| 1 | /* |
| 2 | * kmp_lock.cpp -- lock-related functions |
| 3 | */ |
| 4 | |
| 5 | //===----------------------------------------------------------------------===// |
| 6 | // |
| 7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 8 | // See https://llvm.org/LICENSE.txt for license information. |
| 9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include <stddef.h> |
| 14 | #include <atomic> |
| 15 | |
| 16 | #include "kmp.h" |
| 17 | #include "kmp_i18n.h" |
| 18 | #include "kmp_io.h" |
| 19 | #include "kmp_itt.h" |
| 20 | #include "kmp_lock.h" |
| 21 | #include "kmp_wait_release.h" |
| 22 | #include "kmp_wrapper_getpid.h" |
| 23 | |
| 24 | #if KMP_USE_FUTEX |
| 25 | #include <sys/syscall.h> |
| 26 | #include <unistd.h> |
| 27 | // We should really include <futex.h>, but that causes compatibility problems on |
| 28 | // different Linux* OS distributions that either require that you include (or |
| 29 | // break when you try to include) <pci/types.h>. Since all we need is the two |
| 30 | // macros below (which are part of the kernel ABI, so can't change) we just |
| 31 | // define the constants here and don't include <futex.h> |
| 32 | #ifndef FUTEX_WAIT |
| 33 | #define FUTEX_WAIT 0 |
| 34 | #endif |
| 35 | #ifndef FUTEX_WAKE |
| 36 | #define FUTEX_WAKE 1 |
| 37 | #endif |
| 38 | #endif |
| 39 | |
| 40 | /* Implement spin locks for internal library use. */ |
| 41 | /* The algorithm implemented is Lamport's bakery lock [1974]. */ |
| 42 | |
| 43 | void __kmp_validate_locks(void) { |
| 44 | int i; |
| 45 | kmp_uint32 x, y; |
| 46 | |
| 47 | /* Check to make sure unsigned arithmetic does wraps properly */ |
| 48 | x = ~((kmp_uint32)0) - 2; |
| 49 | y = x - 2; |
| 50 | |
| 51 | for (i = 0; i < 8; ++i, ++x, ++y) { |
| 52 | kmp_uint32 z = (x - y); |
| 53 | KMP_ASSERT(z == 2); |
| 54 | } |
| 55 | |
| 56 | KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0); |
| 57 | } |
| 58 | |
| 59 | /* ------------------------------------------------------------------------ */ |
| 60 | /* test and set locks */ |
| 61 | |
| 62 | // For the non-nested locks, we can only assume that the first 4 bytes were |
| 63 | // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel |
| 64 | // compiler only allocates a 4 byte pointer on IA-32 architecture. On |
| 65 | // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated. |
| 66 | // |
| 67 | // gcc reserves >= 8 bytes for nested locks, so we can assume that the |
| 68 | // entire 8 bytes were allocated for nested locks on all 64-bit platforms. |
| 69 | |
| 70 | static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) { |
| 71 | return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1; |
| 72 | } |
| 73 | |
| 74 | static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) { |
| 75 | return lck->lk.depth_locked != -1; |
| 76 | } |
| 77 | |
| 78 | __forceinline static int |
| 79 | __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 80 | KMP_MB(); |
| 81 | |
| 82 | #ifdef USE_LOCK_PROFILE |
| 83 | kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll); |
| 84 | if ((curr != 0) && (curr != gtid + 1)) |
| 85 | __kmp_printf("LOCK CONTENTION: %p\n" , lck); |
| 86 | /* else __kmp_printf( "." );*/ |
| 87 | #endif /* USE_LOCK_PROFILE */ |
| 88 | |
| 89 | kmp_int32 tas_free = KMP_LOCK_FREE(tas); |
| 90 | kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); |
| 91 | |
| 92 | if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && |
| 93 | __kmp_atomic_compare_store_acq(p: &lck->lk.poll, expected: tas_free, desired: tas_busy)) { |
| 94 | KMP_FSYNC_ACQUIRED(lck); |
| 95 | return KMP_LOCK_ACQUIRED_FIRST; |
| 96 | } |
| 97 | |
| 98 | kmp_uint32 spins; |
| 99 | kmp_uint64 time; |
| 100 | KMP_FSYNC_PREPARE(lck); |
| 101 | KMP_INIT_YIELD(spins); |
| 102 | KMP_INIT_BACKOFF(time); |
| 103 | kmp_backoff_t backoff = __kmp_spin_backoff_params; |
| 104 | do { |
| 105 | #if !KMP_HAVE_UMWAIT |
| 106 | __kmp_spin_backoff(&backoff); |
| 107 | #else |
| 108 | if (!__kmp_tpause_enabled) |
| 109 | __kmp_spin_backoff(&backoff); |
| 110 | #endif |
| 111 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); |
| 112 | } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free || |
| 113 | !__kmp_atomic_compare_store_acq(p: &lck->lk.poll, expected: tas_free, desired: tas_busy)); |
| 114 | KMP_FSYNC_ACQUIRED(lck); |
| 115 | return KMP_LOCK_ACQUIRED_FIRST; |
| 116 | } |
| 117 | |
| 118 | int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 119 | int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid); |
| 120 | return retval; |
| 121 | } |
| 122 | |
| 123 | static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| 124 | kmp_int32 gtid) { |
| 125 | char const *const func = "omp_set_lock" ; |
| 126 | if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| 127 | __kmp_is_tas_lock_nestable(lck)) { |
| 128 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 129 | } |
| 130 | if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) { |
| 131 | KMP_FATAL(LockIsAlreadyOwned, func); |
| 132 | } |
| 133 | return __kmp_acquire_tas_lock(lck, gtid); |
| 134 | } |
| 135 | |
| 136 | int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 137 | kmp_int32 tas_free = KMP_LOCK_FREE(tas); |
| 138 | kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); |
| 139 | if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && |
| 140 | __kmp_atomic_compare_store_acq(p: &lck->lk.poll, expected: tas_free, desired: tas_busy)) { |
| 141 | KMP_FSYNC_ACQUIRED(lck); |
| 142 | return TRUE; |
| 143 | } |
| 144 | return FALSE; |
| 145 | } |
| 146 | |
| 147 | static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| 148 | kmp_int32 gtid) { |
| 149 | char const *const func = "omp_test_lock" ; |
| 150 | if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| 151 | __kmp_is_tas_lock_nestable(lck)) { |
| 152 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 153 | } |
| 154 | return __kmp_test_tas_lock(lck, gtid); |
| 155 | } |
| 156 | |
| 157 | int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 158 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
| 159 | |
| 160 | KMP_FSYNC_RELEASING(lck); |
| 161 | KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas)); |
| 162 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
| 163 | |
| 164 | KMP_YIELD_OVERSUB(); |
| 165 | return KMP_LOCK_RELEASED; |
| 166 | } |
| 167 | |
| 168 | static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| 169 | kmp_int32 gtid) { |
| 170 | char const *const func = "omp_unset_lock" ; |
| 171 | KMP_MB(); /* in case another processor initialized lock */ |
| 172 | if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| 173 | __kmp_is_tas_lock_nestable(lck)) { |
| 174 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 175 | } |
| 176 | if (__kmp_get_tas_lock_owner(lck) == -1) { |
| 177 | KMP_FATAL(LockUnsettingFree, func); |
| 178 | } |
| 179 | if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) && |
| 180 | (__kmp_get_tas_lock_owner(lck) != gtid)) { |
| 181 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 182 | } |
| 183 | return __kmp_release_tas_lock(lck, gtid); |
| 184 | } |
| 185 | |
| 186 | void __kmp_init_tas_lock(kmp_tas_lock_t *lck) { |
| 187 | lck->lk.poll = KMP_LOCK_FREE(tas); |
| 188 | } |
| 189 | |
| 190 | void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; } |
| 191 | |
| 192 | static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| 193 | char const *const func = "omp_destroy_lock" ; |
| 194 | if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && |
| 195 | __kmp_is_tas_lock_nestable(lck)) { |
| 196 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 197 | } |
| 198 | if (__kmp_get_tas_lock_owner(lck) != -1) { |
| 199 | KMP_FATAL(LockStillOwned, func); |
| 200 | } |
| 201 | __kmp_destroy_tas_lock(lck); |
| 202 | } |
| 203 | |
| 204 | // nested test and set locks |
| 205 | |
| 206 | int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 207 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 208 | |
| 209 | if (__kmp_get_tas_lock_owner(lck) == gtid) { |
| 210 | lck->lk.depth_locked += 1; |
| 211 | return KMP_LOCK_ACQUIRED_NEXT; |
| 212 | } else { |
| 213 | __kmp_acquire_tas_lock_timed_template(lck, gtid); |
| 214 | lck->lk.depth_locked = 1; |
| 215 | return KMP_LOCK_ACQUIRED_FIRST; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| 220 | kmp_int32 gtid) { |
| 221 | char const *const func = "omp_set_nest_lock" ; |
| 222 | if (!__kmp_is_tas_lock_nestable(lck)) { |
| 223 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 224 | } |
| 225 | return __kmp_acquire_nested_tas_lock(lck, gtid); |
| 226 | } |
| 227 | |
| 228 | int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 229 | int retval; |
| 230 | |
| 231 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 232 | |
| 233 | if (__kmp_get_tas_lock_owner(lck) == gtid) { |
| 234 | retval = ++lck->lk.depth_locked; |
| 235 | } else if (!__kmp_test_tas_lock(lck, gtid)) { |
| 236 | retval = 0; |
| 237 | } else { |
| 238 | KMP_MB(); |
| 239 | retval = lck->lk.depth_locked = 1; |
| 240 | } |
| 241 | return retval; |
| 242 | } |
| 243 | |
| 244 | static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| 245 | kmp_int32 gtid) { |
| 246 | char const *const func = "omp_test_nest_lock" ; |
| 247 | if (!__kmp_is_tas_lock_nestable(lck)) { |
| 248 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 249 | } |
| 250 | return __kmp_test_nested_tas_lock(lck, gtid); |
| 251 | } |
| 252 | |
| 253 | int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { |
| 254 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 255 | |
| 256 | KMP_MB(); |
| 257 | if (--(lck->lk.depth_locked) == 0) { |
| 258 | __kmp_release_tas_lock(lck, gtid); |
| 259 | return KMP_LOCK_RELEASED; |
| 260 | } |
| 261 | return KMP_LOCK_STILL_HELD; |
| 262 | } |
| 263 | |
| 264 | static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, |
| 265 | kmp_int32 gtid) { |
| 266 | char const *const func = "omp_unset_nest_lock" ; |
| 267 | KMP_MB(); /* in case another processor initialized lock */ |
| 268 | if (!__kmp_is_tas_lock_nestable(lck)) { |
| 269 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 270 | } |
| 271 | if (__kmp_get_tas_lock_owner(lck) == -1) { |
| 272 | KMP_FATAL(LockUnsettingFree, func); |
| 273 | } |
| 274 | if (__kmp_get_tas_lock_owner(lck) != gtid) { |
| 275 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 276 | } |
| 277 | return __kmp_release_nested_tas_lock(lck, gtid); |
| 278 | } |
| 279 | |
| 280 | void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) { |
| 281 | __kmp_init_tas_lock(lck); |
| 282 | lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| 283 | } |
| 284 | |
| 285 | void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) { |
| 286 | __kmp_destroy_tas_lock(lck); |
| 287 | lck->lk.depth_locked = 0; |
| 288 | } |
| 289 | |
| 290 | static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| 291 | char const *const func = "omp_destroy_nest_lock" ; |
| 292 | if (!__kmp_is_tas_lock_nestable(lck)) { |
| 293 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 294 | } |
| 295 | if (__kmp_get_tas_lock_owner(lck) != -1) { |
| 296 | KMP_FATAL(LockStillOwned, func); |
| 297 | } |
| 298 | __kmp_destroy_nested_tas_lock(lck); |
| 299 | } |
| 300 | |
| 301 | #if KMP_USE_FUTEX |
| 302 | |
| 303 | /* ------------------------------------------------------------------------ */ |
| 304 | /* futex locks */ |
| 305 | |
| 306 | // futex locks are really just test and set locks, with a different method |
| 307 | // of handling contention. They take the same amount of space as test and |
| 308 | // set locks, and are allocated the same way (i.e. use the area allocated by |
| 309 | // the compiler for non-nested locks / allocate nested locks on the heap). |
| 310 | |
| 311 | static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) { |
| 312 | return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1; |
| 313 | } |
| 314 | |
| 315 | static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) { |
| 316 | return lck->lk.depth_locked != -1; |
| 317 | } |
| 318 | |
| 319 | __forceinline static int |
| 320 | __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 321 | kmp_int32 gtid_code = (gtid + 1) << 1; |
| 322 | |
| 323 | KMP_MB(); |
| 324 | |
| 325 | #ifdef USE_LOCK_PROFILE |
| 326 | kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll)); |
| 327 | if ((curr != 0) && (curr != gtid_code)) |
| 328 | __kmp_printf("LOCK CONTENTION: %p\n" , lck); |
| 329 | /* else __kmp_printf( "." );*/ |
| 330 | #endif /* USE_LOCK_PROFILE */ |
| 331 | |
| 332 | KMP_FSYNC_PREPARE(lck); |
| 333 | KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n" , |
| 334 | lck, lck->lk.poll, gtid)); |
| 335 | |
| 336 | kmp_int32 poll_val; |
| 337 | |
| 338 | while ((poll_val = KMP_COMPARE_AND_STORE_RET32( |
| 339 | &(lck->lk.poll), KMP_LOCK_FREE(futex), |
| 340 | KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { |
| 341 | |
| 342 | kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; |
| 343 | KA_TRACE( |
| 344 | 1000, |
| 345 | ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n" , |
| 346 | lck, gtid, poll_val, cond)); |
| 347 | |
| 348 | // NOTE: if you try to use the following condition for this branch |
| 349 | // |
| 350 | // if ( poll_val & 1 == 0 ) |
| 351 | // |
| 352 | // Then the 12.0 compiler has a bug where the following block will |
| 353 | // always be skipped, regardless of the value of the LSB of poll_val. |
| 354 | if (!cond) { |
| 355 | // Try to set the lsb in the poll to indicate to the owner |
| 356 | // thread that they need to wake this thread up. |
| 357 | if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val, |
| 358 | poll_val | KMP_LOCK_BUSY(1, futex))) { |
| 359 | KA_TRACE( |
| 360 | 1000, |
| 361 | ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n" , |
| 362 | lck, lck->lk.poll, gtid)); |
| 363 | continue; |
| 364 | } |
| 365 | poll_val |= KMP_LOCK_BUSY(1, futex); |
| 366 | |
| 367 | KA_TRACE(1000, |
| 368 | ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n" , lck, |
| 369 | lck->lk.poll, gtid)); |
| 370 | } |
| 371 | |
| 372 | KA_TRACE( |
| 373 | 1000, |
| 374 | ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n" , |
| 375 | lck, gtid, poll_val)); |
| 376 | |
| 377 | long rc; |
| 378 | if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL, |
| 379 | NULL, 0)) != 0) { |
| 380 | KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) " |
| 381 | "failed (rc=%ld errno=%d)\n" , |
| 382 | lck, gtid, poll_val, rc, errno)); |
| 383 | continue; |
| 384 | } |
| 385 | |
| 386 | KA_TRACE(1000, |
| 387 | ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n" , |
| 388 | lck, gtid, poll_val)); |
| 389 | // This thread has now done a successful futex wait call and was entered on |
| 390 | // the OS futex queue. We must now perform a futex wake call when releasing |
| 391 | // the lock, as we have no idea how many other threads are in the queue. |
| 392 | gtid_code |= 1; |
| 393 | } |
| 394 | |
| 395 | KMP_FSYNC_ACQUIRED(lck); |
| 396 | KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n" , lck, |
| 397 | lck->lk.poll, gtid)); |
| 398 | return KMP_LOCK_ACQUIRED_FIRST; |
| 399 | } |
| 400 | |
| 401 | int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 402 | int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid); |
| 403 | return retval; |
| 404 | } |
| 405 | |
| 406 | static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| 407 | kmp_int32 gtid) { |
| 408 | char const *const func = "omp_set_lock" ; |
| 409 | if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| 410 | __kmp_is_futex_lock_nestable(lck)) { |
| 411 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 412 | } |
| 413 | if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) { |
| 414 | KMP_FATAL(LockIsAlreadyOwned, func); |
| 415 | } |
| 416 | return __kmp_acquire_futex_lock(lck, gtid); |
| 417 | } |
| 418 | |
| 419 | int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 420 | if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex), |
| 421 | KMP_LOCK_BUSY((gtid + 1) << 1, futex))) { |
| 422 | KMP_FSYNC_ACQUIRED(lck); |
| 423 | return TRUE; |
| 424 | } |
| 425 | return FALSE; |
| 426 | } |
| 427 | |
| 428 | static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| 429 | kmp_int32 gtid) { |
| 430 | char const *const func = "omp_test_lock" ; |
| 431 | if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| 432 | __kmp_is_futex_lock_nestable(lck)) { |
| 433 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 434 | } |
| 435 | return __kmp_test_futex_lock(lck, gtid); |
| 436 | } |
| 437 | |
| 438 | int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 439 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
| 440 | |
| 441 | KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n" , |
| 442 | lck, lck->lk.poll, gtid)); |
| 443 | |
| 444 | KMP_FSYNC_RELEASING(lck); |
| 445 | |
| 446 | kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex)); |
| 447 | |
| 448 | KA_TRACE(1000, |
| 449 | ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n" , |
| 450 | lck, gtid, poll_val)); |
| 451 | |
| 452 | if (KMP_LOCK_STRIP(poll_val) & 1) { |
| 453 | KA_TRACE(1000, |
| 454 | ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n" , |
| 455 | lck, gtid)); |
| 456 | syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), |
| 457 | NULL, NULL, 0); |
| 458 | } |
| 459 | |
| 460 | KMP_MB(); /* Flush all pending memory write invalidates. */ |
| 461 | |
| 462 | KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n" , lck, |
| 463 | lck->lk.poll, gtid)); |
| 464 | |
| 465 | KMP_YIELD_OVERSUB(); |
| 466 | return KMP_LOCK_RELEASED; |
| 467 | } |
| 468 | |
| 469 | static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| 470 | kmp_int32 gtid) { |
| 471 | char const *const func = "omp_unset_lock" ; |
| 472 | KMP_MB(); /* in case another processor initialized lock */ |
| 473 | if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| 474 | __kmp_is_futex_lock_nestable(lck)) { |
| 475 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 476 | } |
| 477 | if (__kmp_get_futex_lock_owner(lck) == -1) { |
| 478 | KMP_FATAL(LockUnsettingFree, func); |
| 479 | } |
| 480 | if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) && |
| 481 | (__kmp_get_futex_lock_owner(lck) != gtid)) { |
| 482 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 483 | } |
| 484 | return __kmp_release_futex_lock(lck, gtid); |
| 485 | } |
| 486 | |
| 487 | void __kmp_init_futex_lock(kmp_futex_lock_t *lck) { |
| 488 | TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex)); |
| 489 | } |
| 490 | |
| 491 | void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; } |
| 492 | |
| 493 | static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| 494 | char const *const func = "omp_destroy_lock" ; |
| 495 | if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && |
| 496 | __kmp_is_futex_lock_nestable(lck)) { |
| 497 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 498 | } |
| 499 | if (__kmp_get_futex_lock_owner(lck) != -1) { |
| 500 | KMP_FATAL(LockStillOwned, func); |
| 501 | } |
| 502 | __kmp_destroy_futex_lock(lck); |
| 503 | } |
| 504 | |
| 505 | // nested futex locks |
| 506 | |
| 507 | int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 508 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 509 | |
| 510 | if (__kmp_get_futex_lock_owner(lck) == gtid) { |
| 511 | lck->lk.depth_locked += 1; |
| 512 | return KMP_LOCK_ACQUIRED_NEXT; |
| 513 | } else { |
| 514 | __kmp_acquire_futex_lock_timed_template(lck, gtid); |
| 515 | lck->lk.depth_locked = 1; |
| 516 | return KMP_LOCK_ACQUIRED_FIRST; |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| 521 | kmp_int32 gtid) { |
| 522 | char const *const func = "omp_set_nest_lock" ; |
| 523 | if (!__kmp_is_futex_lock_nestable(lck)) { |
| 524 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 525 | } |
| 526 | return __kmp_acquire_nested_futex_lock(lck, gtid); |
| 527 | } |
| 528 | |
| 529 | int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 530 | int retval; |
| 531 | |
| 532 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 533 | |
| 534 | if (__kmp_get_futex_lock_owner(lck) == gtid) { |
| 535 | retval = ++lck->lk.depth_locked; |
| 536 | } else if (!__kmp_test_futex_lock(lck, gtid)) { |
| 537 | retval = 0; |
| 538 | } else { |
| 539 | KMP_MB(); |
| 540 | retval = lck->lk.depth_locked = 1; |
| 541 | } |
| 542 | return retval; |
| 543 | } |
| 544 | |
| 545 | static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| 546 | kmp_int32 gtid) { |
| 547 | char const *const func = "omp_test_nest_lock" ; |
| 548 | if (!__kmp_is_futex_lock_nestable(lck)) { |
| 549 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 550 | } |
| 551 | return __kmp_test_nested_futex_lock(lck, gtid); |
| 552 | } |
| 553 | |
| 554 | int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { |
| 555 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 556 | |
| 557 | KMP_MB(); |
| 558 | if (--(lck->lk.depth_locked) == 0) { |
| 559 | __kmp_release_futex_lock(lck, gtid); |
| 560 | return KMP_LOCK_RELEASED; |
| 561 | } |
| 562 | return KMP_LOCK_STILL_HELD; |
| 563 | } |
| 564 | |
| 565 | static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, |
| 566 | kmp_int32 gtid) { |
| 567 | char const *const func = "omp_unset_nest_lock" ; |
| 568 | KMP_MB(); /* in case another processor initialized lock */ |
| 569 | if (!__kmp_is_futex_lock_nestable(lck)) { |
| 570 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 571 | } |
| 572 | if (__kmp_get_futex_lock_owner(lck) == -1) { |
| 573 | KMP_FATAL(LockUnsettingFree, func); |
| 574 | } |
| 575 | if (__kmp_get_futex_lock_owner(lck) != gtid) { |
| 576 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 577 | } |
| 578 | return __kmp_release_nested_futex_lock(lck, gtid); |
| 579 | } |
| 580 | |
| 581 | void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) { |
| 582 | __kmp_init_futex_lock(lck); |
| 583 | lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| 584 | } |
| 585 | |
| 586 | void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) { |
| 587 | __kmp_destroy_futex_lock(lck); |
| 588 | lck->lk.depth_locked = 0; |
| 589 | } |
| 590 | |
| 591 | static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| 592 | char const *const func = "omp_destroy_nest_lock" ; |
| 593 | if (!__kmp_is_futex_lock_nestable(lck)) { |
| 594 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 595 | } |
| 596 | if (__kmp_get_futex_lock_owner(lck) != -1) { |
| 597 | KMP_FATAL(LockStillOwned, func); |
| 598 | } |
| 599 | __kmp_destroy_nested_futex_lock(lck); |
| 600 | } |
| 601 | |
| 602 | #endif // KMP_USE_FUTEX |
| 603 | |
| 604 | /* ------------------------------------------------------------------------ */ |
| 605 | /* ticket (bakery) locks */ |
| 606 | |
| 607 | static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) { |
| 608 | return std::atomic_load_explicit(a: &lck->lk.owner_id, |
| 609 | m: std::memory_order_relaxed) - |
| 610 | 1; |
| 611 | } |
| 612 | |
| 613 | static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) { |
| 614 | return std::atomic_load_explicit(a: &lck->lk.depth_locked, |
| 615 | m: std::memory_order_relaxed) != -1; |
| 616 | } |
| 617 | |
| 618 | static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) { |
| 619 | return std::atomic_load_explicit(a: (std::atomic<unsigned> *)now_serving, |
| 620 | m: std::memory_order_acquire) == my_ticket; |
| 621 | } |
| 622 | |
| 623 | __forceinline static int |
| 624 | __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck, |
| 625 | kmp_int32 gtid) { |
| 626 | kmp_uint32 my_ticket = std::atomic_fetch_add_explicit( |
| 627 | a: &lck->lk.next_ticket, i: 1U, m: std::memory_order_relaxed); |
| 628 | |
| 629 | #ifdef USE_LOCK_PROFILE |
| 630 | if (std::atomic_load_explicit(&lck->lk.now_serving, |
| 631 | std::memory_order_relaxed) != my_ticket) |
| 632 | __kmp_printf("LOCK CONTENTION: %p\n" , lck); |
| 633 | /* else __kmp_printf( "." );*/ |
| 634 | #endif /* USE_LOCK_PROFILE */ |
| 635 | |
| 636 | if (std::atomic_load_explicit(a: &lck->lk.now_serving, |
| 637 | m: std::memory_order_acquire) == my_ticket) { |
| 638 | return KMP_LOCK_ACQUIRED_FIRST; |
| 639 | } |
| 640 | KMP_WAIT_PTR(spinner: &lck->lk.now_serving, checker: my_ticket, pred: __kmp_bakery_check, obj: lck); |
| 641 | return KMP_LOCK_ACQUIRED_FIRST; |
| 642 | } |
| 643 | |
| 644 | int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| 645 | int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid); |
| 646 | return retval; |
| 647 | } |
| 648 | |
| 649 | static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| 650 | kmp_int32 gtid) { |
| 651 | char const *const func = "omp_set_lock" ; |
| 652 | |
| 653 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 654 | m: std::memory_order_relaxed)) { |
| 655 | KMP_FATAL(LockIsUninitialized, func); |
| 656 | } |
| 657 | if (lck->lk.self != lck) { |
| 658 | KMP_FATAL(LockIsUninitialized, func); |
| 659 | } |
| 660 | if (__kmp_is_ticket_lock_nestable(lck)) { |
| 661 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 662 | } |
| 663 | if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) { |
| 664 | KMP_FATAL(LockIsAlreadyOwned, func); |
| 665 | } |
| 666 | |
| 667 | __kmp_acquire_ticket_lock(lck, gtid); |
| 668 | |
| 669 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: gtid + 1, |
| 670 | m: std::memory_order_relaxed); |
| 671 | return KMP_LOCK_ACQUIRED_FIRST; |
| 672 | } |
| 673 | |
| 674 | int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| 675 | kmp_uint32 my_ticket = std::atomic_load_explicit(a: &lck->lk.next_ticket, |
| 676 | m: std::memory_order_relaxed); |
| 677 | |
| 678 | if (std::atomic_load_explicit(a: &lck->lk.now_serving, |
| 679 | m: std::memory_order_relaxed) == my_ticket) { |
| 680 | kmp_uint32 next_ticket = my_ticket + 1; |
| 681 | if (std::atomic_compare_exchange_strong_explicit( |
| 682 | a: &lck->lk.next_ticket, i1: &my_ticket, i2: next_ticket, |
| 683 | m1: std::memory_order_acquire, m2: std::memory_order_acquire)) { |
| 684 | return TRUE; |
| 685 | } |
| 686 | } |
| 687 | return FALSE; |
| 688 | } |
| 689 | |
| 690 | static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| 691 | kmp_int32 gtid) { |
| 692 | char const *const func = "omp_test_lock" ; |
| 693 | |
| 694 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 695 | m: std::memory_order_relaxed)) { |
| 696 | KMP_FATAL(LockIsUninitialized, func); |
| 697 | } |
| 698 | if (lck->lk.self != lck) { |
| 699 | KMP_FATAL(LockIsUninitialized, func); |
| 700 | } |
| 701 | if (__kmp_is_ticket_lock_nestable(lck)) { |
| 702 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 703 | } |
| 704 | |
| 705 | int retval = __kmp_test_ticket_lock(lck, gtid); |
| 706 | |
| 707 | if (retval) { |
| 708 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: gtid + 1, |
| 709 | m: std::memory_order_relaxed); |
| 710 | } |
| 711 | return retval; |
| 712 | } |
| 713 | |
| 714 | int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| 715 | kmp_uint32 distance = std::atomic_load_explicit(a: &lck->lk.next_ticket, |
| 716 | m: std::memory_order_relaxed) - |
| 717 | std::atomic_load_explicit(a: &lck->lk.now_serving, |
| 718 | m: std::memory_order_relaxed); |
| 719 | |
| 720 | std::atomic_fetch_add_explicit(a: &lck->lk.now_serving, i: 1U, |
| 721 | m: std::memory_order_release); |
| 722 | |
| 723 | KMP_YIELD(distance > |
| 724 | (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); |
| 725 | return KMP_LOCK_RELEASED; |
| 726 | } |
| 727 | |
| 728 | static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| 729 | kmp_int32 gtid) { |
| 730 | char const *const func = "omp_unset_lock" ; |
| 731 | |
| 732 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 733 | m: std::memory_order_relaxed)) { |
| 734 | KMP_FATAL(LockIsUninitialized, func); |
| 735 | } |
| 736 | if (lck->lk.self != lck) { |
| 737 | KMP_FATAL(LockIsUninitialized, func); |
| 738 | } |
| 739 | if (__kmp_is_ticket_lock_nestable(lck)) { |
| 740 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 741 | } |
| 742 | if (__kmp_get_ticket_lock_owner(lck) == -1) { |
| 743 | KMP_FATAL(LockUnsettingFree, func); |
| 744 | } |
| 745 | if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) && |
| 746 | (__kmp_get_ticket_lock_owner(lck) != gtid)) { |
| 747 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 748 | } |
| 749 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: 0, m: std::memory_order_relaxed); |
| 750 | return __kmp_release_ticket_lock(lck, gtid); |
| 751 | } |
| 752 | |
| 753 | void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) { |
| 754 | lck->lk.location = NULL; |
| 755 | lck->lk.self = lck; |
| 756 | std::atomic_store_explicit(a: &lck->lk.next_ticket, i: 0U, |
| 757 | m: std::memory_order_relaxed); |
| 758 | std::atomic_store_explicit(a: &lck->lk.now_serving, i: 0U, |
| 759 | m: std::memory_order_relaxed); |
| 760 | std::atomic_store_explicit( |
| 761 | a: &lck->lk.owner_id, i: 0, |
| 762 | m: std::memory_order_relaxed); // no thread owns the lock. |
| 763 | std::atomic_store_explicit( |
| 764 | a: &lck->lk.depth_locked, i: -1, |
| 765 | m: std::memory_order_relaxed); // -1 => not a nested lock. |
| 766 | std::atomic_store_explicit(a: &lck->lk.initialized, i: true, |
| 767 | m: std::memory_order_release); |
| 768 | } |
| 769 | |
| 770 | void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) { |
| 771 | std::atomic_store_explicit(a: &lck->lk.initialized, i: false, |
| 772 | m: std::memory_order_release); |
| 773 | lck->lk.self = NULL; |
| 774 | lck->lk.location = NULL; |
| 775 | std::atomic_store_explicit(a: &lck->lk.next_ticket, i: 0U, |
| 776 | m: std::memory_order_relaxed); |
| 777 | std::atomic_store_explicit(a: &lck->lk.now_serving, i: 0U, |
| 778 | m: std::memory_order_relaxed); |
| 779 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: 0, m: std::memory_order_relaxed); |
| 780 | std::atomic_store_explicit(a: &lck->lk.depth_locked, i: -1, |
| 781 | m: std::memory_order_relaxed); |
| 782 | } |
| 783 | |
| 784 | static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| 785 | char const *const func = "omp_destroy_lock" ; |
| 786 | |
| 787 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 788 | m: std::memory_order_relaxed)) { |
| 789 | KMP_FATAL(LockIsUninitialized, func); |
| 790 | } |
| 791 | if (lck->lk.self != lck) { |
| 792 | KMP_FATAL(LockIsUninitialized, func); |
| 793 | } |
| 794 | if (__kmp_is_ticket_lock_nestable(lck)) { |
| 795 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 796 | } |
| 797 | if (__kmp_get_ticket_lock_owner(lck) != -1) { |
| 798 | KMP_FATAL(LockStillOwned, func); |
| 799 | } |
| 800 | __kmp_destroy_ticket_lock(lck); |
| 801 | } |
| 802 | |
| 803 | // nested ticket locks |
| 804 | |
| 805 | int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| 806 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 807 | |
| 808 | if (__kmp_get_ticket_lock_owner(lck) == gtid) { |
| 809 | std::atomic_fetch_add_explicit(a: &lck->lk.depth_locked, i: 1, |
| 810 | m: std::memory_order_relaxed); |
| 811 | return KMP_LOCK_ACQUIRED_NEXT; |
| 812 | } else { |
| 813 | __kmp_acquire_ticket_lock_timed_template(lck, gtid); |
| 814 | std::atomic_store_explicit(a: &lck->lk.depth_locked, i: 1, |
| 815 | m: std::memory_order_relaxed); |
| 816 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: gtid + 1, |
| 817 | m: std::memory_order_relaxed); |
| 818 | return KMP_LOCK_ACQUIRED_FIRST; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| 823 | kmp_int32 gtid) { |
| 824 | char const *const func = "omp_set_nest_lock" ; |
| 825 | |
| 826 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 827 | m: std::memory_order_relaxed)) { |
| 828 | KMP_FATAL(LockIsUninitialized, func); |
| 829 | } |
| 830 | if (lck->lk.self != lck) { |
| 831 | KMP_FATAL(LockIsUninitialized, func); |
| 832 | } |
| 833 | if (!__kmp_is_ticket_lock_nestable(lck)) { |
| 834 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 835 | } |
| 836 | return __kmp_acquire_nested_ticket_lock(lck, gtid); |
| 837 | } |
| 838 | |
| 839 | int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| 840 | int retval; |
| 841 | |
| 842 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 843 | |
| 844 | if (__kmp_get_ticket_lock_owner(lck) == gtid) { |
| 845 | retval = std::atomic_fetch_add_explicit(a: &lck->lk.depth_locked, i: 1, |
| 846 | m: std::memory_order_relaxed) + |
| 847 | 1; |
| 848 | } else if (!__kmp_test_ticket_lock(lck, gtid)) { |
| 849 | retval = 0; |
| 850 | } else { |
| 851 | std::atomic_store_explicit(a: &lck->lk.depth_locked, i: 1, |
| 852 | m: std::memory_order_relaxed); |
| 853 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: gtid + 1, |
| 854 | m: std::memory_order_relaxed); |
| 855 | retval = 1; |
| 856 | } |
| 857 | return retval; |
| 858 | } |
| 859 | |
| 860 | static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| 861 | kmp_int32 gtid) { |
| 862 | char const *const func = "omp_test_nest_lock" ; |
| 863 | |
| 864 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 865 | m: std::memory_order_relaxed)) { |
| 866 | KMP_FATAL(LockIsUninitialized, func); |
| 867 | } |
| 868 | if (lck->lk.self != lck) { |
| 869 | KMP_FATAL(LockIsUninitialized, func); |
| 870 | } |
| 871 | if (!__kmp_is_ticket_lock_nestable(lck)) { |
| 872 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 873 | } |
| 874 | return __kmp_test_nested_ticket_lock(lck, gtid); |
| 875 | } |
| 876 | |
| 877 | int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { |
| 878 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 879 | |
| 880 | if ((std::atomic_fetch_add_explicit(a: &lck->lk.depth_locked, i: -1, |
| 881 | m: std::memory_order_relaxed) - |
| 882 | 1) == 0) { |
| 883 | std::atomic_store_explicit(a: &lck->lk.owner_id, i: 0, m: std::memory_order_relaxed); |
| 884 | __kmp_release_ticket_lock(lck, gtid); |
| 885 | return KMP_LOCK_RELEASED; |
| 886 | } |
| 887 | return KMP_LOCK_STILL_HELD; |
| 888 | } |
| 889 | |
| 890 | static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, |
| 891 | kmp_int32 gtid) { |
| 892 | char const *const func = "omp_unset_nest_lock" ; |
| 893 | |
| 894 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 895 | m: std::memory_order_relaxed)) { |
| 896 | KMP_FATAL(LockIsUninitialized, func); |
| 897 | } |
| 898 | if (lck->lk.self != lck) { |
| 899 | KMP_FATAL(LockIsUninitialized, func); |
| 900 | } |
| 901 | if (!__kmp_is_ticket_lock_nestable(lck)) { |
| 902 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 903 | } |
| 904 | if (__kmp_get_ticket_lock_owner(lck) == -1) { |
| 905 | KMP_FATAL(LockUnsettingFree, func); |
| 906 | } |
| 907 | if (__kmp_get_ticket_lock_owner(lck) != gtid) { |
| 908 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 909 | } |
| 910 | return __kmp_release_nested_ticket_lock(lck, gtid); |
| 911 | } |
| 912 | |
| 913 | void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) { |
| 914 | __kmp_init_ticket_lock(lck); |
| 915 | std::atomic_store_explicit(a: &lck->lk.depth_locked, i: 0, |
| 916 | m: std::memory_order_relaxed); |
| 917 | // >= 0 for nestable locks, -1 for simple locks |
| 918 | } |
| 919 | |
| 920 | void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) { |
| 921 | __kmp_destroy_ticket_lock(lck); |
| 922 | std::atomic_store_explicit(a: &lck->lk.depth_locked, i: 0, |
| 923 | m: std::memory_order_relaxed); |
| 924 | } |
| 925 | |
| 926 | static void |
| 927 | __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| 928 | char const *const func = "omp_destroy_nest_lock" ; |
| 929 | |
| 930 | if (!std::atomic_load_explicit(a: &lck->lk.initialized, |
| 931 | m: std::memory_order_relaxed)) { |
| 932 | KMP_FATAL(LockIsUninitialized, func); |
| 933 | } |
| 934 | if (lck->lk.self != lck) { |
| 935 | KMP_FATAL(LockIsUninitialized, func); |
| 936 | } |
| 937 | if (!__kmp_is_ticket_lock_nestable(lck)) { |
| 938 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 939 | } |
| 940 | if (__kmp_get_ticket_lock_owner(lck) != -1) { |
| 941 | KMP_FATAL(LockStillOwned, func); |
| 942 | } |
| 943 | __kmp_destroy_nested_ticket_lock(lck); |
| 944 | } |
| 945 | |
| 946 | // access functions to fields which don't exist for all lock kinds. |
| 947 | |
| 948 | static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) { |
| 949 | return lck->lk.location; |
| 950 | } |
| 951 | |
| 952 | static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck, |
| 953 | const ident_t *loc) { |
| 954 | lck->lk.location = loc; |
| 955 | } |
| 956 | |
| 957 | static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) { |
| 958 | return lck->lk.flags; |
| 959 | } |
| 960 | |
| 961 | static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck, |
| 962 | kmp_lock_flags_t flags) { |
| 963 | lck->lk.flags = flags; |
| 964 | } |
| 965 | |
| 966 | /* ------------------------------------------------------------------------ */ |
| 967 | /* queuing locks */ |
| 968 | |
| 969 | /* First the states |
| 970 | (head,tail) = 0, 0 means lock is unheld, nobody on queue |
| 971 | UINT_MAX or -1, 0 means lock is held, nobody on queue |
| 972 | h, h means lock held or about to transition, |
| 973 | 1 element on queue |
| 974 | h, t h <> t, means lock is held or about to |
| 975 | transition, >1 elements on queue |
| 976 | |
| 977 | Now the transitions |
| 978 | Acquire(0,0) = -1 ,0 |
| 979 | Release(0,0) = Error |
| 980 | Acquire(-1,0) = h ,h h > 0 |
| 981 | Release(-1,0) = 0 ,0 |
| 982 | Acquire(h,h) = h ,t h > 0, t > 0, h <> t |
| 983 | Release(h,h) = -1 ,0 h > 0 |
| 984 | Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t' |
| 985 | Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t |
| 986 | |
| 987 | And pictorially |
| 988 | |
| 989 | +-----+ |
| 990 | | 0, 0|------- release -------> Error |
| 991 | +-----+ |
| 992 | | ^ |
| 993 | acquire| |release |
| 994 | | | |
| 995 | | | |
| 996 | v | |
| 997 | +-----+ |
| 998 | |-1, 0| |
| 999 | +-----+ |
| 1000 | | ^ |
| 1001 | acquire| |release |
| 1002 | | | |
| 1003 | | | |
| 1004 | v | |
| 1005 | +-----+ |
| 1006 | | h, h| |
| 1007 | +-----+ |
| 1008 | | ^ |
| 1009 | acquire| |release |
| 1010 | | | |
| 1011 | | | |
| 1012 | v | |
| 1013 | +-----+ |
| 1014 | | h, t|----- acquire, release loopback ---+ |
| 1015 | +-----+ | |
| 1016 | ^ | |
| 1017 | | | |
| 1018 | +------------------------------------+ |
| 1019 | */ |
| 1020 | |
| 1021 | #ifdef DEBUG_QUEUING_LOCKS |
| 1022 | |
| 1023 | /* Stuff for circular trace buffer */ |
| 1024 | #define TRACE_BUF_ELE 1024 |
| 1025 | static char traces[TRACE_BUF_ELE][128] = {0}; |
| 1026 | static int tc = 0; |
| 1027 | #define TRACE_LOCK(X, Y) \ |
| 1028 | KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y); |
| 1029 | #define TRACE_LOCK_T(X, Y, Z) \ |
| 1030 | KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z); |
| 1031 | #define TRACE_LOCK_HT(X, Y, Z, Q) \ |
| 1032 | KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \ |
| 1033 | Z, Q); |
| 1034 | |
| 1035 | static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid, |
| 1036 | kmp_queuing_lock_t *lck, kmp_int32 head_id, |
| 1037 | kmp_int32 tail_id) { |
| 1038 | kmp_int32 t, i; |
| 1039 | |
| 1040 | __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n" ); |
| 1041 | |
| 1042 | i = tc % TRACE_BUF_ELE; |
| 1043 | __kmp_printf_no_lock("%s\n" , traces[i]); |
| 1044 | i = (i + 1) % TRACE_BUF_ELE; |
| 1045 | while (i != (tc % TRACE_BUF_ELE)) { |
| 1046 | __kmp_printf_no_lock("%s" , traces[i]); |
| 1047 | i = (i + 1) % TRACE_BUF_ELE; |
| 1048 | } |
| 1049 | __kmp_printf_no_lock("\n" ); |
| 1050 | |
| 1051 | __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, " |
| 1052 | "next_wait:%d, head_id:%d, tail_id:%d\n" , |
| 1053 | gtid + 1, this_thr->th.th_spin_here, |
| 1054 | this_thr->th.th_next_waiting, head_id, tail_id); |
| 1055 | |
| 1056 | __kmp_printf_no_lock("\t\thead: %d " , lck->lk.head_id); |
| 1057 | |
| 1058 | if (lck->lk.head_id >= 1) { |
| 1059 | t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting; |
| 1060 | while (t > 0) { |
| 1061 | __kmp_printf_no_lock("-> %d " , t); |
| 1062 | t = __kmp_threads[t - 1]->th.th_next_waiting; |
| 1063 | } |
| 1064 | } |
| 1065 | __kmp_printf_no_lock("; tail: %d " , lck->lk.tail_id); |
| 1066 | __kmp_printf_no_lock("\n\n" ); |
| 1067 | } |
| 1068 | |
| 1069 | #endif /* DEBUG_QUEUING_LOCKS */ |
| 1070 | |
| 1071 | static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) { |
| 1072 | return TCR_4(lck->lk.owner_id) - 1; |
| 1073 | } |
| 1074 | |
| 1075 | static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) { |
| 1076 | return lck->lk.depth_locked != -1; |
| 1077 | } |
| 1078 | |
| 1079 | /* Acquire a lock using a the queuing lock implementation */ |
| 1080 | template <bool takeTime> |
| 1081 | /* [TLW] The unused template above is left behind because of what BEB believes |
| 1082 | is a potential compiler problem with __forceinline. */ |
| 1083 | __forceinline static int |
| 1084 | __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck, |
| 1085 | kmp_int32 gtid) { |
| 1086 | kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid); |
| 1087 | volatile kmp_int32 *head_id_p = &lck->lk.head_id; |
| 1088 | volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; |
| 1089 | volatile kmp_uint32 *spin_here_p; |
| 1090 | |
| 1091 | #if OMPT_SUPPORT |
| 1092 | ompt_state_t prev_state = ompt_state_undefined; |
| 1093 | #endif |
| 1094 | |
| 1095 | KA_TRACE(1000, |
| 1096 | ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n" , lck, gtid)); |
| 1097 | |
| 1098 | KMP_FSYNC_PREPARE(lck); |
| 1099 | KMP_DEBUG_ASSERT(this_thr != NULL); |
| 1100 | spin_here_p = &this_thr->th.th_spin_here; |
| 1101 | |
| 1102 | #ifdef DEBUG_QUEUING_LOCKS |
| 1103 | TRACE_LOCK(gtid + 1, "acq ent" ); |
| 1104 | if (*spin_here_p) |
| 1105 | __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| 1106 | if (this_thr->th.th_next_waiting != 0) |
| 1107 | __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| 1108 | #endif |
| 1109 | KMP_DEBUG_ASSERT(!*spin_here_p); |
| 1110 | KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); |
| 1111 | |
| 1112 | /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to |
| 1113 | head_id_p that may follow, not just in execution order, but also in |
| 1114 | visibility order. This way, when a releasing thread observes the changes to |
| 1115 | the queue by this thread, it can rightly assume that spin_here_p has |
| 1116 | already been set to TRUE, so that when it sets spin_here_p to FALSE, it is |
| 1117 | not premature. If the releasing thread sets spin_here_p to FALSE before |
| 1118 | this thread sets it to TRUE, this thread will hang. */ |
| 1119 | *spin_here_p = TRUE; /* before enqueuing to prevent race */ |
| 1120 | |
| 1121 | while (1) { |
| 1122 | kmp_int32 enqueued; |
| 1123 | kmp_int32 head; |
| 1124 | kmp_int32 tail; |
| 1125 | |
| 1126 | head = *head_id_p; |
| 1127 | |
| 1128 | switch (head) { |
| 1129 | |
| 1130 | case -1: { |
| 1131 | #ifdef DEBUG_QUEUING_LOCKS |
| 1132 | tail = *tail_id_p; |
| 1133 | TRACE_LOCK_HT(gtid + 1, "acq read: " , head, tail); |
| 1134 | #endif |
| 1135 | tail = 0; /* to make sure next link asynchronously read is not set |
| 1136 | accidentally; this assignment prevents us from entering the |
| 1137 | if ( t > 0 ) condition in the enqueued case below, which is not |
| 1138 | necessary for this state transition */ |
| 1139 | |
| 1140 | /* try (-1,0)->(tid,tid) */ |
| 1141 | enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p, |
| 1142 | KMP_PACK_64(-1, 0), |
| 1143 | KMP_PACK_64(gtid + 1, gtid + 1)); |
| 1144 | #ifdef DEBUG_QUEUING_LOCKS |
| 1145 | if (enqueued) |
| 1146 | TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)" ); |
| 1147 | #endif |
| 1148 | } break; |
| 1149 | |
| 1150 | default: { |
| 1151 | tail = *tail_id_p; |
| 1152 | KMP_DEBUG_ASSERT(tail != gtid + 1); |
| 1153 | |
| 1154 | #ifdef DEBUG_QUEUING_LOCKS |
| 1155 | TRACE_LOCK_HT(gtid + 1, "acq read: " , head, tail); |
| 1156 | #endif |
| 1157 | |
| 1158 | if (tail == 0) { |
| 1159 | enqueued = FALSE; |
| 1160 | } else { |
| 1161 | /* try (h,t) or (h,h)->(h,tid) */ |
| 1162 | enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1); |
| 1163 | |
| 1164 | #ifdef DEBUG_QUEUING_LOCKS |
| 1165 | if (enqueued) |
| 1166 | TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)" ); |
| 1167 | #endif |
| 1168 | } |
| 1169 | } break; |
| 1170 | |
| 1171 | case 0: /* empty queue */ |
| 1172 | { |
| 1173 | kmp_int32 grabbed_lock; |
| 1174 | |
| 1175 | #ifdef DEBUG_QUEUING_LOCKS |
| 1176 | tail = *tail_id_p; |
| 1177 | TRACE_LOCK_HT(gtid + 1, "acq read: " , head, tail); |
| 1178 | #endif |
| 1179 | /* try (0,0)->(-1,0) */ |
| 1180 | |
| 1181 | /* only legal transition out of head = 0 is head = -1 with no change to |
| 1182 | * tail */ |
| 1183 | grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1); |
| 1184 | |
| 1185 | if (grabbed_lock) { |
| 1186 | |
| 1187 | *spin_here_p = FALSE; |
| 1188 | |
| 1189 | KA_TRACE( |
| 1190 | 1000, |
| 1191 | ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n" , |
| 1192 | lck, gtid)); |
| 1193 | #ifdef DEBUG_QUEUING_LOCKS |
| 1194 | TRACE_LOCK_HT(gtid + 1, "acq exit: " , head, 0); |
| 1195 | #endif |
| 1196 | |
| 1197 | #if OMPT_SUPPORT |
| 1198 | if (ompt_enabled.enabled && prev_state != ompt_state_undefined) { |
| 1199 | /* change the state before clearing wait_id */ |
| 1200 | this_thr->th.ompt_thread_info.state = prev_state; |
| 1201 | this_thr->th.ompt_thread_info.wait_id = 0; |
| 1202 | } |
| 1203 | #endif |
| 1204 | |
| 1205 | KMP_FSYNC_ACQUIRED(lck); |
| 1206 | return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */ |
| 1207 | } |
| 1208 | enqueued = FALSE; |
| 1209 | } break; |
| 1210 | } |
| 1211 | |
| 1212 | #if OMPT_SUPPORT |
| 1213 | if (ompt_enabled.enabled && prev_state == ompt_state_undefined) { |
| 1214 | /* this thread will spin; set wait_id before entering wait state */ |
| 1215 | prev_state = this_thr->th.ompt_thread_info.state; |
| 1216 | this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck; |
| 1217 | this_thr->th.ompt_thread_info.state = ompt_state_wait_lock; |
| 1218 | } |
| 1219 | #endif |
| 1220 | |
| 1221 | if (enqueued) { |
| 1222 | if (tail > 0) { |
| 1223 | kmp_info_t *tail_thr = __kmp_thread_from_gtid(gtid: tail - 1); |
| 1224 | KMP_ASSERT(tail_thr != NULL); |
| 1225 | tail_thr->th.th_next_waiting = gtid + 1; |
| 1226 | /* corresponding wait for this write in release code */ |
| 1227 | } |
| 1228 | KA_TRACE(1000, |
| 1229 | ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n" , |
| 1230 | lck, gtid)); |
| 1231 | |
| 1232 | KMP_MB(); |
| 1233 | // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf |
| 1234 | KMP_WAIT(spinner: spin_here_p, FALSE, KMP_EQ, obj: lck); |
| 1235 | // Synchronize writes to both runtime thread structures |
| 1236 | // and writes in user code. |
| 1237 | KMP_MB(); |
| 1238 | |
| 1239 | #ifdef DEBUG_QUEUING_LOCKS |
| 1240 | TRACE_LOCK(gtid + 1, "acq spin" ); |
| 1241 | |
| 1242 | if (this_thr->th.th_next_waiting != 0) |
| 1243 | __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| 1244 | #endif |
| 1245 | KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); |
| 1246 | KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after " |
| 1247 | "waiting on queue\n" , |
| 1248 | lck, gtid)); |
| 1249 | |
| 1250 | #ifdef DEBUG_QUEUING_LOCKS |
| 1251 | TRACE_LOCK(gtid + 1, "acq exit 2" ); |
| 1252 | #endif |
| 1253 | |
| 1254 | #if OMPT_SUPPORT |
| 1255 | /* change the state before clearing wait_id */ |
| 1256 | this_thr->th.ompt_thread_info.state = prev_state; |
| 1257 | this_thr->th.ompt_thread_info.wait_id = 0; |
| 1258 | #endif |
| 1259 | |
| 1260 | /* got lock, we were dequeued by the thread that released lock */ |
| 1261 | return KMP_LOCK_ACQUIRED_FIRST; |
| 1262 | } |
| 1263 | |
| 1264 | /* Yield if number of threads > number of logical processors */ |
| 1265 | /* ToDo: Not sure why this should only be in oversubscription case, |
| 1266 | maybe should be traditional YIELD_INIT/YIELD_WHEN loop */ |
| 1267 | KMP_YIELD_OVERSUB(); |
| 1268 | |
| 1269 | #ifdef DEBUG_QUEUING_LOCKS |
| 1270 | TRACE_LOCK(gtid + 1, "acq retry" ); |
| 1271 | #endif |
| 1272 | } |
| 1273 | KMP_ASSERT2(0, "should not get here" ); |
| 1274 | return KMP_LOCK_ACQUIRED_FIRST; |
| 1275 | } |
| 1276 | |
| 1277 | int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| 1278 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 1279 | |
| 1280 | int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); |
| 1281 | return retval; |
| 1282 | } |
| 1283 | |
| 1284 | static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 1285 | kmp_int32 gtid) { |
| 1286 | char const *const func = "omp_set_lock" ; |
| 1287 | if (lck->lk.initialized != lck) { |
| 1288 | KMP_FATAL(LockIsUninitialized, func); |
| 1289 | } |
| 1290 | if (__kmp_is_queuing_lock_nestable(lck)) { |
| 1291 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 1292 | } |
| 1293 | if (__kmp_get_queuing_lock_owner(lck) == gtid) { |
| 1294 | KMP_FATAL(LockIsAlreadyOwned, func); |
| 1295 | } |
| 1296 | |
| 1297 | __kmp_acquire_queuing_lock(lck, gtid); |
| 1298 | |
| 1299 | lck->lk.owner_id = gtid + 1; |
| 1300 | return KMP_LOCK_ACQUIRED_FIRST; |
| 1301 | } |
| 1302 | |
| 1303 | int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| 1304 | volatile kmp_int32 *head_id_p = &lck->lk.head_id; |
| 1305 | kmp_int32 head; |
| 1306 | #ifdef KMP_DEBUG |
| 1307 | kmp_info_t *this_thr; |
| 1308 | #endif |
| 1309 | |
| 1310 | KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n" , gtid)); |
| 1311 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 1312 | #ifdef KMP_DEBUG |
| 1313 | this_thr = __kmp_thread_from_gtid(gtid); |
| 1314 | KMP_DEBUG_ASSERT(this_thr != NULL); |
| 1315 | KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); |
| 1316 | #endif |
| 1317 | |
| 1318 | head = *head_id_p; |
| 1319 | |
| 1320 | if (head == 0) { /* nobody on queue, nobody holding */ |
| 1321 | /* try (0,0)->(-1,0) */ |
| 1322 | if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) { |
| 1323 | KA_TRACE(1000, |
| 1324 | ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n" , gtid)); |
| 1325 | KMP_FSYNC_ACQUIRED(lck); |
| 1326 | return TRUE; |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | KA_TRACE(1000, |
| 1331 | ("__kmp_test_queuing_lock: T#%d exiting: without lock\n" , gtid)); |
| 1332 | return FALSE; |
| 1333 | } |
| 1334 | |
| 1335 | static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 1336 | kmp_int32 gtid) { |
| 1337 | char const *const func = "omp_test_lock" ; |
| 1338 | if (lck->lk.initialized != lck) { |
| 1339 | KMP_FATAL(LockIsUninitialized, func); |
| 1340 | } |
| 1341 | if (__kmp_is_queuing_lock_nestable(lck)) { |
| 1342 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 1343 | } |
| 1344 | |
| 1345 | int retval = __kmp_test_queuing_lock(lck, gtid); |
| 1346 | |
| 1347 | if (retval) { |
| 1348 | lck->lk.owner_id = gtid + 1; |
| 1349 | } |
| 1350 | return retval; |
| 1351 | } |
| 1352 | |
| 1353 | int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| 1354 | volatile kmp_int32 *head_id_p = &lck->lk.head_id; |
| 1355 | volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; |
| 1356 | |
| 1357 | KA_TRACE(1000, |
| 1358 | ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n" , lck, gtid)); |
| 1359 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 1360 | #if KMP_DEBUG || DEBUG_QUEUING_LOCKS |
| 1361 | kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid); |
| 1362 | #endif |
| 1363 | KMP_DEBUG_ASSERT(this_thr != NULL); |
| 1364 | #ifdef DEBUG_QUEUING_LOCKS |
| 1365 | TRACE_LOCK(gtid + 1, "rel ent" ); |
| 1366 | |
| 1367 | if (this_thr->th.th_spin_here) |
| 1368 | __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| 1369 | if (this_thr->th.th_next_waiting != 0) |
| 1370 | __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); |
| 1371 | #endif |
| 1372 | KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); |
| 1373 | KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); |
| 1374 | |
| 1375 | KMP_FSYNC_RELEASING(lck); |
| 1376 | |
| 1377 | while (1) { |
| 1378 | kmp_int32 dequeued; |
| 1379 | kmp_int32 head; |
| 1380 | kmp_int32 tail; |
| 1381 | |
| 1382 | head = *head_id_p; |
| 1383 | |
| 1384 | #ifdef DEBUG_QUEUING_LOCKS |
| 1385 | tail = *tail_id_p; |
| 1386 | TRACE_LOCK_HT(gtid + 1, "rel read: " , head, tail); |
| 1387 | if (head == 0) |
| 1388 | __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| 1389 | #endif |
| 1390 | KMP_DEBUG_ASSERT(head != |
| 1391 | 0); /* holding the lock, head must be -1 or queue head */ |
| 1392 | |
| 1393 | if (head == -1) { /* nobody on queue */ |
| 1394 | /* try (-1,0)->(0,0) */ |
| 1395 | if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) { |
| 1396 | KA_TRACE( |
| 1397 | 1000, |
| 1398 | ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n" , |
| 1399 | lck, gtid)); |
| 1400 | #ifdef DEBUG_QUEUING_LOCKS |
| 1401 | TRACE_LOCK_HT(gtid + 1, "rel exit: " , 0, 0); |
| 1402 | #endif |
| 1403 | |
| 1404 | #if OMPT_SUPPORT |
| 1405 | /* nothing to do - no other thread is trying to shift blame */ |
| 1406 | #endif |
| 1407 | return KMP_LOCK_RELEASED; |
| 1408 | } |
| 1409 | dequeued = FALSE; |
| 1410 | } else { |
| 1411 | KMP_MB(); |
| 1412 | tail = *tail_id_p; |
| 1413 | if (head == tail) { /* only one thread on the queue */ |
| 1414 | #ifdef DEBUG_QUEUING_LOCKS |
| 1415 | if (head <= 0) |
| 1416 | __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| 1417 | #endif |
| 1418 | KMP_DEBUG_ASSERT(head > 0); |
| 1419 | |
| 1420 | /* try (h,h)->(-1,0) */ |
| 1421 | dequeued = KMP_COMPARE_AND_STORE_REL64( |
| 1422 | RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head), |
| 1423 | KMP_PACK_64(-1, 0)); |
| 1424 | #ifdef DEBUG_QUEUING_LOCKS |
| 1425 | TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)" ); |
| 1426 | #endif |
| 1427 | |
| 1428 | } else { |
| 1429 | volatile kmp_int32 *waiting_id_p; |
| 1430 | kmp_info_t *head_thr = __kmp_thread_from_gtid(gtid: head - 1); |
| 1431 | KMP_DEBUG_ASSERT(head_thr != NULL); |
| 1432 | waiting_id_p = &head_thr->th.th_next_waiting; |
| 1433 | |
| 1434 | /* Does this require synchronous reads? */ |
| 1435 | #ifdef DEBUG_QUEUING_LOCKS |
| 1436 | if (head <= 0 || tail <= 0) |
| 1437 | __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| 1438 | #endif |
| 1439 | KMP_DEBUG_ASSERT(head > 0 && tail > 0); |
| 1440 | |
| 1441 | /* try (h,t)->(h',t) or (t,t) */ |
| 1442 | KMP_MB(); |
| 1443 | /* make sure enqueuing thread has time to update next waiting thread |
| 1444 | * field */ |
| 1445 | *head_id_p = |
| 1446 | KMP_WAIT(spinner: (volatile kmp_uint32 *)waiting_id_p, checker: 0, KMP_NEQ, NULL); |
| 1447 | #ifdef DEBUG_QUEUING_LOCKS |
| 1448 | TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)" ); |
| 1449 | #endif |
| 1450 | dequeued = TRUE; |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | if (dequeued) { |
| 1455 | kmp_info_t *head_thr = __kmp_thread_from_gtid(gtid: head - 1); |
| 1456 | KMP_DEBUG_ASSERT(head_thr != NULL); |
| 1457 | |
| 1458 | /* Does this require synchronous reads? */ |
| 1459 | #ifdef DEBUG_QUEUING_LOCKS |
| 1460 | if (head <= 0 || tail <= 0) |
| 1461 | __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); |
| 1462 | #endif |
| 1463 | KMP_DEBUG_ASSERT(head > 0 && tail > 0); |
| 1464 | |
| 1465 | /* For clean code only. Thread not released until next statement prevents |
| 1466 | race with acquire code. */ |
| 1467 | head_thr->th.th_next_waiting = 0; |
| 1468 | #ifdef DEBUG_QUEUING_LOCKS |
| 1469 | TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=" , head); |
| 1470 | #endif |
| 1471 | |
| 1472 | KMP_MB(); |
| 1473 | /* reset spin value */ |
| 1474 | head_thr->th.th_spin_here = FALSE; |
| 1475 | |
| 1476 | KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after " |
| 1477 | "dequeuing\n" , |
| 1478 | lck, gtid)); |
| 1479 | #ifdef DEBUG_QUEUING_LOCKS |
| 1480 | TRACE_LOCK(gtid + 1, "rel exit 2" ); |
| 1481 | #endif |
| 1482 | return KMP_LOCK_RELEASED; |
| 1483 | } |
| 1484 | /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring |
| 1485 | threads */ |
| 1486 | |
| 1487 | #ifdef DEBUG_QUEUING_LOCKS |
| 1488 | TRACE_LOCK(gtid + 1, "rel retry" ); |
| 1489 | #endif |
| 1490 | |
| 1491 | } /* while */ |
| 1492 | KMP_ASSERT2(0, "should not get here" ); |
| 1493 | return KMP_LOCK_RELEASED; |
| 1494 | } |
| 1495 | |
| 1496 | static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 1497 | kmp_int32 gtid) { |
| 1498 | char const *const func = "omp_unset_lock" ; |
| 1499 | KMP_MB(); /* in case another processor initialized lock */ |
| 1500 | if (lck->lk.initialized != lck) { |
| 1501 | KMP_FATAL(LockIsUninitialized, func); |
| 1502 | } |
| 1503 | if (__kmp_is_queuing_lock_nestable(lck)) { |
| 1504 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 1505 | } |
| 1506 | if (__kmp_get_queuing_lock_owner(lck) == -1) { |
| 1507 | KMP_FATAL(LockUnsettingFree, func); |
| 1508 | } |
| 1509 | if (__kmp_get_queuing_lock_owner(lck) != gtid) { |
| 1510 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 1511 | } |
| 1512 | lck->lk.owner_id = 0; |
| 1513 | return __kmp_release_queuing_lock(lck, gtid); |
| 1514 | } |
| 1515 | |
| 1516 | void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) { |
| 1517 | lck->lk.location = NULL; |
| 1518 | lck->lk.head_id = 0; |
| 1519 | lck->lk.tail_id = 0; |
| 1520 | lck->lk.next_ticket = 0; |
| 1521 | lck->lk.now_serving = 0; |
| 1522 | lck->lk.owner_id = 0; // no thread owns the lock. |
| 1523 | lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. |
| 1524 | lck->lk.initialized = lck; |
| 1525 | |
| 1526 | KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n" , lck)); |
| 1527 | } |
| 1528 | |
| 1529 | void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) { |
| 1530 | lck->lk.initialized = NULL; |
| 1531 | lck->lk.location = NULL; |
| 1532 | lck->lk.head_id = 0; |
| 1533 | lck->lk.tail_id = 0; |
| 1534 | lck->lk.next_ticket = 0; |
| 1535 | lck->lk.now_serving = 0; |
| 1536 | lck->lk.owner_id = 0; |
| 1537 | lck->lk.depth_locked = -1; |
| 1538 | } |
| 1539 | |
| 1540 | static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| 1541 | char const *const func = "omp_destroy_lock" ; |
| 1542 | if (lck->lk.initialized != lck) { |
| 1543 | KMP_FATAL(LockIsUninitialized, func); |
| 1544 | } |
| 1545 | if (__kmp_is_queuing_lock_nestable(lck)) { |
| 1546 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 1547 | } |
| 1548 | if (__kmp_get_queuing_lock_owner(lck) != -1) { |
| 1549 | KMP_FATAL(LockStillOwned, func); |
| 1550 | } |
| 1551 | __kmp_destroy_queuing_lock(lck); |
| 1552 | } |
| 1553 | |
| 1554 | // nested queuing locks |
| 1555 | |
| 1556 | int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| 1557 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 1558 | |
| 1559 | if (__kmp_get_queuing_lock_owner(lck) == gtid) { |
| 1560 | lck->lk.depth_locked += 1; |
| 1561 | return KMP_LOCK_ACQUIRED_NEXT; |
| 1562 | } else { |
| 1563 | __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); |
| 1564 | KMP_MB(); |
| 1565 | lck->lk.depth_locked = 1; |
| 1566 | KMP_MB(); |
| 1567 | lck->lk.owner_id = gtid + 1; |
| 1568 | return KMP_LOCK_ACQUIRED_FIRST; |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | static int |
| 1573 | __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 1574 | kmp_int32 gtid) { |
| 1575 | char const *const func = "omp_set_nest_lock" ; |
| 1576 | if (lck->lk.initialized != lck) { |
| 1577 | KMP_FATAL(LockIsUninitialized, func); |
| 1578 | } |
| 1579 | if (!__kmp_is_queuing_lock_nestable(lck)) { |
| 1580 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 1581 | } |
| 1582 | return __kmp_acquire_nested_queuing_lock(lck, gtid); |
| 1583 | } |
| 1584 | |
| 1585 | int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| 1586 | int retval; |
| 1587 | |
| 1588 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 1589 | |
| 1590 | if (__kmp_get_queuing_lock_owner(lck) == gtid) { |
| 1591 | retval = ++lck->lk.depth_locked; |
| 1592 | } else if (!__kmp_test_queuing_lock(lck, gtid)) { |
| 1593 | retval = 0; |
| 1594 | } else { |
| 1595 | KMP_MB(); |
| 1596 | retval = lck->lk.depth_locked = 1; |
| 1597 | KMP_MB(); |
| 1598 | lck->lk.owner_id = gtid + 1; |
| 1599 | } |
| 1600 | return retval; |
| 1601 | } |
| 1602 | |
| 1603 | static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 1604 | kmp_int32 gtid) { |
| 1605 | char const *const func = "omp_test_nest_lock" ; |
| 1606 | if (lck->lk.initialized != lck) { |
| 1607 | KMP_FATAL(LockIsUninitialized, func); |
| 1608 | } |
| 1609 | if (!__kmp_is_queuing_lock_nestable(lck)) { |
| 1610 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 1611 | } |
| 1612 | return __kmp_test_nested_queuing_lock(lck, gtid); |
| 1613 | } |
| 1614 | |
| 1615 | int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { |
| 1616 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 1617 | |
| 1618 | KMP_MB(); |
| 1619 | if (--(lck->lk.depth_locked) == 0) { |
| 1620 | KMP_MB(); |
| 1621 | lck->lk.owner_id = 0; |
| 1622 | __kmp_release_queuing_lock(lck, gtid); |
| 1623 | return KMP_LOCK_RELEASED; |
| 1624 | } |
| 1625 | return KMP_LOCK_STILL_HELD; |
| 1626 | } |
| 1627 | |
| 1628 | static int |
| 1629 | __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 1630 | kmp_int32 gtid) { |
| 1631 | char const *const func = "omp_unset_nest_lock" ; |
| 1632 | KMP_MB(); /* in case another processor initialized lock */ |
| 1633 | if (lck->lk.initialized != lck) { |
| 1634 | KMP_FATAL(LockIsUninitialized, func); |
| 1635 | } |
| 1636 | if (!__kmp_is_queuing_lock_nestable(lck)) { |
| 1637 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 1638 | } |
| 1639 | if (__kmp_get_queuing_lock_owner(lck) == -1) { |
| 1640 | KMP_FATAL(LockUnsettingFree, func); |
| 1641 | } |
| 1642 | if (__kmp_get_queuing_lock_owner(lck) != gtid) { |
| 1643 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 1644 | } |
| 1645 | return __kmp_release_nested_queuing_lock(lck, gtid); |
| 1646 | } |
| 1647 | |
| 1648 | void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) { |
| 1649 | __kmp_init_queuing_lock(lck); |
| 1650 | lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| 1651 | } |
| 1652 | |
| 1653 | void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) { |
| 1654 | __kmp_destroy_queuing_lock(lck); |
| 1655 | lck->lk.depth_locked = 0; |
| 1656 | } |
| 1657 | |
| 1658 | static void |
| 1659 | __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| 1660 | char const *const func = "omp_destroy_nest_lock" ; |
| 1661 | if (lck->lk.initialized != lck) { |
| 1662 | KMP_FATAL(LockIsUninitialized, func); |
| 1663 | } |
| 1664 | if (!__kmp_is_queuing_lock_nestable(lck)) { |
| 1665 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 1666 | } |
| 1667 | if (__kmp_get_queuing_lock_owner(lck) != -1) { |
| 1668 | KMP_FATAL(LockStillOwned, func); |
| 1669 | } |
| 1670 | __kmp_destroy_nested_queuing_lock(lck); |
| 1671 | } |
| 1672 | |
| 1673 | // access functions to fields which don't exist for all lock kinds. |
| 1674 | |
| 1675 | static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) { |
| 1676 | return lck->lk.location; |
| 1677 | } |
| 1678 | |
| 1679 | static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck, |
| 1680 | const ident_t *loc) { |
| 1681 | lck->lk.location = loc; |
| 1682 | } |
| 1683 | |
| 1684 | static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) { |
| 1685 | return lck->lk.flags; |
| 1686 | } |
| 1687 | |
| 1688 | static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck, |
| 1689 | kmp_lock_flags_t flags) { |
| 1690 | lck->lk.flags = flags; |
| 1691 | } |
| 1692 | |
| 1693 | #if KMP_USE_ADAPTIVE_LOCKS |
| 1694 | |
| 1695 | /* RTM Adaptive locks */ |
| 1696 | |
| 1697 | #if KMP_HAVE_RTM_INTRINSICS |
| 1698 | #include <immintrin.h> |
| 1699 | #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) |
| 1700 | |
| 1701 | #else |
| 1702 | |
| 1703 | // Values from the status register after failed speculation. |
| 1704 | #define _XBEGIN_STARTED (~0u) |
| 1705 | #define _XABORT_EXPLICIT (1 << 0) |
| 1706 | #define _XABORT_RETRY (1 << 1) |
| 1707 | #define _XABORT_CONFLICT (1 << 2) |
| 1708 | #define _XABORT_CAPACITY (1 << 3) |
| 1709 | #define _XABORT_DEBUG (1 << 4) |
| 1710 | #define _XABORT_NESTED (1 << 5) |
| 1711 | #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF)) |
| 1712 | |
| 1713 | // Aborts for which it's worth trying again immediately |
| 1714 | #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) |
| 1715 | |
| 1716 | #define STRINGIZE_INTERNAL(arg) #arg |
| 1717 | #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg) |
| 1718 | |
| 1719 | // Access to RTM instructions |
| 1720 | /*A version of XBegin which returns -1 on speculation, and the value of EAX on |
| 1721 | an abort. This is the same definition as the compiler intrinsic that will be |
| 1722 | supported at some point. */ |
| 1723 | static __inline int _xbegin() { |
| 1724 | int res = -1; |
| 1725 | |
| 1726 | #if KMP_OS_WINDOWS |
| 1727 | #if KMP_ARCH_X86_64 |
| 1728 | _asm { |
| 1729 | _emit 0xC7 |
| 1730 | _emit 0xF8 |
| 1731 | _emit 2 |
| 1732 | _emit 0 |
| 1733 | _emit 0 |
| 1734 | _emit 0 |
| 1735 | jmp L2 |
| 1736 | mov res, eax |
| 1737 | L2: |
| 1738 | } |
| 1739 | #else /* IA32 */ |
| 1740 | _asm { |
| 1741 | _emit 0xC7 |
| 1742 | _emit 0xF8 |
| 1743 | _emit 2 |
| 1744 | _emit 0 |
| 1745 | _emit 0 |
| 1746 | _emit 0 |
| 1747 | jmp L2 |
| 1748 | mov res, eax |
| 1749 | L2: |
| 1750 | } |
| 1751 | #endif // KMP_ARCH_X86_64 |
| 1752 | #else |
| 1753 | /* Note that %eax must be noted as killed (clobbered), because the XSR is |
| 1754 | returned in %eax(%rax) on abort. Other register values are restored, so |
| 1755 | don't need to be killed. |
| 1756 | |
| 1757 | We must also mark 'res' as an input and an output, since otherwise |
| 1758 | 'res=-1' may be dropped as being dead, whereas we do need the assignment on |
| 1759 | the successful (i.e., non-abort) path. */ |
| 1760 | __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n" |
| 1761 | " .long 1f-1b-6\n" |
| 1762 | " jmp 2f\n" |
| 1763 | "1: movl %%eax,%0\n" |
| 1764 | "2:" |
| 1765 | : "+r" (res)::"memory" , "%eax" ); |
| 1766 | #endif // KMP_OS_WINDOWS |
| 1767 | return res; |
| 1768 | } |
| 1769 | |
| 1770 | /* Transaction end */ |
| 1771 | static __inline void _xend() { |
| 1772 | #if KMP_OS_WINDOWS |
| 1773 | __asm { |
| 1774 | _emit 0x0f |
| 1775 | _emit 0x01 |
| 1776 | _emit 0xd5 |
| 1777 | } |
| 1778 | #else |
| 1779 | __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory" ); |
| 1780 | #endif |
| 1781 | } |
| 1782 | |
| 1783 | /* This is a macro, the argument must be a single byte constant which can be |
| 1784 | evaluated by the inline assembler, since it is emitted as a byte into the |
| 1785 | assembly code. */ |
| 1786 | // clang-format off |
| 1787 | #if KMP_OS_WINDOWS |
| 1788 | #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG |
| 1789 | #else |
| 1790 | #define _xabort(ARG) \ |
| 1791 | __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory"); |
| 1792 | #endif |
| 1793 | // clang-format on |
| 1794 | #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300 |
| 1795 | |
| 1796 | // Statistics is collected for testing purpose |
| 1797 | #if KMP_DEBUG_ADAPTIVE_LOCKS |
| 1798 | |
| 1799 | // We accumulate speculative lock statistics when the lock is destroyed. We |
| 1800 | // keep locks that haven't been destroyed in the liveLocks list so that we can |
| 1801 | // grab their statistics too. |
| 1802 | static kmp_adaptive_lock_statistics_t destroyedStats; |
| 1803 | |
| 1804 | // To hold the list of live locks. |
| 1805 | static kmp_adaptive_lock_info_t liveLocks; |
| 1806 | |
| 1807 | // A lock so we can safely update the list of locks. |
| 1808 | static kmp_bootstrap_lock_t chain_lock = |
| 1809 | KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock); |
| 1810 | |
| 1811 | // Initialize the list of stats. |
| 1812 | void __kmp_init_speculative_stats() { |
| 1813 | kmp_adaptive_lock_info_t *lck = &liveLocks; |
| 1814 | |
| 1815 | memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0, |
| 1816 | sizeof(lck->stats)); |
| 1817 | lck->stats.next = lck; |
| 1818 | lck->stats.prev = lck; |
| 1819 | |
| 1820 | KMP_ASSERT(lck->stats.next->stats.prev == lck); |
| 1821 | KMP_ASSERT(lck->stats.prev->stats.next == lck); |
| 1822 | |
| 1823 | __kmp_init_bootstrap_lock(&chain_lock); |
| 1824 | } |
| 1825 | |
| 1826 | // Insert the lock into the circular list |
| 1827 | static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) { |
| 1828 | __kmp_acquire_bootstrap_lock(&chain_lock); |
| 1829 | |
| 1830 | lck->stats.next = liveLocks.stats.next; |
| 1831 | lck->stats.prev = &liveLocks; |
| 1832 | |
| 1833 | liveLocks.stats.next = lck; |
| 1834 | lck->stats.next->stats.prev = lck; |
| 1835 | |
| 1836 | KMP_ASSERT(lck->stats.next->stats.prev == lck); |
| 1837 | KMP_ASSERT(lck->stats.prev->stats.next == lck); |
| 1838 | |
| 1839 | __kmp_release_bootstrap_lock(&chain_lock); |
| 1840 | } |
| 1841 | |
| 1842 | static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) { |
| 1843 | KMP_ASSERT(lck->stats.next->stats.prev == lck); |
| 1844 | KMP_ASSERT(lck->stats.prev->stats.next == lck); |
| 1845 | |
| 1846 | kmp_adaptive_lock_info_t *n = lck->stats.next; |
| 1847 | kmp_adaptive_lock_info_t *p = lck->stats.prev; |
| 1848 | |
| 1849 | n->stats.prev = p; |
| 1850 | p->stats.next = n; |
| 1851 | } |
| 1852 | |
| 1853 | static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) { |
| 1854 | memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0, |
| 1855 | sizeof(lck->stats)); |
| 1856 | __kmp_remember_lock(lck); |
| 1857 | } |
| 1858 | |
| 1859 | static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t, |
| 1860 | kmp_adaptive_lock_info_t *lck) { |
| 1861 | kmp_adaptive_lock_statistics_t volatile *s = &lck->stats; |
| 1862 | |
| 1863 | t->nonSpeculativeAcquireAttempts += lck->acquire_attempts; |
| 1864 | t->successfulSpeculations += s->successfulSpeculations; |
| 1865 | t->hardFailedSpeculations += s->hardFailedSpeculations; |
| 1866 | t->softFailedSpeculations += s->softFailedSpeculations; |
| 1867 | t->nonSpeculativeAcquires += s->nonSpeculativeAcquires; |
| 1868 | t->lemmingYields += s->lemmingYields; |
| 1869 | } |
| 1870 | |
| 1871 | static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) { |
| 1872 | __kmp_acquire_bootstrap_lock(&chain_lock); |
| 1873 | |
| 1874 | __kmp_add_stats(&destroyedStats, lck); |
| 1875 | __kmp_forget_lock(lck); |
| 1876 | |
| 1877 | __kmp_release_bootstrap_lock(&chain_lock); |
| 1878 | } |
| 1879 | |
| 1880 | static float percent(kmp_uint32 count, kmp_uint32 total) { |
| 1881 | return (total == 0) ? 0.0 : (100.0 * count) / total; |
| 1882 | } |
| 1883 | |
| 1884 | void __kmp_print_speculative_stats() { |
| 1885 | kmp_adaptive_lock_statistics_t total = destroyedStats; |
| 1886 | kmp_adaptive_lock_info_t *lck; |
| 1887 | |
| 1888 | for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) { |
| 1889 | __kmp_add_stats(&total, lck); |
| 1890 | } |
| 1891 | kmp_adaptive_lock_statistics_t *t = &total; |
| 1892 | kmp_uint32 totalSections = |
| 1893 | t->nonSpeculativeAcquires + t->successfulSpeculations; |
| 1894 | kmp_uint32 totalSpeculations = t->successfulSpeculations + |
| 1895 | t->hardFailedSpeculations + |
| 1896 | t->softFailedSpeculations; |
| 1897 | if (totalSections <= 0) |
| 1898 | return; |
| 1899 | |
| 1900 | kmp_safe_raii_file_t statsFile; |
| 1901 | if (strcmp(__kmp_speculative_statsfile, "-" ) == 0) { |
| 1902 | statsFile.set_stdout(); |
| 1903 | } else { |
| 1904 | size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20; |
| 1905 | char buffer[buffLen]; |
| 1906 | KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile, |
| 1907 | (kmp_int32)getpid()); |
| 1908 | statsFile.open(buffer, "w" ); |
| 1909 | } |
| 1910 | |
| 1911 | fprintf(statsFile, "Speculative lock statistics (all approximate!)\n" ); |
| 1912 | fprintf(statsFile, |
| 1913 | " Lock parameters: \n" |
| 1914 | " max_soft_retries : %10d\n" |
| 1915 | " max_badness : %10d\n" , |
| 1916 | __kmp_adaptive_backoff_params.max_soft_retries, |
| 1917 | __kmp_adaptive_backoff_params.max_badness); |
| 1918 | fprintf(statsFile, " Non-speculative acquire attempts : %10d\n" , |
| 1919 | t->nonSpeculativeAcquireAttempts); |
| 1920 | fprintf(statsFile, " Total critical sections : %10d\n" , |
| 1921 | totalSections); |
| 1922 | fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n" , |
| 1923 | t->successfulSpeculations, |
| 1924 | percent(t->successfulSpeculations, totalSections)); |
| 1925 | fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n" , |
| 1926 | t->nonSpeculativeAcquires, |
| 1927 | percent(t->nonSpeculativeAcquires, totalSections)); |
| 1928 | fprintf(statsFile, " Lemming yields : %10d\n\n" , |
| 1929 | t->lemmingYields); |
| 1930 | |
| 1931 | fprintf(statsFile, " Speculative acquire attempts : %10d\n" , |
| 1932 | totalSpeculations); |
| 1933 | fprintf(statsFile, " Successes : %10d (%5.1f%%)\n" , |
| 1934 | t->successfulSpeculations, |
| 1935 | percent(t->successfulSpeculations, totalSpeculations)); |
| 1936 | fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n" , |
| 1937 | t->softFailedSpeculations, |
| 1938 | percent(t->softFailedSpeculations, totalSpeculations)); |
| 1939 | fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n" , |
| 1940 | t->hardFailedSpeculations, |
| 1941 | percent(t->hardFailedSpeculations, totalSpeculations)); |
| 1942 | } |
| 1943 | |
| 1944 | #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++) |
| 1945 | #else |
| 1946 | #define KMP_INC_STAT(lck, stat) |
| 1947 | |
| 1948 | #endif // KMP_DEBUG_ADAPTIVE_LOCKS |
| 1949 | |
| 1950 | static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) { |
| 1951 | // It is enough to check that the head_id is zero. |
| 1952 | // We don't also need to check the tail. |
| 1953 | bool res = lck->lk.head_id == 0; |
| 1954 | |
| 1955 | // We need a fence here, since we must ensure that no memory operations |
| 1956 | // from later in this thread float above that read. |
| 1957 | #if KMP_COMPILER_ICC || KMP_COMPILER_ICX |
| 1958 | _mm_mfence(); |
| 1959 | #else |
| 1960 | __sync_synchronize(); |
| 1961 | #endif |
| 1962 | |
| 1963 | return res; |
| 1964 | } |
| 1965 | |
| 1966 | // Functions for manipulating the badness |
| 1967 | static __inline void |
| 1968 | __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) { |
| 1969 | // Reset the badness to zero so we eagerly try to speculate again |
| 1970 | lck->lk.adaptive.badness = 0; |
| 1971 | KMP_INC_STAT(lck, successfulSpeculations); |
| 1972 | } |
| 1973 | |
| 1974 | // Create a bit mask with one more set bit. |
| 1975 | static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) { |
| 1976 | kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1; |
| 1977 | if (newBadness > lck->lk.adaptive.max_badness) { |
| 1978 | return; |
| 1979 | } else { |
| 1980 | lck->lk.adaptive.badness = newBadness; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | // Check whether speculation should be attempted. |
| 1985 | KMP_ATTRIBUTE_TARGET_RTM |
| 1986 | static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck, |
| 1987 | kmp_int32 gtid) { |
| 1988 | kmp_uint32 badness = lck->lk.adaptive.badness; |
| 1989 | kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts; |
| 1990 | int res = (attempts & badness) == 0; |
| 1991 | return res; |
| 1992 | } |
| 1993 | |
| 1994 | // Attempt to acquire only the speculative lock. |
| 1995 | // Does not back off to the non-speculative lock. |
| 1996 | KMP_ATTRIBUTE_TARGET_RTM |
| 1997 | static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck, |
| 1998 | kmp_int32 gtid) { |
| 1999 | int retries = lck->lk.adaptive.max_soft_retries; |
| 2000 | |
| 2001 | // We don't explicitly count the start of speculation, rather we record the |
| 2002 | // results (success, hard fail, soft fail). The sum of all of those is the |
| 2003 | // total number of times we started speculation since all speculations must |
| 2004 | // end one of those ways. |
| 2005 | do { |
| 2006 | kmp_uint32 status = _xbegin(); |
| 2007 | // Switch this in to disable actual speculation but exercise at least some |
| 2008 | // of the rest of the code. Useful for debugging... |
| 2009 | // kmp_uint32 status = _XABORT_NESTED; |
| 2010 | |
| 2011 | if (status == _XBEGIN_STARTED) { |
| 2012 | /* We have successfully started speculation. Check that no-one acquired |
| 2013 | the lock for real between when we last looked and now. This also gets |
| 2014 | the lock cache line into our read-set, which we need so that we'll |
| 2015 | abort if anyone later claims it for real. */ |
| 2016 | if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { |
| 2017 | // Lock is now visibly acquired, so someone beat us to it. Abort the |
| 2018 | // transaction so we'll restart from _xbegin with the failure status. |
| 2019 | _xabort(0x01); |
| 2020 | KMP_ASSERT2(0, "should not get here" ); |
| 2021 | } |
| 2022 | return 1; // Lock has been acquired (speculatively) |
| 2023 | } else { |
| 2024 | // We have aborted, update the statistics |
| 2025 | if (status & SOFT_ABORT_MASK) { |
| 2026 | KMP_INC_STAT(lck, softFailedSpeculations); |
| 2027 | // and loop round to retry. |
| 2028 | } else { |
| 2029 | KMP_INC_STAT(lck, hardFailedSpeculations); |
| 2030 | // Give up if we had a hard failure. |
| 2031 | break; |
| 2032 | } |
| 2033 | } |
| 2034 | } while (retries--); // Loop while we have retries, and didn't fail hard. |
| 2035 | |
| 2036 | // Either we had a hard failure or we didn't succeed softly after |
| 2037 | // the full set of attempts, so back off the badness. |
| 2038 | __kmp_step_badness(lck); |
| 2039 | return 0; |
| 2040 | } |
| 2041 | |
| 2042 | // Attempt to acquire the speculative lock, or back off to the non-speculative |
| 2043 | // one if the speculative lock cannot be acquired. |
| 2044 | // We can succeed speculatively, non-speculatively, or fail. |
| 2045 | static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) { |
| 2046 | // First try to acquire the lock speculatively |
| 2047 | if (__kmp_should_speculate(lck, gtid) && |
| 2048 | __kmp_test_adaptive_lock_only(lck, gtid)) |
| 2049 | return 1; |
| 2050 | |
| 2051 | // Speculative acquisition failed, so try to acquire it non-speculatively. |
| 2052 | // Count the non-speculative acquire attempt |
| 2053 | lck->lk.adaptive.acquire_attempts++; |
| 2054 | |
| 2055 | // Use base, non-speculative lock. |
| 2056 | if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) { |
| 2057 | KMP_INC_STAT(lck, nonSpeculativeAcquires); |
| 2058 | return 1; // Lock is acquired (non-speculatively) |
| 2059 | } else { |
| 2060 | return 0; // Failed to acquire the lock, it's already visibly locked. |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, |
| 2065 | kmp_int32 gtid) { |
| 2066 | char const *const func = "omp_test_lock" ; |
| 2067 | if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| 2068 | KMP_FATAL(LockIsUninitialized, func); |
| 2069 | } |
| 2070 | |
| 2071 | int retval = __kmp_test_adaptive_lock(lck, gtid); |
| 2072 | |
| 2073 | if (retval) { |
| 2074 | lck->lk.qlk.owner_id = gtid + 1; |
| 2075 | } |
| 2076 | return retval; |
| 2077 | } |
| 2078 | |
| 2079 | // Block until we can acquire a speculative, adaptive lock. We check whether we |
| 2080 | // should be trying to speculate. If we should be, we check the real lock to see |
| 2081 | // if it is free, and, if not, pause without attempting to acquire it until it |
| 2082 | // is. Then we try the speculative acquire. This means that although we suffer |
| 2083 | // from lemmings a little (because all we can't acquire the lock speculatively |
| 2084 | // until the queue of threads waiting has cleared), we don't get into a state |
| 2085 | // where we can never acquire the lock speculatively (because we force the queue |
| 2086 | // to clear by preventing new arrivals from entering the queue). This does mean |
| 2087 | // that when we're trying to break lemmings, the lock is no longer fair. However |
| 2088 | // OpenMP makes no guarantee that its locks are fair, so this isn't a real |
| 2089 | // problem. |
| 2090 | static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck, |
| 2091 | kmp_int32 gtid) { |
| 2092 | if (__kmp_should_speculate(lck, gtid)) { |
| 2093 | if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { |
| 2094 | if (__kmp_test_adaptive_lock_only(lck, gtid)) |
| 2095 | return; |
| 2096 | // We tried speculation and failed, so give up. |
| 2097 | } else { |
| 2098 | // We can't try speculation until the lock is free, so we pause here |
| 2099 | // (without suspending on the queueing lock, to allow it to drain, then |
| 2100 | // try again. All other threads will also see the same result for |
| 2101 | // shouldSpeculate, so will be doing the same if they try to claim the |
| 2102 | // lock from now on. |
| 2103 | while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { |
| 2104 | KMP_INC_STAT(lck, lemmingYields); |
| 2105 | KMP_YIELD(TRUE); |
| 2106 | } |
| 2107 | |
| 2108 | if (__kmp_test_adaptive_lock_only(lck, gtid)) |
| 2109 | return; |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | // Speculative acquisition failed, so acquire it non-speculatively. |
| 2114 | // Count the non-speculative acquire attempt |
| 2115 | lck->lk.adaptive.acquire_attempts++; |
| 2116 | |
| 2117 | __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid); |
| 2118 | // We have acquired the base lock, so count that. |
| 2119 | KMP_INC_STAT(lck, nonSpeculativeAcquires); |
| 2120 | } |
| 2121 | |
| 2122 | static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, |
| 2123 | kmp_int32 gtid) { |
| 2124 | char const *const func = "omp_set_lock" ; |
| 2125 | if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| 2126 | KMP_FATAL(LockIsUninitialized, func); |
| 2127 | } |
| 2128 | if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) { |
| 2129 | KMP_FATAL(LockIsAlreadyOwned, func); |
| 2130 | } |
| 2131 | |
| 2132 | __kmp_acquire_adaptive_lock(lck, gtid); |
| 2133 | |
| 2134 | lck->lk.qlk.owner_id = gtid + 1; |
| 2135 | } |
| 2136 | |
| 2137 | KMP_ATTRIBUTE_TARGET_RTM |
| 2138 | static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck, |
| 2139 | kmp_int32 gtid) { |
| 2140 | if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR( |
| 2141 | lck))) { // If the lock doesn't look claimed we must be speculating. |
| 2142 | // (Or the user's code is buggy and they're releasing without locking; |
| 2143 | // if we had XTEST we'd be able to check that case...) |
| 2144 | _xend(); // Exit speculation |
| 2145 | __kmp_update_badness_after_success(lck); |
| 2146 | } else { // Since the lock *is* visibly locked we're not speculating, |
| 2147 | // so should use the underlying lock's release scheme. |
| 2148 | __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid); |
| 2149 | } |
| 2150 | return KMP_LOCK_RELEASED; |
| 2151 | } |
| 2152 | |
| 2153 | static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, |
| 2154 | kmp_int32 gtid) { |
| 2155 | char const *const func = "omp_unset_lock" ; |
| 2156 | KMP_MB(); /* in case another processor initialized lock */ |
| 2157 | if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| 2158 | KMP_FATAL(LockIsUninitialized, func); |
| 2159 | } |
| 2160 | if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) { |
| 2161 | KMP_FATAL(LockUnsettingFree, func); |
| 2162 | } |
| 2163 | if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) { |
| 2164 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 2165 | } |
| 2166 | lck->lk.qlk.owner_id = 0; |
| 2167 | __kmp_release_adaptive_lock(lck, gtid); |
| 2168 | return KMP_LOCK_RELEASED; |
| 2169 | } |
| 2170 | |
| 2171 | static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) { |
| 2172 | __kmp_init_queuing_lock(GET_QLK_PTR(lck)); |
| 2173 | lck->lk.adaptive.badness = 0; |
| 2174 | lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0; |
| 2175 | lck->lk.adaptive.max_soft_retries = |
| 2176 | __kmp_adaptive_backoff_params.max_soft_retries; |
| 2177 | lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness; |
| 2178 | #if KMP_DEBUG_ADAPTIVE_LOCKS |
| 2179 | __kmp_zero_speculative_stats(&lck->lk.adaptive); |
| 2180 | #endif |
| 2181 | KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n" , lck)); |
| 2182 | } |
| 2183 | |
| 2184 | static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) { |
| 2185 | #if KMP_DEBUG_ADAPTIVE_LOCKS |
| 2186 | __kmp_accumulate_speculative_stats(&lck->lk.adaptive); |
| 2187 | #endif |
| 2188 | __kmp_destroy_queuing_lock(GET_QLK_PTR(lck)); |
| 2189 | // Nothing needed for the speculative part. |
| 2190 | } |
| 2191 | |
| 2192 | static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { |
| 2193 | char const *const func = "omp_destroy_lock" ; |
| 2194 | if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { |
| 2195 | KMP_FATAL(LockIsUninitialized, func); |
| 2196 | } |
| 2197 | if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) { |
| 2198 | KMP_FATAL(LockStillOwned, func); |
| 2199 | } |
| 2200 | __kmp_destroy_adaptive_lock(lck); |
| 2201 | } |
| 2202 | |
| 2203 | #endif // KMP_USE_ADAPTIVE_LOCKS |
| 2204 | |
| 2205 | /* ------------------------------------------------------------------------ */ |
| 2206 | /* DRDPA ticket locks */ |
| 2207 | /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */ |
| 2208 | |
| 2209 | static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) { |
| 2210 | return lck->lk.owner_id - 1; |
| 2211 | } |
| 2212 | |
| 2213 | static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) { |
| 2214 | return lck->lk.depth_locked != -1; |
| 2215 | } |
| 2216 | |
| 2217 | __forceinline static int |
| 2218 | __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2219 | kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket); |
| 2220 | kmp_uint64 mask = lck->lk.mask; // atomic load |
| 2221 | std::atomic<kmp_uint64> *polls = lck->lk.polls; |
| 2222 | |
| 2223 | #ifdef USE_LOCK_PROFILE |
| 2224 | if (polls[ticket & mask] != ticket) |
| 2225 | __kmp_printf("LOCK CONTENTION: %p\n" , lck); |
| 2226 | /* else __kmp_printf( "." );*/ |
| 2227 | #endif /* USE_LOCK_PROFILE */ |
| 2228 | |
| 2229 | // Now spin-wait, but reload the polls pointer and mask, in case the |
| 2230 | // polling area has been reconfigured. Unless it is reconfigured, the |
| 2231 | // reloads stay in L1 cache and are cheap. |
| 2232 | // |
| 2233 | // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!! |
| 2234 | // The current implementation of KMP_WAIT doesn't allow for mask |
| 2235 | // and poll to be re-read every spin iteration. |
| 2236 | kmp_uint32 spins; |
| 2237 | kmp_uint64 time; |
| 2238 | KMP_FSYNC_PREPARE(lck); |
| 2239 | KMP_INIT_YIELD(spins); |
| 2240 | KMP_INIT_BACKOFF(time); |
| 2241 | while (polls[ticket & mask] < ticket) { // atomic load |
| 2242 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); |
| 2243 | // Re-read the mask and the poll pointer from the lock structure. |
| 2244 | // |
| 2245 | // Make certain that "mask" is read before "polls" !!! |
| 2246 | // |
| 2247 | // If another thread picks reconfigures the polling area and updates their |
| 2248 | // values, and we get the new value of mask and the old polls pointer, we |
| 2249 | // could access memory beyond the end of the old polling area. |
| 2250 | mask = lck->lk.mask; // atomic load |
| 2251 | polls = lck->lk.polls; // atomic load |
| 2252 | } |
| 2253 | |
| 2254 | // Critical section starts here |
| 2255 | KMP_FSYNC_ACQUIRED(lck); |
| 2256 | KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n" , |
| 2257 | ticket, lck)); |
| 2258 | lck->lk.now_serving = ticket; // non-volatile store |
| 2259 | |
| 2260 | // Deallocate a garbage polling area if we know that we are the last |
| 2261 | // thread that could possibly access it. |
| 2262 | // |
| 2263 | // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup |
| 2264 | // ticket. |
| 2265 | if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) { |
| 2266 | __kmp_free(lck->lk.old_polls); |
| 2267 | lck->lk.old_polls = NULL; |
| 2268 | lck->lk.cleanup_ticket = 0; |
| 2269 | } |
| 2270 | |
| 2271 | // Check to see if we should reconfigure the polling area. |
| 2272 | // If there is still a garbage polling area to be deallocated from a |
| 2273 | // previous reconfiguration, let a later thread reconfigure it. |
| 2274 | if (lck->lk.old_polls == NULL) { |
| 2275 | bool reconfigure = false; |
| 2276 | std::atomic<kmp_uint64> *old_polls = polls; |
| 2277 | kmp_uint32 num_polls = TCR_4(lck->lk.num_polls); |
| 2278 | |
| 2279 | if (TCR_4(__kmp_nth) > |
| 2280 | (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { |
| 2281 | // We are in oversubscription mode. Contract the polling area |
| 2282 | // down to a single location, if that hasn't been done already. |
| 2283 | if (num_polls > 1) { |
| 2284 | reconfigure = true; |
| 2285 | num_polls = TCR_4(lck->lk.num_polls); |
| 2286 | mask = 0; |
| 2287 | num_polls = 1; |
| 2288 | polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * |
| 2289 | sizeof(*polls)); |
| 2290 | polls[0] = ticket; |
| 2291 | } |
| 2292 | } else { |
| 2293 | // We are in under/fully subscribed mode. Check the number of |
| 2294 | // threads waiting on the lock. The size of the polling area |
| 2295 | // should be at least the number of threads waiting. |
| 2296 | kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1; |
| 2297 | if (num_waiting > num_polls) { |
| 2298 | kmp_uint32 old_num_polls = num_polls; |
| 2299 | reconfigure = true; |
| 2300 | do { |
| 2301 | mask = (mask << 1) | 1; |
| 2302 | num_polls *= 2; |
| 2303 | } while (num_polls <= num_waiting); |
| 2304 | |
| 2305 | // Allocate the new polling area, and copy the relevant portion |
| 2306 | // of the old polling area to the new area. __kmp_allocate() |
| 2307 | // zeroes the memory it allocates, and most of the old area is |
| 2308 | // just zero padding, so we only copy the release counters. |
| 2309 | polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * |
| 2310 | sizeof(*polls)); |
| 2311 | kmp_uint32 i; |
| 2312 | for (i = 0; i < old_num_polls; i++) { |
| 2313 | polls[i].store(i: old_polls[i]); |
| 2314 | } |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | if (reconfigure) { |
| 2319 | // Now write the updated fields back to the lock structure. |
| 2320 | // |
| 2321 | // Make certain that "polls" is written before "mask" !!! |
| 2322 | // |
| 2323 | // If another thread picks up the new value of mask and the old polls |
| 2324 | // pointer , it could access memory beyond the end of the old polling |
| 2325 | // area. |
| 2326 | // |
| 2327 | // On x86, we need memory fences. |
| 2328 | KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring " |
| 2329 | "lock %p to %d polls\n" , |
| 2330 | ticket, lck, num_polls)); |
| 2331 | |
| 2332 | lck->lk.old_polls = old_polls; |
| 2333 | lck->lk.polls = polls; // atomic store |
| 2334 | |
| 2335 | KMP_MB(); |
| 2336 | |
| 2337 | lck->lk.num_polls = num_polls; |
| 2338 | lck->lk.mask = mask; // atomic store |
| 2339 | |
| 2340 | KMP_MB(); |
| 2341 | |
| 2342 | // Only after the new polling area and mask have been flushed |
| 2343 | // to main memory can we update the cleanup ticket field. |
| 2344 | // |
| 2345 | // volatile load / non-volatile store |
| 2346 | lck->lk.cleanup_ticket = lck->lk.next_ticket; |
| 2347 | } |
| 2348 | } |
| 2349 | return KMP_LOCK_ACQUIRED_FIRST; |
| 2350 | } |
| 2351 | |
| 2352 | int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2353 | int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid); |
| 2354 | return retval; |
| 2355 | } |
| 2356 | |
| 2357 | static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| 2358 | kmp_int32 gtid) { |
| 2359 | char const *const func = "omp_set_lock" ; |
| 2360 | if (lck->lk.initialized != lck) { |
| 2361 | KMP_FATAL(LockIsUninitialized, func); |
| 2362 | } |
| 2363 | if (__kmp_is_drdpa_lock_nestable(lck)) { |
| 2364 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 2365 | } |
| 2366 | if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) { |
| 2367 | KMP_FATAL(LockIsAlreadyOwned, func); |
| 2368 | } |
| 2369 | |
| 2370 | __kmp_acquire_drdpa_lock(lck, gtid); |
| 2371 | |
| 2372 | lck->lk.owner_id = gtid + 1; |
| 2373 | return KMP_LOCK_ACQUIRED_FIRST; |
| 2374 | } |
| 2375 | |
| 2376 | int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2377 | // First get a ticket, then read the polls pointer and the mask. |
| 2378 | // The polls pointer must be read before the mask!!! (See above) |
| 2379 | kmp_uint64 ticket = lck->lk.next_ticket; // atomic load |
| 2380 | std::atomic<kmp_uint64> *polls = lck->lk.polls; |
| 2381 | kmp_uint64 mask = lck->lk.mask; // atomic load |
| 2382 | if (polls[ticket & mask] == ticket) { |
| 2383 | kmp_uint64 next_ticket = ticket + 1; |
| 2384 | if (__kmp_atomic_compare_store_acq(p: &lck->lk.next_ticket, expected: ticket, |
| 2385 | desired: next_ticket)) { |
| 2386 | KMP_FSYNC_ACQUIRED(lck); |
| 2387 | KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n" , |
| 2388 | ticket, lck)); |
| 2389 | lck->lk.now_serving = ticket; // non-volatile store |
| 2390 | |
| 2391 | // Since no threads are waiting, there is no possibility that we would |
| 2392 | // want to reconfigure the polling area. We might have the cleanup ticket |
| 2393 | // value (which says that it is now safe to deallocate old_polls), but |
| 2394 | // we'll let a later thread which calls __kmp_acquire_lock do that - this |
| 2395 | // routine isn't supposed to block, and we would risk blocks if we called |
| 2396 | // __kmp_free() to do the deallocation. |
| 2397 | return TRUE; |
| 2398 | } |
| 2399 | } |
| 2400 | return FALSE; |
| 2401 | } |
| 2402 | |
| 2403 | static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| 2404 | kmp_int32 gtid) { |
| 2405 | char const *const func = "omp_test_lock" ; |
| 2406 | if (lck->lk.initialized != lck) { |
| 2407 | KMP_FATAL(LockIsUninitialized, func); |
| 2408 | } |
| 2409 | if (__kmp_is_drdpa_lock_nestable(lck)) { |
| 2410 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 2411 | } |
| 2412 | |
| 2413 | int retval = __kmp_test_drdpa_lock(lck, gtid); |
| 2414 | |
| 2415 | if (retval) { |
| 2416 | lck->lk.owner_id = gtid + 1; |
| 2417 | } |
| 2418 | return retval; |
| 2419 | } |
| 2420 | |
| 2421 | int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2422 | // Read the ticket value from the lock data struct, then the polls pointer and |
| 2423 | // the mask. The polls pointer must be read before the mask!!! (See above) |
| 2424 | kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load |
| 2425 | std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load |
| 2426 | kmp_uint64 mask = lck->lk.mask; // atomic load |
| 2427 | KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n" , |
| 2428 | ticket - 1, lck)); |
| 2429 | KMP_FSYNC_RELEASING(lck); |
| 2430 | polls[ticket & mask] = ticket; // atomic store |
| 2431 | return KMP_LOCK_RELEASED; |
| 2432 | } |
| 2433 | |
| 2434 | static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| 2435 | kmp_int32 gtid) { |
| 2436 | char const *const func = "omp_unset_lock" ; |
| 2437 | KMP_MB(); /* in case another processor initialized lock */ |
| 2438 | if (lck->lk.initialized != lck) { |
| 2439 | KMP_FATAL(LockIsUninitialized, func); |
| 2440 | } |
| 2441 | if (__kmp_is_drdpa_lock_nestable(lck)) { |
| 2442 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 2443 | } |
| 2444 | if (__kmp_get_drdpa_lock_owner(lck) == -1) { |
| 2445 | KMP_FATAL(LockUnsettingFree, func); |
| 2446 | } |
| 2447 | if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) && |
| 2448 | (__kmp_get_drdpa_lock_owner(lck) != gtid)) { |
| 2449 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 2450 | } |
| 2451 | lck->lk.owner_id = 0; |
| 2452 | return __kmp_release_drdpa_lock(lck, gtid); |
| 2453 | } |
| 2454 | |
| 2455 | void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| 2456 | lck->lk.location = NULL; |
| 2457 | lck->lk.mask = 0; |
| 2458 | lck->lk.num_polls = 1; |
| 2459 | lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate( |
| 2460 | lck->lk.num_polls * sizeof(*(lck->lk.polls))); |
| 2461 | lck->lk.cleanup_ticket = 0; |
| 2462 | lck->lk.old_polls = NULL; |
| 2463 | lck->lk.next_ticket = 0; |
| 2464 | lck->lk.now_serving = 0; |
| 2465 | lck->lk.owner_id = 0; // no thread owns the lock. |
| 2466 | lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. |
| 2467 | lck->lk.initialized = lck; |
| 2468 | |
| 2469 | KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n" , lck)); |
| 2470 | } |
| 2471 | |
| 2472 | void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| 2473 | lck->lk.initialized = NULL; |
| 2474 | lck->lk.location = NULL; |
| 2475 | if (lck->lk.polls.load() != NULL) { |
| 2476 | __kmp_free(lck->lk.polls.load()); |
| 2477 | lck->lk.polls = NULL; |
| 2478 | } |
| 2479 | if (lck->lk.old_polls != NULL) { |
| 2480 | __kmp_free(lck->lk.old_polls); |
| 2481 | lck->lk.old_polls = NULL; |
| 2482 | } |
| 2483 | lck->lk.mask = 0; |
| 2484 | lck->lk.num_polls = 0; |
| 2485 | lck->lk.cleanup_ticket = 0; |
| 2486 | lck->lk.next_ticket = 0; |
| 2487 | lck->lk.now_serving = 0; |
| 2488 | lck->lk.owner_id = 0; |
| 2489 | lck->lk.depth_locked = -1; |
| 2490 | } |
| 2491 | |
| 2492 | static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| 2493 | char const *const func = "omp_destroy_lock" ; |
| 2494 | if (lck->lk.initialized != lck) { |
| 2495 | KMP_FATAL(LockIsUninitialized, func); |
| 2496 | } |
| 2497 | if (__kmp_is_drdpa_lock_nestable(lck)) { |
| 2498 | KMP_FATAL(LockNestableUsedAsSimple, func); |
| 2499 | } |
| 2500 | if (__kmp_get_drdpa_lock_owner(lck) != -1) { |
| 2501 | KMP_FATAL(LockStillOwned, func); |
| 2502 | } |
| 2503 | __kmp_destroy_drdpa_lock(lck); |
| 2504 | } |
| 2505 | |
| 2506 | // nested drdpa ticket locks |
| 2507 | |
| 2508 | int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2509 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 2510 | |
| 2511 | if (__kmp_get_drdpa_lock_owner(lck) == gtid) { |
| 2512 | lck->lk.depth_locked += 1; |
| 2513 | return KMP_LOCK_ACQUIRED_NEXT; |
| 2514 | } else { |
| 2515 | __kmp_acquire_drdpa_lock_timed_template(lck, gtid); |
| 2516 | KMP_MB(); |
| 2517 | lck->lk.depth_locked = 1; |
| 2518 | KMP_MB(); |
| 2519 | lck->lk.owner_id = gtid + 1; |
| 2520 | return KMP_LOCK_ACQUIRED_FIRST; |
| 2521 | } |
| 2522 | } |
| 2523 | |
| 2524 | static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| 2525 | kmp_int32 gtid) { |
| 2526 | char const *const func = "omp_set_nest_lock" ; |
| 2527 | if (lck->lk.initialized != lck) { |
| 2528 | KMP_FATAL(LockIsUninitialized, func); |
| 2529 | } |
| 2530 | if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| 2531 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 2532 | } |
| 2533 | __kmp_acquire_nested_drdpa_lock(lck, gtid); |
| 2534 | } |
| 2535 | |
| 2536 | int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2537 | int retval; |
| 2538 | |
| 2539 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 2540 | |
| 2541 | if (__kmp_get_drdpa_lock_owner(lck) == gtid) { |
| 2542 | retval = ++lck->lk.depth_locked; |
| 2543 | } else if (!__kmp_test_drdpa_lock(lck, gtid)) { |
| 2544 | retval = 0; |
| 2545 | } else { |
| 2546 | KMP_MB(); |
| 2547 | retval = lck->lk.depth_locked = 1; |
| 2548 | KMP_MB(); |
| 2549 | lck->lk.owner_id = gtid + 1; |
| 2550 | } |
| 2551 | return retval; |
| 2552 | } |
| 2553 | |
| 2554 | static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| 2555 | kmp_int32 gtid) { |
| 2556 | char const *const func = "omp_test_nest_lock" ; |
| 2557 | if (lck->lk.initialized != lck) { |
| 2558 | KMP_FATAL(LockIsUninitialized, func); |
| 2559 | } |
| 2560 | if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| 2561 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 2562 | } |
| 2563 | return __kmp_test_nested_drdpa_lock(lck, gtid); |
| 2564 | } |
| 2565 | |
| 2566 | int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { |
| 2567 | KMP_DEBUG_ASSERT(gtid >= 0); |
| 2568 | |
| 2569 | KMP_MB(); |
| 2570 | if (--(lck->lk.depth_locked) == 0) { |
| 2571 | KMP_MB(); |
| 2572 | lck->lk.owner_id = 0; |
| 2573 | __kmp_release_drdpa_lock(lck, gtid); |
| 2574 | return KMP_LOCK_RELEASED; |
| 2575 | } |
| 2576 | return KMP_LOCK_STILL_HELD; |
| 2577 | } |
| 2578 | |
| 2579 | static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, |
| 2580 | kmp_int32 gtid) { |
| 2581 | char const *const func = "omp_unset_nest_lock" ; |
| 2582 | KMP_MB(); /* in case another processor initialized lock */ |
| 2583 | if (lck->lk.initialized != lck) { |
| 2584 | KMP_FATAL(LockIsUninitialized, func); |
| 2585 | } |
| 2586 | if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| 2587 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 2588 | } |
| 2589 | if (__kmp_get_drdpa_lock_owner(lck) == -1) { |
| 2590 | KMP_FATAL(LockUnsettingFree, func); |
| 2591 | } |
| 2592 | if (__kmp_get_drdpa_lock_owner(lck) != gtid) { |
| 2593 | KMP_FATAL(LockUnsettingSetByAnother, func); |
| 2594 | } |
| 2595 | return __kmp_release_nested_drdpa_lock(lck, gtid); |
| 2596 | } |
| 2597 | |
| 2598 | void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| 2599 | __kmp_init_drdpa_lock(lck); |
| 2600 | lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks |
| 2601 | } |
| 2602 | |
| 2603 | void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { |
| 2604 | __kmp_destroy_drdpa_lock(lck); |
| 2605 | lck->lk.depth_locked = 0; |
| 2606 | } |
| 2607 | |
| 2608 | static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| 2609 | char const *const func = "omp_destroy_nest_lock" ; |
| 2610 | if (lck->lk.initialized != lck) { |
| 2611 | KMP_FATAL(LockIsUninitialized, func); |
| 2612 | } |
| 2613 | if (!__kmp_is_drdpa_lock_nestable(lck)) { |
| 2614 | KMP_FATAL(LockSimpleUsedAsNestable, func); |
| 2615 | } |
| 2616 | if (__kmp_get_drdpa_lock_owner(lck) != -1) { |
| 2617 | KMP_FATAL(LockStillOwned, func); |
| 2618 | } |
| 2619 | __kmp_destroy_nested_drdpa_lock(lck); |
| 2620 | } |
| 2621 | |
| 2622 | // access functions to fields which don't exist for all lock kinds. |
| 2623 | |
| 2624 | static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) { |
| 2625 | return lck->lk.location; |
| 2626 | } |
| 2627 | |
| 2628 | static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck, |
| 2629 | const ident_t *loc) { |
| 2630 | lck->lk.location = loc; |
| 2631 | } |
| 2632 | |
| 2633 | static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) { |
| 2634 | return lck->lk.flags; |
| 2635 | } |
| 2636 | |
| 2637 | static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck, |
| 2638 | kmp_lock_flags_t flags) { |
| 2639 | lck->lk.flags = flags; |
| 2640 | } |
| 2641 | |
| 2642 | // Time stamp counter |
| 2643 | #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 2644 | #define __kmp_tsc() __kmp_hardware_timestamp() |
| 2645 | // Runtime's default backoff parameters |
| 2646 | kmp_backoff_t __kmp_spin_backoff_params = {.step: 1, .max_backoff: 4096, .min_tick: 100}; |
| 2647 | #else |
| 2648 | // Use nanoseconds for other platforms |
| 2649 | extern kmp_uint64 __kmp_now_nsec(); |
| 2650 | kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100}; |
| 2651 | #define __kmp_tsc() __kmp_now_nsec() |
| 2652 | #endif |
| 2653 | |
| 2654 | // A useful predicate for dealing with timestamps that may wrap. |
| 2655 | // Is a before b? Since the timestamps may wrap, this is asking whether it's |
| 2656 | // shorter to go clockwise from a to b around the clock-face, or anti-clockwise. |
| 2657 | // Times where going clockwise is less distance than going anti-clockwise |
| 2658 | // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0), |
| 2659 | // then a > b (true) does not mean a reached b; whereas signed(a) = -2, |
| 2660 | // signed(b) = 0 captures the actual difference |
| 2661 | static inline bool before(kmp_uint64 a, kmp_uint64 b) { |
| 2662 | return ((kmp_int64)b - (kmp_int64)a) > 0; |
| 2663 | } |
| 2664 | |
| 2665 | // Truncated binary exponential backoff function |
| 2666 | void __kmp_spin_backoff(kmp_backoff_t *boff) { |
| 2667 | // We could flatten this loop, but making it a nested loop gives better result |
| 2668 | kmp_uint32 i; |
| 2669 | for (i = boff->step; i > 0; i--) { |
| 2670 | kmp_uint64 goal = __kmp_tsc() + boff->min_tick; |
| 2671 | #if KMP_HAVE_UMWAIT |
| 2672 | if (__kmp_umwait_enabled) { |
| 2673 | __kmp_tpause(hint: 0, counter: boff->min_tick); |
| 2674 | } else { |
| 2675 | #endif |
| 2676 | do { |
| 2677 | KMP_CPU_PAUSE(); |
| 2678 | } while (before(__kmp_tsc(), b: goal)); |
| 2679 | #if KMP_HAVE_UMWAIT |
| 2680 | } |
| 2681 | #endif |
| 2682 | } |
| 2683 | boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1); |
| 2684 | } |
| 2685 | |
| 2686 | #if KMP_USE_DYNAMIC_LOCK |
| 2687 | |
| 2688 | // Direct lock initializers. It simply writes a tag to the low 8 bits of the |
| 2689 | // lock word. |
| 2690 | static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, |
| 2691 | kmp_dyna_lockseq_t seq) { |
| 2692 | TCW_4(((kmp_base_tas_lock_t *)lck)->poll, KMP_GET_D_TAG(seq)); |
| 2693 | KA_TRACE( |
| 2694 | 20, |
| 2695 | ("__kmp_init_direct_lock: initialized direct lock with type#%d\n" , seq)); |
| 2696 | } |
| 2697 | |
| 2698 | #if KMP_USE_TSX |
| 2699 | |
| 2700 | // HLE lock functions - imported from the testbed runtime. |
| 2701 | #define HLE_ACQUIRE ".byte 0xf2;" |
| 2702 | #define HLE_RELEASE ".byte 0xf3;" |
| 2703 | |
| 2704 | static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) { |
| 2705 | __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r" (v), "+m" (*p) : : "memory" ); |
| 2706 | return v; |
| 2707 | } |
| 2708 | |
| 2709 | static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); } |
| 2710 | |
| 2711 | static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) { |
| 2712 | TCW_4(*lck, 0); |
| 2713 | } |
| 2714 | |
| 2715 | static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { |
| 2716 | // Use gtid for KMP_LOCK_BUSY if necessary |
| 2717 | if (swap4(p: lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) { |
| 2718 | int delay = 1; |
| 2719 | do { |
| 2720 | while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) { |
| 2721 | for (int i = delay; i != 0; --i) |
| 2722 | KMP_CPU_PAUSE(); |
| 2723 | delay = ((delay << 1) | 1) & 7; |
| 2724 | } |
| 2725 | } while (swap4(p: lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)); |
| 2726 | } |
| 2727 | } |
| 2728 | |
| 2729 | static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, |
| 2730 | kmp_int32 gtid) { |
| 2731 | __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks |
| 2732 | } |
| 2733 | |
| 2734 | static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { |
| 2735 | __asm__ volatile(HLE_RELEASE "movl %1,%0" |
| 2736 | : "=m" (*lck) |
| 2737 | : "r" (KMP_LOCK_FREE(hle)) |
| 2738 | : "memory" ); |
| 2739 | return KMP_LOCK_RELEASED; |
| 2740 | } |
| 2741 | |
| 2742 | static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, |
| 2743 | kmp_int32 gtid) { |
| 2744 | return __kmp_release_hle_lock(lck, gtid); // TODO: add checks |
| 2745 | } |
| 2746 | |
| 2747 | static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { |
| 2748 | return swap4(p: lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle); |
| 2749 | } |
| 2750 | |
| 2751 | static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, |
| 2752 | kmp_int32 gtid) { |
| 2753 | return __kmp_test_hle_lock(lck, gtid); // TODO: add checks |
| 2754 | } |
| 2755 | |
| 2756 | static void __kmp_init_rtm_queuing_lock(kmp_queuing_lock_t *lck) { |
| 2757 | __kmp_init_queuing_lock(lck); |
| 2758 | } |
| 2759 | |
| 2760 | static void __kmp_destroy_rtm_queuing_lock(kmp_queuing_lock_t *lck) { |
| 2761 | __kmp_destroy_queuing_lock(lck); |
| 2762 | } |
| 2763 | |
| 2764 | static void |
| 2765 | __kmp_destroy_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| 2766 | __kmp_destroy_queuing_lock_with_checks(lck); |
| 2767 | } |
| 2768 | |
| 2769 | KMP_ATTRIBUTE_TARGET_RTM |
| 2770 | static void __kmp_acquire_rtm_queuing_lock(kmp_queuing_lock_t *lck, |
| 2771 | kmp_int32 gtid) { |
| 2772 | unsigned retries = 3, status; |
| 2773 | do { |
| 2774 | status = _xbegin(); |
| 2775 | if (status == _XBEGIN_STARTED) { |
| 2776 | if (__kmp_is_unlocked_queuing_lock(lck)) |
| 2777 | return; |
| 2778 | _xabort(0xff); |
| 2779 | } |
| 2780 | if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { |
| 2781 | // Wait until lock becomes free |
| 2782 | while (!__kmp_is_unlocked_queuing_lock(lck)) { |
| 2783 | KMP_YIELD(TRUE); |
| 2784 | } |
| 2785 | } else if (!(status & _XABORT_RETRY)) |
| 2786 | break; |
| 2787 | } while (retries--); |
| 2788 | |
| 2789 | // Fall-back non-speculative lock (xchg) |
| 2790 | __kmp_acquire_queuing_lock(lck, gtid); |
| 2791 | } |
| 2792 | |
| 2793 | static void __kmp_acquire_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 2794 | kmp_int32 gtid) { |
| 2795 | __kmp_acquire_rtm_queuing_lock(lck, gtid); |
| 2796 | } |
| 2797 | |
| 2798 | KMP_ATTRIBUTE_TARGET_RTM |
| 2799 | static int __kmp_release_rtm_queuing_lock(kmp_queuing_lock_t *lck, |
| 2800 | kmp_int32 gtid) { |
| 2801 | if (__kmp_is_unlocked_queuing_lock(lck)) { |
| 2802 | // Releasing from speculation |
| 2803 | _xend(); |
| 2804 | } else { |
| 2805 | // Releasing from a real lock |
| 2806 | __kmp_release_queuing_lock(lck, gtid); |
| 2807 | } |
| 2808 | return KMP_LOCK_RELEASED; |
| 2809 | } |
| 2810 | |
| 2811 | static int __kmp_release_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 2812 | kmp_int32 gtid) { |
| 2813 | return __kmp_release_rtm_queuing_lock(lck, gtid); |
| 2814 | } |
| 2815 | |
| 2816 | KMP_ATTRIBUTE_TARGET_RTM |
| 2817 | static int __kmp_test_rtm_queuing_lock(kmp_queuing_lock_t *lck, |
| 2818 | kmp_int32 gtid) { |
| 2819 | unsigned retries = 3, status; |
| 2820 | do { |
| 2821 | status = _xbegin(); |
| 2822 | if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) { |
| 2823 | return 1; |
| 2824 | } |
| 2825 | if (!(status & _XABORT_RETRY)) |
| 2826 | break; |
| 2827 | } while (retries--); |
| 2828 | |
| 2829 | return __kmp_test_queuing_lock(lck, gtid); |
| 2830 | } |
| 2831 | |
| 2832 | static int __kmp_test_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, |
| 2833 | kmp_int32 gtid) { |
| 2834 | return __kmp_test_rtm_queuing_lock(lck, gtid); |
| 2835 | } |
| 2836 | |
| 2837 | // Reuse kmp_tas_lock_t for TSX lock which use RTM with fall-back spin lock. |
| 2838 | typedef kmp_tas_lock_t kmp_rtm_spin_lock_t; |
| 2839 | |
| 2840 | static void __kmp_destroy_rtm_spin_lock(kmp_rtm_spin_lock_t *lck) { |
| 2841 | KMP_ATOMIC_ST_REL(&lck->lk.poll, 0); |
| 2842 | } |
| 2843 | |
| 2844 | static void __kmp_destroy_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck) { |
| 2845 | __kmp_destroy_rtm_spin_lock(lck); |
| 2846 | } |
| 2847 | |
| 2848 | KMP_ATTRIBUTE_TARGET_RTM |
| 2849 | static int __kmp_acquire_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, |
| 2850 | kmp_int32 gtid) { |
| 2851 | unsigned retries = 3, status; |
| 2852 | kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin); |
| 2853 | kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin); |
| 2854 | do { |
| 2855 | status = _xbegin(); |
| 2856 | if (status == _XBEGIN_STARTED) { |
| 2857 | if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) |
| 2858 | return KMP_LOCK_ACQUIRED_FIRST; |
| 2859 | _xabort(0xff); |
| 2860 | } |
| 2861 | if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { |
| 2862 | // Wait until lock becomes free |
| 2863 | while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free) { |
| 2864 | KMP_YIELD(TRUE); |
| 2865 | } |
| 2866 | } else if (!(status & _XABORT_RETRY)) |
| 2867 | break; |
| 2868 | } while (retries--); |
| 2869 | |
| 2870 | // Fall-back spin lock |
| 2871 | KMP_FSYNC_PREPARE(lck); |
| 2872 | kmp_backoff_t backoff = __kmp_spin_backoff_params; |
| 2873 | while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free || |
| 2874 | !__kmp_atomic_compare_store_acq(p: &lck->lk.poll, expected: lock_free, desired: lock_busy)) { |
| 2875 | __kmp_spin_backoff(boff: &backoff); |
| 2876 | } |
| 2877 | KMP_FSYNC_ACQUIRED(lck); |
| 2878 | return KMP_LOCK_ACQUIRED_FIRST; |
| 2879 | } |
| 2880 | |
| 2881 | static int __kmp_acquire_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, |
| 2882 | kmp_int32 gtid) { |
| 2883 | return __kmp_acquire_rtm_spin_lock(lck, gtid); |
| 2884 | } |
| 2885 | |
| 2886 | KMP_ATTRIBUTE_TARGET_RTM |
| 2887 | static int __kmp_release_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, |
| 2888 | kmp_int32 gtid) { |
| 2889 | if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == KMP_LOCK_FREE(rtm_spin)) { |
| 2890 | // Releasing from speculation |
| 2891 | _xend(); |
| 2892 | } else { |
| 2893 | // Releasing from a real lock |
| 2894 | KMP_FSYNC_RELEASING(lck); |
| 2895 | KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(rtm_spin)); |
| 2896 | } |
| 2897 | return KMP_LOCK_RELEASED; |
| 2898 | } |
| 2899 | |
| 2900 | static int __kmp_release_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, |
| 2901 | kmp_int32 gtid) { |
| 2902 | return __kmp_release_rtm_spin_lock(lck, gtid); |
| 2903 | } |
| 2904 | |
| 2905 | KMP_ATTRIBUTE_TARGET_RTM |
| 2906 | static int __kmp_test_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, kmp_int32 gtid) { |
| 2907 | unsigned retries = 3, status; |
| 2908 | kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin); |
| 2909 | kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin); |
| 2910 | do { |
| 2911 | status = _xbegin(); |
| 2912 | if (status == _XBEGIN_STARTED && |
| 2913 | KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) { |
| 2914 | return TRUE; |
| 2915 | } |
| 2916 | if (!(status & _XABORT_RETRY)) |
| 2917 | break; |
| 2918 | } while (retries--); |
| 2919 | |
| 2920 | if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free && |
| 2921 | __kmp_atomic_compare_store_acq(p: &lck->lk.poll, expected: lock_free, desired: lock_busy)) { |
| 2922 | KMP_FSYNC_ACQUIRED(lck); |
| 2923 | return TRUE; |
| 2924 | } |
| 2925 | return FALSE; |
| 2926 | } |
| 2927 | |
| 2928 | static int __kmp_test_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, |
| 2929 | kmp_int32 gtid) { |
| 2930 | return __kmp_test_rtm_spin_lock(lck, gtid); |
| 2931 | } |
| 2932 | |
| 2933 | #endif // KMP_USE_TSX |
| 2934 | |
| 2935 | // Entry functions for indirect locks (first element of direct lock jump tables) |
| 2936 | static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l, |
| 2937 | kmp_dyna_lockseq_t tag); |
| 2938 | static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock); |
| 2939 | static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); |
| 2940 | static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); |
| 2941 | static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); |
| 2942 | static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| 2943 | kmp_int32); |
| 2944 | static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| 2945 | kmp_int32); |
| 2946 | static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| 2947 | kmp_int32); |
| 2948 | |
| 2949 | // Lock function definitions for the union parameter type |
| 2950 | #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a) |
| 2951 | |
| 2952 | #define expand1(lk, op) \ |
| 2953 | static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \ |
| 2954 | __kmp_##op##_##lk##_##lock(&lock->lk); \ |
| 2955 | } |
| 2956 | #define expand2(lk, op) \ |
| 2957 | static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \ |
| 2958 | kmp_int32 gtid) { \ |
| 2959 | return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \ |
| 2960 | } |
| 2961 | #define expand3(lk, op) \ |
| 2962 | static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \ |
| 2963 | kmp_lock_flags_t flags) { \ |
| 2964 | __kmp_set_##lk##_lock_flags(&lock->lk, flags); \ |
| 2965 | } |
| 2966 | #define expand4(lk, op) \ |
| 2967 | static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \ |
| 2968 | const ident_t *loc) { \ |
| 2969 | __kmp_set_##lk##_lock_location(&lock->lk, loc); \ |
| 2970 | } |
| 2971 | |
| 2972 | KMP_FOREACH_LOCK_KIND(expand1, init) |
| 2973 | KMP_FOREACH_LOCK_KIND(expand1, init_nested) |
| 2974 | KMP_FOREACH_LOCK_KIND(expand1, destroy) |
| 2975 | KMP_FOREACH_LOCK_KIND(expand1, destroy_nested) |
| 2976 | KMP_FOREACH_LOCK_KIND(expand2, acquire) |
| 2977 | KMP_FOREACH_LOCK_KIND(expand2, acquire_nested) |
| 2978 | KMP_FOREACH_LOCK_KIND(expand2, release) |
| 2979 | KMP_FOREACH_LOCK_KIND(expand2, release_nested) |
| 2980 | KMP_FOREACH_LOCK_KIND(expand2, test) |
| 2981 | KMP_FOREACH_LOCK_KIND(expand2, test_nested) |
| 2982 | KMP_FOREACH_LOCK_KIND(expand3, ) |
| 2983 | KMP_FOREACH_LOCK_KIND(expand4, ) |
| 2984 | |
| 2985 | #undef expand1 |
| 2986 | #undef expand2 |
| 2987 | #undef expand3 |
| 2988 | #undef expand4 |
| 2989 | |
| 2990 | // Jump tables for the indirect lock functions |
| 2991 | // Only fill in the odd entries, that avoids the need to shift out the low bit |
| 2992 | |
| 2993 | // init functions |
| 2994 | #define expand(l, op) 0, __kmp_init_direct_lock, |
| 2995 | void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = { |
| 2996 | __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)}; |
| 2997 | #undef expand |
| 2998 | |
| 2999 | // destroy functions |
| 3000 | #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock, |
| 3001 | static void (*direct_destroy[])(kmp_dyna_lock_t *) = { |
| 3002 | __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; |
| 3003 | #undef expand |
| 3004 | #define expand(l, op) \ |
| 3005 | 0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks, |
| 3006 | static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = { |
| 3007 | __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; |
| 3008 | #undef expand |
| 3009 | |
| 3010 | // set/acquire functions |
| 3011 | #define expand(l, op) \ |
| 3012 | 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, |
| 3013 | static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = { |
| 3014 | __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)}; |
| 3015 | #undef expand |
| 3016 | #define expand(l, op) \ |
| 3017 | 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, |
| 3018 | static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = { |
| 3019 | __kmp_set_indirect_lock_with_checks, 0, |
| 3020 | KMP_FOREACH_D_LOCK(expand, acquire)}; |
| 3021 | #undef expand |
| 3022 | |
| 3023 | // unset/release and test functions |
| 3024 | #define expand(l, op) \ |
| 3025 | 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, |
| 3026 | static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = { |
| 3027 | __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)}; |
| 3028 | static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = { |
| 3029 | __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)}; |
| 3030 | #undef expand |
| 3031 | #define expand(l, op) \ |
| 3032 | 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, |
| 3033 | static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = { |
| 3034 | __kmp_unset_indirect_lock_with_checks, 0, |
| 3035 | KMP_FOREACH_D_LOCK(expand, release)}; |
| 3036 | static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = { |
| 3037 | __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)}; |
| 3038 | #undef expand |
| 3039 | |
| 3040 | // Exposes only one set of jump tables (*lock or *lock_with_checks). |
| 3041 | void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0; |
| 3042 | int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0; |
| 3043 | int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0; |
| 3044 | int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0; |
| 3045 | |
| 3046 | // Jump tables for the indirect lock functions |
| 3047 | #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, |
| 3048 | void (*__kmp_indirect_init[])(kmp_user_lock_p) = { |
| 3049 | KMP_FOREACH_I_LOCK(expand, init)}; |
| 3050 | #undef expand |
| 3051 | |
| 3052 | #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, |
| 3053 | static void (*indirect_destroy[])(kmp_user_lock_p) = { |
| 3054 | KMP_FOREACH_I_LOCK(expand, destroy)}; |
| 3055 | #undef expand |
| 3056 | #define expand(l, op) \ |
| 3057 | (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks, |
| 3058 | static void (*indirect_destroy_check[])(kmp_user_lock_p) = { |
| 3059 | KMP_FOREACH_I_LOCK(expand, destroy)}; |
| 3060 | #undef expand |
| 3061 | |
| 3062 | // set/acquire functions |
| 3063 | #define expand(l, op) \ |
| 3064 | (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, |
| 3065 | static int (*indirect_set[])(kmp_user_lock_p, |
| 3066 | kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)}; |
| 3067 | #undef expand |
| 3068 | #define expand(l, op) \ |
| 3069 | (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, |
| 3070 | static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { |
| 3071 | KMP_FOREACH_I_LOCK(expand, acquire)}; |
| 3072 | #undef expand |
| 3073 | |
| 3074 | // unset/release and test functions |
| 3075 | #define expand(l, op) \ |
| 3076 | (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, |
| 3077 | static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { |
| 3078 | KMP_FOREACH_I_LOCK(expand, release)}; |
| 3079 | static int (*indirect_test[])(kmp_user_lock_p, |
| 3080 | kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)}; |
| 3081 | #undef expand |
| 3082 | #define expand(l, op) \ |
| 3083 | (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, |
| 3084 | static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { |
| 3085 | KMP_FOREACH_I_LOCK(expand, release)}; |
| 3086 | static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { |
| 3087 | KMP_FOREACH_I_LOCK(expand, test)}; |
| 3088 | #undef expand |
| 3089 | |
| 3090 | // Exposes only one jump tables (*lock or *lock_with_checks). |
| 3091 | void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0; |
| 3092 | int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0; |
| 3093 | int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0; |
| 3094 | int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0; |
| 3095 | |
| 3096 | // Lock index table. |
| 3097 | kmp_indirect_lock_table_t __kmp_i_lock_table; |
| 3098 | |
| 3099 | // Size of indirect locks. |
| 3100 | static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0}; |
| 3101 | |
| 3102 | // Jump tables for lock accessor/modifier. |
| 3103 | void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, |
| 3104 | const ident_t *) = {0}; |
| 3105 | void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, |
| 3106 | kmp_lock_flags_t) = {0}; |
| 3107 | const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( |
| 3108 | kmp_user_lock_p) = {0}; |
| 3109 | kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( |
| 3110 | kmp_user_lock_p) = {0}; |
| 3111 | |
| 3112 | // Use different lock pools for different lock types. |
| 3113 | static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0}; |
| 3114 | |
| 3115 | // User lock allocator for dynamically dispatched indirect locks. Every entry of |
| 3116 | // the indirect lock table holds the address and type of the allocated indirect |
| 3117 | // lock (kmp_indirect_lock_t), and the size of the table doubles when it is |
| 3118 | // full. A destroyed indirect lock object is returned to the reusable pool of |
| 3119 | // locks, unique to each lock type. |
| 3120 | kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock, |
| 3121 | kmp_int32 gtid, |
| 3122 | kmp_indirect_locktag_t tag) { |
| 3123 | kmp_indirect_lock_t *lck; |
| 3124 | kmp_lock_index_t idx, table_idx; |
| 3125 | |
| 3126 | __kmp_acquire_lock(lck: &__kmp_global_lock, gtid); |
| 3127 | |
| 3128 | if (__kmp_indirect_lock_pool[tag] != NULL) { |
| 3129 | // Reuse the allocated and destroyed lock object |
| 3130 | lck = __kmp_indirect_lock_pool[tag]; |
| 3131 | if (OMP_LOCK_T_SIZE < sizeof(void *)) |
| 3132 | idx = lck->lock->pool.index; |
| 3133 | __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next; |
| 3134 | KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n" , |
| 3135 | lck)); |
| 3136 | } else { |
| 3137 | kmp_uint32 row, col; |
| 3138 | kmp_indirect_lock_table_t *lock_table = &__kmp_i_lock_table; |
| 3139 | idx = 0; |
| 3140 | // Find location in list of lock tables to put new lock |
| 3141 | while (1) { |
| 3142 | table_idx = lock_table->next; // index within this table |
| 3143 | idx += lock_table->next; // global index within list of tables |
| 3144 | if (table_idx < lock_table->nrow_ptrs * KMP_I_LOCK_CHUNK) { |
| 3145 | row = table_idx / KMP_I_LOCK_CHUNK; |
| 3146 | col = table_idx % KMP_I_LOCK_CHUNK; |
| 3147 | // Allocate a new row of locks if necessary |
| 3148 | if (!lock_table->table[row]) { |
| 3149 | lock_table->table[row] = (kmp_indirect_lock_t *)__kmp_allocate( |
| 3150 | sizeof(kmp_indirect_lock_t) * KMP_I_LOCK_CHUNK); |
| 3151 | } |
| 3152 | break; |
| 3153 | } |
| 3154 | // Allocate a new lock table if necessary with double the capacity |
| 3155 | if (!lock_table->next_table) { |
| 3156 | kmp_indirect_lock_table_t *next_table = |
| 3157 | (kmp_indirect_lock_table_t *)__kmp_allocate( |
| 3158 | sizeof(kmp_indirect_lock_table_t)); |
| 3159 | next_table->table = (kmp_indirect_lock_t **)__kmp_allocate( |
| 3160 | sizeof(kmp_indirect_lock_t *) * 2 * lock_table->nrow_ptrs); |
| 3161 | next_table->nrow_ptrs = 2 * lock_table->nrow_ptrs; |
| 3162 | next_table->next = 0; |
| 3163 | next_table->next_table = nullptr; |
| 3164 | lock_table->next_table = next_table; |
| 3165 | } |
| 3166 | lock_table = lock_table->next_table; |
| 3167 | KMP_ASSERT(lock_table); |
| 3168 | } |
| 3169 | lock_table->next++; |
| 3170 | |
| 3171 | lck = &lock_table->table[row][col]; |
| 3172 | // Allocate a new base lock object |
| 3173 | lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]); |
| 3174 | KA_TRACE(20, |
| 3175 | ("__kmp_allocate_indirect_lock: allocated a new lock %p\n" , lck)); |
| 3176 | } |
| 3177 | |
| 3178 | __kmp_release_lock(lck: &__kmp_global_lock, gtid); |
| 3179 | |
| 3180 | lck->type = tag; |
| 3181 | |
| 3182 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3183 | *(kmp_lock_index_t *)&(((kmp_base_tas_lock_t *)user_lock)->poll) = |
| 3184 | idx << 1; // indirect lock word must be even |
| 3185 | } else { |
| 3186 | *((kmp_indirect_lock_t **)user_lock) = lck; |
| 3187 | } |
| 3188 | |
| 3189 | return lck; |
| 3190 | } |
| 3191 | |
| 3192 | // User lock lookup for dynamically dispatched locks. |
| 3193 | static __forceinline kmp_indirect_lock_t * |
| 3194 | __kmp_lookup_indirect_lock(void **user_lock, const char *func) { |
| 3195 | if (__kmp_env_consistency_check) { |
| 3196 | kmp_indirect_lock_t *lck = NULL; |
| 3197 | if (user_lock == NULL) { |
| 3198 | KMP_FATAL(LockIsUninitialized, func); |
| 3199 | } |
| 3200 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3201 | kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock); |
| 3202 | lck = __kmp_get_i_lock(idx); |
| 3203 | } else { |
| 3204 | lck = *((kmp_indirect_lock_t **)user_lock); |
| 3205 | } |
| 3206 | if (lck == NULL) { |
| 3207 | KMP_FATAL(LockIsUninitialized, func); |
| 3208 | } |
| 3209 | return lck; |
| 3210 | } else { |
| 3211 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3212 | return __kmp_get_i_lock(KMP_EXTRACT_I_INDEX(user_lock)); |
| 3213 | } else { |
| 3214 | return *((kmp_indirect_lock_t **)user_lock); |
| 3215 | } |
| 3216 | } |
| 3217 | } |
| 3218 | |
| 3219 | static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock, |
| 3220 | kmp_dyna_lockseq_t seq) { |
| 3221 | #if KMP_USE_ADAPTIVE_LOCKS |
| 3222 | if (seq == lockseq_adaptive && !__kmp_cpuinfo.flags.rtm) { |
| 3223 | KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t" , "adaptive" ); |
| 3224 | seq = lockseq_queuing; |
| 3225 | } |
| 3226 | #endif |
| 3227 | #if KMP_USE_TSX |
| 3228 | if (seq == lockseq_rtm_queuing && !__kmp_cpuinfo.flags.rtm) { |
| 3229 | seq = lockseq_queuing; |
| 3230 | } |
| 3231 | #endif |
| 3232 | kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq); |
| 3233 | kmp_indirect_lock_t *l = |
| 3234 | __kmp_allocate_indirect_lock(user_lock: (void **)lock, __kmp_entry_gtid(), tag); |
| 3235 | KMP_I_LOCK_FUNC(l, init)(l->lock); |
| 3236 | KA_TRACE( |
| 3237 | 20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n" , |
| 3238 | seq)); |
| 3239 | } |
| 3240 | |
| 3241 | static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) { |
| 3242 | kmp_uint32 gtid = __kmp_entry_gtid(); |
| 3243 | kmp_indirect_lock_t *l = |
| 3244 | __kmp_lookup_indirect_lock(user_lock: (void **)lock, func: "omp_destroy_lock" ); |
| 3245 | KMP_I_LOCK_FUNC(l, destroy)(l->lock); |
| 3246 | kmp_indirect_locktag_t tag = l->type; |
| 3247 | |
| 3248 | __kmp_acquire_lock(lck: &__kmp_global_lock, gtid); |
| 3249 | |
| 3250 | // Use the base lock's space to keep the pool chain. |
| 3251 | l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag]; |
| 3252 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3253 | l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock); |
| 3254 | } |
| 3255 | __kmp_indirect_lock_pool[tag] = l; |
| 3256 | |
| 3257 | __kmp_release_lock(lck: &__kmp_global_lock, gtid); |
| 3258 | } |
| 3259 | |
| 3260 | static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { |
| 3261 | kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); |
| 3262 | return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); |
| 3263 | } |
| 3264 | |
| 3265 | static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { |
| 3266 | kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); |
| 3267 | return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); |
| 3268 | } |
| 3269 | |
| 3270 | static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { |
| 3271 | kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); |
| 3272 | return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); |
| 3273 | } |
| 3274 | |
| 3275 | static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| 3276 | kmp_int32 gtid) { |
| 3277 | kmp_indirect_lock_t *l = |
| 3278 | __kmp_lookup_indirect_lock(user_lock: (void **)lock, func: "omp_set_lock" ); |
| 3279 | return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); |
| 3280 | } |
| 3281 | |
| 3282 | static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| 3283 | kmp_int32 gtid) { |
| 3284 | kmp_indirect_lock_t *l = |
| 3285 | __kmp_lookup_indirect_lock(user_lock: (void **)lock, func: "omp_unset_lock" ); |
| 3286 | return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); |
| 3287 | } |
| 3288 | |
| 3289 | static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, |
| 3290 | kmp_int32 gtid) { |
| 3291 | kmp_indirect_lock_t *l = |
| 3292 | __kmp_lookup_indirect_lock(user_lock: (void **)lock, func: "omp_test_lock" ); |
| 3293 | return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); |
| 3294 | } |
| 3295 | |
| 3296 | kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing; |
| 3297 | |
| 3298 | // This is used only in kmp_error.cpp when consistency checking is on. |
| 3299 | kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) { |
| 3300 | switch (seq) { |
| 3301 | case lockseq_tas: |
| 3302 | case lockseq_nested_tas: |
| 3303 | return __kmp_get_tas_lock_owner(lck: (kmp_tas_lock_t *)lck); |
| 3304 | #if KMP_USE_FUTEX |
| 3305 | case lockseq_futex: |
| 3306 | case lockseq_nested_futex: |
| 3307 | return __kmp_get_futex_lock_owner(lck: (kmp_futex_lock_t *)lck); |
| 3308 | #endif |
| 3309 | case lockseq_ticket: |
| 3310 | case lockseq_nested_ticket: |
| 3311 | return __kmp_get_ticket_lock_owner(lck: (kmp_ticket_lock_t *)lck); |
| 3312 | case lockseq_queuing: |
| 3313 | case lockseq_nested_queuing: |
| 3314 | #if KMP_USE_ADAPTIVE_LOCKS |
| 3315 | case lockseq_adaptive: |
| 3316 | #endif |
| 3317 | return __kmp_get_queuing_lock_owner(lck: (kmp_queuing_lock_t *)lck); |
| 3318 | case lockseq_drdpa: |
| 3319 | case lockseq_nested_drdpa: |
| 3320 | return __kmp_get_drdpa_lock_owner(lck: (kmp_drdpa_lock_t *)lck); |
| 3321 | default: |
| 3322 | return 0; |
| 3323 | } |
| 3324 | } |
| 3325 | |
| 3326 | // Initializes data for dynamic user locks. |
| 3327 | void __kmp_init_dynamic_user_locks() { |
| 3328 | // Initialize jump table for the lock functions |
| 3329 | if (__kmp_env_consistency_check) { |
| 3330 | __kmp_direct_set = direct_set_check; |
| 3331 | __kmp_direct_unset = direct_unset_check; |
| 3332 | __kmp_direct_test = direct_test_check; |
| 3333 | __kmp_direct_destroy = direct_destroy_check; |
| 3334 | __kmp_indirect_set = indirect_set_check; |
| 3335 | __kmp_indirect_unset = indirect_unset_check; |
| 3336 | __kmp_indirect_test = indirect_test_check; |
| 3337 | __kmp_indirect_destroy = indirect_destroy_check; |
| 3338 | } else { |
| 3339 | __kmp_direct_set = direct_set; |
| 3340 | __kmp_direct_unset = direct_unset; |
| 3341 | __kmp_direct_test = direct_test; |
| 3342 | __kmp_direct_destroy = direct_destroy; |
| 3343 | __kmp_indirect_set = indirect_set; |
| 3344 | __kmp_indirect_unset = indirect_unset; |
| 3345 | __kmp_indirect_test = indirect_test; |
| 3346 | __kmp_indirect_destroy = indirect_destroy; |
| 3347 | } |
| 3348 | // If the user locks have already been initialized, then return. Allow the |
| 3349 | // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate |
| 3350 | // new lock tables if they have already been allocated. |
| 3351 | if (__kmp_init_user_locks) |
| 3352 | return; |
| 3353 | |
| 3354 | // Initialize lock index table |
| 3355 | __kmp_i_lock_table.nrow_ptrs = KMP_I_LOCK_TABLE_INIT_NROW_PTRS; |
| 3356 | __kmp_i_lock_table.table = (kmp_indirect_lock_t **)__kmp_allocate( |
| 3357 | sizeof(kmp_indirect_lock_t *) * KMP_I_LOCK_TABLE_INIT_NROW_PTRS); |
| 3358 | *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate( |
| 3359 | KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); |
| 3360 | __kmp_i_lock_table.next = 0; |
| 3361 | __kmp_i_lock_table.next_table = nullptr; |
| 3362 | |
| 3363 | // Indirect lock size |
| 3364 | __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t); |
| 3365 | __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t); |
| 3366 | #if KMP_USE_ADAPTIVE_LOCKS |
| 3367 | __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t); |
| 3368 | #endif |
| 3369 | __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t); |
| 3370 | #if KMP_USE_TSX |
| 3371 | __kmp_indirect_lock_size[locktag_rtm_queuing] = sizeof(kmp_queuing_lock_t); |
| 3372 | #endif |
| 3373 | __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t); |
| 3374 | #if KMP_USE_FUTEX |
| 3375 | __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t); |
| 3376 | #endif |
| 3377 | __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t); |
| 3378 | __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t); |
| 3379 | __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t); |
| 3380 | |
| 3381 | // Initialize lock accessor/modifier |
| 3382 | #define fill_jumps(table, expand, sep) \ |
| 3383 | { \ |
| 3384 | table[locktag##sep##ticket] = expand(ticket); \ |
| 3385 | table[locktag##sep##queuing] = expand(queuing); \ |
| 3386 | table[locktag##sep##drdpa] = expand(drdpa); \ |
| 3387 | } |
| 3388 | |
| 3389 | #if KMP_USE_ADAPTIVE_LOCKS |
| 3390 | #define fill_table(table, expand) \ |
| 3391 | { \ |
| 3392 | fill_jumps(table, expand, _); \ |
| 3393 | table[locktag_adaptive] = expand(queuing); \ |
| 3394 | fill_jumps(table, expand, _nested_); \ |
| 3395 | } |
| 3396 | #else |
| 3397 | #define fill_table(table, expand) \ |
| 3398 | { \ |
| 3399 | fill_jumps(table, expand, _); \ |
| 3400 | fill_jumps(table, expand, _nested_); \ |
| 3401 | } |
| 3402 | #endif // KMP_USE_ADAPTIVE_LOCKS |
| 3403 | |
| 3404 | #define expand(l) \ |
| 3405 | (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location |
| 3406 | fill_table(__kmp_indirect_set_location, expand); |
| 3407 | #undef expand |
| 3408 | #define expand(l) \ |
| 3409 | (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags |
| 3410 | fill_table(__kmp_indirect_set_flags, expand); |
| 3411 | #undef expand |
| 3412 | #define expand(l) \ |
| 3413 | (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location |
| 3414 | fill_table(__kmp_indirect_get_location, expand); |
| 3415 | #undef expand |
| 3416 | #define expand(l) \ |
| 3417 | (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags |
| 3418 | fill_table(__kmp_indirect_get_flags, expand); |
| 3419 | #undef expand |
| 3420 | |
| 3421 | __kmp_init_user_locks = TRUE; |
| 3422 | } |
| 3423 | |
| 3424 | // Clean up the lock table. |
| 3425 | void __kmp_cleanup_indirect_user_locks() { |
| 3426 | int k; |
| 3427 | |
| 3428 | // Clean up locks in the pools first (they were already destroyed before going |
| 3429 | // into the pools). |
| 3430 | for (k = 0; k < KMP_NUM_I_LOCKS; ++k) { |
| 3431 | kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k]; |
| 3432 | while (l != NULL) { |
| 3433 | kmp_indirect_lock_t *ll = l; |
| 3434 | l = (kmp_indirect_lock_t *)l->lock->pool.next; |
| 3435 | KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n" , |
| 3436 | ll)); |
| 3437 | __kmp_free(ll->lock); |
| 3438 | ll->lock = NULL; |
| 3439 | } |
| 3440 | __kmp_indirect_lock_pool[k] = NULL; |
| 3441 | } |
| 3442 | // Clean up the remaining undestroyed locks. |
| 3443 | kmp_indirect_lock_table_t *ptr = &__kmp_i_lock_table; |
| 3444 | while (ptr) { |
| 3445 | for (kmp_uint32 row = 0; row < ptr->nrow_ptrs; ++row) { |
| 3446 | if (!ptr->table[row]) |
| 3447 | continue; |
| 3448 | for (kmp_uint32 col = 0; col < KMP_I_LOCK_CHUNK; ++col) { |
| 3449 | kmp_indirect_lock_t *l = &ptr->table[row][col]; |
| 3450 | if (l->lock) { |
| 3451 | // Locks not destroyed explicitly need to be destroyed here. |
| 3452 | KMP_I_LOCK_FUNC(l, destroy)(l->lock); |
| 3453 | KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p " |
| 3454 | "from table\n" , |
| 3455 | l)); |
| 3456 | __kmp_free(l->lock); |
| 3457 | } |
| 3458 | } |
| 3459 | __kmp_free(ptr->table[row]); |
| 3460 | } |
| 3461 | kmp_indirect_lock_table_t *next_table = ptr->next_table; |
| 3462 | if (ptr != &__kmp_i_lock_table) |
| 3463 | __kmp_free(ptr); |
| 3464 | ptr = next_table; |
| 3465 | } |
| 3466 | |
| 3467 | __kmp_init_user_locks = FALSE; |
| 3468 | } |
| 3469 | |
| 3470 | enum kmp_lock_kind __kmp_user_lock_kind = lk_default; |
| 3471 | int __kmp_num_locks_in_block = 1; // FIXME - tune this value |
| 3472 | |
| 3473 | #else // KMP_USE_DYNAMIC_LOCK |
| 3474 | |
| 3475 | static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| 3476 | __kmp_init_tas_lock(lck); |
| 3477 | } |
| 3478 | |
| 3479 | static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { |
| 3480 | __kmp_init_nested_tas_lock(lck); |
| 3481 | } |
| 3482 | |
| 3483 | #if KMP_USE_FUTEX |
| 3484 | static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| 3485 | __kmp_init_futex_lock(lck); |
| 3486 | } |
| 3487 | |
| 3488 | static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { |
| 3489 | __kmp_init_nested_futex_lock(lck); |
| 3490 | } |
| 3491 | #endif |
| 3492 | |
| 3493 | static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) { |
| 3494 | return lck == lck->lk.self; |
| 3495 | } |
| 3496 | |
| 3497 | static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| 3498 | __kmp_init_ticket_lock(lck); |
| 3499 | } |
| 3500 | |
| 3501 | static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { |
| 3502 | __kmp_init_nested_ticket_lock(lck); |
| 3503 | } |
| 3504 | |
| 3505 | static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) { |
| 3506 | return lck == lck->lk.initialized; |
| 3507 | } |
| 3508 | |
| 3509 | static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| 3510 | __kmp_init_queuing_lock(lck); |
| 3511 | } |
| 3512 | |
| 3513 | static void |
| 3514 | __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { |
| 3515 | __kmp_init_nested_queuing_lock(lck); |
| 3516 | } |
| 3517 | |
| 3518 | #if KMP_USE_ADAPTIVE_LOCKS |
| 3519 | static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { |
| 3520 | __kmp_init_adaptive_lock(lck); |
| 3521 | } |
| 3522 | #endif |
| 3523 | |
| 3524 | static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) { |
| 3525 | return lck == lck->lk.initialized; |
| 3526 | } |
| 3527 | |
| 3528 | static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| 3529 | __kmp_init_drdpa_lock(lck); |
| 3530 | } |
| 3531 | |
| 3532 | static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { |
| 3533 | __kmp_init_nested_drdpa_lock(lck); |
| 3534 | } |
| 3535 | |
| 3536 | /* user locks |
| 3537 | * They are implemented as a table of function pointers which are set to the |
| 3538 | * lock functions of the appropriate kind, once that has been determined. */ |
| 3539 | |
| 3540 | enum kmp_lock_kind __kmp_user_lock_kind = lk_default; |
| 3541 | |
| 3542 | size_t __kmp_base_user_lock_size = 0; |
| 3543 | size_t __kmp_user_lock_size = 0; |
| 3544 | |
| 3545 | kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL; |
| 3546 | int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, |
| 3547 | kmp_int32 gtid) = NULL; |
| 3548 | |
| 3549 | int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, |
| 3550 | kmp_int32 gtid) = NULL; |
| 3551 | int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, |
| 3552 | kmp_int32 gtid) = NULL; |
| 3553 | void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| 3554 | void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL; |
| 3555 | void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| 3556 | int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
| 3557 | kmp_int32 gtid) = NULL; |
| 3558 | |
| 3559 | int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
| 3560 | kmp_int32 gtid) = NULL; |
| 3561 | int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, |
| 3562 | kmp_int32 gtid) = NULL; |
| 3563 | void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| 3564 | void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; |
| 3565 | |
| 3566 | int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL; |
| 3567 | const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL; |
| 3568 | void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, |
| 3569 | const ident_t *loc) = NULL; |
| 3570 | kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL; |
| 3571 | void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, |
| 3572 | kmp_lock_flags_t flags) = NULL; |
| 3573 | |
| 3574 | void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) { |
| 3575 | switch (user_lock_kind) { |
| 3576 | case lk_default: |
| 3577 | default: |
| 3578 | KMP_ASSERT(0); |
| 3579 | |
| 3580 | case lk_tas: { |
| 3581 | __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t); |
| 3582 | __kmp_user_lock_size = sizeof(kmp_tas_lock_t); |
| 3583 | |
| 3584 | __kmp_get_user_lock_owner_ = |
| 3585 | (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner); |
| 3586 | |
| 3587 | if (__kmp_env_consistency_check) { |
| 3588 | KMP_BIND_USER_LOCK_WITH_CHECKS(tas); |
| 3589 | KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas); |
| 3590 | } else { |
| 3591 | KMP_BIND_USER_LOCK(tas); |
| 3592 | KMP_BIND_NESTED_USER_LOCK(tas); |
| 3593 | } |
| 3594 | |
| 3595 | __kmp_destroy_user_lock_ = |
| 3596 | (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock); |
| 3597 | |
| 3598 | __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; |
| 3599 | |
| 3600 | __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; |
| 3601 | |
| 3602 | __kmp_set_user_lock_location_ = |
| 3603 | (void (*)(kmp_user_lock_p, const ident_t *))NULL; |
| 3604 | |
| 3605 | __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; |
| 3606 | |
| 3607 | __kmp_set_user_lock_flags_ = |
| 3608 | (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; |
| 3609 | } break; |
| 3610 | |
| 3611 | #if KMP_USE_FUTEX |
| 3612 | |
| 3613 | case lk_futex: { |
| 3614 | __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t); |
| 3615 | __kmp_user_lock_size = sizeof(kmp_futex_lock_t); |
| 3616 | |
| 3617 | __kmp_get_user_lock_owner_ = |
| 3618 | (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner); |
| 3619 | |
| 3620 | if (__kmp_env_consistency_check) { |
| 3621 | KMP_BIND_USER_LOCK_WITH_CHECKS(futex); |
| 3622 | KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex); |
| 3623 | } else { |
| 3624 | KMP_BIND_USER_LOCK(futex); |
| 3625 | KMP_BIND_NESTED_USER_LOCK(futex); |
| 3626 | } |
| 3627 | |
| 3628 | __kmp_destroy_user_lock_ = |
| 3629 | (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock); |
| 3630 | |
| 3631 | __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; |
| 3632 | |
| 3633 | __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; |
| 3634 | |
| 3635 | __kmp_set_user_lock_location_ = |
| 3636 | (void (*)(kmp_user_lock_p, const ident_t *))NULL; |
| 3637 | |
| 3638 | __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; |
| 3639 | |
| 3640 | __kmp_set_user_lock_flags_ = |
| 3641 | (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; |
| 3642 | } break; |
| 3643 | |
| 3644 | #endif // KMP_USE_FUTEX |
| 3645 | |
| 3646 | case lk_ticket: { |
| 3647 | __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t); |
| 3648 | __kmp_user_lock_size = sizeof(kmp_ticket_lock_t); |
| 3649 | |
| 3650 | __kmp_get_user_lock_owner_ = |
| 3651 | (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner); |
| 3652 | |
| 3653 | if (__kmp_env_consistency_check) { |
| 3654 | KMP_BIND_USER_LOCK_WITH_CHECKS(ticket); |
| 3655 | KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket); |
| 3656 | } else { |
| 3657 | KMP_BIND_USER_LOCK(ticket); |
| 3658 | KMP_BIND_NESTED_USER_LOCK(ticket); |
| 3659 | } |
| 3660 | |
| 3661 | __kmp_destroy_user_lock_ = |
| 3662 | (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock); |
| 3663 | |
| 3664 | __kmp_is_user_lock_initialized_ = |
| 3665 | (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized); |
| 3666 | |
| 3667 | __kmp_get_user_lock_location_ = |
| 3668 | (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location); |
| 3669 | |
| 3670 | __kmp_set_user_lock_location_ = (void (*)( |
| 3671 | kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location); |
| 3672 | |
| 3673 | __kmp_get_user_lock_flags_ = |
| 3674 | (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags); |
| 3675 | |
| 3676 | __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| 3677 | &__kmp_set_ticket_lock_flags); |
| 3678 | } break; |
| 3679 | |
| 3680 | case lk_queuing: { |
| 3681 | __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t); |
| 3682 | __kmp_user_lock_size = sizeof(kmp_queuing_lock_t); |
| 3683 | |
| 3684 | __kmp_get_user_lock_owner_ = |
| 3685 | (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); |
| 3686 | |
| 3687 | if (__kmp_env_consistency_check) { |
| 3688 | KMP_BIND_USER_LOCK_WITH_CHECKS(queuing); |
| 3689 | KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing); |
| 3690 | } else { |
| 3691 | KMP_BIND_USER_LOCK(queuing); |
| 3692 | KMP_BIND_NESTED_USER_LOCK(queuing); |
| 3693 | } |
| 3694 | |
| 3695 | __kmp_destroy_user_lock_ = |
| 3696 | (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock); |
| 3697 | |
| 3698 | __kmp_is_user_lock_initialized_ = |
| 3699 | (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); |
| 3700 | |
| 3701 | __kmp_get_user_lock_location_ = |
| 3702 | (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); |
| 3703 | |
| 3704 | __kmp_set_user_lock_location_ = (void (*)( |
| 3705 | kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); |
| 3706 | |
| 3707 | __kmp_get_user_lock_flags_ = |
| 3708 | (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); |
| 3709 | |
| 3710 | __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| 3711 | &__kmp_set_queuing_lock_flags); |
| 3712 | } break; |
| 3713 | |
| 3714 | #if KMP_USE_ADAPTIVE_LOCKS |
| 3715 | case lk_adaptive: { |
| 3716 | __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t); |
| 3717 | __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t); |
| 3718 | |
| 3719 | __kmp_get_user_lock_owner_ = |
| 3720 | (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); |
| 3721 | |
| 3722 | if (__kmp_env_consistency_check) { |
| 3723 | KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive); |
| 3724 | } else { |
| 3725 | KMP_BIND_USER_LOCK(adaptive); |
| 3726 | } |
| 3727 | |
| 3728 | __kmp_destroy_user_lock_ = |
| 3729 | (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock); |
| 3730 | |
| 3731 | __kmp_is_user_lock_initialized_ = |
| 3732 | (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); |
| 3733 | |
| 3734 | __kmp_get_user_lock_location_ = |
| 3735 | (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); |
| 3736 | |
| 3737 | __kmp_set_user_lock_location_ = (void (*)( |
| 3738 | kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); |
| 3739 | |
| 3740 | __kmp_get_user_lock_flags_ = |
| 3741 | (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); |
| 3742 | |
| 3743 | __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| 3744 | &__kmp_set_queuing_lock_flags); |
| 3745 | |
| 3746 | } break; |
| 3747 | #endif // KMP_USE_ADAPTIVE_LOCKS |
| 3748 | |
| 3749 | case lk_drdpa: { |
| 3750 | __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t); |
| 3751 | __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t); |
| 3752 | |
| 3753 | __kmp_get_user_lock_owner_ = |
| 3754 | (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner); |
| 3755 | |
| 3756 | if (__kmp_env_consistency_check) { |
| 3757 | KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa); |
| 3758 | KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa); |
| 3759 | } else { |
| 3760 | KMP_BIND_USER_LOCK(drdpa); |
| 3761 | KMP_BIND_NESTED_USER_LOCK(drdpa); |
| 3762 | } |
| 3763 | |
| 3764 | __kmp_destroy_user_lock_ = |
| 3765 | (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock); |
| 3766 | |
| 3767 | __kmp_is_user_lock_initialized_ = |
| 3768 | (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized); |
| 3769 | |
| 3770 | __kmp_get_user_lock_location_ = |
| 3771 | (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location); |
| 3772 | |
| 3773 | __kmp_set_user_lock_location_ = (void (*)( |
| 3774 | kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location); |
| 3775 | |
| 3776 | __kmp_get_user_lock_flags_ = |
| 3777 | (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags); |
| 3778 | |
| 3779 | __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( |
| 3780 | &__kmp_set_drdpa_lock_flags); |
| 3781 | } break; |
| 3782 | } |
| 3783 | } |
| 3784 | |
| 3785 | // ---------------------------------------------------------------------------- |
| 3786 | // User lock table & lock allocation |
| 3787 | |
| 3788 | kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL}; |
| 3789 | kmp_user_lock_p __kmp_lock_pool = NULL; |
| 3790 | |
| 3791 | // Lock block-allocation support. |
| 3792 | kmp_block_of_locks *__kmp_lock_blocks = NULL; |
| 3793 | int __kmp_num_locks_in_block = 1; // FIXME - tune this value |
| 3794 | |
| 3795 | static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) { |
| 3796 | // Assume that kmp_global_lock is held upon entry/exit. |
| 3797 | kmp_lock_index_t index; |
| 3798 | if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) { |
| 3799 | kmp_lock_index_t size; |
| 3800 | kmp_user_lock_p *table; |
| 3801 | // Reallocate lock table. |
| 3802 | if (__kmp_user_lock_table.allocated == 0) { |
| 3803 | size = 1024; |
| 3804 | } else { |
| 3805 | size = __kmp_user_lock_table.allocated * 2; |
| 3806 | } |
| 3807 | table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size); |
| 3808 | KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1, |
| 3809 | sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1)); |
| 3810 | table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table; |
| 3811 | // We cannot free the previous table now, since it may be in use by other |
| 3812 | // threads. So save the pointer to the previous table in the first |
| 3813 | // element of the new table. All the tables will be organized into a list, |
| 3814 | // and could be freed when library shutting down. |
| 3815 | __kmp_user_lock_table.table = table; |
| 3816 | __kmp_user_lock_table.allocated = size; |
| 3817 | } |
| 3818 | KMP_DEBUG_ASSERT(__kmp_user_lock_table.used < |
| 3819 | __kmp_user_lock_table.allocated); |
| 3820 | index = __kmp_user_lock_table.used; |
| 3821 | __kmp_user_lock_table.table[index] = lck; |
| 3822 | ++__kmp_user_lock_table.used; |
| 3823 | return index; |
| 3824 | } |
| 3825 | |
| 3826 | static kmp_user_lock_p __kmp_lock_block_allocate() { |
| 3827 | // Assume that kmp_global_lock is held upon entry/exit. |
| 3828 | static int last_index = 0; |
| 3829 | if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) { |
| 3830 | // Restart the index. |
| 3831 | last_index = 0; |
| 3832 | // Need to allocate a new block. |
| 3833 | KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); |
| 3834 | size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block; |
| 3835 | char *buffer = |
| 3836 | (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks)); |
| 3837 | // Set up the new block. |
| 3838 | kmp_block_of_locks *new_block = |
| 3839 | (kmp_block_of_locks *)(&buffer[space_for_locks]); |
| 3840 | new_block->next_block = __kmp_lock_blocks; |
| 3841 | new_block->locks = (void *)buffer; |
| 3842 | // Publish the new block. |
| 3843 | KMP_MB(); |
| 3844 | __kmp_lock_blocks = new_block; |
| 3845 | } |
| 3846 | kmp_user_lock_p ret = (kmp_user_lock_p)(&( |
| 3847 | ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size])); |
| 3848 | last_index++; |
| 3849 | return ret; |
| 3850 | } |
| 3851 | |
| 3852 | // Get memory for a lock. It may be freshly allocated memory or reused memory |
| 3853 | // from lock pool. |
| 3854 | kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid, |
| 3855 | kmp_lock_flags_t flags) { |
| 3856 | kmp_user_lock_p lck; |
| 3857 | kmp_lock_index_t index; |
| 3858 | KMP_DEBUG_ASSERT(user_lock); |
| 3859 | |
| 3860 | __kmp_acquire_lock(&__kmp_global_lock, gtid); |
| 3861 | |
| 3862 | if (__kmp_lock_pool == NULL) { |
| 3863 | // Lock pool is empty. Allocate new memory. |
| 3864 | |
| 3865 | if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point. |
| 3866 | lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size); |
| 3867 | } else { |
| 3868 | lck = __kmp_lock_block_allocate(); |
| 3869 | } |
| 3870 | |
| 3871 | // Insert lock in the table so that it can be freed in __kmp_cleanup, |
| 3872 | // and debugger has info on all allocated locks. |
| 3873 | index = __kmp_lock_table_insert(lck); |
| 3874 | } else { |
| 3875 | // Pick up lock from pool. |
| 3876 | lck = __kmp_lock_pool; |
| 3877 | index = __kmp_lock_pool->pool.index; |
| 3878 | __kmp_lock_pool = __kmp_lock_pool->pool.next; |
| 3879 | } |
| 3880 | |
| 3881 | // We could potentially differentiate between nested and regular locks |
| 3882 | // here, and do the lock table lookup for regular locks only. |
| 3883 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3884 | *((kmp_lock_index_t *)user_lock) = index; |
| 3885 | } else { |
| 3886 | *((kmp_user_lock_p *)user_lock) = lck; |
| 3887 | } |
| 3888 | |
| 3889 | // mark the lock if it is critical section lock. |
| 3890 | __kmp_set_user_lock_flags(lck, flags); |
| 3891 | |
| 3892 | __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper |
| 3893 | |
| 3894 | return lck; |
| 3895 | } |
| 3896 | |
| 3897 | // Put lock's memory to pool for reusing. |
| 3898 | void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, |
| 3899 | kmp_user_lock_p lck) { |
| 3900 | KMP_DEBUG_ASSERT(user_lock != NULL); |
| 3901 | KMP_DEBUG_ASSERT(lck != NULL); |
| 3902 | |
| 3903 | __kmp_acquire_lock(&__kmp_global_lock, gtid); |
| 3904 | |
| 3905 | lck->pool.next = __kmp_lock_pool; |
| 3906 | __kmp_lock_pool = lck; |
| 3907 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3908 | kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); |
| 3909 | KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used); |
| 3910 | lck->pool.index = index; |
| 3911 | } |
| 3912 | |
| 3913 | __kmp_release_lock(&__kmp_global_lock, gtid); |
| 3914 | } |
| 3915 | |
| 3916 | kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) { |
| 3917 | kmp_user_lock_p lck = NULL; |
| 3918 | |
| 3919 | if (__kmp_env_consistency_check) { |
| 3920 | if (user_lock == NULL) { |
| 3921 | KMP_FATAL(LockIsUninitialized, func); |
| 3922 | } |
| 3923 | } |
| 3924 | |
| 3925 | if (OMP_LOCK_T_SIZE < sizeof(void *)) { |
| 3926 | kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); |
| 3927 | if (__kmp_env_consistency_check) { |
| 3928 | if (!(0 < index && index < __kmp_user_lock_table.used)) { |
| 3929 | KMP_FATAL(LockIsUninitialized, func); |
| 3930 | } |
| 3931 | } |
| 3932 | KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used); |
| 3933 | KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); |
| 3934 | lck = __kmp_user_lock_table.table[index]; |
| 3935 | } else { |
| 3936 | lck = *((kmp_user_lock_p *)user_lock); |
| 3937 | } |
| 3938 | |
| 3939 | if (__kmp_env_consistency_check) { |
| 3940 | if (lck == NULL) { |
| 3941 | KMP_FATAL(LockIsUninitialized, func); |
| 3942 | } |
| 3943 | } |
| 3944 | |
| 3945 | return lck; |
| 3946 | } |
| 3947 | |
| 3948 | void __kmp_cleanup_user_locks(void) { |
| 3949 | // Reset lock pool. Don't worry about lock in the pool--we will free them when |
| 3950 | // iterating through lock table (it includes all the locks, dead or alive). |
| 3951 | __kmp_lock_pool = NULL; |
| 3952 | |
| 3953 | #define IS_CRITICAL(lck) \ |
| 3954 | ((__kmp_get_user_lock_flags_ != NULL) && \ |
| 3955 | ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section)) |
| 3956 | |
| 3957 | // Loop through lock table, free all locks. |
| 3958 | // Do not free item [0], it is reserved for lock tables list. |
| 3959 | // |
| 3960 | // FIXME - we are iterating through a list of (pointers to) objects of type |
| 3961 | // union kmp_user_lock, but we have no way of knowing whether the base type is |
| 3962 | // currently "pool" or whatever the global user lock type is. |
| 3963 | // |
| 3964 | // We are relying on the fact that for all of the user lock types |
| 3965 | // (except "tas"), the first field in the lock struct is the "initialized" |
| 3966 | // field, which is set to the address of the lock object itself when |
| 3967 | // the lock is initialized. When the union is of type "pool", the |
| 3968 | // first field is a pointer to the next object in the free list, which |
| 3969 | // will not be the same address as the object itself. |
| 3970 | // |
| 3971 | // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail |
| 3972 | // for "pool" objects on the free list. This must happen as the "location" |
| 3973 | // field of real user locks overlaps the "index" field of "pool" objects. |
| 3974 | // |
| 3975 | // It would be better to run through the free list, and remove all "pool" |
| 3976 | // objects from the lock table before executing this loop. However, |
| 3977 | // "pool" objects do not always have their index field set (only on |
| 3978 | // lin_32e), and I don't want to search the lock table for the address |
| 3979 | // of every "pool" object on the free list. |
| 3980 | while (__kmp_user_lock_table.used > 1) { |
| 3981 | const ident *loc; |
| 3982 | |
| 3983 | // reduce __kmp_user_lock_table.used before freeing the lock, |
| 3984 | // so that state of locks is consistent |
| 3985 | kmp_user_lock_p lck = |
| 3986 | __kmp_user_lock_table.table[--__kmp_user_lock_table.used]; |
| 3987 | |
| 3988 | if ((__kmp_is_user_lock_initialized_ != NULL) && |
| 3989 | (*__kmp_is_user_lock_initialized_)(lck)) { |
| 3990 | // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND |
| 3991 | // it is NOT a critical section (user is not responsible for destroying |
| 3992 | // criticals) AND we know source location to report. |
| 3993 | if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) && |
| 3994 | ((loc = __kmp_get_user_lock_location(lck)) != NULL) && |
| 3995 | (loc->psource != NULL)) { |
| 3996 | kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, false); |
| 3997 | KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line); |
| 3998 | __kmp_str_loc_free(&str_loc); |
| 3999 | } |
| 4000 | |
| 4001 | #ifdef KMP_DEBUG |
| 4002 | if (IS_CRITICAL(lck)) { |
| 4003 | KA_TRACE( |
| 4004 | 20, |
| 4005 | ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n" , |
| 4006 | lck, *(void **)lck)); |
| 4007 | } else { |
| 4008 | KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n" , lck, |
| 4009 | *(void **)lck)); |
| 4010 | } |
| 4011 | #endif // KMP_DEBUG |
| 4012 | |
| 4013 | // Cleanup internal lock dynamic resources (for drdpa locks particularly). |
| 4014 | __kmp_destroy_user_lock(lck); |
| 4015 | } |
| 4016 | |
| 4017 | // Free the lock if block allocation of locks is not used. |
| 4018 | if (__kmp_lock_blocks == NULL) { |
| 4019 | __kmp_free(lck); |
| 4020 | } |
| 4021 | } |
| 4022 | |
| 4023 | #undef IS_CRITICAL |
| 4024 | |
| 4025 | // delete lock table(s). |
| 4026 | kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table; |
| 4027 | __kmp_user_lock_table.table = NULL; |
| 4028 | __kmp_user_lock_table.allocated = 0; |
| 4029 | |
| 4030 | while (table_ptr != NULL) { |
| 4031 | // In the first element we saved the pointer to the previous |
| 4032 | // (smaller) lock table. |
| 4033 | kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]); |
| 4034 | __kmp_free(table_ptr); |
| 4035 | table_ptr = next; |
| 4036 | } |
| 4037 | |
| 4038 | // Free buffers allocated for blocks of locks. |
| 4039 | kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks; |
| 4040 | __kmp_lock_blocks = NULL; |
| 4041 | |
| 4042 | while (block_ptr != NULL) { |
| 4043 | kmp_block_of_locks_t *next = block_ptr->next_block; |
| 4044 | __kmp_free(block_ptr->locks); |
| 4045 | // *block_ptr itself was allocated at the end of the locks vector. |
| 4046 | block_ptr = next; |
| 4047 | } |
| 4048 | |
| 4049 | TCW_4(__kmp_init_user_locks, FALSE); |
| 4050 | } |
| 4051 | |
| 4052 | #endif // KMP_USE_DYNAMIC_LOCK |
| 4053 | |