 | template <typename T> struct kmp_hier_top_unit_t; |
40 | #endif // KMP_USE_HIER_SCHED |
41 | |
42 | template <typename T> struct dispatch_shared_info_template; |
43 | template <typename T> struct dispatch_private_info_template; |
44 | |
45 | template <typename T> |
46 | extern void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid, |
47 | dispatch_private_info_template<T> *pr, |
48 | enum sched_type schedule, T lb, T ub, |
49 | typename traits_t<T>::signed_t st, |
50 | #if USE_ITT_BUILD |
51 | kmp_uint64 *cur_chunk, |
52 | #endif |
53 | typename traits_t<T>::signed_t chunk, |
54 | T nproc, T unit_id); |
55 | template <typename T> |
56 | extern int __kmp_dispatch_next_algorithm( |
57 | int gtid, dispatch_private_info_template<T> *pr, |
58 | dispatch_shared_info_template<T> volatile *sh, kmp_int32 *p_last, T *p_lb, |
59 | T *p_ub, typename traits_t<T>::signed_t *p_st, T nproc, T unit_id); |
60 | |
61 | void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref); |
62 | void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref); |
63 | |
64 | #if KMP_STATIC_STEAL_ENABLED |
65 | |
66 | // replaces dispatch_private_info{32,64} structures and |
67 | // dispatch_private_info{32,64}_t types |
68 | template <typename T> struct dispatch_private_infoXX_template { |
69 | typedef typename traits_t<T>::unsigned_t UT; |
70 | typedef typename traits_t<T>::signed_t ST; |
71 | UT count; // unsigned |
72 | T ub; |
73 | /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ |
74 | T lb; |
75 | ST st; // signed |
76 | UT tc; // unsigned |
77 | kmp_lock_t *steal_lock; // lock used for chunk stealing |
78 | |
79 | UT ordered_lower; // unsigned |
80 | UT ordered_upper; // unsigned |
81 | |
82 | /* parm[1-4] are used in different ways by different scheduling algorithms */ |
83 | |
84 | // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on ) |
85 | // a) parm3 is properly aligned and |
86 | // b) all parm1-4 are in the same cache line. |
87 | // Because of parm1-4 are used together, performance seems to be better |
88 | // if they are in the same line (not measured though). |
89 | struct KMP_ALIGN(32) { // compiler does not accept sizeof(T)*4 |
90 | T parm1; |
91 | T parm2; |
92 | T parm3; |
93 | T parm4; |
94 | }; |
95 | |
96 | #if KMP_WEIGHTED_ITERATIONS_SUPPORTED |
97 | UT pchunks; // total number of chunks for processes with p-core |
98 | UT num_procs_with_pcore; // number of threads with p-core |
99 | T first_thread_with_ecore; |
100 | #endif |
101 | #if KMP_OS_WINDOWS |
102 | T last_upper; |
103 | #endif /* KMP_OS_WINDOWS */ |
104 | }; |
105 | |
106 | #else /* KMP_STATIC_STEAL_ENABLED */ |
107 | |
108 | // replaces dispatch_private_info{32,64} structures and |
109 | // dispatch_private_info{32,64}_t types |
110 | template <typename T> struct dispatch_private_infoXX_template { |
111 | typedef typename traits_t<T>::unsigned_t UT; |
112 | typedef typename traits_t<T>::signed_t ST; |
113 | T lb; |
114 | T ub; |
115 | ST st; // signed |
116 | UT tc; // unsigned |
117 | |
118 | T parm1; |
119 | T parm2; |
120 | T parm3; |
121 | T parm4; |
122 | |
123 | UT count; // unsigned |
124 | |
125 | UT ordered_lower; // unsigned |
126 | UT ordered_upper; // unsigned |
127 | #if KMP_OS_WINDOWS |
128 | T last_upper; |
129 | #endif /* KMP_OS_WINDOWS */ |
130 | }; |
131 | #endif /* KMP_STATIC_STEAL_ENABLED */ |
132 | |
133 | template <typename T> struct KMP_ALIGN_CACHE dispatch_private_info_template { |
134 | // duplicate alignment here, otherwise size of structure is not correct in our |
135 | // compiler |
136 | union KMP_ALIGN_CACHE private_info_tmpl { |
137 | dispatch_private_infoXX_template<T> p; |
138 | dispatch_private_info64_t p64; |
139 | } u; |
140 | enum sched_type schedule; /* scheduling algorithm */ |
141 | kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */ |
142 | std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer |
143 | kmp_uint32 ordered_bumped; |
144 | dispatch_private_info *next; /* stack of buffers for nest of serial regions */ |
145 | kmp_uint32 type_size; |
146 | #if KMP_USE_HIER_SCHED |
147 | kmp_int32 hier_id; |
148 | kmp_hier_top_unit_t<T> *hier_parent; |
149 | // member functions |
150 | kmp_int32 get_hier_id() const { return hier_id; } |
151 | kmp_hier_top_unit_t<T> *get_parent() { return hier_parent; } |
152 | #endif |
153 | enum cons_type pushed_ws; |
154 | }; |
155 | |
156 | // replaces dispatch_shared_info{32,64} structures and |
157 | // dispatch_shared_info{32,64}_t types |
158 | template <typename T> struct dispatch_shared_infoXX_template { |
159 | typedef typename traits_t<T>::unsigned_t UT; |
160 | typedef typename traits_t<T>::signed_t ST; |
161 | /* chunk index under dynamic, number of idle threads under static-steal; |
162 | iteration index otherwise */ |
163 | volatile UT iteration; |
164 | volatile ST num_done; |
165 | volatile UT ordered_iteration; |
166 | // to retain the structure size making ordered_iteration scalar |
167 | UT ordered_dummy[KMP_MAX_ORDERED - 3]; |
168 | }; |
169 | |
170 | // replaces dispatch_shared_info structure and dispatch_shared_info_t type |
171 | template <typename T> struct dispatch_shared_info_template { |
172 | typedef typename traits_t<T>::unsigned_t UT; |
173 | // we need union here to keep the structure size |
174 | union shared_info_tmpl { |
175 | dispatch_shared_infoXX_template<UT> s; |
176 | dispatch_shared_info64_t s64; |
177 | } u; |
178 | volatile kmp_uint32 buffer_index; |
179 | volatile kmp_int32 doacross_buf_idx; // teamwise index |
180 | kmp_uint32 *doacross_flags; // array of iteration flags (0/1) |
181 | kmp_int32 doacross_num_done; // count finished threads |
182 | #if KMP_USE_HIER_SCHED |
183 | kmp_hier_t<T> *hier; |
184 | #endif |
185 | #if KMP_USE_HWLOC |
186 | // When linking with libhwloc, the ORDERED EPCC test slowsdown on big |
187 | // machines (> 48 cores). Performance analysis showed that a cache thrash |
188 | // was occurring and this padding helps alleviate the problem. |
189 | char padding[64]; |
190 | #endif |
191 | }; |
192 | |
193 | /* ------------------------------------------------------------------------ */ |
194 | /* ------------------------------------------------------------------------ */ |
195 | |
196 | #undef USE_TEST_LOCKS |
197 | |
198 | // test_then_add template (general template should NOT be used) |
199 | template <typename T> static __forceinline T test_then_add(volatile T *p, T d); |
200 | |
201 | template <> |
202 | __forceinline kmp_int32 test_then_add<kmp_int32>(volatile kmp_int32 *p, |
203 | kmp_int32 d) { |
204 | kmp_int32 r; |
205 | r = KMP_TEST_THEN_ADD32(p, d); |
206 | return r; |
207 | } |
208 | |
209 | template <> |
210 | __forceinline kmp_int64 test_then_add<kmp_int64>(volatile kmp_int64 *p, |
211 | kmp_int64 d) { |
212 | kmp_int64 r; |
213 | r = KMP_TEST_THEN_ADD64(p, d); |
214 | return r; |
215 | } |
216 | |
217 | // test_then_inc_acq template (general template should NOT be used) |
218 | template <typename T> static __forceinline T test_then_inc_acq(volatile T *p); |
219 | |
220 | template <> |
221 | __forceinline kmp_int32 test_then_inc_acq<kmp_int32>(volatile kmp_int32 *p) { |
222 | kmp_int32 r; |
223 | r = KMP_TEST_THEN_INC_ACQ32(p); |
224 | return r; |
225 | } |
226 | |
227 | template <> |
228 | __forceinline kmp_int64 test_then_inc_acq<kmp_int64>(volatile kmp_int64 *p) { |
229 | kmp_int64 r; |
230 | r = KMP_TEST_THEN_INC_ACQ64(p); |
231 | return r; |
232 | } |
233 | |
234 | // test_then_inc template (general template should NOT be used) |
235 | template <typename T> static __forceinline T test_then_inc(volatile T *p); |
236 | |
237 | template <> |
238 | __forceinline kmp_int32 test_then_inc<kmp_int32>(volatile kmp_int32 *p) { |
239 | kmp_int32 r; |
240 | r = KMP_TEST_THEN_INC32(p); |
241 | return r; |
242 | } |
243 | |
244 | template <> |
245 | __forceinline kmp_int64 test_then_inc<kmp_int64>(volatile kmp_int64 *p) { |
246 | kmp_int64 r; |
247 | r = KMP_TEST_THEN_INC64(p); |
248 | return r; |
249 | } |
250 | |
251 | // compare_and_swap template (general template should NOT be used) |
252 | template <typename T> |
253 | static __forceinline kmp_int32 compare_and_swap(volatile T *p, T c, T s); |
254 | |
255 | template <> |
256 | __forceinline kmp_int32 compare_and_swap<kmp_int32>(volatile kmp_int32 *p, |
257 | kmp_int32 c, kmp_int32 s) { |
258 | return KMP_COMPARE_AND_STORE_REL32(p, c, s); |
259 | } |
260 | |
261 | template <> |
262 | __forceinline kmp_int32 compare_and_swap<kmp_int64>(volatile kmp_int64 *p, |
263 | kmp_int64 c, kmp_int64 s) { |
264 | return KMP_COMPARE_AND_STORE_REL64(p, c, s); |
265 | } |
266 | |
267 | template <typename T> kmp_uint32 __kmp_ge(T value, T checker) { |
268 | return value >= checker; |
269 | } |
270 | template <typename T> kmp_uint32 __kmp_eq(T value, T checker) { |
271 | return value == checker; |
272 | } |
273 | |
274 | /* |
275 | Spin wait loop that pauses between checks. |
276 | Waits until function returns non-zero when called with *spinner and check. |
277 | Does NOT put threads to sleep. |
278 | Arguments: |
279 | UT is unsigned 4- or 8-byte type |
280 | spinner - memory location to check value |
281 | checker - value which spinner is >, <, ==, etc. |
282 | pred - predicate function to perform binary comparison of some sort |
283 | #if USE_ITT_BUILD |
284 | obj -- is higher-level synchronization object to report to ittnotify. It |
285 | is used to report locks consistently. For example, if lock is acquired |
286 | immediately, its address is reported to ittnotify via |
287 | KMP_FSYNC_ACQUIRED(). However, it lock cannot be acquired immediately |
288 | and lock routine calls to KMP_WAIT(), the later should report the |
289 | same address, not an address of low-level spinner. |
290 | #endif // USE_ITT_BUILD |
291 | TODO: make inline function (move to header file for icl) |
292 | */ |
293 | template <typename UT> |
294 | static UT __kmp_wait(volatile UT *spinner, UT checker, |
295 | kmp_uint32 (*pred)(UT, UT) USE_ITT_BUILD_ARG(void *obj)) { |
296 | // note: we may not belong to a team at this point |
297 | volatile UT *spin = spinner; |
298 | UT check = checker; |
299 | kmp_uint32 spins; |
300 | kmp_uint32 (*f)(UT, UT) = pred; |
301 | kmp_uint64 time; |
302 | UT r; |
303 | |
304 | KMP_FSYNC_SPIN_INIT(obj, CCAST(UT *, spin)); |
305 | KMP_INIT_YIELD(spins); |
306 | KMP_INIT_BACKOFF(time); |
307 | // main wait spin loop |
308 | while (!f(r = *spin, check)) { |
309 | KMP_FSYNC_SPIN_PREPARE(obj); |
310 | /* GEH - remove this since it was accidentally introduced when kmp_wait was |
311 | split. |
312 | It causes problems with infinite recursion because of exit lock */ |
313 | /* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort) |
314 | __kmp_abort_thread(); */ |
315 | // If oversubscribed, or have waited a bit then yield. |
316 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); |
317 | } |
318 | KMP_FSYNC_SPIN_ACQUIRED(obj); |
319 | return r; |
320 | } |
321 | |
322 | /* ------------------------------------------------------------------------ */ |
323 | /* ------------------------------------------------------------------------ */ |
324 | |
325 | template <typename UT> |
326 | void __kmp_dispatch_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { |
327 | dispatch_private_info_template<UT> *pr; |
328 | |
329 | int gtid = *gtid_ref; |
330 | // int cid = *cid_ref; |
331 | kmp_info_t *th = __kmp_threads[gtid]; |
332 | KMP_DEBUG_ASSERT(th->th.th_dispatch); |
333 | |
334 | KD_TRACE(100, ("__kmp_dispatch_deo: T#%d called\n" , gtid)); |
335 | if (__kmp_env_consistency_check) { |
336 | pr = reinterpret_cast<dispatch_private_info_template<UT> *>( |
337 | th->th.th_dispatch->th_dispatch_pr_current); |
338 | if (pr->pushed_ws != ct_none) { |
339 | #if KMP_USE_DYNAMIC_LOCK |
340 | __kmp_push_sync(gtid, ct: ct_ordered_in_pdo, ident: loc_ref, NULL, 0); |
341 | #else |
342 | __kmp_push_sync(gtid, ct_ordered_in_pdo, loc_ref, NULL); |
343 | #endif |
344 | } |
345 | } |
346 | |
347 | if (!th->th.th_team->t.t_serialized) { |
348 | dispatch_shared_info_template<UT> *sh = |
349 | reinterpret_cast<dispatch_shared_info_template<UT> *>( |
350 | th->th.th_dispatch->th_dispatch_sh_current); |
351 | UT lower; |
352 | |
353 | if (!__kmp_env_consistency_check) { |
354 | pr = reinterpret_cast<dispatch_private_info_template<UT> *>( |
355 | th->th.th_dispatch->th_dispatch_pr_current); |
356 | } |
357 | lower = pr->u.p.ordered_lower; |
358 | |
359 | #if !defined(KMP_GOMP_COMPAT) |
360 | if (__kmp_env_consistency_check) { |
361 | if (pr->ordered_bumped) { |
362 | struct cons_header *p = __kmp_threads[gtid]->th.th_cons; |
363 | __kmp_error_construct2(kmp_i18n_msg_CnsMultipleNesting, |
364 | ct_ordered_in_pdo, loc_ref, |
365 | &p->stack_data[p->w_top]); |
366 | } |
367 | } |
368 | #endif /* !defined(KMP_GOMP_COMPAT) */ |
369 | |
370 | KMP_MB(); |
371 | #ifdef KMP_DEBUG |
372 | { |
373 | char *buff; |
374 | // create format specifiers before the debug output |
375 | buff = __kmp_str_format("__kmp_dispatch_deo: T#%%d before wait: " |
376 | "ordered_iter:%%%s lower:%%%s\n" , |
377 | traits_t<UT>::spec, traits_t<UT>::spec); |
378 | KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower)); |
379 | __kmp_str_free(str: &buff); |
380 | } |
381 | #endif |
382 | __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower, |
383 | __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL)); |
384 | KMP_MB(); /* is this necessary? */ |
385 | #ifdef KMP_DEBUG |
386 | { |
387 | char *buff; |
388 | // create format specifiers before the debug output |
389 | buff = __kmp_str_format("__kmp_dispatch_deo: T#%%d after wait: " |
390 | "ordered_iter:%%%s lower:%%%s\n" , |
391 | traits_t<UT>::spec, traits_t<UT>::spec); |
392 | KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower)); |
393 | __kmp_str_free(str: &buff); |
394 | } |
395 | #endif |
396 | } |
397 | KD_TRACE(100, ("__kmp_dispatch_deo: T#%d returned\n" , gtid)); |
398 | } |
399 | |
400 | template <typename UT> |
401 | void __kmp_dispatch_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { |
402 | typedef typename traits_t<UT>::signed_t ST; |
403 | dispatch_private_info_template<UT> *pr; |
404 | |
405 | int gtid = *gtid_ref; |
406 | // int cid = *cid_ref; |
407 | kmp_info_t *th = __kmp_threads[gtid]; |
408 | KMP_DEBUG_ASSERT(th->th.th_dispatch); |
409 | |
410 | KD_TRACE(100, ("__kmp_dispatch_dxo: T#%d called\n" , gtid)); |
411 | if (__kmp_env_consistency_check) { |
412 | pr = reinterpret_cast<dispatch_private_info_template<UT> *>( |
413 | th->th.th_dispatch->th_dispatch_pr_current); |
414 | if (pr->pushed_ws != ct_none) { |
415 | __kmp_pop_sync(gtid, ct: ct_ordered_in_pdo, ident: loc_ref); |
416 | } |
417 | } |
418 | |
419 | if (!th->th.th_team->t.t_serialized) { |
420 | dispatch_shared_info_template<UT> *sh = |
421 | reinterpret_cast<dispatch_shared_info_template<UT> *>( |
422 | th->th.th_dispatch->th_dispatch_sh_current); |
423 | |
424 | if (!__kmp_env_consistency_check) { |
425 | pr = reinterpret_cast<dispatch_private_info_template<UT> *>( |
426 | th->th.th_dispatch->th_dispatch_pr_current); |
427 | } |
428 | |
429 | KMP_FSYNC_RELEASING(CCAST(UT *, &sh->u.s.ordered_iteration)); |
430 | #if !defined(KMP_GOMP_COMPAT) |
431 | if (__kmp_env_consistency_check) { |
432 | if (pr->ordered_bumped != 0) { |
433 | struct cons_header *p = __kmp_threads[gtid]->th.th_cons; |
434 | /* How to test it? - OM */ |
435 | __kmp_error_construct2(kmp_i18n_msg_CnsMultipleNesting, |
436 | ct_ordered_in_pdo, loc_ref, |
437 | &p->stack_data[p->w_top]); |
438 | } |
439 | } |
440 | #endif /* !defined(KMP_GOMP_COMPAT) */ |
441 | |
442 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
443 | |
444 | pr->ordered_bumped += 1; |
445 | |
446 | KD_TRACE(1000, |
447 | ("__kmp_dispatch_dxo: T#%d bumping ordered ordered_bumped=%d\n" , |
448 | gtid, pr->ordered_bumped)); |
449 | |
450 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
451 | |
452 | /* TODO use general release procedure? */ |
453 | test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration); |
454 | |
455 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
456 | } |
457 | KD_TRACE(100, ("__kmp_dispatch_dxo: T#%d returned\n" , gtid)); |
458 | } |
459 | |
460 | /* Computes and returns x to the power of y, where y must a non-negative integer |
461 | */ |
462 | template <typename UT> |
463 | static __forceinline long double __kmp_pow(long double x, UT y) { |
464 | long double s = 1.0L; |
465 | |
466 | KMP_DEBUG_ASSERT(x > 0.0 && x < 1.0); |
467 | // KMP_DEBUG_ASSERT(y >= 0); // y is unsigned |
468 | while (y) { |
469 | if (y & 1) |
470 | s *= x; |
471 | x *= x; |
472 | y >>= 1; |
473 | } |
474 | return s; |
475 | } |
476 | |
477 | /* Computes and returns the number of unassigned iterations after idx chunks |
478 | have been assigned |
479 | (the total number of unassigned iterations in chunks with index greater than |
480 | or equal to idx). |
481 | __forceinline seems to be broken so that if we __forceinline this function, |
482 | the behavior is wrong |
483 | (one of the unit tests, sch_guided_analytical_basic.cpp, fails) |
484 | */ |
485 | template <typename T> |
486 | static __inline typename traits_t<T>::unsigned_t |
487 | __kmp_dispatch_guided_remaining(T tc, typename traits_t<T>::floating_t base, |
488 | typename traits_t<T>::unsigned_t idx) { |
489 | /* Note: On Windows* OS on IA-32 architecture and Intel(R) 64, at |
490 | least for ICL 8.1, long double arithmetic may not really have |
491 | long double precision, even with /Qlong_double. Currently, we |
492 | workaround that in the caller code, by manipulating the FPCW for |
493 | Windows* OS on IA-32 architecture. The lack of precision is not |
494 | expected to be a correctness issue, though. |
495 | */ |
496 | typedef typename traits_t<T>::unsigned_t UT; |
497 | |
498 | long double x = tc * __kmp_pow<UT>(base, idx); |
499 | UT r = (UT)x; |
500 | if (x == r) |
501 | return r; |
502 | return r + 1; |
503 | } |
504 | |
505 | // Parameters of the guided-iterative algorithm: |
506 | // p2 = n * nproc * ( chunk + 1 ) // point of switching to dynamic |
507 | // p3 = 1 / ( n * nproc ) // remaining iterations multiplier |
508 | // by default n = 2. For example with n = 3 the chunks distribution will be more |
509 | // flat. |
510 | // With n = 1 first chunk is the same as for static schedule, e.g. trip / nproc. |
511 | static const int guided_int_param = 2; |
512 | static const double guided_flt_param = 0.5; // = 1.0 / guided_int_param; |
513 | #endif // KMP_DISPATCH_H |
514 | |