1 | /* |
2 | * kmp_tasking.cpp -- OpenMP 3.0 tasking support. |
3 | */ |
4 | |
5 | //===----------------------------------------------------------------------===// |
6 | // |
7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
8 | // See https://llvm.org/LICENSE.txt for license information. |
9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "kmp.h" |
14 | #include "kmp_i18n.h" |
15 | #include "kmp_itt.h" |
16 | #include "kmp_stats.h" |
17 | #include "kmp_wait_release.h" |
18 | #include "kmp_taskdeps.h" |
19 | |
20 | #if OMPT_SUPPORT |
21 | #include "ompt-specific.h" |
22 | #endif |
23 | |
24 | #if ENABLE_LIBOMPTARGET |
25 | static void (*tgt_target_nowait_query)(void **); |
26 | |
27 | void __kmp_init_target_task() { |
28 | *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query" ); |
29 | } |
30 | #endif |
31 | |
32 | /* forward declaration */ |
33 | static void __kmp_enable_tasking(kmp_task_team_t *task_team, |
34 | kmp_info_t *this_thr); |
35 | static void __kmp_alloc_task_deque(kmp_info_t *thread, |
36 | kmp_thread_data_t *thread_data); |
37 | static int __kmp_realloc_task_threads_data(kmp_info_t *thread, |
38 | kmp_task_team_t *task_team); |
39 | static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); |
40 | #if OMPX_TASKGRAPH |
41 | static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id); |
42 | int __kmp_taskloop_task(int gtid, void *ptask); |
43 | #endif |
44 | |
45 | #ifdef BUILD_TIED_TASK_STACK |
46 | |
47 | // __kmp_trace_task_stack: print the tied tasks from the task stack in order |
48 | // from top do bottom |
49 | // |
50 | // gtid: global thread identifier for thread containing stack |
51 | // thread_data: thread data for task team thread containing stack |
52 | // threshold: value above which the trace statement triggers |
53 | // location: string identifying call site of this function (for trace) |
54 | static void __kmp_trace_task_stack(kmp_int32 gtid, |
55 | kmp_thread_data_t *thread_data, |
56 | int threshold, char *location) { |
57 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
58 | kmp_taskdata_t **stack_top = task_stack->ts_top; |
59 | kmp_int32 entries = task_stack->ts_entries; |
60 | kmp_taskdata_t *tied_task; |
61 | |
62 | KA_TRACE( |
63 | threshold, |
64 | ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " |
65 | "first_block = %p, stack_top = %p \n" , |
66 | location, gtid, entries, task_stack->ts_first_block, stack_top)); |
67 | |
68 | KMP_DEBUG_ASSERT(stack_top != NULL); |
69 | KMP_DEBUG_ASSERT(entries > 0); |
70 | |
71 | while (entries != 0) { |
72 | KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); |
73 | // fix up ts_top if we need to pop from previous block |
74 | if (entries & TASK_STACK_INDEX_MASK == 0) { |
75 | kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); |
76 | |
77 | stack_block = stack_block->sb_prev; |
78 | stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; |
79 | } |
80 | |
81 | // finish bookkeeping |
82 | stack_top--; |
83 | entries--; |
84 | |
85 | tied_task = *stack_top; |
86 | |
87 | KMP_DEBUG_ASSERT(tied_task != NULL); |
88 | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); |
89 | |
90 | KA_TRACE(threshold, |
91 | ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " |
92 | "stack_top=%p, tied_task=%p\n" , |
93 | location, gtid, entries, stack_top, tied_task)); |
94 | } |
95 | KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); |
96 | |
97 | KA_TRACE(threshold, |
98 | ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n" , |
99 | location, gtid)); |
100 | } |
101 | |
102 | // __kmp_init_task_stack: initialize the task stack for the first time |
103 | // after a thread_data structure is created. |
104 | // It should not be necessary to do this again (assuming the stack works). |
105 | // |
106 | // gtid: global thread identifier of calling thread |
107 | // thread_data: thread data for task team thread containing stack |
108 | static void __kmp_init_task_stack(kmp_int32 gtid, |
109 | kmp_thread_data_t *thread_data) { |
110 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
111 | kmp_stack_block_t *first_block; |
112 | |
113 | // set up the first block of the stack |
114 | first_block = &task_stack->ts_first_block; |
115 | task_stack->ts_top = (kmp_taskdata_t **)first_block; |
116 | memset((void *)first_block, '\0', |
117 | TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); |
118 | |
119 | // initialize the stack to be empty |
120 | task_stack->ts_entries = TASK_STACK_EMPTY; |
121 | first_block->sb_next = NULL; |
122 | first_block->sb_prev = NULL; |
123 | } |
124 | |
125 | // __kmp_free_task_stack: free the task stack when thread_data is destroyed. |
126 | // |
127 | // gtid: global thread identifier for calling thread |
128 | // thread_data: thread info for thread containing stack |
129 | static void __kmp_free_task_stack(kmp_int32 gtid, |
130 | kmp_thread_data_t *thread_data) { |
131 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
132 | kmp_stack_block_t *stack_block = &task_stack->ts_first_block; |
133 | |
134 | KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); |
135 | // free from the second block of the stack |
136 | while (stack_block != NULL) { |
137 | kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; |
138 | |
139 | stack_block->sb_next = NULL; |
140 | stack_block->sb_prev = NULL; |
141 | if (stack_block != &task_stack->ts_first_block) { |
142 | __kmp_thread_free(thread, |
143 | stack_block); // free the block, if not the first |
144 | } |
145 | stack_block = next_block; |
146 | } |
147 | // initialize the stack to be empty |
148 | task_stack->ts_entries = 0; |
149 | task_stack->ts_top = NULL; |
150 | } |
151 | |
152 | // __kmp_push_task_stack: Push the tied task onto the task stack. |
153 | // Grow the stack if necessary by allocating another block. |
154 | // |
155 | // gtid: global thread identifier for calling thread |
156 | // thread: thread info for thread containing stack |
157 | // tied_task: the task to push on the stack |
158 | static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, |
159 | kmp_taskdata_t *tied_task) { |
160 | // GEH - need to consider what to do if tt_threads_data not allocated yet |
161 | kmp_thread_data_t *thread_data = |
162 | &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; |
163 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
164 | |
165 | if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { |
166 | return; // Don't push anything on stack if team or team tasks are serialized |
167 | } |
168 | |
169 | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); |
170 | KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); |
171 | |
172 | KA_TRACE(20, |
173 | ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n" , |
174 | gtid, thread, tied_task)); |
175 | // Store entry |
176 | *(task_stack->ts_top) = tied_task; |
177 | |
178 | // Do bookkeeping for next push |
179 | task_stack->ts_top++; |
180 | task_stack->ts_entries++; |
181 | |
182 | if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { |
183 | // Find beginning of this task block |
184 | kmp_stack_block_t *stack_block = |
185 | (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); |
186 | |
187 | // Check if we already have a block |
188 | if (stack_block->sb_next != |
189 | NULL) { // reset ts_top to beginning of next block |
190 | task_stack->ts_top = &stack_block->sb_next->sb_block[0]; |
191 | } else { // Alloc new block and link it up |
192 | kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( |
193 | thread, sizeof(kmp_stack_block_t)); |
194 | |
195 | task_stack->ts_top = &new_block->sb_block[0]; |
196 | stack_block->sb_next = new_block; |
197 | new_block->sb_prev = stack_block; |
198 | new_block->sb_next = NULL; |
199 | |
200 | KA_TRACE( |
201 | 30, |
202 | ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n" , |
203 | gtid, tied_task, new_block)); |
204 | } |
205 | } |
206 | KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n" , gtid, |
207 | tied_task)); |
208 | } |
209 | |
210 | // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return |
211 | // the task, just check to make sure it matches the ending task passed in. |
212 | // |
213 | // gtid: global thread identifier for the calling thread |
214 | // thread: thread info structure containing stack |
215 | // tied_task: the task popped off the stack |
216 | // ending_task: the task that is ending (should match popped task) |
217 | static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, |
218 | kmp_taskdata_t *ending_task) { |
219 | // GEH - need to consider what to do if tt_threads_data not allocated yet |
220 | kmp_thread_data_t *thread_data = |
221 | &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; |
222 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
223 | kmp_taskdata_t *tied_task; |
224 | |
225 | if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { |
226 | // Don't pop anything from stack if team or team tasks are serialized |
227 | return; |
228 | } |
229 | |
230 | KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); |
231 | KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); |
232 | |
233 | KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n" , gtid, |
234 | thread)); |
235 | |
236 | // fix up ts_top if we need to pop from previous block |
237 | if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { |
238 | kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); |
239 | |
240 | stack_block = stack_block->sb_prev; |
241 | task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; |
242 | } |
243 | |
244 | // finish bookkeeping |
245 | task_stack->ts_top--; |
246 | task_stack->ts_entries--; |
247 | |
248 | tied_task = *(task_stack->ts_top); |
249 | |
250 | KMP_DEBUG_ASSERT(tied_task != NULL); |
251 | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); |
252 | KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly |
253 | |
254 | KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n" , gtid, |
255 | tied_task)); |
256 | return; |
257 | } |
258 | #endif /* BUILD_TIED_TASK_STACK */ |
259 | |
260 | // returns 1 if new task is allowed to execute, 0 otherwise |
261 | // checks Task Scheduling constraint (if requested) and |
262 | // mutexinoutset dependencies if any |
263 | static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, |
264 | const kmp_taskdata_t *tasknew, |
265 | const kmp_taskdata_t *taskcurr) { |
266 | if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { |
267 | // Check if the candidate obeys the Task Scheduling Constraints (TSC) |
268 | // only descendant of all deferred tied tasks can be scheduled, checking |
269 | // the last one is enough, as it in turn is the descendant of all others |
270 | kmp_taskdata_t *current = taskcurr->td_last_tied; |
271 | KMP_DEBUG_ASSERT(current != NULL); |
272 | // check if the task is not suspended on barrier |
273 | if (current->td_flags.tasktype == TASK_EXPLICIT || |
274 | current->td_taskwait_thread > 0) { // <= 0 on barrier |
275 | kmp_int32 level = current->td_level; |
276 | kmp_taskdata_t *parent = tasknew->td_parent; |
277 | while (parent != current && parent->td_level > level) { |
278 | // check generation up to the level of the current task |
279 | parent = parent->td_parent; |
280 | KMP_DEBUG_ASSERT(parent != NULL); |
281 | } |
282 | if (parent != current) |
283 | return false; |
284 | } |
285 | } |
286 | // Check mutexinoutset dependencies, acquire locks |
287 | kmp_depnode_t *node = tasknew->td_depnode; |
288 | #if OMPX_TASKGRAPH |
289 | if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { |
290 | #else |
291 | if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { |
292 | #endif |
293 | for (int i = 0; i < node->dn.mtx_num_locks; ++i) { |
294 | KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); |
295 | if (__kmp_test_lock(lck: node->dn.mtx_locks[i], gtid)) |
296 | continue; |
297 | // could not get the lock, release previous locks |
298 | for (int j = i - 1; j >= 0; --j) |
299 | __kmp_release_lock(lck: node->dn.mtx_locks[j], gtid); |
300 | return false; |
301 | } |
302 | // negative num_locks means all locks acquired successfully |
303 | node->dn.mtx_num_locks = -node->dn.mtx_num_locks; |
304 | } |
305 | return true; |
306 | } |
307 | |
308 | // __kmp_realloc_task_deque: |
309 | // Re-allocates a task deque for a particular thread, copies the content from |
310 | // the old deque and adjusts the necessary data structures relating to the |
311 | // deque. This operation must be done with the deque_lock being held |
312 | static void __kmp_realloc_task_deque(kmp_info_t *thread, |
313 | kmp_thread_data_t *thread_data) { |
314 | kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); |
315 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); |
316 | kmp_int32 new_size = 2 * size; |
317 | |
318 | KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " |
319 | "%d] for thread_data %p\n" , |
320 | __kmp_gtid_from_thread(thread), size, new_size, thread_data)); |
321 | |
322 | kmp_taskdata_t **new_deque = |
323 | (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); |
324 | |
325 | int i, j; |
326 | for (i = thread_data->td.td_deque_head, j = 0; j < size; |
327 | i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) |
328 | new_deque[j] = thread_data->td.td_deque[i]; |
329 | |
330 | __kmp_free(thread_data->td.td_deque); |
331 | |
332 | thread_data->td.td_deque_head = 0; |
333 | thread_data->td.td_deque_tail = size; |
334 | thread_data->td.td_deque = new_deque; |
335 | thread_data->td.td_deque_size = new_size; |
336 | } |
337 | |
338 | static kmp_task_pri_t *__kmp_alloc_task_pri_list() { |
339 | kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t)); |
340 | kmp_thread_data_t *thread_data = &l->td; |
341 | __kmp_init_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
342 | thread_data->td.td_deque_last_stolen = -1; |
343 | KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] " |
344 | "for thread_data %p\n" , |
345 | __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data)); |
346 | thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( |
347 | INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); |
348 | thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; |
349 | return l; |
350 | } |
351 | |
352 | // The function finds the deque of priority tasks with given priority, or |
353 | // allocates a new deque and put it into sorted (high -> low) list of deques. |
354 | // Deques of non-default priority tasks are shared between all threads in team, |
355 | // as opposed to per-thread deques of tasks with default priority. |
356 | // The function is called under the lock task_team->tt.tt_task_pri_lock. |
357 | static kmp_thread_data_t * |
358 | __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) { |
359 | kmp_thread_data_t *thread_data; |
360 | kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; |
361 | if (lst->priority == pri) { |
362 | // Found queue of tasks with given priority. |
363 | thread_data = &lst->td; |
364 | } else if (lst->priority < pri) { |
365 | // All current priority queues contain tasks with lower priority. |
366 | // Allocate new one for given priority tasks. |
367 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
368 | thread_data = &list->td; |
369 | list->priority = pri; |
370 | list->next = lst; |
371 | task_team->tt.tt_task_pri_list = list; |
372 | } else { // task_team->tt.tt_task_pri_list->priority > pri |
373 | kmp_task_pri_t *next_queue = lst->next; |
374 | while (next_queue && next_queue->priority > pri) { |
375 | lst = next_queue; |
376 | next_queue = lst->next; |
377 | } |
378 | // lst->priority > pri && (next == NULL || pri >= next->priority) |
379 | if (next_queue == NULL) { |
380 | // No queue with pri priority, need to allocate new one. |
381 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
382 | thread_data = &list->td; |
383 | list->priority = pri; |
384 | list->next = NULL; |
385 | lst->next = list; |
386 | } else if (next_queue->priority == pri) { |
387 | // Found queue of tasks with given priority. |
388 | thread_data = &next_queue->td; |
389 | } else { // lst->priority > pri > next->priority |
390 | // insert newly allocated between existed queues |
391 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
392 | thread_data = &list->td; |
393 | list->priority = pri; |
394 | list->next = next_queue; |
395 | lst->next = list; |
396 | } |
397 | } |
398 | return thread_data; |
399 | } |
400 | |
401 | // __kmp_push_priority_task: Add a task to the team's priority task deque |
402 | static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread, |
403 | kmp_taskdata_t *taskdata, |
404 | kmp_task_team_t *task_team, |
405 | kmp_int32 pri) { |
406 | kmp_thread_data_t *thread_data = NULL; |
407 | KA_TRACE(20, |
408 | ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n" , |
409 | gtid, taskdata, pri)); |
410 | |
411 | // Find task queue specific to priority value |
412 | kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; |
413 | if (UNLIKELY(lst == NULL)) { |
414 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
415 | if (task_team->tt.tt_task_pri_list == NULL) { |
416 | // List of queues is still empty, allocate one. |
417 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
418 | thread_data = &list->td; |
419 | list->priority = pri; |
420 | list->next = NULL; |
421 | task_team->tt.tt_task_pri_list = list; |
422 | } else { |
423 | // Other thread initialized a queue. Check if it fits and get thread_data. |
424 | thread_data = __kmp_get_priority_deque_data(task_team, pri); |
425 | } |
426 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
427 | } else { |
428 | if (lst->priority == pri) { |
429 | // Found queue of tasks with given priority. |
430 | thread_data = &lst->td; |
431 | } else { |
432 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
433 | thread_data = __kmp_get_priority_deque_data(task_team, pri); |
434 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
435 | } |
436 | } |
437 | KMP_DEBUG_ASSERT(thread_data); |
438 | |
439 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
440 | // Check if deque is full |
441 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
442 | TASK_DEQUE_SIZE(thread_data->td)) { |
443 | if (__kmp_enable_task_throttling && |
444 | __kmp_task_is_allowed(gtid, is_constrained: __kmp_task_stealing_constraint, tasknew: taskdata, |
445 | taskcurr: thread->th.th_current_task)) { |
446 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
447 | KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning " |
448 | "TASK_NOT_PUSHED for task %p\n" , |
449 | gtid, taskdata)); |
450 | return TASK_NOT_PUSHED; |
451 | } else { |
452 | // expand deque to push the task which is not allowed to execute |
453 | __kmp_realloc_task_deque(thread, thread_data); |
454 | } |
455 | } |
456 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < |
457 | TASK_DEQUE_SIZE(thread_data->td)); |
458 | // Push taskdata. |
459 | thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; |
460 | // Wrap index. |
461 | thread_data->td.td_deque_tail = |
462 | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); |
463 | TCW_4(thread_data->td.td_deque_ntasks, |
464 | TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count |
465 | KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self |
466 | KMP_FSYNC_RELEASING(taskdata); // releasing child |
467 | KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning " |
468 | "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n" , |
469 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
470 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
471 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
472 | task_team->tt.tt_num_task_pri++; // atomic inc |
473 | return TASK_SUCCESSFULLY_PUSHED; |
474 | } |
475 | |
476 | // __kmp_push_task: Add a task to the thread's deque |
477 | static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { |
478 | kmp_info_t *thread = __kmp_threads[gtid]; |
479 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
480 | |
481 | // If we encounter a hidden helper task, and the current thread is not a |
482 | // hidden helper thread, we have to give the task to any hidden helper thread |
483 | // starting from its shadow one. |
484 | if (UNLIKELY(taskdata->td_flags.hidden_helper && |
485 | !KMP_HIDDEN_HELPER_THREAD(gtid))) { |
486 | kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid); |
487 | __kmpc_give_task(ptask: task, start: __kmp_tid_from_gtid(gtid: shadow_gtid)); |
488 | // Signal the hidden helper threads. |
489 | __kmp_hidden_helper_worker_thread_signal(); |
490 | return TASK_SUCCESSFULLY_PUSHED; |
491 | } |
492 | |
493 | kmp_task_team_t *task_team = thread->th.th_task_team; |
494 | kmp_int32 tid = __kmp_tid_from_gtid(gtid); |
495 | kmp_thread_data_t *thread_data; |
496 | |
497 | KA_TRACE(20, |
498 | ("__kmp_push_task: T#%d trying to push task %p.\n" , gtid, taskdata)); |
499 | |
500 | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { |
501 | // untied task needs to increment counter so that the task structure is not |
502 | // freed prematurely |
503 | kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); |
504 | KMP_DEBUG_USE_VAR(counter); |
505 | KA_TRACE( |
506 | 20, |
507 | ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n" , |
508 | gtid, counter, taskdata)); |
509 | } |
510 | |
511 | // The first check avoids building task_team thread data if serialized |
512 | if (UNLIKELY(taskdata->td_flags.task_serial)) { |
513 | KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " |
514 | "TASK_NOT_PUSHED for task %p\n" , |
515 | gtid, taskdata)); |
516 | return TASK_NOT_PUSHED; |
517 | } |
518 | |
519 | // Now that serialized tasks have returned, we can assume that we are not in |
520 | // immediate exec mode |
521 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
522 | if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { |
523 | __kmp_enable_tasking(task_team, this_thr: thread); |
524 | } |
525 | KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); |
526 | KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); |
527 | |
528 | if (taskdata->td_flags.priority_specified && task->data2.priority > 0 && |
529 | __kmp_max_task_priority > 0) { |
530 | int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority); |
531 | return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri); |
532 | } |
533 | |
534 | // Find tasking deque specific to encountering thread |
535 | thread_data = &task_team->tt.tt_threads_data[tid]; |
536 | |
537 | // No lock needed since only owner can allocate. If the task is hidden_helper, |
538 | // we don't need it either because we have initialized the dequeue for hidden |
539 | // helper thread data. |
540 | if (UNLIKELY(thread_data->td.td_deque == NULL)) { |
541 | __kmp_alloc_task_deque(thread, thread_data); |
542 | } |
543 | |
544 | int locked = 0; |
545 | // Check if deque is full |
546 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
547 | TASK_DEQUE_SIZE(thread_data->td)) { |
548 | if (__kmp_enable_task_throttling && |
549 | __kmp_task_is_allowed(gtid, is_constrained: __kmp_task_stealing_constraint, tasknew: taskdata, |
550 | taskcurr: thread->th.th_current_task)) { |
551 | KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " |
552 | "TASK_NOT_PUSHED for task %p\n" , |
553 | gtid, taskdata)); |
554 | return TASK_NOT_PUSHED; |
555 | } else { |
556 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
557 | locked = 1; |
558 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
559 | TASK_DEQUE_SIZE(thread_data->td)) { |
560 | // expand deque to push the task which is not allowed to execute |
561 | __kmp_realloc_task_deque(thread, thread_data); |
562 | } |
563 | } |
564 | } |
565 | // Lock the deque for the task push operation |
566 | if (!locked) { |
567 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
568 | // Need to recheck as we can get a proxy task from thread outside of OpenMP |
569 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
570 | TASK_DEQUE_SIZE(thread_data->td)) { |
571 | if (__kmp_enable_task_throttling && |
572 | __kmp_task_is_allowed(gtid, is_constrained: __kmp_task_stealing_constraint, tasknew: taskdata, |
573 | taskcurr: thread->th.th_current_task)) { |
574 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
575 | KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " |
576 | "returning TASK_NOT_PUSHED for task %p\n" , |
577 | gtid, taskdata)); |
578 | return TASK_NOT_PUSHED; |
579 | } else { |
580 | // expand deque to push the task which is not allowed to execute |
581 | __kmp_realloc_task_deque(thread, thread_data); |
582 | } |
583 | } |
584 | } |
585 | // Must have room since no thread can add tasks but calling thread |
586 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < |
587 | TASK_DEQUE_SIZE(thread_data->td)); |
588 | |
589 | thread_data->td.td_deque[thread_data->td.td_deque_tail] = |
590 | taskdata; // Push taskdata |
591 | // Wrap index. |
592 | thread_data->td.td_deque_tail = |
593 | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); |
594 | TCW_4(thread_data->td.td_deque_ntasks, |
595 | TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count |
596 | KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self |
597 | KMP_FSYNC_RELEASING(taskdata); // releasing child |
598 | KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " |
599 | "task=%p ntasks=%d head=%u tail=%u\n" , |
600 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
601 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
602 | |
603 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
604 | |
605 | return TASK_SUCCESSFULLY_PUSHED; |
606 | } |
607 | |
608 | // __kmp_pop_current_task_from_thread: set up current task from called thread |
609 | // when team ends |
610 | // |
611 | // this_thr: thread structure to set current_task in. |
612 | void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { |
613 | KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " |
614 | "this_thread=%p, curtask=%p, " |
615 | "curtask_parent=%p\n" , |
616 | 0, this_thr, this_thr->th.th_current_task, |
617 | this_thr->th.th_current_task->td_parent)); |
618 | |
619 | this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; |
620 | |
621 | KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " |
622 | "this_thread=%p, curtask=%p, " |
623 | "curtask_parent=%p\n" , |
624 | 0, this_thr, this_thr->th.th_current_task, |
625 | this_thr->th.th_current_task->td_parent)); |
626 | } |
627 | |
628 | // __kmp_push_current_task_to_thread: set up current task in called thread for a |
629 | // new team |
630 | // |
631 | // this_thr: thread structure to set up |
632 | // team: team for implicit task data |
633 | // tid: thread within team to set up |
634 | void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, |
635 | int tid) { |
636 | // current task of the thread is a parent of the new just created implicit |
637 | // tasks of new team |
638 | KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " |
639 | "curtask=%p " |
640 | "parent_task=%p\n" , |
641 | tid, this_thr, this_thr->th.th_current_task, |
642 | team->t.t_implicit_task_taskdata[tid].td_parent)); |
643 | |
644 | KMP_DEBUG_ASSERT(this_thr != NULL); |
645 | |
646 | if (tid == 0) { |
647 | if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { |
648 | team->t.t_implicit_task_taskdata[0].td_parent = |
649 | this_thr->th.th_current_task; |
650 | this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; |
651 | } |
652 | } else { |
653 | team->t.t_implicit_task_taskdata[tid].td_parent = |
654 | team->t.t_implicit_task_taskdata[0].td_parent; |
655 | this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; |
656 | } |
657 | |
658 | KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " |
659 | "curtask=%p " |
660 | "parent_task=%p\n" , |
661 | tid, this_thr, this_thr->th.th_current_task, |
662 | team->t.t_implicit_task_taskdata[tid].td_parent)); |
663 | } |
664 | |
665 | // __kmp_task_start: bookkeeping for a task starting execution |
666 | // |
667 | // GTID: global thread id of calling thread |
668 | // task: task starting execution |
669 | // current_task: task suspending |
670 | static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, |
671 | kmp_taskdata_t *current_task) { |
672 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
673 | kmp_info_t *thread = __kmp_threads[gtid]; |
674 | |
675 | KA_TRACE(10, |
676 | ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n" , |
677 | gtid, taskdata, current_task)); |
678 | |
679 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
680 | |
681 | // mark currently executing task as suspended |
682 | // TODO: GEH - make sure root team implicit task is initialized properly. |
683 | // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); |
684 | current_task->td_flags.executing = 0; |
685 | |
686 | // Add task to stack if tied |
687 | #ifdef BUILD_TIED_TASK_STACK |
688 | if (taskdata->td_flags.tiedness == TASK_TIED) { |
689 | __kmp_push_task_stack(gtid, thread, taskdata); |
690 | } |
691 | #endif /* BUILD_TIED_TASK_STACK */ |
692 | |
693 | // mark starting task as executing and as current task |
694 | thread->th.th_current_task = taskdata; |
695 | |
696 | KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || |
697 | taskdata->td_flags.tiedness == TASK_UNTIED); |
698 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || |
699 | taskdata->td_flags.tiedness == TASK_UNTIED); |
700 | taskdata->td_flags.started = 1; |
701 | taskdata->td_flags.executing = 1; |
702 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); |
703 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
704 | |
705 | // GEH TODO: shouldn't we pass some sort of location identifier here? |
706 | // APT: yes, we will pass location here. |
707 | // need to store current thread state (in a thread or taskdata structure) |
708 | // before setting work_state, otherwise wrong state is set after end of task |
709 | |
710 | KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n" , gtid, taskdata)); |
711 | |
712 | return; |
713 | } |
714 | |
715 | #if OMPT_SUPPORT |
716 | //------------------------------------------------------------------------------ |
717 | |
718 | // __ompt_task_start: |
719 | // Build and trigger task-begin event |
720 | static inline void __ompt_task_start(kmp_task_t *task, |
721 | kmp_taskdata_t *current_task, |
722 | kmp_int32 gtid) { |
723 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
724 | ompt_task_status_t status = ompt_task_switch; |
725 | if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { |
726 | status = ompt_task_yield; |
727 | __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; |
728 | } |
729 | /* let OMPT know that we're about to run this task */ |
730 | if (ompt_enabled.ompt_callback_task_schedule) { |
731 | ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( |
732 | &(current_task->ompt_task_info.task_data), status, |
733 | &(taskdata->ompt_task_info.task_data)); |
734 | } |
735 | taskdata->ompt_task_info.scheduling_parent = current_task; |
736 | } |
737 | |
738 | // __ompt_task_finish: |
739 | // Build and trigger final task-schedule event |
740 | static inline void __ompt_task_finish(kmp_task_t *task, |
741 | kmp_taskdata_t *resumed_task, |
742 | ompt_task_status_t status) { |
743 | if (ompt_enabled.ompt_callback_task_schedule) { |
744 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
745 | if (__kmp_omp_cancellation && taskdata->td_taskgroup && |
746 | taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { |
747 | status = ompt_task_cancel; |
748 | } |
749 | |
750 | /* let OMPT know that we're returning to the callee task */ |
751 | ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( |
752 | &(taskdata->ompt_task_info.task_data), status, |
753 | (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); |
754 | } |
755 | } |
756 | #endif |
757 | |
758 | template <bool ompt> |
759 | static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, |
760 | kmp_task_t *task, |
761 | void *frame_address, |
762 | void *return_address) { |
763 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
764 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
765 | |
766 | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " |
767 | "current_task=%p\n" , |
768 | gtid, loc_ref, taskdata, current_task)); |
769 | |
770 | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { |
771 | // untied task needs to increment counter so that the task structure is not |
772 | // freed prematurely |
773 | kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); |
774 | KMP_DEBUG_USE_VAR(counter); |
775 | KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " |
776 | "incremented for task %p\n" , |
777 | gtid, counter, taskdata)); |
778 | } |
779 | |
780 | taskdata->td_flags.task_serial = |
781 | 1; // Execute this task immediately, not deferred. |
782 | __kmp_task_start(gtid, task, current_task); |
783 | |
784 | #if OMPT_SUPPORT |
785 | if (ompt) { |
786 | if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { |
787 | current_task->ompt_task_info.frame.enter_frame.ptr = |
788 | taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; |
789 | current_task->ompt_task_info.frame.enter_frame_flags = |
790 | taskdata->ompt_task_info.frame.exit_frame_flags = |
791 | OMPT_FRAME_FLAGS_APP; |
792 | } |
793 | if (ompt_enabled.ompt_callback_task_create) { |
794 | ompt_task_info_t *parent_info = &(current_task->ompt_task_info); |
795 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
796 | &(parent_info->task_data), &(parent_info->frame), |
797 | &(taskdata->ompt_task_info.task_data), |
798 | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, return_address); |
799 | } |
800 | __ompt_task_start(task, current_task, gtid); |
801 | } |
802 | #endif // OMPT_SUPPORT |
803 | |
804 | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n" , gtid, |
805 | loc_ref, taskdata)); |
806 | } |
807 | |
808 | #if OMPT_SUPPORT |
809 | OMPT_NOINLINE |
810 | static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, |
811 | kmp_task_t *task, |
812 | void *frame_address, |
813 | void *return_address) { |
814 | __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, |
815 | return_address); |
816 | } |
817 | #endif // OMPT_SUPPORT |
818 | |
819 | // __kmpc_omp_task_begin_if0: report that a given serialized task has started |
820 | // execution |
821 | // |
822 | // loc_ref: source location information; points to beginning of task block. |
823 | // gtid: global thread number. |
824 | // task: task thunk for the started task. |
825 | #ifdef __s390x__ |
826 | // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x. |
827 | // In order for it to work correctly, the caller also needs to be compiled with |
828 | // backchain. If a caller is compiled without backchain, |
829 | // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not |
830 | // crash. |
831 | __attribute__((target("backchain" ))) |
832 | #endif |
833 | void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, |
834 | kmp_task_t *task) { |
835 | #if OMPT_SUPPORT |
836 | if (UNLIKELY(ompt_enabled.enabled)) { |
837 | OMPT_STORE_RETURN_ADDRESS(gtid); |
838 | __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, |
839 | OMPT_GET_FRAME_ADDRESS(1), |
840 | OMPT_LOAD_RETURN_ADDRESS(gtid)); |
841 | return; |
842 | } |
843 | #endif |
844 | __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); |
845 | } |
846 | |
847 | #ifdef TASK_UNUSED |
848 | // __kmpc_omp_task_begin: report that a given task has started execution |
849 | // NEVER GENERATED BY COMPILER, DEPRECATED!!! |
850 | void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { |
851 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
852 | |
853 | KA_TRACE( |
854 | 10, |
855 | ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n" , |
856 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); |
857 | |
858 | __kmp_task_start(gtid, task, current_task); |
859 | |
860 | KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n" , gtid, |
861 | loc_ref, KMP_TASK_TO_TASKDATA(task))); |
862 | return; |
863 | } |
864 | #endif // TASK_UNUSED |
865 | |
866 | // __kmp_free_task: free the current task space and the space for shareds |
867 | // |
868 | // gtid: Global thread ID of calling thread |
869 | // taskdata: task to free |
870 | // thread: thread data structure of caller |
871 | static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, |
872 | kmp_info_t *thread) { |
873 | KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n" , gtid, |
874 | taskdata)); |
875 | |
876 | // Check to make sure all flags and counters have the correct values |
877 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
878 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); |
879 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); |
880 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
881 | KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || |
882 | taskdata->td_flags.task_serial == 1); |
883 | KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); |
884 | kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata); |
885 | // Clear data to not be re-used later by mistake. |
886 | task->data1.destructors = NULL; |
887 | task->data2.priority = 0; |
888 | |
889 | taskdata->td_flags.freed = 1; |
890 | #if OMPX_TASKGRAPH |
891 | // do not free tasks in taskgraph |
892 | if (!taskdata->is_taskgraph) { |
893 | #endif |
894 | // deallocate the taskdata and shared variable blocks associated with this task |
895 | #if USE_FAST_MEMORY |
896 | __kmp_fast_free(thread, taskdata); |
897 | #else /* ! USE_FAST_MEMORY */ |
898 | __kmp_thread_free(thread, taskdata); |
899 | #endif |
900 | #if OMPX_TASKGRAPH |
901 | } else { |
902 | taskdata->td_flags.complete = 0; |
903 | taskdata->td_flags.started = 0; |
904 | taskdata->td_flags.freed = 0; |
905 | taskdata->td_flags.executing = 0; |
906 | taskdata->td_flags.task_serial = |
907 | (taskdata->td_parent->td_flags.final || |
908 | taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser); |
909 | |
910 | // taskdata->td_allow_completion_event.pending_events_count = 1; |
911 | KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); |
912 | KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); |
913 | // start at one because counts current task and children |
914 | KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); |
915 | } |
916 | #endif |
917 | |
918 | KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n" , gtid, taskdata)); |
919 | } |
920 | |
921 | // __kmp_free_task_and_ancestors: free the current task and ancestors without |
922 | // children |
923 | // |
924 | // gtid: Global thread ID of calling thread |
925 | // taskdata: task to free |
926 | // thread: thread data structure of caller |
927 | static void __kmp_free_task_and_ancestors(kmp_int32 gtid, |
928 | kmp_taskdata_t *taskdata, |
929 | kmp_info_t *thread) { |
930 | // Proxy tasks must always be allowed to free their parents |
931 | // because they can be run in background even in serial mode. |
932 | kmp_int32 team_serial = |
933 | (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && |
934 | !taskdata->td_flags.proxy; |
935 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
936 | |
937 | kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; |
938 | KMP_DEBUG_ASSERT(children >= 0); |
939 | |
940 | // Now, go up the ancestor tree to see if any ancestors can now be freed. |
941 | while (children == 0) { |
942 | kmp_taskdata_t *parent_taskdata = taskdata->td_parent; |
943 | |
944 | KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " |
945 | "and freeing itself\n" , |
946 | gtid, taskdata)); |
947 | |
948 | // --- Deallocate my ancestor task --- |
949 | __kmp_free_task(gtid, taskdata, thread); |
950 | |
951 | taskdata = parent_taskdata; |
952 | |
953 | if (team_serial) |
954 | return; |
955 | // Stop checking ancestors at implicit task instead of walking up ancestor |
956 | // tree to avoid premature deallocation of ancestors. |
957 | if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { |
958 | if (taskdata->td_dephash) { // do we need to cleanup dephash? |
959 | int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); |
960 | kmp_tasking_flags_t flags_old = taskdata->td_flags; |
961 | if (children == 0 && flags_old.complete == 1) { |
962 | kmp_tasking_flags_t flags_new = flags_old; |
963 | flags_new.complete = 0; |
964 | if (KMP_COMPARE_AND_STORE_ACQ32( |
965 | RCAST(kmp_int32 *, &taskdata->td_flags), |
966 | *RCAST(kmp_int32 *, &flags_old), |
967 | *RCAST(kmp_int32 *, &flags_new))) { |
968 | KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " |
969 | "dephash of implicit task %p\n" , |
970 | gtid, taskdata)); |
971 | // cleanup dephash of finished implicit task |
972 | __kmp_dephash_free_entries(thread, h: taskdata->td_dephash); |
973 | } |
974 | } |
975 | } |
976 | return; |
977 | } |
978 | // Predecrement simulated by "- 1" calculation |
979 | children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; |
980 | KMP_DEBUG_ASSERT(children >= 0); |
981 | } |
982 | |
983 | KA_TRACE( |
984 | 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " |
985 | "not freeing it yet\n" , |
986 | gtid, taskdata, children)); |
987 | } |
988 | |
989 | // Only need to keep track of child task counts if any of the following: |
990 | // 1. team parallel and tasking not serialized; |
991 | // 2. it is a proxy or detachable or hidden helper task |
992 | // 3. the children counter of its parent task is greater than 0. |
993 | // The reason for the 3rd one is for serialized team that found detached task, |
994 | // hidden helper task, T. In this case, the execution of T is still deferred, |
995 | // and it is also possible that a regular task depends on T. In this case, if we |
996 | // don't track the children, task synchronization will be broken. |
997 | static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) { |
998 | kmp_tasking_flags_t flags = taskdata->td_flags; |
999 | bool ret = !(flags.team_serial || flags.tasking_ser); |
1000 | ret = ret || flags.proxy == TASK_PROXY || |
1001 | flags.detachable == TASK_DETACHABLE || flags.hidden_helper; |
1002 | ret = ret || |
1003 | KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0; |
1004 | #if OMPX_TASKGRAPH |
1005 | if (taskdata->td_taskgroup && taskdata->is_taskgraph) |
1006 | ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0; |
1007 | #endif |
1008 | return ret; |
1009 | } |
1010 | |
1011 | // __kmp_task_finish: bookkeeping to do when a task finishes execution |
1012 | // |
1013 | // gtid: global thread ID for calling thread |
1014 | // task: task to be finished |
1015 | // resumed_task: task to be resumed. (may be NULL if task is serialized) |
1016 | // |
1017 | // template<ompt>: effectively ompt_enabled.enabled!=0 |
1018 | // the version with ompt=false is inlined, allowing to optimize away all ompt |
1019 | // code in this case |
1020 | template <bool ompt> |
1021 | static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, |
1022 | kmp_taskdata_t *resumed_task) { |
1023 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
1024 | kmp_info_t *thread = __kmp_threads[gtid]; |
1025 | kmp_task_team_t *task_team = |
1026 | thread->th.th_task_team; // might be NULL for serial teams... |
1027 | #if OMPX_TASKGRAPH |
1028 | // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop |
1029 | bool is_taskgraph; |
1030 | #endif |
1031 | #if KMP_DEBUG |
1032 | kmp_int32 children = 0; |
1033 | #endif |
1034 | KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " |
1035 | "task %p\n" , |
1036 | gtid, taskdata, resumed_task)); |
1037 | |
1038 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
1039 | |
1040 | #if OMPX_TASKGRAPH |
1041 | is_taskgraph = taskdata->is_taskgraph; |
1042 | #endif |
1043 | |
1044 | // Pop task from stack if tied |
1045 | #ifdef BUILD_TIED_TASK_STACK |
1046 | if (taskdata->td_flags.tiedness == TASK_TIED) { |
1047 | __kmp_pop_task_stack(gtid, thread, taskdata); |
1048 | } |
1049 | #endif /* BUILD_TIED_TASK_STACK */ |
1050 | |
1051 | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { |
1052 | // untied task needs to check the counter so that the task structure is not |
1053 | // freed prematurely |
1054 | kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; |
1055 | KA_TRACE( |
1056 | 20, |
1057 | ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n" , |
1058 | gtid, counter, taskdata)); |
1059 | if (counter > 0) { |
1060 | // untied task is not done, to be continued possibly by other thread, do |
1061 | // not free it now |
1062 | if (resumed_task == NULL) { |
1063 | KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); |
1064 | resumed_task = taskdata->td_parent; // In a serialized task, the resumed |
1065 | // task is the parent |
1066 | } |
1067 | thread->th.th_current_task = resumed_task; // restore current_task |
1068 | resumed_task->td_flags.executing = 1; // resume previous task |
1069 | KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " |
1070 | "resuming task %p\n" , |
1071 | gtid, taskdata, resumed_task)); |
1072 | return; |
1073 | } |
1074 | } |
1075 | |
1076 | // bookkeeping for resuming task: |
1077 | // GEH - note tasking_ser => task_serial |
1078 | KMP_DEBUG_ASSERT( |
1079 | (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == |
1080 | taskdata->td_flags.task_serial); |
1081 | if (taskdata->td_flags.task_serial) { |
1082 | if (resumed_task == NULL) { |
1083 | resumed_task = taskdata->td_parent; // In a serialized task, the resumed |
1084 | // task is the parent |
1085 | } |
1086 | } else { |
1087 | KMP_DEBUG_ASSERT(resumed_task != |
1088 | NULL); // verify that resumed task is passed as argument |
1089 | } |
1090 | |
1091 | /* If the tasks' destructor thunk flag has been set, we need to invoke the |
1092 | destructor thunk that has been generated by the compiler. The code is |
1093 | placed here, since at this point other tasks might have been released |
1094 | hence overlapping the destructor invocations with some other work in the |
1095 | released tasks. The OpenMP spec is not specific on when the destructors |
1096 | are invoked, so we should be free to choose. */ |
1097 | if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { |
1098 | kmp_routine_entry_t destr_thunk = task->data1.destructors; |
1099 | KMP_ASSERT(destr_thunk); |
1100 | destr_thunk(gtid, task); |
1101 | } |
1102 | |
1103 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); |
1104 | KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); |
1105 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
1106 | |
1107 | bool completed = true; |
1108 | if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { |
1109 | if (taskdata->td_allow_completion_event.type == |
1110 | KMP_EVENT_ALLOW_COMPLETION) { |
1111 | // event hasn't been fulfilled yet. Try to detach task. |
1112 | __kmp_acquire_tas_lock(lck: &taskdata->td_allow_completion_event.lock, gtid); |
1113 | if (taskdata->td_allow_completion_event.type == |
1114 | KMP_EVENT_ALLOW_COMPLETION) { |
1115 | // task finished execution |
1116 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); |
1117 | taskdata->td_flags.executing = 0; // suspend the finishing task |
1118 | |
1119 | #if OMPT_SUPPORT |
1120 | // For a detached task, which is not completed, we switch back |
1121 | // the omp_fulfill_event signals completion |
1122 | // locking is necessary to avoid a race with ompt_task_late_fulfill |
1123 | if (ompt) |
1124 | __ompt_task_finish(task, resumed_task, status: ompt_task_detach); |
1125 | #endif |
1126 | |
1127 | // no access to taskdata after this point! |
1128 | // __kmp_fulfill_event might free taskdata at any time from now |
1129 | |
1130 | taskdata->td_flags.proxy = TASK_PROXY; // proxify! |
1131 | completed = false; |
1132 | } |
1133 | __kmp_release_tas_lock(lck: &taskdata->td_allow_completion_event.lock, gtid); |
1134 | } |
1135 | } |
1136 | |
1137 | // Tasks with valid target async handles must be re-enqueued. |
1138 | if (taskdata->td_target_data.async_handle != NULL) { |
1139 | // Note: no need to translate gtid to its shadow. If the current thread is a |
1140 | // hidden helper one, then the gtid is already correct. Otherwise, hidden |
1141 | // helper threads are disabled, and gtid refers to a OpenMP thread. |
1142 | #if OMPT_SUPPORT |
1143 | if (ompt) { |
1144 | __ompt_task_finish(task, resumed_task, status: ompt_task_switch); |
1145 | } |
1146 | #endif |
1147 | __kmpc_give_task(ptask: task, start: __kmp_tid_from_gtid(gtid)); |
1148 | if (KMP_HIDDEN_HELPER_THREAD(gtid)) |
1149 | __kmp_hidden_helper_worker_thread_signal(); |
1150 | completed = false; |
1151 | } |
1152 | |
1153 | if (completed) { |
1154 | taskdata->td_flags.complete = 1; // mark the task as completed |
1155 | #if OMPX_TASKGRAPH |
1156 | taskdata->td_flags.onced = 1; // mark the task as ran once already |
1157 | #endif |
1158 | |
1159 | #if OMPT_SUPPORT |
1160 | // This is not a detached task, we are done here |
1161 | if (ompt) |
1162 | __ompt_task_finish(task, resumed_task, status: ompt_task_complete); |
1163 | #endif |
1164 | // TODO: What would be the balance between the conditions in the function |
1165 | // and an atomic operation? |
1166 | if (__kmp_track_children_task(taskdata)) { |
1167 | __kmp_release_deps(gtid, task: taskdata); |
1168 | // Predecrement simulated by "- 1" calculation |
1169 | #if KMP_DEBUG |
1170 | children = -1 + |
1171 | #endif |
1172 | KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); |
1173 | KMP_DEBUG_ASSERT(children >= 0); |
1174 | #if OMPX_TASKGRAPH |
1175 | if (taskdata->td_taskgroup && !taskdata->is_taskgraph) |
1176 | #else |
1177 | if (taskdata->td_taskgroup) |
1178 | #endif |
1179 | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); |
1180 | } else if (task_team && (task_team->tt.tt_found_proxy_tasks || |
1181 | task_team->tt.tt_hidden_helper_task_encountered)) { |
1182 | // if we found proxy or hidden helper tasks there could exist a dependency |
1183 | // chain with the proxy task as origin |
1184 | __kmp_release_deps(gtid, task: taskdata); |
1185 | } |
1186 | // td_flags.executing must be marked as 0 after __kmp_release_deps has been |
1187 | // called. Othertwise, if a task is executed immediately from the |
1188 | // release_deps code, the flag will be reset to 1 again by this same |
1189 | // function |
1190 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); |
1191 | taskdata->td_flags.executing = 0; // suspend the finishing task |
1192 | |
1193 | // Decrement the counter of hidden helper tasks to be executed. |
1194 | if (taskdata->td_flags.hidden_helper) { |
1195 | // Hidden helper tasks can only be executed by hidden helper threads. |
1196 | KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); |
1197 | KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); |
1198 | } |
1199 | } |
1200 | |
1201 | KA_TRACE( |
1202 | 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n" , |
1203 | gtid, taskdata, children)); |
1204 | |
1205 | // Free this task and then ancestor tasks if they have no children. |
1206 | // Restore th_current_task first as suggested by John: |
1207 | // johnmc: if an asynchronous inquiry peers into the runtime system |
1208 | // it doesn't see the freed task as the current task. |
1209 | thread->th.th_current_task = resumed_task; |
1210 | if (completed) |
1211 | __kmp_free_task_and_ancestors(gtid, taskdata, thread); |
1212 | |
1213 | // TODO: GEH - make sure root team implicit task is initialized properly. |
1214 | // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); |
1215 | resumed_task->td_flags.executing = 1; // resume previous task |
1216 | |
1217 | #if OMPX_TASKGRAPH |
1218 | if (is_taskgraph && __kmp_track_children_task(taskdata) && |
1219 | taskdata->td_taskgroup) { |
1220 | // TDG: we only release taskgroup barrier here because |
1221 | // free_task_and_ancestors will call |
1222 | // __kmp_free_task, which resets all task parameters such as |
1223 | // taskdata->started, etc. If we release the barrier earlier, these |
1224 | // parameters could be read before being reset. This is not an issue for |
1225 | // non-TDG implementation because we never reuse a task(data) structure |
1226 | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); |
1227 | } |
1228 | #endif |
1229 | |
1230 | KA_TRACE( |
1231 | 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n" , |
1232 | gtid, taskdata, resumed_task)); |
1233 | |
1234 | return; |
1235 | } |
1236 | |
1237 | template <bool ompt> |
1238 | static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, |
1239 | kmp_int32 gtid, |
1240 | kmp_task_t *task) { |
1241 | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n" , |
1242 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1243 | KMP_DEBUG_ASSERT(gtid >= 0); |
1244 | // this routine will provide task to resume |
1245 | __kmp_task_finish<ompt>(gtid, task, NULL); |
1246 | |
1247 | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n" , |
1248 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1249 | |
1250 | #if OMPT_SUPPORT |
1251 | if (ompt) { |
1252 | ompt_frame_t *ompt_frame; |
1253 | __ompt_get_task_info_internal(ancestor_level: 0, NULL, NULL, task_frame: &ompt_frame, NULL, NULL); |
1254 | ompt_frame->enter_frame = ompt_data_none; |
1255 | ompt_frame->enter_frame_flags = OMPT_FRAME_FLAGS_RUNTIME; |
1256 | } |
1257 | #endif |
1258 | |
1259 | return; |
1260 | } |
1261 | |
1262 | #if OMPT_SUPPORT |
1263 | OMPT_NOINLINE |
1264 | void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, |
1265 | kmp_task_t *task) { |
1266 | __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); |
1267 | } |
1268 | #endif // OMPT_SUPPORT |
1269 | |
1270 | // __kmpc_omp_task_complete_if0: report that a task has completed execution |
1271 | // |
1272 | // loc_ref: source location information; points to end of task block. |
1273 | // gtid: global thread number. |
1274 | // task: task thunk for the completed task. |
1275 | void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, |
1276 | kmp_task_t *task) { |
1277 | #if OMPT_SUPPORT |
1278 | if (UNLIKELY(ompt_enabled.enabled)) { |
1279 | __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); |
1280 | return; |
1281 | } |
1282 | #endif |
1283 | __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); |
1284 | } |
1285 | |
1286 | #ifdef TASK_UNUSED |
1287 | // __kmpc_omp_task_complete: report that a task has completed execution |
1288 | // NEVER GENERATED BY COMPILER, DEPRECATED!!! |
1289 | void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, |
1290 | kmp_task_t *task) { |
1291 | KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n" , gtid, |
1292 | loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1293 | |
1294 | __kmp_task_finish<false>(gtid, task, |
1295 | NULL); // Not sure how to find task to resume |
1296 | |
1297 | KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n" , gtid, |
1298 | loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1299 | return; |
1300 | } |
1301 | #endif // TASK_UNUSED |
1302 | |
1303 | // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit |
1304 | // task for a given thread |
1305 | // |
1306 | // loc_ref: reference to source location of parallel region |
1307 | // this_thr: thread data structure corresponding to implicit task |
1308 | // team: team for this_thr |
1309 | // tid: thread id of given thread within team |
1310 | // set_curr_task: TRUE if need to push current task to thread |
1311 | // NOTE: Routine does not set up the implicit task ICVS. This is assumed to |
1312 | // have already been done elsewhere. |
1313 | // TODO: Get better loc_ref. Value passed in may be NULL |
1314 | void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, |
1315 | kmp_team_t *team, int tid, int set_curr_task) { |
1316 | kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; |
1317 | |
1318 | KF_TRACE( |
1319 | 10, |
1320 | ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n" , |
1321 | tid, team, task, set_curr_task ? "TRUE" : "FALSE" )); |
1322 | |
1323 | task->td_task_id = KMP_GEN_TASK_ID(); |
1324 | task->td_team = team; |
1325 | // task->td_parent = NULL; // fix for CQ230101 (broken parent task info |
1326 | // in debugger) |
1327 | task->td_ident = loc_ref; |
1328 | task->td_taskwait_ident = NULL; |
1329 | task->td_taskwait_counter = 0; |
1330 | task->td_taskwait_thread = 0; |
1331 | |
1332 | task->td_flags.tiedness = TASK_TIED; |
1333 | task->td_flags.tasktype = TASK_IMPLICIT; |
1334 | task->td_flags.proxy = TASK_FULL; |
1335 | |
1336 | // All implicit tasks are executed immediately, not deferred |
1337 | task->td_flags.task_serial = 1; |
1338 | task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); |
1339 | task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; |
1340 | |
1341 | task->td_flags.started = 1; |
1342 | task->td_flags.executing = 1; |
1343 | task->td_flags.complete = 0; |
1344 | task->td_flags.freed = 0; |
1345 | #if OMPX_TASKGRAPH |
1346 | task->td_flags.onced = 0; |
1347 | #endif |
1348 | |
1349 | task->td_depnode = NULL; |
1350 | task->td_last_tied = task; |
1351 | task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; |
1352 | |
1353 | if (set_curr_task) { // only do this init first time thread is created |
1354 | KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); |
1355 | // Not used: don't need to deallocate implicit task |
1356 | KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); |
1357 | task->td_taskgroup = NULL; // An implicit task does not have taskgroup |
1358 | task->td_dephash = NULL; |
1359 | __kmp_push_current_task_to_thread(this_thr, team, tid); |
1360 | } else { |
1361 | KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); |
1362 | KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); |
1363 | } |
1364 | |
1365 | #if OMPT_SUPPORT |
1366 | if (UNLIKELY(ompt_enabled.enabled)) |
1367 | __ompt_task_init(task, tid); |
1368 | #endif |
1369 | |
1370 | KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n" , tid, |
1371 | team, task)); |
1372 | } |
1373 | |
1374 | // __kmp_finish_implicit_task: Release resources associated to implicit tasks |
1375 | // at the end of parallel regions. Some resources are kept for reuse in the next |
1376 | // parallel region. |
1377 | // |
1378 | // thread: thread data structure corresponding to implicit task |
1379 | void __kmp_finish_implicit_task(kmp_info_t *thread) { |
1380 | kmp_taskdata_t *task = thread->th.th_current_task; |
1381 | if (task->td_dephash) { |
1382 | int children; |
1383 | task->td_flags.complete = 1; |
1384 | #if OMPX_TASKGRAPH |
1385 | task->td_flags.onced = 1; |
1386 | #endif |
1387 | children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); |
1388 | kmp_tasking_flags_t flags_old = task->td_flags; |
1389 | if (children == 0 && flags_old.complete == 1) { |
1390 | kmp_tasking_flags_t flags_new = flags_old; |
1391 | flags_new.complete = 0; |
1392 | if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), |
1393 | *RCAST(kmp_int32 *, &flags_old), |
1394 | *RCAST(kmp_int32 *, &flags_new))) { |
1395 | KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " |
1396 | "dephash of implicit task %p\n" , |
1397 | thread->th.th_info.ds.ds_gtid, task)); |
1398 | __kmp_dephash_free_entries(thread, h: task->td_dephash); |
1399 | } |
1400 | } |
1401 | } |
1402 | } |
1403 | |
1404 | // __kmp_free_implicit_task: Release resources associated to implicit tasks |
1405 | // when these are destroyed regions |
1406 | // |
1407 | // thread: thread data structure corresponding to implicit task |
1408 | void __kmp_free_implicit_task(kmp_info_t *thread) { |
1409 | kmp_taskdata_t *task = thread->th.th_current_task; |
1410 | if (task && task->td_dephash) { |
1411 | __kmp_dephash_free(thread, h: task->td_dephash); |
1412 | task->td_dephash = NULL; |
1413 | } |
1414 | } |
1415 | |
1416 | // Round up a size to a power of two specified by val: Used to insert padding |
1417 | // between structures co-allocated using a single malloc() call |
1418 | static size_t __kmp_round_up_to_val(size_t size, size_t val) { |
1419 | if (size & (val - 1)) { |
1420 | size &= ~(val - 1); |
1421 | if (size <= KMP_SIZE_T_MAX - val) { |
1422 | size += val; // Round up if there is no overflow. |
1423 | } |
1424 | } |
1425 | return size; |
1426 | } // __kmp_round_up_to_va |
1427 | |
1428 | // __kmp_task_alloc: Allocate the taskdata and task data structures for a task |
1429 | // |
1430 | // loc_ref: source location information |
1431 | // gtid: global thread number. |
1432 | // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' |
1433 | // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. |
1434 | // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including |
1435 | // private vars accessed in task. |
1436 | // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed |
1437 | // in task. |
1438 | // task_entry: Pointer to task code entry point generated by compiler. |
1439 | // returns: a pointer to the allocated kmp_task_t structure (task). |
1440 | kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, |
1441 | kmp_tasking_flags_t *flags, |
1442 | size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
1443 | kmp_routine_entry_t task_entry) { |
1444 | kmp_task_t *task; |
1445 | kmp_taskdata_t *taskdata; |
1446 | kmp_info_t *thread = __kmp_threads[gtid]; |
1447 | kmp_team_t *team = thread->th.th_team; |
1448 | kmp_taskdata_t *parent_task = thread->th.th_current_task; |
1449 | size_t shareds_offset; |
1450 | |
1451 | if (UNLIKELY(!TCR_4(__kmp_init_middle))) |
1452 | __kmp_middle_initialize(); |
1453 | |
1454 | if (flags->hidden_helper) { |
1455 | if (__kmp_enable_hidden_helper) { |
1456 | if (!TCR_4(__kmp_init_hidden_helper)) |
1457 | __kmp_hidden_helper_initialize(); |
1458 | } else { |
1459 | // If the hidden helper task is not enabled, reset the flag to FALSE. |
1460 | flags->hidden_helper = FALSE; |
1461 | } |
1462 | } |
1463 | |
1464 | KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " |
1465 | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n" , |
1466 | gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, |
1467 | sizeof_shareds, task_entry)); |
1468 | |
1469 | KMP_DEBUG_ASSERT(parent_task); |
1470 | if (parent_task->td_flags.final) { |
1471 | if (flags->merged_if0) { |
1472 | } |
1473 | flags->final = 1; |
1474 | } |
1475 | |
1476 | if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { |
1477 | // Untied task encountered causes the TSC algorithm to check entire deque of |
1478 | // the victim thread. If no untied task encountered, then checking the head |
1479 | // of the deque should be enough. |
1480 | KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); |
1481 | } |
1482 | |
1483 | // Detachable tasks are not proxy tasks yet but could be in the future. Doing |
1484 | // the tasking setup |
1485 | // when that happens is too late. |
1486 | if (UNLIKELY(flags->proxy == TASK_PROXY || |
1487 | flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { |
1488 | if (flags->proxy == TASK_PROXY) { |
1489 | flags->tiedness = TASK_UNTIED; |
1490 | flags->merged_if0 = 1; |
1491 | } |
1492 | /* are we running in a sequential parallel or tskm_immediate_exec... we need |
1493 | tasking support enabled */ |
1494 | if ((thread->th.th_task_team) == NULL) { |
1495 | /* This should only happen if the team is serialized |
1496 | setup a task team and propagate it to the thread */ |
1497 | KMP_DEBUG_ASSERT(team->t.t_serialized); |
1498 | KA_TRACE(30, |
1499 | ("T#%d creating task team in __kmp_task_alloc for proxy task\n" , |
1500 | gtid)); |
1501 | __kmp_task_team_setup(this_thr: thread, team); |
1502 | thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; |
1503 | } |
1504 | kmp_task_team_t *task_team = thread->th.th_task_team; |
1505 | |
1506 | /* tasking must be enabled now as the task might not be pushed */ |
1507 | if (!KMP_TASKING_ENABLED(task_team)) { |
1508 | KA_TRACE( |
1509 | 30, |
1510 | ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n" , gtid)); |
1511 | __kmp_enable_tasking(task_team, this_thr: thread); |
1512 | kmp_int32 tid = thread->th.th_info.ds.ds_tid; |
1513 | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; |
1514 | // No lock needed since only owner can allocate |
1515 | if (thread_data->td.td_deque == NULL) { |
1516 | __kmp_alloc_task_deque(thread, thread_data); |
1517 | } |
1518 | } |
1519 | |
1520 | if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && |
1521 | task_team->tt.tt_found_proxy_tasks == FALSE) |
1522 | TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); |
1523 | if (flags->hidden_helper && |
1524 | task_team->tt.tt_hidden_helper_task_encountered == FALSE) |
1525 | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); |
1526 | } |
1527 | |
1528 | // Calculate shared structure offset including padding after kmp_task_t struct |
1529 | // to align pointers in shared struct |
1530 | shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; |
1531 | shareds_offset = __kmp_round_up_to_val(size: shareds_offset, val: sizeof(void *)); |
1532 | |
1533 | // Allocate a kmp_taskdata_t block and a kmp_task_t block. |
1534 | KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n" , gtid, |
1535 | shareds_offset)); |
1536 | KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n" , gtid, |
1537 | sizeof_shareds)); |
1538 | |
1539 | // Avoid double allocation here by combining shareds with taskdata |
1540 | #if USE_FAST_MEMORY |
1541 | taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + |
1542 | sizeof_shareds); |
1543 | #else /* ! USE_FAST_MEMORY */ |
1544 | taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + |
1545 | sizeof_shareds); |
1546 | #endif /* USE_FAST_MEMORY */ |
1547 | |
1548 | task = KMP_TASKDATA_TO_TASK(taskdata); |
1549 | |
1550 | // Make sure task & taskdata are aligned appropriately |
1551 | #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD |
1552 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); |
1553 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); |
1554 | #else |
1555 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); |
1556 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); |
1557 | #endif |
1558 | if (sizeof_shareds > 0) { |
1559 | // Avoid double allocation here by combining shareds with taskdata |
1560 | task->shareds = &((char *)taskdata)[shareds_offset]; |
1561 | // Make sure shareds struct is aligned to pointer size |
1562 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == |
1563 | 0); |
1564 | } else { |
1565 | task->shareds = NULL; |
1566 | } |
1567 | task->routine = task_entry; |
1568 | task->part_id = 0; // AC: Always start with 0 part id |
1569 | |
1570 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
1571 | taskdata->td_team = thread->th.th_team; |
1572 | taskdata->td_alloc_thread = thread; |
1573 | taskdata->td_parent = parent_task; |
1574 | taskdata->td_level = parent_task->td_level + 1; // increment nesting level |
1575 | KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); |
1576 | taskdata->td_ident = loc_ref; |
1577 | taskdata->td_taskwait_ident = NULL; |
1578 | taskdata->td_taskwait_counter = 0; |
1579 | taskdata->td_taskwait_thread = 0; |
1580 | KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); |
1581 | // avoid copying icvs for proxy tasks |
1582 | if (flags->proxy == TASK_FULL) |
1583 | copy_icvs(dst: &taskdata->td_icvs, src: &taskdata->td_parent->td_icvs); |
1584 | |
1585 | taskdata->td_flags = *flags; |
1586 | taskdata->td_task_team = thread->th.th_task_team; |
1587 | taskdata->td_size_alloc = shareds_offset + sizeof_shareds; |
1588 | taskdata->td_flags.tasktype = TASK_EXPLICIT; |
1589 | // If it is hidden helper task, we need to set the team and task team |
1590 | // correspondingly. |
1591 | if (flags->hidden_helper) { |
1592 | kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; |
1593 | taskdata->td_team = shadow_thread->th.th_team; |
1594 | taskdata->td_task_team = shadow_thread->th.th_task_team; |
1595 | } |
1596 | |
1597 | // GEH - TODO: fix this to copy parent task's value of tasking_ser flag |
1598 | taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); |
1599 | |
1600 | // GEH - TODO: fix this to copy parent task's value of team_serial flag |
1601 | taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; |
1602 | |
1603 | // GEH - Note we serialize the task if the team is serialized to make sure |
1604 | // implicit parallel region tasks are not left until program termination to |
1605 | // execute. Also, it helps locality to execute immediately. |
1606 | |
1607 | taskdata->td_flags.task_serial = |
1608 | (parent_task->td_flags.final || taskdata->td_flags.team_serial || |
1609 | taskdata->td_flags.tasking_ser || flags->merged_if0); |
1610 | |
1611 | taskdata->td_flags.started = 0; |
1612 | taskdata->td_flags.executing = 0; |
1613 | taskdata->td_flags.complete = 0; |
1614 | taskdata->td_flags.freed = 0; |
1615 | #if OMPX_TASKGRAPH |
1616 | taskdata->td_flags.onced = 0; |
1617 | taskdata->is_taskgraph = 0; |
1618 | taskdata->tdg = nullptr; |
1619 | #endif |
1620 | KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); |
1621 | // start at one because counts current task and children |
1622 | KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); |
1623 | taskdata->td_taskgroup = |
1624 | parent_task->td_taskgroup; // task inherits taskgroup from the parent task |
1625 | taskdata->td_dephash = NULL; |
1626 | taskdata->td_depnode = NULL; |
1627 | taskdata->td_target_data.async_handle = NULL; |
1628 | if (flags->tiedness == TASK_UNTIED) |
1629 | taskdata->td_last_tied = NULL; // will be set when the task is scheduled |
1630 | else |
1631 | taskdata->td_last_tied = taskdata; |
1632 | taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; |
1633 | #if OMPT_SUPPORT |
1634 | if (UNLIKELY(ompt_enabled.enabled)) |
1635 | __ompt_task_init(task: taskdata, tid: gtid); |
1636 | #endif |
1637 | // TODO: What would be the balance between the conditions in the function and |
1638 | // an atomic operation? |
1639 | if (__kmp_track_children_task(taskdata)) { |
1640 | KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); |
1641 | if (parent_task->td_taskgroup) |
1642 | KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); |
1643 | // Only need to keep track of allocated child tasks for explicit tasks since |
1644 | // implicit not deallocated |
1645 | if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { |
1646 | KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); |
1647 | } |
1648 | if (flags->hidden_helper) { |
1649 | taskdata->td_flags.task_serial = FALSE; |
1650 | // Increment the number of hidden helper tasks to be executed |
1651 | KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); |
1652 | } |
1653 | } |
1654 | |
1655 | #if OMPX_TASKGRAPH |
1656 | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); |
1657 | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) && |
1658 | (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) { |
1659 | taskdata->is_taskgraph = 1; |
1660 | taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; |
1661 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
1662 | taskdata->td_tdg_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); |
1663 | } |
1664 | #endif |
1665 | KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n" , |
1666 | gtid, taskdata, taskdata->td_parent)); |
1667 | |
1668 | return task; |
1669 | } |
1670 | |
1671 | kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, |
1672 | kmp_int32 flags, size_t sizeof_kmp_task_t, |
1673 | size_t sizeof_shareds, |
1674 | kmp_routine_entry_t task_entry) { |
1675 | kmp_task_t *retval; |
1676 | kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; |
1677 | __kmp_assert_valid_gtid(gtid); |
1678 | input_flags->native = FALSE; |
1679 | // __kmp_task_alloc() sets up all other runtime flags |
1680 | KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " |
1681 | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n" , |
1682 | gtid, loc_ref, input_flags->tiedness ? "tied " : "untied" , |
1683 | input_flags->proxy ? "proxy" : "" , |
1684 | input_flags->detachable ? "detachable" : "" , sizeof_kmp_task_t, |
1685 | sizeof_shareds, task_entry)); |
1686 | |
1687 | retval = __kmp_task_alloc(loc_ref, gtid, flags: input_flags, sizeof_kmp_task_t, |
1688 | sizeof_shareds, task_entry); |
1689 | |
1690 | KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n" , gtid, retval)); |
1691 | |
1692 | return retval; |
1693 | } |
1694 | |
1695 | kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, |
1696 | kmp_int32 flags, |
1697 | size_t sizeof_kmp_task_t, |
1698 | size_t sizeof_shareds, |
1699 | kmp_routine_entry_t task_entry, |
1700 | kmp_int64 device_id) { |
1701 | auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); |
1702 | // target task is untied defined in the specification |
1703 | input_flags.tiedness = TASK_UNTIED; |
1704 | input_flags.target = 1; |
1705 | |
1706 | if (__kmp_enable_hidden_helper) |
1707 | input_flags.hidden_helper = TRUE; |
1708 | |
1709 | return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, |
1710 | sizeof_shareds, task_entry); |
1711 | } |
1712 | |
1713 | /*! |
1714 | @ingroup TASKING |
1715 | @param loc_ref location of the original task directive |
1716 | @param gtid Global Thread ID of encountering thread |
1717 | @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new |
1718 | task'' |
1719 | @param naffins Number of affinity items |
1720 | @param affin_list List of affinity items |
1721 | @return Returns non-zero if registering affinity information was not successful. |
1722 | Returns 0 if registration was successful |
1723 | This entry registers the affinity information attached to a task with the task |
1724 | thunk structure kmp_taskdata_t. |
1725 | */ |
1726 | kmp_int32 |
1727 | __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, |
1728 | kmp_task_t *new_task, kmp_int32 naffins, |
1729 | kmp_task_affinity_info_t *affin_list) { |
1730 | return 0; |
1731 | } |
1732 | |
1733 | // __kmp_invoke_task: invoke the specified task |
1734 | // |
1735 | // gtid: global thread ID of caller |
1736 | // task: the task to invoke |
1737 | // current_task: the task to resume after task invocation |
1738 | #ifdef __s390x__ |
1739 | __attribute__((target("backchain" ))) |
1740 | #endif |
1741 | static void |
1742 | __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, |
1743 | kmp_taskdata_t *current_task) { |
1744 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
1745 | kmp_info_t *thread; |
1746 | int discard = 0 /* false */; |
1747 | KA_TRACE( |
1748 | 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n" , |
1749 | gtid, taskdata, current_task)); |
1750 | KMP_DEBUG_ASSERT(task); |
1751 | if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && |
1752 | taskdata->td_flags.complete == 1)) { |
1753 | // This is a proxy task that was already completed but it needs to run |
1754 | // its bottom-half finish |
1755 | KA_TRACE( |
1756 | 30, |
1757 | ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n" , |
1758 | gtid, taskdata)); |
1759 | |
1760 | __kmp_bottom_half_finish_proxy(gtid, ptask: task); |
1761 | |
1762 | KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " |
1763 | "proxy task %p, resuming task %p\n" , |
1764 | gtid, taskdata, current_task)); |
1765 | |
1766 | return; |
1767 | } |
1768 | |
1769 | #if OMPT_SUPPORT |
1770 | // For untied tasks, the first task executed only calls __kmpc_omp_task and |
1771 | // does not execute code. |
1772 | ompt_thread_info_t oldInfo; |
1773 | if (UNLIKELY(ompt_enabled.enabled)) { |
1774 | // Store the threads states and restore them after the task |
1775 | thread = __kmp_threads[gtid]; |
1776 | oldInfo = thread->th.ompt_thread_info; |
1777 | thread->th.ompt_thread_info.wait_id = 0; |
1778 | thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) |
1779 | ? ompt_state_work_serial |
1780 | : ompt_state_work_parallel; |
1781 | taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
1782 | } |
1783 | #endif |
1784 | |
1785 | // Proxy tasks are not handled by the runtime |
1786 | if (taskdata->td_flags.proxy != TASK_PROXY) { |
1787 | __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded |
1788 | } |
1789 | |
1790 | // TODO: cancel tasks if the parallel region has also been cancelled |
1791 | // TODO: check if this sequence can be hoisted above __kmp_task_start |
1792 | // if cancellation has been enabled for this run ... |
1793 | if (UNLIKELY(__kmp_omp_cancellation)) { |
1794 | thread = __kmp_threads[gtid]; |
1795 | kmp_team_t *this_team = thread->th.th_team; |
1796 | kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; |
1797 | if ((taskgroup && taskgroup->cancel_request) || |
1798 | (this_team->t.t_cancel_request == cancel_parallel)) { |
1799 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
1800 | ompt_data_t *task_data; |
1801 | if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { |
1802 | __ompt_get_task_info_internal(ancestor_level: 0, NULL, task_data: &task_data, NULL, NULL, NULL); |
1803 | ompt_callbacks.ompt_callback(ompt_callback_cancel)( |
1804 | task_data, |
1805 | ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup |
1806 | : ompt_cancel_parallel) | |
1807 | ompt_cancel_discarded_task, |
1808 | NULL); |
1809 | } |
1810 | #endif |
1811 | KMP_COUNT_BLOCK(TASK_cancelled); |
1812 | // this task belongs to a task group and we need to cancel it |
1813 | discard = 1 /* true */; |
1814 | } |
1815 | } |
1816 | |
1817 | // Invoke the task routine and pass in relevant data. |
1818 | // Thunks generated by gcc take a different argument list. |
1819 | if (!discard) { |
1820 | if (taskdata->td_flags.tiedness == TASK_UNTIED) { |
1821 | taskdata->td_last_tied = current_task->td_last_tied; |
1822 | KMP_DEBUG_ASSERT(taskdata->td_last_tied); |
1823 | } |
1824 | #if KMP_STATS_ENABLED |
1825 | KMP_COUNT_BLOCK(TASK_executed); |
1826 | switch (KMP_GET_THREAD_STATE()) { |
1827 | case FORK_JOIN_BARRIER: |
1828 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); |
1829 | break; |
1830 | case PLAIN_BARRIER: |
1831 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); |
1832 | break; |
1833 | case TASKYIELD: |
1834 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); |
1835 | break; |
1836 | case TASKWAIT: |
1837 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); |
1838 | break; |
1839 | case TASKGROUP: |
1840 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); |
1841 | break; |
1842 | default: |
1843 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); |
1844 | break; |
1845 | } |
1846 | #endif // KMP_STATS_ENABLED |
1847 | |
1848 | // OMPT task begin |
1849 | #if OMPT_SUPPORT |
1850 | if (UNLIKELY(ompt_enabled.enabled)) |
1851 | __ompt_task_start(task, current_task, gtid); |
1852 | #endif |
1853 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
1854 | if (UNLIKELY(ompt_enabled.ompt_callback_dispatch && |
1855 | taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) { |
1856 | ompt_data_t instance = ompt_data_none; |
1857 | instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk); |
1858 | ompt_team_info_t *team_info = __ompt_get_teaminfo(depth: 0, NULL); |
1859 | ompt_callbacks.ompt_callback(ompt_callback_dispatch)( |
1860 | &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data), |
1861 | ompt_dispatch_taskloop_chunk, instance); |
1862 | taskdata->ompt_task_info.dispatch_chunk = {.start: 0, .iterations: 0}; |
1863 | } |
1864 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
1865 | |
1866 | #if OMPD_SUPPORT |
1867 | if (ompd_state & OMPD_ENABLE_BP) |
1868 | ompd_bp_task_begin(); |
1869 | #endif |
1870 | |
1871 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
1872 | kmp_uint64 cur_time; |
1873 | kmp_int32 kmp_itt_count_task = |
1874 | __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && |
1875 | current_task->td_flags.tasktype == TASK_IMPLICIT; |
1876 | if (kmp_itt_count_task) { |
1877 | thread = __kmp_threads[gtid]; |
1878 | // Time outer level explicit task on barrier for adjusting imbalance time |
1879 | if (thread->th.th_bar_arrive_time) |
1880 | cur_time = __itt_get_timestamp(); |
1881 | else |
1882 | kmp_itt_count_task = 0; // thread is not on a barrier - skip timing |
1883 | } |
1884 | KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) |
1885 | #endif |
1886 | |
1887 | #if ENABLE_LIBOMPTARGET |
1888 | if (taskdata->td_target_data.async_handle != NULL) { |
1889 | // If we have a valid target async handle, that means that we have already |
1890 | // executed the task routine once. We must query for the handle completion |
1891 | // instead of re-executing the routine. |
1892 | KMP_ASSERT(tgt_target_nowait_query); |
1893 | tgt_target_nowait_query(&taskdata->td_target_data.async_handle); |
1894 | } else |
1895 | #endif |
1896 | if (task->routine != NULL) { |
1897 | #ifdef KMP_GOMP_COMPAT |
1898 | if (taskdata->td_flags.native) { |
1899 | ((void (*)(void *))(*(task->routine)))(task->shareds); |
1900 | } else |
1901 | #endif /* KMP_GOMP_COMPAT */ |
1902 | { |
1903 | (*(task->routine))(gtid, task); |
1904 | } |
1905 | } |
1906 | KMP_POP_PARTITIONED_TIMER(); |
1907 | |
1908 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
1909 | if (kmp_itt_count_task) { |
1910 | // Barrier imbalance - adjust arrive time with the task duration |
1911 | thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); |
1912 | } |
1913 | KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) |
1914 | KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent |
1915 | #endif |
1916 | } |
1917 | |
1918 | #if OMPD_SUPPORT |
1919 | if (ompd_state & OMPD_ENABLE_BP) |
1920 | ompd_bp_task_end(); |
1921 | #endif |
1922 | |
1923 | // Proxy tasks are not handled by the runtime |
1924 | if (taskdata->td_flags.proxy != TASK_PROXY) { |
1925 | #if OMPT_SUPPORT |
1926 | if (UNLIKELY(ompt_enabled.enabled)) { |
1927 | thread->th.ompt_thread_info = oldInfo; |
1928 | if (taskdata->td_flags.tiedness == TASK_TIED) { |
1929 | taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; |
1930 | } |
1931 | __kmp_task_finish<true>(gtid, task, resumed_task: current_task); |
1932 | } else |
1933 | #endif |
1934 | __kmp_task_finish<false>(gtid, task, resumed_task: current_task); |
1935 | } |
1936 | #if OMPT_SUPPORT |
1937 | else if (UNLIKELY(ompt_enabled.enabled && taskdata->td_flags.target)) { |
1938 | __ompt_task_finish(task, resumed_task: current_task, status: ompt_task_switch); |
1939 | } |
1940 | #endif |
1941 | |
1942 | KA_TRACE( |
1943 | 30, |
1944 | ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n" , |
1945 | gtid, taskdata, current_task)); |
1946 | return; |
1947 | } |
1948 | |
1949 | // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution |
1950 | // |
1951 | // loc_ref: location of original task pragma (ignored) |
1952 | // gtid: Global Thread ID of encountering thread |
1953 | // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' |
1954 | // Returns: |
1955 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
1956 | // be resumed later. |
1957 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
1958 | // resumed later. |
1959 | kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, |
1960 | kmp_task_t *new_task) { |
1961 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
1962 | |
1963 | KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n" , gtid, |
1964 | loc_ref, new_taskdata)); |
1965 | |
1966 | #if OMPT_SUPPORT |
1967 | kmp_taskdata_t *parent; |
1968 | if (UNLIKELY(ompt_enabled.enabled)) { |
1969 | parent = new_taskdata->td_parent; |
1970 | if (ompt_enabled.ompt_callback_task_create) { |
1971 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
1972 | &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), |
1973 | &(new_taskdata->ompt_task_info.task_data), |
1974 | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, |
1975 | OMPT_GET_RETURN_ADDRESS(0)); |
1976 | } |
1977 | } |
1978 | #endif |
1979 | |
1980 | /* Should we execute the new task or queue it? For now, let's just always try |
1981 | to queue it. If the queue fills up, then we'll execute it. */ |
1982 | |
1983 | if (__kmp_push_task(gtid, task: new_task) == TASK_NOT_PUSHED) // if cannot defer |
1984 | { // Execute this task immediately |
1985 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
1986 | new_taskdata->td_flags.task_serial = 1; |
1987 | __kmp_invoke_task(gtid, task: new_task, current_task); |
1988 | } |
1989 | |
1990 | KA_TRACE( |
1991 | 10, |
1992 | ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " |
1993 | "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n" , |
1994 | gtid, loc_ref, new_taskdata)); |
1995 | |
1996 | #if OMPT_SUPPORT |
1997 | if (UNLIKELY(ompt_enabled.enabled)) { |
1998 | parent->ompt_task_info.frame.enter_frame = ompt_data_none; |
1999 | parent->ompt_task_info.frame.enter_frame_flags = OMPT_FRAME_FLAGS_RUNTIME; |
2000 | } |
2001 | #endif |
2002 | return TASK_CURRENT_NOT_QUEUED; |
2003 | } |
2004 | |
2005 | // __kmp_omp_task: Schedule a non-thread-switchable task for execution |
2006 | // |
2007 | // gtid: Global Thread ID of encountering thread |
2008 | // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() |
2009 | // serialize_immediate: if TRUE then if the task is executed immediately its |
2010 | // execution will be serialized |
2011 | // Returns: |
2012 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
2013 | // be resumed later. |
2014 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
2015 | // resumed later. |
2016 | kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, |
2017 | bool serialize_immediate) { |
2018 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
2019 | |
2020 | #if OMPX_TASKGRAPH |
2021 | if (new_taskdata->is_taskgraph && |
2022 | __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) { |
2023 | kmp_tdg_info_t *tdg = new_taskdata->tdg; |
2024 | // extend the record_map if needed |
2025 | if (new_taskdata->td_tdg_task_id >= new_taskdata->tdg->map_size) { |
2026 | __kmp_acquire_bootstrap_lock(&tdg->graph_lock); |
2027 | // map_size could have been updated by another thread if recursive |
2028 | // taskloop |
2029 | if (new_taskdata->td_tdg_task_id >= tdg->map_size) { |
2030 | kmp_uint old_size = tdg->map_size; |
2031 | kmp_uint new_size = old_size * 2; |
2032 | kmp_node_info_t *old_record = tdg->record_map; |
2033 | kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate( |
2034 | new_size * sizeof(kmp_node_info_t)); |
2035 | |
2036 | KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t)); |
2037 | tdg->record_map = new_record; |
2038 | |
2039 | __kmp_free(old_record); |
2040 | |
2041 | for (kmp_int i = old_size; i < new_size; i++) { |
2042 | kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate( |
2043 | __kmp_successors_size * sizeof(kmp_int32)); |
2044 | new_record[i].task = nullptr; |
2045 | new_record[i].successors = successorsList; |
2046 | new_record[i].nsuccessors = 0; |
2047 | new_record[i].npredecessors = 0; |
2048 | new_record[i].successors_size = __kmp_successors_size; |
2049 | KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0); |
2050 | } |
2051 | // update the size at the end, so that we avoid other |
2052 | // threads use old_record while map_size is already updated |
2053 | tdg->map_size = new_size; |
2054 | } |
2055 | __kmp_release_bootstrap_lock(&tdg->graph_lock); |
2056 | } |
2057 | // record a task |
2058 | if (tdg->record_map[new_taskdata->td_tdg_task_id].task == nullptr) { |
2059 | tdg->record_map[new_taskdata->td_tdg_task_id].task = new_task; |
2060 | tdg->record_map[new_taskdata->td_tdg_task_id].parent_task = |
2061 | new_taskdata->td_parent; |
2062 | KMP_ATOMIC_INC(&tdg->num_tasks); |
2063 | } |
2064 | } |
2065 | #endif |
2066 | |
2067 | /* Should we execute the new task or queue it? For now, let's just always try |
2068 | to queue it. If the queue fills up, then we'll execute it. */ |
2069 | if (new_taskdata->td_flags.proxy == TASK_PROXY || |
2070 | __kmp_push_task(gtid, task: new_task) == TASK_NOT_PUSHED) // if cannot defer |
2071 | { // Execute this task immediately |
2072 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
2073 | if (serialize_immediate) |
2074 | new_taskdata->td_flags.task_serial = 1; |
2075 | __kmp_invoke_task(gtid, task: new_task, current_task); |
2076 | } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && |
2077 | __kmp_wpolicy_passive) { |
2078 | kmp_info_t *this_thr = __kmp_threads[gtid]; |
2079 | kmp_team_t *team = this_thr->th.th_team; |
2080 | kmp_int32 nthreads = this_thr->th.th_team_nproc; |
2081 | for (int i = 0; i < nthreads; ++i) { |
2082 | kmp_info_t *thread = team->t.t_threads[i]; |
2083 | if (thread == this_thr) |
2084 | continue; |
2085 | if (thread->th.th_sleep_loc != NULL) { |
2086 | __kmp_null_resume_wrapper(thr: thread); |
2087 | break; // awake one thread at a time |
2088 | } |
2089 | } |
2090 | } |
2091 | return TASK_CURRENT_NOT_QUEUED; |
2092 | } |
2093 | |
2094 | // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a |
2095 | // non-thread-switchable task from the parent thread only! |
2096 | // |
2097 | // loc_ref: location of original task pragma (ignored) |
2098 | // gtid: Global Thread ID of encountering thread |
2099 | // new_task: non-thread-switchable task thunk allocated by |
2100 | // __kmp_omp_task_alloc() |
2101 | // Returns: |
2102 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
2103 | // be resumed later. |
2104 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
2105 | // resumed later. |
2106 | kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, |
2107 | kmp_task_t *new_task) { |
2108 | kmp_int32 res; |
2109 | KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); |
2110 | |
2111 | #if KMP_DEBUG || OMPT_SUPPORT |
2112 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
2113 | #endif |
2114 | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n" , gtid, loc_ref, |
2115 | new_taskdata)); |
2116 | __kmp_assert_valid_gtid(gtid); |
2117 | |
2118 | #if OMPT_SUPPORT |
2119 | kmp_taskdata_t *parent = NULL; |
2120 | if (UNLIKELY(ompt_enabled.enabled)) { |
2121 | if (!new_taskdata->td_flags.started) { |
2122 | OMPT_STORE_RETURN_ADDRESS(gtid); |
2123 | parent = new_taskdata->td_parent; |
2124 | if (!parent->ompt_task_info.frame.enter_frame.ptr) { |
2125 | parent->ompt_task_info.frame.enter_frame.ptr = |
2126 | OMPT_GET_FRAME_ADDRESS(0); |
2127 | } |
2128 | if (ompt_enabled.ompt_callback_task_create) { |
2129 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
2130 | &(parent->ompt_task_info.task_data), |
2131 | &(parent->ompt_task_info.frame), |
2132 | &(new_taskdata->ompt_task_info.task_data), |
2133 | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, |
2134 | OMPT_LOAD_RETURN_ADDRESS(gtid)); |
2135 | } |
2136 | } else { |
2137 | // We are scheduling the continuation of an UNTIED task. |
2138 | // Scheduling back to the parent task. |
2139 | __ompt_task_finish(task: new_task, |
2140 | resumed_task: new_taskdata->ompt_task_info.scheduling_parent, |
2141 | status: ompt_task_switch); |
2142 | new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; |
2143 | } |
2144 | } |
2145 | #endif |
2146 | |
2147 | res = __kmp_omp_task(gtid, new_task, serialize_immediate: true); |
2148 | |
2149 | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " |
2150 | "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n" , |
2151 | gtid, loc_ref, new_taskdata)); |
2152 | #if OMPT_SUPPORT |
2153 | if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { |
2154 | parent->ompt_task_info.frame.enter_frame = ompt_data_none; |
2155 | } |
2156 | #endif |
2157 | return res; |
2158 | } |
2159 | |
2160 | // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule |
2161 | // a taskloop task with the correct OMPT return address |
2162 | // |
2163 | // loc_ref: location of original task pragma (ignored) |
2164 | // gtid: Global Thread ID of encountering thread |
2165 | // new_task: non-thread-switchable task thunk allocated by |
2166 | // __kmp_omp_task_alloc() |
2167 | // codeptr_ra: return address for OMPT callback |
2168 | // Returns: |
2169 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
2170 | // be resumed later. |
2171 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
2172 | // resumed later. |
2173 | kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, |
2174 | kmp_task_t *new_task, void *codeptr_ra) { |
2175 | kmp_int32 res; |
2176 | KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); |
2177 | |
2178 | #if KMP_DEBUG || OMPT_SUPPORT |
2179 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
2180 | #endif |
2181 | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n" , gtid, loc_ref, |
2182 | new_taskdata)); |
2183 | |
2184 | #if OMPT_SUPPORT |
2185 | kmp_taskdata_t *parent = NULL; |
2186 | if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { |
2187 | parent = new_taskdata->td_parent; |
2188 | if (!parent->ompt_task_info.frame.enter_frame.ptr) |
2189 | parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
2190 | if (ompt_enabled.ompt_callback_task_create) { |
2191 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
2192 | &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), |
2193 | &(new_taskdata->ompt_task_info.task_data), |
2194 | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, codeptr_ra); |
2195 | } |
2196 | } |
2197 | #endif |
2198 | |
2199 | res = __kmp_omp_task(gtid, new_task, serialize_immediate: true); |
2200 | |
2201 | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " |
2202 | "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n" , |
2203 | gtid, loc_ref, new_taskdata)); |
2204 | #if OMPT_SUPPORT |
2205 | if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { |
2206 | parent->ompt_task_info.frame.enter_frame = ompt_data_none; |
2207 | } |
2208 | #endif |
2209 | return res; |
2210 | } |
2211 | |
2212 | template <bool ompt> |
2213 | static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, |
2214 | void *frame_address, |
2215 | void *return_address) { |
2216 | kmp_taskdata_t *taskdata = nullptr; |
2217 | kmp_info_t *thread; |
2218 | int thread_finished = FALSE; |
2219 | KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); |
2220 | |
2221 | KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n" , gtid, loc_ref)); |
2222 | KMP_DEBUG_ASSERT(gtid >= 0); |
2223 | |
2224 | if (__kmp_tasking_mode != tskm_immediate_exec) { |
2225 | thread = __kmp_threads[gtid]; |
2226 | taskdata = thread->th.th_current_task; |
2227 | |
2228 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2229 | ompt_data_t *my_task_data; |
2230 | ompt_data_t *my_parallel_data; |
2231 | |
2232 | if (ompt) { |
2233 | my_task_data = &(taskdata->ompt_task_info.task_data); |
2234 | my_parallel_data = OMPT_CUR_TEAM_DATA(thread); |
2235 | |
2236 | taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; |
2237 | |
2238 | if (ompt_enabled.ompt_callback_sync_region) { |
2239 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
2240 | ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, |
2241 | my_task_data, return_address); |
2242 | } |
2243 | |
2244 | if (ompt_enabled.ompt_callback_sync_region_wait) { |
2245 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2246 | ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, |
2247 | my_task_data, return_address); |
2248 | } |
2249 | } |
2250 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
2251 | |
2252 | // Debugger: The taskwait is active. Store location and thread encountered the |
2253 | // taskwait. |
2254 | #if USE_ITT_BUILD |
2255 | // Note: These values are used by ITT events as well. |
2256 | #endif /* USE_ITT_BUILD */ |
2257 | taskdata->td_taskwait_counter += 1; |
2258 | taskdata->td_taskwait_ident = loc_ref; |
2259 | taskdata->td_taskwait_thread = gtid + 1; |
2260 | |
2261 | #if USE_ITT_BUILD |
2262 | void *itt_sync_obj = NULL; |
2263 | #if USE_ITT_NOTIFY |
2264 | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); |
2265 | #endif /* USE_ITT_NOTIFY */ |
2266 | #endif /* USE_ITT_BUILD */ |
2267 | |
2268 | bool must_wait = |
2269 | !taskdata->td_flags.team_serial && !taskdata->td_flags.final; |
2270 | |
2271 | must_wait = must_wait || (thread->th.th_task_team != NULL && |
2272 | thread->th.th_task_team->tt.tt_found_proxy_tasks); |
2273 | // If hidden helper thread is encountered, we must enable wait here. |
2274 | must_wait = |
2275 | must_wait || |
2276 | (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && |
2277 | thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); |
2278 | |
2279 | if (must_wait) { |
2280 | kmp_flag_32<false, false> flag( |
2281 | RCAST(std::atomic<kmp_uint32> *, |
2282 | &(taskdata->td_incomplete_child_tasks)), |
2283 | 0U); |
2284 | while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { |
2285 | flag.execute_tasks(this_thr: thread, gtid, FALSE, |
2286 | thread_finished: &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), |
2287 | is_constrained: __kmp_task_stealing_constraint); |
2288 | } |
2289 | } |
2290 | #if USE_ITT_BUILD |
2291 | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); |
2292 | KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children |
2293 | #endif /* USE_ITT_BUILD */ |
2294 | |
2295 | // Debugger: The taskwait is completed. Location remains, but thread is |
2296 | // negated. |
2297 | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; |
2298 | |
2299 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2300 | if (ompt) { |
2301 | if (ompt_enabled.ompt_callback_sync_region_wait) { |
2302 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2303 | ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, |
2304 | my_task_data, return_address); |
2305 | } |
2306 | if (ompt_enabled.ompt_callback_sync_region) { |
2307 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
2308 | ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, |
2309 | my_task_data, return_address); |
2310 | } |
2311 | taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; |
2312 | } |
2313 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
2314 | } |
2315 | |
2316 | KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " |
2317 | "returning TASK_CURRENT_NOT_QUEUED\n" , |
2318 | gtid, taskdata)); |
2319 | |
2320 | return TASK_CURRENT_NOT_QUEUED; |
2321 | } |
2322 | |
2323 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2324 | OMPT_NOINLINE |
2325 | static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, |
2326 | void *frame_address, |
2327 | void *return_address) { |
2328 | return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, |
2329 | return_address); |
2330 | } |
2331 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
2332 | |
2333 | // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are |
2334 | // complete |
2335 | kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { |
2336 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2337 | if (UNLIKELY(ompt_enabled.enabled)) { |
2338 | OMPT_STORE_RETURN_ADDRESS(gtid); |
2339 | return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), |
2340 | OMPT_LOAD_RETURN_ADDRESS(gtid)); |
2341 | } |
2342 | #endif |
2343 | return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); |
2344 | } |
2345 | |
2346 | // __kmpc_omp_taskyield: switch to a different task |
2347 | kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { |
2348 | kmp_taskdata_t *taskdata = NULL; |
2349 | kmp_info_t *thread; |
2350 | int thread_finished = FALSE; |
2351 | |
2352 | KMP_COUNT_BLOCK(OMP_TASKYIELD); |
2353 | KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); |
2354 | |
2355 | KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n" , |
2356 | gtid, loc_ref, end_part)); |
2357 | __kmp_assert_valid_gtid(gtid); |
2358 | |
2359 | if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { |
2360 | thread = __kmp_threads[gtid]; |
2361 | taskdata = thread->th.th_current_task; |
2362 | // Should we model this as a task wait or not? |
2363 | // Debugger: The taskwait is active. Store location and thread encountered the |
2364 | // taskwait. |
2365 | #if USE_ITT_BUILD |
2366 | // Note: These values are used by ITT events as well. |
2367 | #endif /* USE_ITT_BUILD */ |
2368 | taskdata->td_taskwait_counter += 1; |
2369 | taskdata->td_taskwait_ident = loc_ref; |
2370 | taskdata->td_taskwait_thread = gtid + 1; |
2371 | |
2372 | #if USE_ITT_BUILD |
2373 | void *itt_sync_obj = NULL; |
2374 | #if USE_ITT_NOTIFY |
2375 | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); |
2376 | #endif /* USE_ITT_NOTIFY */ |
2377 | #endif /* USE_ITT_BUILD */ |
2378 | if (!taskdata->td_flags.team_serial) { |
2379 | kmp_task_team_t *task_team = thread->th.th_task_team; |
2380 | if (task_team != NULL) { |
2381 | if (KMP_TASKING_ENABLED(task_team)) { |
2382 | #if OMPT_SUPPORT |
2383 | if (UNLIKELY(ompt_enabled.enabled)) |
2384 | thread->th.ompt_thread_info.ompt_task_yielded = 1; |
2385 | #endif |
2386 | __kmp_execute_tasks_32( |
2387 | thread, gtid, flag: (kmp_flag_32<> *)NULL, FALSE, |
2388 | thread_finished: &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), |
2389 | is_constrained: __kmp_task_stealing_constraint); |
2390 | #if OMPT_SUPPORT |
2391 | if (UNLIKELY(ompt_enabled.enabled)) |
2392 | thread->th.ompt_thread_info.ompt_task_yielded = 0; |
2393 | #endif |
2394 | } |
2395 | } |
2396 | } |
2397 | #if USE_ITT_BUILD |
2398 | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); |
2399 | #endif /* USE_ITT_BUILD */ |
2400 | |
2401 | // Debugger: The taskwait is completed. Location remains, but thread is |
2402 | // negated. |
2403 | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; |
2404 | } |
2405 | |
2406 | KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " |
2407 | "returning TASK_CURRENT_NOT_QUEUED\n" , |
2408 | gtid, taskdata)); |
2409 | |
2410 | return TASK_CURRENT_NOT_QUEUED; |
2411 | } |
2412 | |
2413 | // Task Reduction implementation |
2414 | // |
2415 | // Note: initial implementation didn't take into account the possibility |
2416 | // to specify omp_orig for initializer of the UDR (user defined reduction). |
2417 | // Corrected implementation takes into account the omp_orig object. |
2418 | // Compiler is free to use old implementation if omp_orig is not specified. |
2419 | |
2420 | /*! |
2421 | @ingroup BASIC_TYPES |
2422 | @{ |
2423 | */ |
2424 | |
2425 | /*! |
2426 | Flags for special info per task reduction item. |
2427 | */ |
2428 | typedef struct kmp_taskred_flags { |
2429 | /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */ |
2430 | unsigned lazy_priv : 1; |
2431 | unsigned reserved31 : 31; |
2432 | } kmp_taskred_flags_t; |
2433 | |
2434 | /*! |
2435 | Internal struct for reduction data item related info set up by compiler. |
2436 | */ |
2437 | typedef struct kmp_task_red_input { |
2438 | void *reduce_shar; /**< shared between tasks item to reduce into */ |
2439 | size_t reduce_size; /**< size of data item in bytes */ |
2440 | // three compiler-generated routines (init, fini are optional): |
2441 | void *reduce_init; /**< data initialization routine (single parameter) */ |
2442 | void *reduce_fini; /**< data finalization routine */ |
2443 | void *reduce_comb; /**< data combiner routine */ |
2444 | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ |
2445 | } kmp_task_red_input_t; |
2446 | |
2447 | /*! |
2448 | Internal struct for reduction data item related info saved by the library. |
2449 | */ |
2450 | typedef struct kmp_taskred_data { |
2451 | void *reduce_shar; /**< shared between tasks item to reduce into */ |
2452 | size_t reduce_size; /**< size of data item */ |
2453 | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ |
2454 | void *reduce_priv; /**< array of thread specific items */ |
2455 | void *reduce_pend; /**< end of private data for faster comparison op */ |
2456 | // three compiler-generated routines (init, fini are optional): |
2457 | void *reduce_comb; /**< data combiner routine */ |
2458 | void *reduce_init; /**< data initialization routine (two parameters) */ |
2459 | void *reduce_fini; /**< data finalization routine */ |
2460 | void *reduce_orig; /**< original item (can be used in UDR initializer) */ |
2461 | } kmp_taskred_data_t; |
2462 | |
2463 | /*! |
2464 | Internal struct for reduction data item related info set up by compiler. |
2465 | |
2466 | New interface: added reduce_orig field to provide omp_orig for UDR initializer. |
2467 | */ |
2468 | typedef struct kmp_taskred_input { |
2469 | void *reduce_shar; /**< shared between tasks item to reduce into */ |
2470 | void *reduce_orig; /**< original reduction item used for initialization */ |
2471 | size_t reduce_size; /**< size of data item */ |
2472 | // three compiler-generated routines (init, fini are optional): |
2473 | void *reduce_init; /**< data initialization routine (two parameters) */ |
2474 | void *reduce_fini; /**< data finalization routine */ |
2475 | void *reduce_comb; /**< data combiner routine */ |
2476 | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ |
2477 | } kmp_taskred_input_t; |
2478 | /*! |
2479 | @} |
2480 | */ |
2481 | |
2482 | template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); |
2483 | template <> |
2484 | void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, |
2485 | kmp_task_red_input_t &src) { |
2486 | item.reduce_orig = NULL; |
2487 | } |
2488 | template <> |
2489 | void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, |
2490 | kmp_taskred_input_t &src) { |
2491 | if (src.reduce_orig != NULL) { |
2492 | item.reduce_orig = src.reduce_orig; |
2493 | } else { |
2494 | item.reduce_orig = src.reduce_shar; |
2495 | } // non-NULL reduce_orig means new interface used |
2496 | } |
2497 | |
2498 | template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); |
2499 | template <> |
2500 | void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, |
2501 | size_t offset) { |
2502 | ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); |
2503 | } |
2504 | template <> |
2505 | void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, |
2506 | size_t offset) { |
2507 | ((void (*)(void *, void *))item.reduce_init)( |
2508 | (char *)(item.reduce_priv) + offset, item.reduce_orig); |
2509 | } |
2510 | |
2511 | template <typename T> |
2512 | void *__kmp_task_reduction_init(int gtid, int num, T *data) { |
2513 | __kmp_assert_valid_gtid(gtid); |
2514 | kmp_info_t *thread = __kmp_threads[gtid]; |
2515 | kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; |
2516 | kmp_uint32 nth = thread->th.th_team_nproc; |
2517 | kmp_taskred_data_t *arr; |
2518 | |
2519 | // check input data just in case |
2520 | KMP_ASSERT(tg != NULL); |
2521 | KMP_ASSERT(data != NULL); |
2522 | KMP_ASSERT(num > 0); |
2523 | if (nth == 1 && !__kmp_enable_hidden_helper) { |
2524 | KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n" , |
2525 | gtid, tg)); |
2526 | return (void *)tg; |
2527 | } |
2528 | KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n" , |
2529 | gtid, tg, num)); |
2530 | arr = (kmp_taskred_data_t *)__kmp_thread_malloc( |
2531 | thread, num * sizeof(kmp_taskred_data_t)); |
2532 | for (int i = 0; i < num; ++i) { |
2533 | size_t size = data[i].reduce_size - 1; |
2534 | // round the size up to cache line per thread-specific item |
2535 | size += CACHE_LINE - size % CACHE_LINE; |
2536 | KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory |
2537 | arr[i].reduce_shar = data[i].reduce_shar; |
2538 | arr[i].reduce_size = size; |
2539 | arr[i].flags = data[i].flags; |
2540 | arr[i].reduce_comb = data[i].reduce_comb; |
2541 | arr[i].reduce_init = data[i].reduce_init; |
2542 | arr[i].reduce_fini = data[i].reduce_fini; |
2543 | __kmp_assign_orig<T>(arr[i], data[i]); |
2544 | if (!arr[i].flags.lazy_priv) { |
2545 | // allocate cache-line aligned block and fill it with zeros |
2546 | arr[i].reduce_priv = __kmp_allocate(nth * size); |
2547 | arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; |
2548 | if (arr[i].reduce_init != NULL) { |
2549 | // initialize all thread-specific items |
2550 | for (size_t j = 0; j < nth; ++j) { |
2551 | __kmp_call_init<T>(arr[i], j * size); |
2552 | } |
2553 | } |
2554 | } else { |
2555 | // only allocate space for pointers now, |
2556 | // objects will be lazily allocated/initialized if/when requested |
2557 | // note that __kmp_allocate zeroes the allocated memory |
2558 | arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); |
2559 | } |
2560 | } |
2561 | tg->reduce_data = (void *)arr; |
2562 | tg->reduce_num_data = num; |
2563 | return (void *)tg; |
2564 | } |
2565 | |
2566 | /*! |
2567 | @ingroup TASKING |
2568 | @param gtid Global thread ID |
2569 | @param num Number of data items to reduce |
2570 | @param data Array of data for reduction |
2571 | @return The taskgroup identifier |
2572 | |
2573 | Initialize task reduction for the taskgroup. |
2574 | |
2575 | Note: this entry supposes the optional compiler-generated initializer routine |
2576 | has single parameter - pointer to object to be initialized. That means |
2577 | the reduction either does not use omp_orig object, or the omp_orig is accessible |
2578 | without help of the runtime library. |
2579 | */ |
2580 | void *__kmpc_task_reduction_init(int gtid, int num, void *data) { |
2581 | #if OMPX_TASKGRAPH |
2582 | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); |
2583 | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { |
2584 | kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; |
2585 | this_tdg->rec_taskred_data = |
2586 | __kmp_allocate(sizeof(kmp_task_red_input_t) * num); |
2587 | this_tdg->rec_num_taskred = num; |
2588 | KMP_MEMCPY(this_tdg->rec_taskred_data, data, |
2589 | sizeof(kmp_task_red_input_t) * num); |
2590 | } |
2591 | #endif |
2592 | return __kmp_task_reduction_init(gtid, num, data: (kmp_task_red_input_t *)data); |
2593 | } |
2594 | |
2595 | /*! |
2596 | @ingroup TASKING |
2597 | @param gtid Global thread ID |
2598 | @param num Number of data items to reduce |
2599 | @param data Array of data for reduction |
2600 | @return The taskgroup identifier |
2601 | |
2602 | Initialize task reduction for the taskgroup. |
2603 | |
2604 | Note: this entry supposes the optional compiler-generated initializer routine |
2605 | has two parameters, pointer to object to be initialized and pointer to omp_orig |
2606 | */ |
2607 | void *__kmpc_taskred_init(int gtid, int num, void *data) { |
2608 | #if OMPX_TASKGRAPH |
2609 | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); |
2610 | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { |
2611 | kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; |
2612 | this_tdg->rec_taskred_data = |
2613 | __kmp_allocate(sizeof(kmp_task_red_input_t) * num); |
2614 | this_tdg->rec_num_taskred = num; |
2615 | KMP_MEMCPY(this_tdg->rec_taskred_data, data, |
2616 | sizeof(kmp_task_red_input_t) * num); |
2617 | } |
2618 | #endif |
2619 | return __kmp_task_reduction_init(gtid, num, data: (kmp_taskred_input_t *)data); |
2620 | } |
2621 | |
2622 | // Copy task reduction data (except for shared pointers). |
2623 | template <typename T> |
2624 | void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, |
2625 | kmp_taskgroup_t *tg, void *reduce_data) { |
2626 | kmp_taskred_data_t *arr; |
2627 | KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," |
2628 | " from data %p\n" , |
2629 | thr, tg, reduce_data)); |
2630 | arr = (kmp_taskred_data_t *)__kmp_thread_malloc( |
2631 | thr, num * sizeof(kmp_taskred_data_t)); |
2632 | // threads will share private copies, thunk routines, sizes, flags, etc.: |
2633 | KMP_MEMCPY(dest: arr, src: reduce_data, n: num * sizeof(kmp_taskred_data_t)); |
2634 | for (int i = 0; i < num; ++i) { |
2635 | arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers |
2636 | } |
2637 | tg->reduce_data = (void *)arr; |
2638 | tg->reduce_num_data = num; |
2639 | } |
2640 | |
2641 | /*! |
2642 | @ingroup TASKING |
2643 | @param gtid Global thread ID |
2644 | @param tskgrp The taskgroup ID (optional) |
2645 | @param data Shared location of the item |
2646 | @return The pointer to per-thread data |
2647 | |
2648 | Get thread-specific location of data item |
2649 | */ |
2650 | void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { |
2651 | __kmp_assert_valid_gtid(gtid); |
2652 | kmp_info_t *thread = __kmp_threads[gtid]; |
2653 | kmp_int32 nth = thread->th.th_team_nproc; |
2654 | if (nth == 1) |
2655 | return data; // nothing to do |
2656 | |
2657 | kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; |
2658 | if (tg == NULL) |
2659 | tg = thread->th.th_current_task->td_taskgroup; |
2660 | KMP_ASSERT(tg != NULL); |
2661 | kmp_taskred_data_t *arr; |
2662 | kmp_int32 num; |
2663 | kmp_int32 tid = thread->th.th_info.ds.ds_tid; |
2664 | |
2665 | #if OMPX_TASKGRAPH |
2666 | if ((thread->th.th_current_task->is_taskgraph) && |
2667 | (!__kmp_tdg_is_recording( |
2668 | __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) { |
2669 | tg = thread->th.th_current_task->td_taskgroup; |
2670 | KMP_ASSERT(tg != NULL); |
2671 | KMP_ASSERT(tg->reduce_data != NULL); |
2672 | arr = (kmp_taskred_data_t *)(tg->reduce_data); |
2673 | num = tg->reduce_num_data; |
2674 | } |
2675 | #endif |
2676 | |
2677 | KMP_ASSERT(data != NULL); |
2678 | while (tg != NULL) { |
2679 | arr = (kmp_taskred_data_t *)(tg->reduce_data); |
2680 | num = tg->reduce_num_data; |
2681 | for (int i = 0; i < num; ++i) { |
2682 | if (!arr[i].flags.lazy_priv) { |
2683 | if (data == arr[i].reduce_shar || |
2684 | (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) |
2685 | return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; |
2686 | } else { |
2687 | // check shared location first |
2688 | void **p_priv = (void **)(arr[i].reduce_priv); |
2689 | if (data == arr[i].reduce_shar) |
2690 | goto found; |
2691 | // check if we get some thread specific location as parameter |
2692 | for (int j = 0; j < nth; ++j) |
2693 | if (data == p_priv[j]) |
2694 | goto found; |
2695 | continue; // not found, continue search |
2696 | found: |
2697 | if (p_priv[tid] == NULL) { |
2698 | // allocate thread specific object lazily |
2699 | p_priv[tid] = __kmp_allocate(arr[i].reduce_size); |
2700 | if (arr[i].reduce_init != NULL) { |
2701 | if (arr[i].reduce_orig != NULL) { // new interface |
2702 | ((void (*)(void *, void *))arr[i].reduce_init)( |
2703 | p_priv[tid], arr[i].reduce_orig); |
2704 | } else { // old interface (single parameter) |
2705 | ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); |
2706 | } |
2707 | } |
2708 | } |
2709 | return p_priv[tid]; |
2710 | } |
2711 | } |
2712 | KMP_ASSERT(tg->parent); |
2713 | tg = tg->parent; |
2714 | } |
2715 | KMP_ASSERT2(0, "Unknown task reduction item" ); |
2716 | return NULL; // ERROR, this line never executed |
2717 | } |
2718 | |
2719 | // Finalize task reduction. |
2720 | // Called from __kmpc_end_taskgroup() |
2721 | static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { |
2722 | kmp_int32 nth = th->th.th_team_nproc; |
2723 | KMP_DEBUG_ASSERT( |
2724 | nth > 1 || |
2725 | __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we |
2726 | // are using hidden helper threads |
2727 | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; |
2728 | kmp_int32 num = tg->reduce_num_data; |
2729 | for (int i = 0; i < num; ++i) { |
2730 | void *sh_data = arr[i].reduce_shar; |
2731 | void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); |
2732 | void (*f_comb)(void *, void *) = |
2733 | (void (*)(void *, void *))(arr[i].reduce_comb); |
2734 | if (!arr[i].flags.lazy_priv) { |
2735 | void *pr_data = arr[i].reduce_priv; |
2736 | size_t size = arr[i].reduce_size; |
2737 | for (int j = 0; j < nth; ++j) { |
2738 | void *priv_data = (char *)pr_data + j * size; |
2739 | f_comb(sh_data, priv_data); // combine results |
2740 | if (f_fini) |
2741 | f_fini(priv_data); // finalize if needed |
2742 | } |
2743 | } else { |
2744 | void **pr_data = (void **)(arr[i].reduce_priv); |
2745 | for (int j = 0; j < nth; ++j) { |
2746 | if (pr_data[j] != NULL) { |
2747 | f_comb(sh_data, pr_data[j]); // combine results |
2748 | if (f_fini) |
2749 | f_fini(pr_data[j]); // finalize if needed |
2750 | __kmp_free(pr_data[j]); |
2751 | } |
2752 | } |
2753 | } |
2754 | __kmp_free(arr[i].reduce_priv); |
2755 | } |
2756 | __kmp_thread_free(th, arr); |
2757 | tg->reduce_data = NULL; |
2758 | tg->reduce_num_data = 0; |
2759 | } |
2760 | |
2761 | // Cleanup task reduction data for parallel or worksharing, |
2762 | // do not touch task private data other threads still working with. |
2763 | // Called from __kmpc_end_taskgroup() |
2764 | static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { |
2765 | __kmp_thread_free(th, tg->reduce_data); |
2766 | tg->reduce_data = NULL; |
2767 | tg->reduce_num_data = 0; |
2768 | } |
2769 | |
2770 | template <typename T> |
2771 | void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, |
2772 | int num, T *data) { |
2773 | __kmp_assert_valid_gtid(gtid); |
2774 | kmp_info_t *thr = __kmp_threads[gtid]; |
2775 | kmp_int32 nth = thr->th.th_team_nproc; |
2776 | __kmpc_taskgroup(loc, gtid); // form new taskgroup first |
2777 | if (nth == 1) { |
2778 | KA_TRACE(10, |
2779 | ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n" , |
2780 | gtid, thr->th.th_current_task->td_taskgroup)); |
2781 | return (void *)thr->th.th_current_task->td_taskgroup; |
2782 | } |
2783 | kmp_team_t *team = thr->th.th_team; |
2784 | void *reduce_data; |
2785 | kmp_taskgroup_t *tg; |
2786 | reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); |
2787 | if (reduce_data == NULL && |
2788 | __kmp_atomic_compare_store(p: &team->t.t_tg_reduce_data[is_ws], expected: reduce_data, |
2789 | desired: (void *)1)) { |
2790 | // single thread enters this block to initialize common reduction data |
2791 | KMP_DEBUG_ASSERT(reduce_data == NULL); |
2792 | // first initialize own data, then make a copy other threads can use |
2793 | tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); |
2794 | reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); |
2795 | KMP_MEMCPY(dest: reduce_data, src: tg->reduce_data, n: num * sizeof(kmp_taskred_data_t)); |
2796 | // fini counters should be 0 at this point |
2797 | KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); |
2798 | KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); |
2799 | KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); |
2800 | } else { |
2801 | while ( |
2802 | (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == |
2803 | (void *)1) { // wait for task reduction initialization |
2804 | KMP_CPU_PAUSE(); |
2805 | } |
2806 | KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here |
2807 | tg = thr->th.th_current_task->td_taskgroup; |
2808 | __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); |
2809 | } |
2810 | return tg; |
2811 | } |
2812 | |
2813 | /*! |
2814 | @ingroup TASKING |
2815 | @param loc Source location info |
2816 | @param gtid Global thread ID |
2817 | @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise |
2818 | @param num Number of data items to reduce |
2819 | @param data Array of data for reduction |
2820 | @return The taskgroup identifier |
2821 | |
2822 | Initialize task reduction for a parallel or worksharing. |
2823 | |
2824 | Note: this entry supposes the optional compiler-generated initializer routine |
2825 | has single parameter - pointer to object to be initialized. That means |
2826 | the reduction either does not use omp_orig object, or the omp_orig is accessible |
2827 | without help of the runtime library. |
2828 | */ |
2829 | void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, |
2830 | int num, void *data) { |
2831 | return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, |
2832 | data: (kmp_task_red_input_t *)data); |
2833 | } |
2834 | |
2835 | /*! |
2836 | @ingroup TASKING |
2837 | @param loc Source location info |
2838 | @param gtid Global thread ID |
2839 | @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise |
2840 | @param num Number of data items to reduce |
2841 | @param data Array of data for reduction |
2842 | @return The taskgroup identifier |
2843 | |
2844 | Initialize task reduction for a parallel or worksharing. |
2845 | |
2846 | Note: this entry supposes the optional compiler-generated initializer routine |
2847 | has two parameters, pointer to object to be initialized and pointer to omp_orig |
2848 | */ |
2849 | void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, |
2850 | void *data) { |
2851 | return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, |
2852 | data: (kmp_taskred_input_t *)data); |
2853 | } |
2854 | |
2855 | /*! |
2856 | @ingroup TASKING |
2857 | @param loc Source location info |
2858 | @param gtid Global thread ID |
2859 | @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise |
2860 | |
2861 | Finalize task reduction for a parallel or worksharing. |
2862 | */ |
2863 | void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { |
2864 | __kmpc_end_taskgroup(loc, gtid); |
2865 | } |
2866 | |
2867 | // __kmpc_taskgroup: Start a new taskgroup |
2868 | void __kmpc_taskgroup(ident_t *loc, int gtid) { |
2869 | __kmp_assert_valid_gtid(gtid); |
2870 | kmp_info_t *thread = __kmp_threads[gtid]; |
2871 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
2872 | kmp_taskgroup_t *tg_new = |
2873 | (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); |
2874 | KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n" , gtid, loc, tg_new)); |
2875 | KMP_ATOMIC_ST_RLX(&tg_new->count, 0); |
2876 | KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); |
2877 | tg_new->parent = taskdata->td_taskgroup; |
2878 | tg_new->reduce_data = NULL; |
2879 | tg_new->reduce_num_data = 0; |
2880 | tg_new->gomp_data = NULL; |
2881 | taskdata->td_taskgroup = tg_new; |
2882 | |
2883 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2884 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { |
2885 | void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
2886 | if (!codeptr) |
2887 | codeptr = OMPT_GET_RETURN_ADDRESS(0); |
2888 | kmp_team_t *team = thread->th.th_team; |
2889 | ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; |
2890 | // FIXME: I think this is wrong for lwt! |
2891 | ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; |
2892 | |
2893 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
2894 | ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), |
2895 | &(my_task_data), codeptr); |
2896 | } |
2897 | #endif |
2898 | } |
2899 | |
2900 | // __kmpc_end_taskgroup: Wait until all tasks generated by the current task |
2901 | // and its descendants are complete |
2902 | void __kmpc_end_taskgroup(ident_t *loc, int gtid) { |
2903 | __kmp_assert_valid_gtid(gtid); |
2904 | kmp_info_t *thread = __kmp_threads[gtid]; |
2905 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
2906 | kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; |
2907 | int thread_finished = FALSE; |
2908 | |
2909 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2910 | kmp_team_t *team; |
2911 | ompt_data_t my_task_data; |
2912 | ompt_data_t my_parallel_data; |
2913 | void *codeptr = nullptr; |
2914 | if (UNLIKELY(ompt_enabled.enabled)) { |
2915 | team = thread->th.th_team; |
2916 | my_task_data = taskdata->ompt_task_info.task_data; |
2917 | // FIXME: I think this is wrong for lwt! |
2918 | my_parallel_data = team->t.ompt_team_info.parallel_data; |
2919 | codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
2920 | if (!codeptr) |
2921 | codeptr = OMPT_GET_RETURN_ADDRESS(0); |
2922 | } |
2923 | #endif |
2924 | |
2925 | KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n" , gtid, loc)); |
2926 | KMP_DEBUG_ASSERT(taskgroup != NULL); |
2927 | KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); |
2928 | |
2929 | if (__kmp_tasking_mode != tskm_immediate_exec) { |
2930 | // mark task as waiting not on a barrier |
2931 | taskdata->td_taskwait_counter += 1; |
2932 | taskdata->td_taskwait_ident = loc; |
2933 | taskdata->td_taskwait_thread = gtid + 1; |
2934 | #if USE_ITT_BUILD |
2935 | // For ITT the taskgroup wait is similar to taskwait until we need to |
2936 | // distinguish them |
2937 | void *itt_sync_obj = NULL; |
2938 | #if USE_ITT_NOTIFY |
2939 | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); |
2940 | #endif /* USE_ITT_NOTIFY */ |
2941 | #endif /* USE_ITT_BUILD */ |
2942 | |
2943 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2944 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { |
2945 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2946 | ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), |
2947 | &(my_task_data), codeptr); |
2948 | } |
2949 | #endif |
2950 | |
2951 | if (!taskdata->td_flags.team_serial || |
2952 | (thread->th.th_task_team != NULL && |
2953 | (thread->th.th_task_team->tt.tt_found_proxy_tasks || |
2954 | thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) { |
2955 | kmp_flag_32<false, false> flag( |
2956 | RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); |
2957 | while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { |
2958 | flag.execute_tasks(this_thr: thread, gtid, FALSE, |
2959 | thread_finished: &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), |
2960 | is_constrained: __kmp_task_stealing_constraint); |
2961 | } |
2962 | } |
2963 | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting |
2964 | |
2965 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2966 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { |
2967 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2968 | ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), |
2969 | &(my_task_data), codeptr); |
2970 | } |
2971 | #endif |
2972 | |
2973 | #if USE_ITT_BUILD |
2974 | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); |
2975 | KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants |
2976 | #endif /* USE_ITT_BUILD */ |
2977 | } |
2978 | KMP_DEBUG_ASSERT(taskgroup->count == 0); |
2979 | |
2980 | if (taskgroup->reduce_data != NULL && |
2981 | !taskgroup->gomp_data) { // need to reduce? |
2982 | int cnt; |
2983 | void *reduce_data; |
2984 | kmp_team_t *t = thread->th.th_team; |
2985 | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; |
2986 | // check if <priv> data of the first reduction variable shared for the team |
2987 | void *priv0 = arr[0].reduce_priv; |
2988 | if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && |
2989 | ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { |
2990 | // finishing task reduction on parallel |
2991 | cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); |
2992 | if (cnt == thread->th.th_team_nproc - 1) { |
2993 | // we are the last thread passing __kmpc_reduction_modifier_fini() |
2994 | // finalize task reduction: |
2995 | __kmp_task_reduction_fini(th: thread, tg: taskgroup); |
2996 | // cleanup fields in the team structure: |
2997 | // TODO: is relaxed store enough here (whole barrier should follow)? |
2998 | __kmp_thread_free(thread, reduce_data); |
2999 | KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); |
3000 | KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); |
3001 | } else { |
3002 | // we are not the last thread passing __kmpc_reduction_modifier_fini(), |
3003 | // so do not finalize reduction, just clean own copy of the data |
3004 | __kmp_task_reduction_clean(th: thread, tg: taskgroup); |
3005 | } |
3006 | } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != |
3007 | NULL && |
3008 | ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { |
3009 | // finishing task reduction on worksharing |
3010 | cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); |
3011 | if (cnt == thread->th.th_team_nproc - 1) { |
3012 | // we are the last thread passing __kmpc_reduction_modifier_fini() |
3013 | __kmp_task_reduction_fini(th: thread, tg: taskgroup); |
3014 | // cleanup fields in team structure: |
3015 | // TODO: is relaxed store enough here (whole barrier should follow)? |
3016 | __kmp_thread_free(thread, reduce_data); |
3017 | KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); |
3018 | KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); |
3019 | } else { |
3020 | // we are not the last thread passing __kmpc_reduction_modifier_fini(), |
3021 | // so do not finalize reduction, just clean own copy of the data |
3022 | __kmp_task_reduction_clean(th: thread, tg: taskgroup); |
3023 | } |
3024 | } else { |
3025 | // finishing task reduction on taskgroup |
3026 | __kmp_task_reduction_fini(th: thread, tg: taskgroup); |
3027 | } |
3028 | } |
3029 | // Restore parent taskgroup for the current task |
3030 | taskdata->td_taskgroup = taskgroup->parent; |
3031 | __kmp_thread_free(thread, taskgroup); |
3032 | |
3033 | KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n" , |
3034 | gtid, taskdata)); |
3035 | |
3036 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
3037 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { |
3038 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
3039 | ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), |
3040 | &(my_task_data), codeptr); |
3041 | } |
3042 | #endif |
3043 | } |
3044 | |
3045 | static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid, |
3046 | kmp_task_team_t *task_team, |
3047 | kmp_int32 is_constrained) { |
3048 | kmp_task_t *task = NULL; |
3049 | kmp_taskdata_t *taskdata; |
3050 | kmp_taskdata_t *current; |
3051 | kmp_thread_data_t *thread_data; |
3052 | int ntasks = task_team->tt.tt_num_task_pri; |
3053 | if (ntasks == 0) { |
3054 | KA_TRACE( |
3055 | 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n" , gtid)); |
3056 | return NULL; |
3057 | } |
3058 | do { |
3059 | // decrement num_tasks to "reserve" one task to get for execution |
3060 | if (__kmp_atomic_compare_store(p: &task_team->tt.tt_num_task_pri, expected: ntasks, |
3061 | desired: ntasks - 1)) |
3062 | break; |
3063 | ntasks = task_team->tt.tt_num_task_pri; |
3064 | } while (ntasks > 0); |
3065 | if (ntasks == 0) { |
3066 | KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n" , |
3067 | __kmp_get_gtid())); |
3068 | return NULL; |
3069 | } |
3070 | // We got a "ticket" to get a "reserved" priority task |
3071 | int deque_ntasks; |
3072 | kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; |
3073 | do { |
3074 | KMP_ASSERT(list != NULL); |
3075 | thread_data = &list->td; |
3076 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3077 | deque_ntasks = thread_data->td.td_deque_ntasks; |
3078 | if (deque_ntasks == 0) { |
3079 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3080 | KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n" , |
3081 | __kmp_get_gtid(), thread_data)); |
3082 | list = list->next; |
3083 | } |
3084 | } while (deque_ntasks == 0); |
3085 | KMP_DEBUG_ASSERT(deque_ntasks); |
3086 | int target = thread_data->td.td_deque_head; |
3087 | current = __kmp_threads[gtid]->th.th_current_task; |
3088 | taskdata = thread_data->td.td_deque[target]; |
3089 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3090 | // Bump head pointer and Wrap. |
3091 | thread_data->td.td_deque_head = |
3092 | (target + 1) & TASK_DEQUE_MASK(thread_data->td); |
3093 | } else { |
3094 | if (!task_team->tt.tt_untied_task_encountered) { |
3095 | // The TSC does not allow to steal victim task |
3096 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3097 | KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task " |
3098 | "from %p: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3099 | gtid, thread_data, task_team, deque_ntasks, target, |
3100 | thread_data->td.td_deque_tail)); |
3101 | task_team->tt.tt_num_task_pri++; // atomic inc, restore value |
3102 | return NULL; |
3103 | } |
3104 | int i; |
3105 | // walk through the deque trying to steal any task |
3106 | taskdata = NULL; |
3107 | for (i = 1; i < deque_ntasks; ++i) { |
3108 | target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); |
3109 | taskdata = thread_data->td.td_deque[target]; |
3110 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3111 | break; // found task to execute |
3112 | } else { |
3113 | taskdata = NULL; |
3114 | } |
3115 | } |
3116 | if (taskdata == NULL) { |
3117 | // No appropriate candidate found to execute |
3118 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3119 | KA_TRACE( |
3120 | 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from " |
3121 | "%p: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3122 | gtid, thread_data, task_team, deque_ntasks, |
3123 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3124 | task_team->tt.tt_num_task_pri++; // atomic inc, restore value |
3125 | return NULL; |
3126 | } |
3127 | int prev = target; |
3128 | for (i = i + 1; i < deque_ntasks; ++i) { |
3129 | // shift remaining tasks in the deque left by 1 |
3130 | target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); |
3131 | thread_data->td.td_deque[prev] = thread_data->td.td_deque[target]; |
3132 | prev = target; |
3133 | } |
3134 | KMP_DEBUG_ASSERT( |
3135 | thread_data->td.td_deque_tail == |
3136 | (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td))); |
3137 | thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped)) |
3138 | } |
3139 | thread_data->td.td_deque_ntasks = deque_ntasks - 1; |
3140 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3141 | task = KMP_TASKDATA_TO_TASK(taskdata); |
3142 | return task; |
3143 | } |
3144 | |
3145 | // __kmp_remove_my_task: remove a task from my own deque |
3146 | static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, |
3147 | kmp_task_team_t *task_team, |
3148 | kmp_int32 is_constrained) { |
3149 | kmp_task_t *task; |
3150 | kmp_taskdata_t *taskdata; |
3151 | kmp_thread_data_t *thread_data; |
3152 | kmp_uint32 tail; |
3153 | |
3154 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
3155 | KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != |
3156 | NULL); // Caller should check this condition |
3157 | |
3158 | thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; |
3159 | |
3160 | KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n" , |
3161 | gtid, thread_data->td.td_deque_ntasks, |
3162 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3163 | |
3164 | if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { |
3165 | KA_TRACE(10, |
3166 | ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " |
3167 | "ntasks=%d head=%u tail=%u\n" , |
3168 | gtid, thread_data->td.td_deque_ntasks, |
3169 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3170 | return NULL; |
3171 | } |
3172 | |
3173 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3174 | |
3175 | if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { |
3176 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3177 | KA_TRACE(10, |
3178 | ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " |
3179 | "ntasks=%d head=%u tail=%u\n" , |
3180 | gtid, thread_data->td.td_deque_ntasks, |
3181 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3182 | return NULL; |
3183 | } |
3184 | |
3185 | tail = (thread_data->td.td_deque_tail - 1) & |
3186 | TASK_DEQUE_MASK(thread_data->td); // Wrap index. |
3187 | taskdata = thread_data->td.td_deque[tail]; |
3188 | |
3189 | if (!__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, |
3190 | taskcurr: thread->th.th_current_task)) { |
3191 | // The TSC does not allow to steal victim task |
3192 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3193 | KA_TRACE(10, |
3194 | ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " |
3195 | "ntasks=%d head=%u tail=%u\n" , |
3196 | gtid, thread_data->td.td_deque_ntasks, |
3197 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3198 | return NULL; |
3199 | } |
3200 | |
3201 | thread_data->td.td_deque_tail = tail; |
3202 | TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); |
3203 | |
3204 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3205 | |
3206 | KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " |
3207 | "ntasks=%d head=%u tail=%u\n" , |
3208 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
3209 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3210 | |
3211 | task = KMP_TASKDATA_TO_TASK(taskdata); |
3212 | return task; |
3213 | } |
3214 | |
3215 | // __kmp_steal_task: remove a task from another thread's deque |
3216 | // Assume that calling thread has already checked existence of |
3217 | // task_team thread_data before calling this routine. |
3218 | static kmp_task_t *__kmp_steal_task(kmp_int32 victim_tid, kmp_int32 gtid, |
3219 | kmp_task_team_t *task_team, |
3220 | std::atomic<kmp_int32> *unfinished_threads, |
3221 | int *thread_finished, |
3222 | kmp_int32 is_constrained) { |
3223 | kmp_task_t *task; |
3224 | kmp_taskdata_t *taskdata; |
3225 | kmp_taskdata_t *current; |
3226 | kmp_thread_data_t *victim_td, *threads_data; |
3227 | kmp_int32 target; |
3228 | kmp_info_t *victim_thr; |
3229 | |
3230 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
3231 | |
3232 | threads_data = task_team->tt.tt_threads_data; |
3233 | KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition |
3234 | KMP_DEBUG_ASSERT(victim_tid >= 0); |
3235 | KMP_DEBUG_ASSERT(victim_tid < task_team->tt.tt_max_threads); |
3236 | |
3237 | victim_td = &threads_data[victim_tid]; |
3238 | victim_thr = victim_td->td.td_thr; |
3239 | (void)victim_thr; // Use in TRACE messages which aren't always enabled. |
3240 | |
3241 | KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " |
3242 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3243 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, |
3244 | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, |
3245 | victim_td->td.td_deque_tail)); |
3246 | |
3247 | if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { |
3248 | KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " |
3249 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3250 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, |
3251 | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, |
3252 | victim_td->td.td_deque_tail)); |
3253 | return NULL; |
3254 | } |
3255 | |
3256 | __kmp_acquire_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3257 | |
3258 | int ntasks = TCR_4(victim_td->td.td_deque_ntasks); |
3259 | // Check again after we acquire the lock |
3260 | if (ntasks == 0) { |
3261 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3262 | KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " |
3263 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3264 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, |
3265 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3266 | return NULL; |
3267 | } |
3268 | |
3269 | KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); |
3270 | current = __kmp_threads[gtid]->th.th_current_task; |
3271 | taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; |
3272 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3273 | // Bump head pointer and Wrap. |
3274 | victim_td->td.td_deque_head = |
3275 | (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); |
3276 | } else { |
3277 | if (!task_team->tt.tt_untied_task_encountered) { |
3278 | // The TSC does not allow to steal victim task |
3279 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3280 | KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " |
3281 | "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3282 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, |
3283 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3284 | return NULL; |
3285 | } |
3286 | int i; |
3287 | // walk through victim's deque trying to steal any task |
3288 | target = victim_td->td.td_deque_head; |
3289 | taskdata = NULL; |
3290 | for (i = 1; i < ntasks; ++i) { |
3291 | target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); |
3292 | taskdata = victim_td->td.td_deque[target]; |
3293 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3294 | break; // found victim task |
3295 | } else { |
3296 | taskdata = NULL; |
3297 | } |
3298 | } |
3299 | if (taskdata == NULL) { |
3300 | // No appropriate candidate to steal found |
3301 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3302 | KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " |
3303 | "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3304 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, |
3305 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3306 | return NULL; |
3307 | } |
3308 | int prev = target; |
3309 | for (i = i + 1; i < ntasks; ++i) { |
3310 | // shift remaining tasks in the deque left by 1 |
3311 | target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); |
3312 | victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; |
3313 | prev = target; |
3314 | } |
3315 | KMP_DEBUG_ASSERT( |
3316 | victim_td->td.td_deque_tail == |
3317 | (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); |
3318 | victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) |
3319 | } |
3320 | if (*thread_finished) { |
3321 | // We need to un-mark this victim as a finished victim. This must be done |
3322 | // before releasing the lock, or else other threads (starting with the |
3323 | // primary thread victim) might be prematurely released from the barrier!!! |
3324 | #if KMP_DEBUG |
3325 | kmp_int32 count = |
3326 | #endif |
3327 | KMP_ATOMIC_INC(unfinished_threads); |
3328 | KA_TRACE( |
3329 | 20, |
3330 | ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n" , |
3331 | gtid, count + 1, task_team)); |
3332 | *thread_finished = FALSE; |
3333 | } |
3334 | TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); |
3335 | |
3336 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3337 | |
3338 | KMP_COUNT_BLOCK(TASK_stolen); |
3339 | KA_TRACE(10, |
3340 | ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " |
3341 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3342 | gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, |
3343 | ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3344 | |
3345 | task = KMP_TASKDATA_TO_TASK(taskdata); |
3346 | return task; |
3347 | } |
3348 | |
3349 | // __kmp_execute_tasks_template: Choose and execute tasks until either the |
3350 | // condition is statisfied (return true) or there are none left (return false). |
3351 | // |
3352 | // final_spin is TRUE if this is the spin at the release barrier. |
3353 | // thread_finished indicates whether the thread is finished executing all |
3354 | // the tasks it has on its deque, and is at the release barrier. |
3355 | // spinner is the location on which to spin. |
3356 | // spinner == NULL means only execute a single task and return. |
3357 | // checker is the value to check to terminate the spin. |
3358 | template <class C> |
3359 | static inline int __kmp_execute_tasks_template( |
3360 | kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, |
3361 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3362 | kmp_int32 is_constrained) { |
3363 | kmp_task_team_t *task_team = thread->th.th_task_team; |
3364 | kmp_thread_data_t *threads_data; |
3365 | kmp_task_t *task; |
3366 | kmp_info_t *other_thread; |
3367 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
3368 | std::atomic<kmp_int32> *unfinished_threads; |
3369 | kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, |
3370 | tid = thread->th.th_info.ds.ds_tid; |
3371 | |
3372 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
3373 | KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); |
3374 | |
3375 | if (task_team == NULL || current_task == NULL) |
3376 | return FALSE; |
3377 | |
3378 | KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " |
3379 | "*thread_finished=%d\n" , |
3380 | gtid, final_spin, *thread_finished)); |
3381 | |
3382 | thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; |
3383 | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); |
3384 | |
3385 | KMP_DEBUG_ASSERT(threads_data != NULL); |
3386 | |
3387 | nthreads = task_team->tt.tt_nproc; |
3388 | unfinished_threads = &(task_team->tt.tt_unfinished_threads); |
3389 | KMP_DEBUG_ASSERT(*unfinished_threads >= 0); |
3390 | |
3391 | while (1) { // Outer loop keeps trying to find tasks in case of single thread |
3392 | // getting tasks from target constructs |
3393 | while (1) { // Inner loop to find a task and execute it |
3394 | task = NULL; |
3395 | if (task_team->tt.tt_num_task_pri) { // get priority task first |
3396 | task = __kmp_get_priority_task(gtid, task_team, is_constrained); |
3397 | } |
3398 | if (task == NULL && use_own_tasks) { // check own queue next |
3399 | task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); |
3400 | } |
3401 | if ((task == NULL) && (nthreads > 1)) { // Steal a task finally |
3402 | int asleep = 1; |
3403 | use_own_tasks = 0; |
3404 | // Try to steal from the last place I stole from successfully. |
3405 | if (victim_tid == -2) { // haven't stolen anything yet |
3406 | victim_tid = threads_data[tid].td.td_deque_last_stolen; |
3407 | if (victim_tid != |
3408 | -1) // if we have a last stolen from victim, get the thread |
3409 | other_thread = threads_data[victim_tid].td.td_thr; |
3410 | } |
3411 | if (victim_tid != -1) { // found last victim |
3412 | asleep = 0; |
3413 | } else if (!new_victim) { // no recent steals and we haven't already |
3414 | // used a new victim; select a random thread |
3415 | do { // Find a different thread to steal work from. |
3416 | // Pick a random thread. Initial plan was to cycle through all the |
3417 | // threads, and only return if we tried to steal from every thread, |
3418 | // and failed. Arch says that's not such a great idea. |
3419 | victim_tid = __kmp_get_random(thread) % (nthreads - 1); |
3420 | if (victim_tid >= tid) { |
3421 | ++victim_tid; // Adjusts random distribution to exclude self |
3422 | } |
3423 | // Found a potential victim |
3424 | other_thread = threads_data[victim_tid].td.td_thr; |
3425 | // There is a slight chance that __kmp_enable_tasking() did not wake |
3426 | // up all threads waiting at the barrier. If victim is sleeping, |
3427 | // then wake it up. Since we were going to pay the cache miss |
3428 | // penalty for referencing another thread's kmp_info_t struct |
3429 | // anyway, |
3430 | // the check shouldn't cost too much performance at this point. In |
3431 | // extra barrier mode, tasks do not sleep at the separate tasking |
3432 | // barrier, so this isn't a problem. |
3433 | asleep = 0; |
3434 | if ((__kmp_tasking_mode == tskm_task_teams) && |
3435 | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && |
3436 | (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != |
3437 | NULL)) { |
3438 | asleep = 1; |
3439 | __kmp_null_resume_wrapper(thr: other_thread); |
3440 | // A sleeping thread should not have any tasks on it's queue. |
3441 | // There is a slight possibility that it resumes, steals a task |
3442 | // from another thread, which spawns more tasks, all in the time |
3443 | // that it takes this thread to check => don't write an assertion |
3444 | // that the victim's queue is empty. Try stealing from a |
3445 | // different thread. |
3446 | } |
3447 | } while (asleep); |
3448 | } |
3449 | |
3450 | if (!asleep) { |
3451 | // We have a victim to try to steal from |
3452 | task = |
3453 | __kmp_steal_task(victim_tid, gtid, task_team, unfinished_threads, |
3454 | thread_finished, is_constrained); |
3455 | } |
3456 | if (task != NULL) { // set last stolen to victim |
3457 | if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { |
3458 | threads_data[tid].td.td_deque_last_stolen = victim_tid; |
3459 | // The pre-refactored code did not try more than 1 successful new |
3460 | // vicitm, unless the last one generated more local tasks; |
3461 | // new_victim keeps track of this |
3462 | new_victim = 1; |
3463 | } |
3464 | } else { // No tasks found; unset last_stolen |
3465 | KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); |
3466 | victim_tid = -2; // no successful victim found |
3467 | } |
3468 | } |
3469 | |
3470 | if (task == NULL) |
3471 | break; // break out of tasking loop |
3472 | |
3473 | // Found a task; execute it |
3474 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
3475 | if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { |
3476 | if (itt_sync_obj == NULL) { // we are at fork barrier where we could not |
3477 | // get the object reliably |
3478 | itt_sync_obj = __kmp_itt_barrier_object(gtid, bt: bs_forkjoin_barrier); |
3479 | } |
3480 | __kmp_itt_task_starting(object: itt_sync_obj); |
3481 | } |
3482 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ |
3483 | __kmp_invoke_task(gtid, task, current_task); |
3484 | #if USE_ITT_BUILD |
3485 | if (itt_sync_obj != NULL) |
3486 | __kmp_itt_task_finished(object: itt_sync_obj); |
3487 | #endif /* USE_ITT_BUILD */ |
3488 | // If this thread is only partway through the barrier and the condition is |
3489 | // met, then return now, so that the barrier gather/release pattern can |
3490 | // proceed. If this thread is in the last spin loop in the barrier, |
3491 | // waiting to be released, we know that the termination condition will not |
3492 | // be satisfied, so don't waste any cycles checking it. |
3493 | if (flag == NULL || (!final_spin && flag->done_check())) { |
3494 | KA_TRACE( |
3495 | 15, |
3496 | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n" , |
3497 | gtid)); |
3498 | return TRUE; |
3499 | } |
3500 | if (thread->th.th_task_team == NULL) { |
3501 | break; |
3502 | } |
3503 | KMP_YIELD(__kmp_library == library_throughput); // Yield before next task |
3504 | // If execution of a stolen task results in more tasks being placed on our |
3505 | // run queue, reset use_own_tasks |
3506 | if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { |
3507 | KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " |
3508 | "other tasks, restart\n" , |
3509 | gtid)); |
3510 | use_own_tasks = 1; |
3511 | new_victim = 0; |
3512 | } |
3513 | } |
3514 | |
3515 | // The task source has been exhausted. If in final spin loop of barrier, |
3516 | // check if termination condition is satisfied. The work queue may be empty |
3517 | // but there might be proxy tasks still executing. |
3518 | if (final_spin && |
3519 | KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { |
3520 | // First, decrement the #unfinished threads, if that has not already been |
3521 | // done. This decrement might be to the spin location, and result in the |
3522 | // termination condition being satisfied. |
3523 | if (!*thread_finished) { |
3524 | #if KMP_DEBUG |
3525 | kmp_int32 count = -1 + |
3526 | #endif |
3527 | KMP_ATOMIC_DEC(unfinished_threads); |
3528 | KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " |
3529 | "unfinished_threads to %d task_team=%p\n" , |
3530 | gtid, count, task_team)); |
3531 | *thread_finished = TRUE; |
3532 | } |
3533 | |
3534 | // It is now unsafe to reference thread->th.th_team !!! |
3535 | // Decrementing task_team->tt.tt_unfinished_threads can allow the primary |
3536 | // thread to pass through the barrier, where it might reset each thread's |
3537 | // th.th_team field for the next parallel region. If we can steal more |
3538 | // work, we know that this has not happened yet. |
3539 | if (flag != NULL && flag->done_check()) { |
3540 | KA_TRACE( |
3541 | 15, |
3542 | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n" , |
3543 | gtid)); |
3544 | return TRUE; |
3545 | } |
3546 | } |
3547 | |
3548 | // If this thread's task team is NULL, primary thread has recognized that |
3549 | // there are no more tasks; bail out |
3550 | if (thread->th.th_task_team == NULL) { |
3551 | KA_TRACE(15, |
3552 | ("__kmp_execute_tasks_template: T#%d no more tasks\n" , gtid)); |
3553 | return FALSE; |
3554 | } |
3555 | |
3556 | // Check the flag again to see if it has already done in case to be trapped |
3557 | // into infinite loop when a if0 task depends on a hidden helper task |
3558 | // outside any parallel region. Detached tasks are not impacted in this case |
3559 | // because the only thread executing this function has to execute the proxy |
3560 | // task so it is in another code path that has the same check. |
3561 | if (flag == NULL || (!final_spin && flag->done_check())) { |
3562 | KA_TRACE(15, |
3563 | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n" , |
3564 | gtid)); |
3565 | return TRUE; |
3566 | } |
3567 | |
3568 | // We could be getting tasks from target constructs; if this is the only |
3569 | // thread, keep trying to execute tasks from own queue |
3570 | if (nthreads == 1 && |
3571 | KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) |
3572 | use_own_tasks = 1; |
3573 | else { |
3574 | KA_TRACE(15, |
3575 | ("__kmp_execute_tasks_template: T#%d can't find work\n" , gtid)); |
3576 | return FALSE; |
3577 | } |
3578 | } |
3579 | } |
3580 | |
3581 | template <bool C, bool S> |
3582 | int __kmp_execute_tasks_32( |
3583 | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, |
3584 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3585 | kmp_int32 is_constrained) { |
3586 | return __kmp_execute_tasks_template( |
3587 | thread, gtid, flag, final_spin, |
3588 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3589 | } |
3590 | |
3591 | template <bool C, bool S> |
3592 | int __kmp_execute_tasks_64( |
3593 | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, |
3594 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3595 | kmp_int32 is_constrained) { |
3596 | return __kmp_execute_tasks_template( |
3597 | thread, gtid, flag, final_spin, |
3598 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3599 | } |
3600 | |
3601 | template <bool C, bool S> |
3602 | int __kmp_atomic_execute_tasks_64( |
3603 | kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag, |
3604 | int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3605 | kmp_int32 is_constrained) { |
3606 | return __kmp_execute_tasks_template( |
3607 | thread, gtid, flag, final_spin, |
3608 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3609 | } |
3610 | |
3611 | int __kmp_execute_tasks_oncore( |
3612 | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, |
3613 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3614 | kmp_int32 is_constrained) { |
3615 | return __kmp_execute_tasks_template( |
3616 | thread, gtid, flag, final_spin, |
3617 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3618 | } |
3619 | |
3620 | template int |
3621 | __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, |
3622 | kmp_flag_32<false, false> *, int, |
3623 | int *USE_ITT_BUILD_ARG(void *), kmp_int32); |
3624 | |
3625 | template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, |
3626 | kmp_flag_64<false, true> *, |
3627 | int, |
3628 | int *USE_ITT_BUILD_ARG(void *), |
3629 | kmp_int32); |
3630 | |
3631 | template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, |
3632 | kmp_flag_64<true, false> *, |
3633 | int, |
3634 | int *USE_ITT_BUILD_ARG(void *), |
3635 | kmp_int32); |
3636 | |
3637 | template int __kmp_atomic_execute_tasks_64<false, true>( |
3638 | kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int, |
3639 | int *USE_ITT_BUILD_ARG(void *), kmp_int32); |
3640 | |
3641 | template int __kmp_atomic_execute_tasks_64<true, false>( |
3642 | kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int, |
3643 | int *USE_ITT_BUILD_ARG(void *), kmp_int32); |
3644 | |
3645 | // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the |
3646 | // next barrier so they can assist in executing enqueued tasks. |
3647 | // First thread in allocates the task team atomically. |
3648 | static void __kmp_enable_tasking(kmp_task_team_t *task_team, |
3649 | kmp_info_t *this_thr) { |
3650 | kmp_thread_data_t *threads_data; |
3651 | int nthreads, i, is_init_thread; |
3652 | |
3653 | KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n" , |
3654 | __kmp_gtid_from_thread(this_thr))); |
3655 | |
3656 | KMP_DEBUG_ASSERT(task_team != NULL); |
3657 | KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); |
3658 | |
3659 | nthreads = task_team->tt.tt_nproc; |
3660 | KMP_DEBUG_ASSERT(nthreads > 0); |
3661 | KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); |
3662 | |
3663 | // Allocate or increase the size of threads_data if necessary |
3664 | is_init_thread = __kmp_realloc_task_threads_data(thread: this_thr, task_team); |
3665 | |
3666 | if (!is_init_thread) { |
3667 | // Some other thread already set up the array. |
3668 | KA_TRACE( |
3669 | 20, |
3670 | ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n" , |
3671 | __kmp_gtid_from_thread(this_thr))); |
3672 | return; |
3673 | } |
3674 | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); |
3675 | KMP_DEBUG_ASSERT(threads_data != NULL); |
3676 | |
3677 | if (__kmp_tasking_mode == tskm_task_teams && |
3678 | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { |
3679 | // Release any threads sleeping at the barrier, so that they can steal |
3680 | // tasks and execute them. In extra barrier mode, tasks do not sleep |
3681 | // at the separate tasking barrier, so this isn't a problem. |
3682 | for (i = 0; i < nthreads; i++) { |
3683 | void *sleep_loc; |
3684 | kmp_info_t *thread = threads_data[i].td.td_thr; |
3685 | |
3686 | if (i == this_thr->th.th_info.ds.ds_tid) { |
3687 | continue; |
3688 | } |
3689 | // Since we haven't locked the thread's suspend mutex lock at this |
3690 | // point, there is a small window where a thread might be putting |
3691 | // itself to sleep, but hasn't set the th_sleep_loc field yet. |
3692 | // To work around this, __kmp_execute_tasks_template() periodically checks |
3693 | // see if other threads are sleeping (using the same random mechanism that |
3694 | // is used for task stealing) and awakens them if they are. |
3695 | if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != |
3696 | NULL) { |
3697 | KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n" , |
3698 | __kmp_gtid_from_thread(this_thr), |
3699 | __kmp_gtid_from_thread(thread))); |
3700 | __kmp_null_resume_wrapper(thr: thread); |
3701 | } else { |
3702 | KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n" , |
3703 | __kmp_gtid_from_thread(this_thr), |
3704 | __kmp_gtid_from_thread(thread))); |
3705 | } |
3706 | } |
3707 | } |
3708 | |
3709 | KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n" , |
3710 | __kmp_gtid_from_thread(this_thr))); |
3711 | } |
3712 | |
3713 | /* // TODO: Check the comment consistency |
3714 | * Utility routines for "task teams". A task team (kmp_task_t) is kind of |
3715 | * like a shadow of the kmp_team_t data struct, with a different lifetime. |
3716 | * After a child * thread checks into a barrier and calls __kmp_release() from |
3717 | * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no |
3718 | * longer assume that the kmp_team_t structure is intact (at any moment, the |
3719 | * primary thread may exit the barrier code and free the team data structure, |
3720 | * and return the threads to the thread pool). |
3721 | * |
3722 | * This does not work with the tasking code, as the thread is still |
3723 | * expected to participate in the execution of any tasks that may have been |
3724 | * spawned my a member of the team, and the thread still needs access to all |
3725 | * to each thread in the team, so that it can steal work from it. |
3726 | * |
3727 | * Enter the existence of the kmp_task_team_t struct. It employs a reference |
3728 | * counting mechanism, and is allocated by the primary thread before calling |
3729 | * __kmp_<barrier_kind>_release, and then is release by the last thread to |
3730 | * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes |
3731 | * of the kmp_task_team_t structs for consecutive barriers can overlap |
3732 | * (and will, unless the primary thread is the last thread to exit the barrier |
3733 | * release phase, which is not typical). The existence of such a struct is |
3734 | * useful outside the context of tasking. |
3735 | * |
3736 | * We currently use the existence of the threads array as an indicator that |
3737 | * tasks were spawned since the last barrier. If the structure is to be |
3738 | * useful outside the context of tasking, then this will have to change, but |
3739 | * not setting the field minimizes the performance impact of tasking on |
3740 | * barriers, when no explicit tasks were spawned (pushed, actually). |
3741 | */ |
3742 | |
3743 | static kmp_task_team_t *__kmp_free_task_teams = |
3744 | NULL; // Free list for task_team data structures |
3745 | // Lock for task team data structures |
3746 | kmp_bootstrap_lock_t __kmp_task_team_lock = |
3747 | KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); |
3748 | |
3749 | // __kmp_alloc_task_deque: |
3750 | // Allocates a task deque for a particular thread, and initialize the necessary |
3751 | // data structures relating to the deque. This only happens once per thread |
3752 | // per task team since task teams are recycled. No lock is needed during |
3753 | // allocation since each thread allocates its own deque. |
3754 | static void __kmp_alloc_task_deque(kmp_info_t *thread, |
3755 | kmp_thread_data_t *thread_data) { |
3756 | __kmp_init_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3757 | KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); |
3758 | |
3759 | // Initialize last stolen task field to "none" |
3760 | thread_data->td.td_deque_last_stolen = -1; |
3761 | |
3762 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); |
3763 | KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); |
3764 | KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); |
3765 | |
3766 | KE_TRACE( |
3767 | 10, |
3768 | ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n" , |
3769 | __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); |
3770 | // Allocate space for task deque, and zero the deque |
3771 | // Cannot use __kmp_thread_calloc() because threads not around for |
3772 | // kmp_reap_task_team( ). |
3773 | thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( |
3774 | INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); |
3775 | thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; |
3776 | } |
3777 | |
3778 | // __kmp_free_task_deque: |
3779 | // Deallocates a task deque for a particular thread. Happens at library |
3780 | // deallocation so don't need to reset all thread data fields. |
3781 | static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { |
3782 | if (thread_data->td.td_deque != NULL) { |
3783 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3784 | TCW_4(thread_data->td.td_deque_ntasks, 0); |
3785 | __kmp_free(thread_data->td.td_deque); |
3786 | thread_data->td.td_deque = NULL; |
3787 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3788 | } |
3789 | |
3790 | #ifdef BUILD_TIED_TASK_STACK |
3791 | // GEH: Figure out what to do here for td_susp_tied_tasks |
3792 | if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { |
3793 | __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); |
3794 | } |
3795 | #endif // BUILD_TIED_TASK_STACK |
3796 | } |
3797 | |
3798 | // __kmp_realloc_task_threads_data: |
3799 | // Allocates a threads_data array for a task team, either by allocating an |
3800 | // initial array or enlarging an existing array. Only the first thread to get |
3801 | // the lock allocs or enlarges the array and re-initializes the array elements. |
3802 | // That thread returns "TRUE", the rest return "FALSE". |
3803 | // Assumes that the new array size is given by task_team -> tt.tt_nproc. |
3804 | // The current size is given by task_team -> tt.tt_max_threads. |
3805 | static int __kmp_realloc_task_threads_data(kmp_info_t *thread, |
3806 | kmp_task_team_t *task_team) { |
3807 | kmp_thread_data_t **threads_data_p; |
3808 | kmp_int32 nthreads, maxthreads; |
3809 | int is_init_thread = FALSE; |
3810 | |
3811 | if (TCR_4(task_team->tt.tt_found_tasks)) { |
3812 | // Already reallocated and initialized. |
3813 | return FALSE; |
3814 | } |
3815 | |
3816 | threads_data_p = &task_team->tt.tt_threads_data; |
3817 | nthreads = task_team->tt.tt_nproc; |
3818 | maxthreads = task_team->tt.tt_max_threads; |
3819 | |
3820 | // All threads must lock when they encounter the first task of the implicit |
3821 | // task region to make sure threads_data fields are (re)initialized before |
3822 | // used. |
3823 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3824 | |
3825 | if (!TCR_4(task_team->tt.tt_found_tasks)) { |
3826 | // first thread to enable tasking |
3827 | kmp_team_t *team = thread->th.th_team; |
3828 | int i; |
3829 | |
3830 | is_init_thread = TRUE; |
3831 | if (maxthreads < nthreads) { |
3832 | |
3833 | if (*threads_data_p != NULL) { |
3834 | kmp_thread_data_t *old_data = *threads_data_p; |
3835 | kmp_thread_data_t *new_data = NULL; |
3836 | |
3837 | KE_TRACE( |
3838 | 10, |
3839 | ("__kmp_realloc_task_threads_data: T#%d reallocating " |
3840 | "threads data for task_team %p, new_size = %d, old_size = %d\n" , |
3841 | __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); |
3842 | // Reallocate threads_data to have more elements than current array |
3843 | // Cannot use __kmp_thread_realloc() because threads not around for |
3844 | // kmp_reap_task_team( ). Note all new array entries are initialized |
3845 | // to zero by __kmp_allocate(). |
3846 | new_data = (kmp_thread_data_t *)__kmp_allocate( |
3847 | nthreads * sizeof(kmp_thread_data_t)); |
3848 | // copy old data to new data |
3849 | KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), |
3850 | (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); |
3851 | |
3852 | #ifdef BUILD_TIED_TASK_STACK |
3853 | // GEH: Figure out if this is the right thing to do |
3854 | for (i = maxthreads; i < nthreads; i++) { |
3855 | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; |
3856 | __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); |
3857 | } |
3858 | #endif // BUILD_TIED_TASK_STACK |
3859 | // Install the new data and free the old data |
3860 | (*threads_data_p) = new_data; |
3861 | __kmp_free(old_data); |
3862 | } else { |
3863 | KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " |
3864 | "threads data for task_team %p, size = %d\n" , |
3865 | __kmp_gtid_from_thread(thread), task_team, nthreads)); |
3866 | // Make the initial allocate for threads_data array, and zero entries |
3867 | // Cannot use __kmp_thread_calloc() because threads not around for |
3868 | // kmp_reap_task_team( ). |
3869 | *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( |
3870 | nthreads * sizeof(kmp_thread_data_t)); |
3871 | #ifdef BUILD_TIED_TASK_STACK |
3872 | // GEH: Figure out if this is the right thing to do |
3873 | for (i = 0; i < nthreads; i++) { |
3874 | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; |
3875 | __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); |
3876 | } |
3877 | #endif // BUILD_TIED_TASK_STACK |
3878 | } |
3879 | task_team->tt.tt_max_threads = nthreads; |
3880 | } else { |
3881 | // If array has (more than) enough elements, go ahead and use it |
3882 | KMP_DEBUG_ASSERT(*threads_data_p != NULL); |
3883 | } |
3884 | |
3885 | // initialize threads_data pointers back to thread_info structures |
3886 | for (i = 0; i < nthreads; i++) { |
3887 | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; |
3888 | thread_data->td.td_thr = team->t.t_threads[i]; |
3889 | |
3890 | if (thread_data->td.td_deque_last_stolen >= nthreads) { |
3891 | // The last stolen field survives across teams / barrier, and the number |
3892 | // of threads may have changed. It's possible (likely?) that a new |
3893 | // parallel region will exhibit the same behavior as previous region. |
3894 | thread_data->td.td_deque_last_stolen = -1; |
3895 | } |
3896 | } |
3897 | |
3898 | KMP_MB(); |
3899 | TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); |
3900 | } |
3901 | |
3902 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3903 | return is_init_thread; |
3904 | } |
3905 | |
3906 | // __kmp_free_task_threads_data: |
3907 | // Deallocates a threads_data array for a task team, including any attached |
3908 | // tasking deques. Only occurs at library shutdown. |
3909 | static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { |
3910 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3911 | if (task_team->tt.tt_threads_data != NULL) { |
3912 | int i; |
3913 | for (i = 0; i < task_team->tt.tt_max_threads; i++) { |
3914 | __kmp_free_task_deque(thread_data: &task_team->tt.tt_threads_data[i]); |
3915 | } |
3916 | __kmp_free(task_team->tt.tt_threads_data); |
3917 | task_team->tt.tt_threads_data = NULL; |
3918 | } |
3919 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3920 | } |
3921 | |
3922 | // __kmp_free_task_pri_list: |
3923 | // Deallocates tasking deques used for priority tasks. |
3924 | // Only occurs at library shutdown. |
3925 | static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) { |
3926 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
3927 | if (task_team->tt.tt_task_pri_list != NULL) { |
3928 | kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; |
3929 | while (list != NULL) { |
3930 | kmp_task_pri_t *next = list->next; |
3931 | __kmp_free_task_deque(thread_data: &list->td); |
3932 | __kmp_free(list); |
3933 | list = next; |
3934 | } |
3935 | task_team->tt.tt_task_pri_list = NULL; |
3936 | } |
3937 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
3938 | } |
3939 | |
3940 | static inline void __kmp_task_team_init(kmp_task_team_t *task_team, |
3941 | kmp_team_t *team) { |
3942 | int team_nth = team->t.t_nproc; |
3943 | // Only need to init if task team is isn't active or team size changed |
3944 | if (!task_team->tt.tt_active || team_nth != task_team->tt.tt_nproc) { |
3945 | TCW_4(task_team->tt.tt_found_tasks, FALSE); |
3946 | TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); |
3947 | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); |
3948 | TCW_4(task_team->tt.tt_nproc, team_nth); |
3949 | KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, team_nth); |
3950 | TCW_4(task_team->tt.tt_active, TRUE); |
3951 | } |
3952 | } |
3953 | |
3954 | // __kmp_allocate_task_team: |
3955 | // Allocates a task team associated with a specific team, taking it from |
3956 | // the global task team free list if possible. Also initializes data |
3957 | // structures. |
3958 | static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, |
3959 | kmp_team_t *team) { |
3960 | kmp_task_team_t *task_team = NULL; |
3961 | |
3962 | KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n" , |
3963 | (thread ? __kmp_gtid_from_thread(thread) : -1), team)); |
3964 | |
3965 | if (TCR_PTR(__kmp_free_task_teams) != NULL) { |
3966 | // Take a task team from the task team pool |
3967 | __kmp_acquire_bootstrap_lock(lck: &__kmp_task_team_lock); |
3968 | if (__kmp_free_task_teams != NULL) { |
3969 | task_team = __kmp_free_task_teams; |
3970 | TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); |
3971 | task_team->tt.tt_next = NULL; |
3972 | } |
3973 | __kmp_release_bootstrap_lock(lck: &__kmp_task_team_lock); |
3974 | } |
3975 | |
3976 | if (task_team == NULL) { |
3977 | KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " |
3978 | "task team for team %p\n" , |
3979 | __kmp_gtid_from_thread(thread), team)); |
3980 | // Allocate a new task team if one is not available. Cannot use |
3981 | // __kmp_thread_malloc because threads not around for kmp_reap_task_team. |
3982 | task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); |
3983 | __kmp_init_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3984 | __kmp_init_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
3985 | #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG |
3986 | // suppress race conditions detection on synchronization flags in debug mode |
3987 | // this helps to analyze library internals eliminating false positives |
3988 | __itt_suppress_mark_range( |
3989 | __itt_suppress_range, __itt_suppress_threading_errors, |
3990 | &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); |
3991 | __itt_suppress_mark_range(__itt_suppress_range, |
3992 | __itt_suppress_threading_errors, |
3993 | CCAST(kmp_uint32 *, &task_team->tt.tt_active), |
3994 | sizeof(task_team->tt.tt_active)); |
3995 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ |
3996 | // Note: __kmp_allocate zeroes returned memory, othewise we would need: |
3997 | // task_team->tt.tt_threads_data = NULL; |
3998 | // task_team->tt.tt_max_threads = 0; |
3999 | // task_team->tt.tt_next = NULL; |
4000 | } |
4001 | |
4002 | __kmp_task_team_init(task_team, team); |
4003 | |
4004 | KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " |
4005 | "unfinished_threads init'd to %d\n" , |
4006 | (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, |
4007 | KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); |
4008 | return task_team; |
4009 | } |
4010 | |
4011 | // __kmp_free_task_team: |
4012 | // Frees the task team associated with a specific thread, and adds it |
4013 | // to the global task team free list. |
4014 | void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { |
4015 | KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n" , |
4016 | thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); |
4017 | |
4018 | // Put task team back on free list |
4019 | __kmp_acquire_bootstrap_lock(lck: &__kmp_task_team_lock); |
4020 | |
4021 | KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); |
4022 | task_team->tt.tt_next = __kmp_free_task_teams; |
4023 | TCW_PTR(__kmp_free_task_teams, task_team); |
4024 | |
4025 | __kmp_release_bootstrap_lock(lck: &__kmp_task_team_lock); |
4026 | } |
4027 | |
4028 | // __kmp_reap_task_teams: |
4029 | // Free all the task teams on the task team free list. |
4030 | // Should only be done during library shutdown. |
4031 | // Cannot do anything that needs a thread structure or gtid since they are |
4032 | // already gone. |
4033 | void __kmp_reap_task_teams(void) { |
4034 | kmp_task_team_t *task_team; |
4035 | |
4036 | if (TCR_PTR(__kmp_free_task_teams) != NULL) { |
4037 | // Free all task_teams on the free list |
4038 | __kmp_acquire_bootstrap_lock(lck: &__kmp_task_team_lock); |
4039 | while ((task_team = __kmp_free_task_teams) != NULL) { |
4040 | __kmp_free_task_teams = task_team->tt.tt_next; |
4041 | task_team->tt.tt_next = NULL; |
4042 | |
4043 | // Free threads_data if necessary |
4044 | if (task_team->tt.tt_threads_data != NULL) { |
4045 | __kmp_free_task_threads_data(task_team); |
4046 | } |
4047 | if (task_team->tt.tt_task_pri_list != NULL) { |
4048 | __kmp_free_task_pri_list(task_team); |
4049 | } |
4050 | __kmp_free(task_team); |
4051 | } |
4052 | __kmp_release_bootstrap_lock(lck: &__kmp_task_team_lock); |
4053 | } |
4054 | } |
4055 | |
4056 | // View the array of two task team pointers as a pair of pointers: |
4057 | // 1) a single task_team pointer |
4058 | // 2) next pointer for stack |
4059 | // Serial teams can create a stack of task teams for nested serial teams. |
4060 | void __kmp_push_task_team_node(kmp_info_t *thread, kmp_team_t *team) { |
4061 | KMP_DEBUG_ASSERT(team->t.t_nproc == 1); |
4062 | kmp_task_team_list_t *current = |
4063 | (kmp_task_team_list_t *)(&team->t.t_task_team[0]); |
4064 | kmp_task_team_list_t *node = |
4065 | (kmp_task_team_list_t *)__kmp_allocate(sizeof(kmp_task_team_list_t)); |
4066 | node->task_team = current->task_team; |
4067 | node->next = current->next; |
4068 | thread->th.th_task_team = current->task_team = NULL; |
4069 | current->next = node; |
4070 | } |
4071 | |
4072 | // Serial team pops a task team off the stack |
4073 | void __kmp_pop_task_team_node(kmp_info_t *thread, kmp_team_t *team) { |
4074 | KMP_DEBUG_ASSERT(team->t.t_nproc == 1); |
4075 | kmp_task_team_list_t *current = |
4076 | (kmp_task_team_list_t *)(&team->t.t_task_team[0]); |
4077 | if (current->task_team) { |
4078 | __kmp_free_task_team(thread, task_team: current->task_team); |
4079 | } |
4080 | kmp_task_team_list_t *next = current->next; |
4081 | if (next) { |
4082 | current->task_team = next->task_team; |
4083 | current->next = next->next; |
4084 | KMP_DEBUG_ASSERT(next != current); |
4085 | __kmp_free(next); |
4086 | thread->th.th_task_team = current->task_team; |
4087 | } |
4088 | } |
4089 | |
4090 | // __kmp_wait_to_unref_task_teams: |
4091 | // Some threads could still be in the fork barrier release code, possibly |
4092 | // trying to steal tasks. Wait for each thread to unreference its task team. |
4093 | void __kmp_wait_to_unref_task_teams(void) { |
4094 | kmp_info_t *thread; |
4095 | kmp_uint32 spins; |
4096 | kmp_uint64 time; |
4097 | int done; |
4098 | |
4099 | KMP_INIT_YIELD(spins); |
4100 | KMP_INIT_BACKOFF(time); |
4101 | |
4102 | for (;;) { |
4103 | done = TRUE; |
4104 | |
4105 | // TODO: GEH - this may be is wrong because some sync would be necessary |
4106 | // in case threads are added to the pool during the traversal. Need to |
4107 | // verify that lock for thread pool is held when calling this routine. |
4108 | for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; |
4109 | thread = thread->th.th_next_pool) { |
4110 | #if KMP_OS_WINDOWS |
4111 | DWORD exit_val; |
4112 | #endif |
4113 | if (TCR_PTR(thread->th.th_task_team) == NULL) { |
4114 | KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n" , |
4115 | __kmp_gtid_from_thread(thread))); |
4116 | continue; |
4117 | } |
4118 | #if KMP_OS_WINDOWS |
4119 | // TODO: GEH - add this check for Linux* OS / OS X* as well? |
4120 | if (!__kmp_is_thread_alive(thread, &exit_val)) { |
4121 | thread->th.th_task_team = NULL; |
4122 | continue; |
4123 | } |
4124 | #endif |
4125 | |
4126 | done = FALSE; // Because th_task_team pointer is not NULL for this thread |
4127 | |
4128 | KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " |
4129 | "unreference task_team\n" , |
4130 | __kmp_gtid_from_thread(thread))); |
4131 | |
4132 | if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { |
4133 | void *sleep_loc; |
4134 | // If the thread is sleeping, awaken it. |
4135 | if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != |
4136 | NULL) { |
4137 | KA_TRACE( |
4138 | 10, |
4139 | ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n" , |
4140 | __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); |
4141 | __kmp_null_resume_wrapper(thr: thread); |
4142 | } |
4143 | } |
4144 | } |
4145 | if (done) { |
4146 | break; |
4147 | } |
4148 | |
4149 | // If oversubscribed or have waited a bit, yield. |
4150 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); |
4151 | } |
4152 | } |
4153 | |
4154 | // __kmp_task_team_setup: Create a task_team for the current team, but use |
4155 | // an already created, unused one if it already exists. |
4156 | void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team) { |
4157 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
4158 | |
4159 | // For the serial and root teams, setup the first task team pointer to point |
4160 | // to task team. The other pointer is a stack of task teams from previous |
4161 | // serial levels. |
4162 | if (team == this_thr->th.th_serial_team || |
4163 | team == this_thr->th.th_root->r.r_root_team) { |
4164 | KMP_DEBUG_ASSERT(team->t.t_nproc == 1); |
4165 | if (team->t.t_task_team[0] == NULL) { |
4166 | team->t.t_task_team[0] = __kmp_allocate_task_team(thread: this_thr, team); |
4167 | KA_TRACE( |
4168 | 20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" |
4169 | " for serial/root team %p\n" , |
4170 | __kmp_gtid_from_thread(this_thr), team->t.t_task_team[0], team)); |
4171 | |
4172 | } else |
4173 | __kmp_task_team_init(task_team: team->t.t_task_team[0], team); |
4174 | return; |
4175 | } |
4176 | |
4177 | // If this task_team hasn't been created yet, allocate it. It will be used in |
4178 | // the region after the next. |
4179 | // If it exists, it is the current task team and shouldn't be touched yet as |
4180 | // it may still be in use. |
4181 | if (team->t.t_task_team[this_thr->th.th_task_state] == NULL) { |
4182 | team->t.t_task_team[this_thr->th.th_task_state] = |
4183 | __kmp_allocate_task_team(thread: this_thr, team); |
4184 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" |
4185 | " for team %d at parity=%d\n" , |
4186 | __kmp_gtid_from_thread(this_thr), |
4187 | team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, |
4188 | this_thr->th.th_task_state)); |
4189 | } |
4190 | |
4191 | // After threads exit the release, they will call sync, and then point to this |
4192 | // other task_team; make sure it is allocated and properly initialized. As |
4193 | // threads spin in the barrier release phase, they will continue to use the |
4194 | // previous task_team struct(above), until they receive the signal to stop |
4195 | // checking for tasks (they can't safely reference the kmp_team_t struct, |
4196 | // which could be reallocated by the primary thread). |
4197 | int other_team = 1 - this_thr->th.th_task_state; |
4198 | KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); |
4199 | if (team->t.t_task_team[other_team] == NULL) { // setup other team as well |
4200 | team->t.t_task_team[other_team] = __kmp_allocate_task_team(thread: this_thr, team); |
4201 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " |
4202 | "task_team %p for team %d at parity=%d\n" , |
4203 | __kmp_gtid_from_thread(this_thr), |
4204 | team->t.t_task_team[other_team], team->t.t_id, other_team)); |
4205 | } else { // Leave the old task team struct in place for the upcoming region; |
4206 | // adjust as needed |
4207 | kmp_task_team_t *task_team = team->t.t_task_team[other_team]; |
4208 | __kmp_task_team_init(task_team, team); |
4209 | // if team size has changed, the first thread to enable tasking will |
4210 | // realloc threads_data if necessary |
4211 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " |
4212 | "%p for team %d at parity=%d\n" , |
4213 | __kmp_gtid_from_thread(this_thr), |
4214 | team->t.t_task_team[other_team], team->t.t_id, other_team)); |
4215 | } |
4216 | |
4217 | // For regular thread, task enabling should be called when the task is going |
4218 | // to be pushed to a dequeue. However, for the hidden helper thread, we need |
4219 | // it ahead of time so that some operations can be performed without race |
4220 | // condition. |
4221 | if (this_thr == __kmp_hidden_helper_main_thread) { |
4222 | for (int i = 0; i < 2; ++i) { |
4223 | kmp_task_team_t *task_team = team->t.t_task_team[i]; |
4224 | if (KMP_TASKING_ENABLED(task_team)) { |
4225 | continue; |
4226 | } |
4227 | __kmp_enable_tasking(task_team, this_thr); |
4228 | for (int j = 0; j < task_team->tt.tt_nproc; ++j) { |
4229 | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; |
4230 | if (thread_data->td.td_deque == NULL) { |
4231 | __kmp_alloc_task_deque(thread: __kmp_hidden_helper_threads[j], thread_data); |
4232 | } |
4233 | } |
4234 | } |
4235 | } |
4236 | } |
4237 | |
4238 | // __kmp_task_team_sync: Propagation of task team data from team to threads |
4239 | // which happens just after the release phase of a team barrier. This may be |
4240 | // called by any thread. This is not called for serial or root teams. |
4241 | void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { |
4242 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
4243 | KMP_DEBUG_ASSERT(team != this_thr->th.th_serial_team); |
4244 | KMP_DEBUG_ASSERT(team != this_thr->th.th_root->r.r_root_team); |
4245 | |
4246 | // Toggle the th_task_state field, to switch which task_team this thread |
4247 | // refers to |
4248 | this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); |
4249 | |
4250 | // It is now safe to propagate the task team pointer from the team struct to |
4251 | // the current thread. |
4252 | TCW_PTR(this_thr->th.th_task_team, |
4253 | team->t.t_task_team[this_thr->th.th_task_state]); |
4254 | KA_TRACE(20, |
4255 | ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " |
4256 | "%p from Team #%d (parity=%d)\n" , |
4257 | __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, |
4258 | team->t.t_id, this_thr->th.th_task_state)); |
4259 | } |
4260 | |
4261 | // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the |
4262 | // barrier gather phase. Only called by the primary thread. |
4263 | // |
4264 | // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off |
4265 | // by passing in 0 optionally as the last argument. When wait is zero, primary |
4266 | // thread does not wait for unfinished_threads to reach 0. |
4267 | void __kmp_task_team_wait( |
4268 | kmp_info_t *this_thr, |
4269 | kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { |
4270 | kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; |
4271 | |
4272 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
4273 | KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); |
4274 | |
4275 | if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { |
4276 | if (wait) { |
4277 | KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " |
4278 | "(for unfinished_threads to reach 0) on task_team = %p\n" , |
4279 | __kmp_gtid_from_thread(this_thr), task_team)); |
4280 | // Worker threads may have dropped through to release phase, but could |
4281 | // still be executing tasks. Wait here for tasks to complete. To avoid |
4282 | // memory contention, only primary thread checks termination condition. |
4283 | kmp_flag_32<false, false> flag( |
4284 | RCAST(std::atomic<kmp_uint32> *, |
4285 | &task_team->tt.tt_unfinished_threads), |
4286 | 0U); |
4287 | flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); |
4288 | } |
4289 | // Deactivate the old task team, so that the worker threads will stop |
4290 | // referencing it while spinning. |
4291 | KA_TRACE( |
4292 | 20, |
4293 | ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " |
4294 | "setting active to false, setting local and team's pointer to NULL\n" , |
4295 | __kmp_gtid_from_thread(this_thr), task_team)); |
4296 | TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); |
4297 | TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); |
4298 | KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); |
4299 | TCW_SYNC_4(task_team->tt.tt_active, FALSE); |
4300 | KMP_MB(); |
4301 | |
4302 | TCW_PTR(this_thr->th.th_task_team, NULL); |
4303 | } |
4304 | } |
4305 | |
4306 | // __kmp_tasking_barrier: |
4307 | // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. |
4308 | // Internal function to execute all tasks prior to a regular barrier or a join |
4309 | // barrier. It is a full barrier itself, which unfortunately turns regular |
4310 | // barriers into double barriers and join barriers into 1 1/2 barriers. |
4311 | void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { |
4312 | std::atomic<kmp_uint32> *spin = RCAST( |
4313 | std::atomic<kmp_uint32> *, |
4314 | &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); |
4315 | int flag = FALSE; |
4316 | KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); |
4317 | |
4318 | #if USE_ITT_BUILD |
4319 | KMP_FSYNC_SPIN_INIT(spin, NULL); |
4320 | #endif /* USE_ITT_BUILD */ |
4321 | kmp_flag_32<false, false> spin_flag(spin, 0U); |
4322 | while (!spin_flag.execute_tasks(this_thr: thread, gtid, TRUE, |
4323 | thread_finished: &flag USE_ITT_BUILD_ARG(NULL), is_constrained: 0)) { |
4324 | #if USE_ITT_BUILD |
4325 | // TODO: What about itt_sync_obj?? |
4326 | KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); |
4327 | #endif /* USE_ITT_BUILD */ |
4328 | |
4329 | if (TCR_4(__kmp_global.g.g_done)) { |
4330 | if (__kmp_global.g.g_abort) |
4331 | __kmp_abort_thread(); |
4332 | break; |
4333 | } |
4334 | KMP_YIELD(TRUE); |
4335 | } |
4336 | #if USE_ITT_BUILD |
4337 | KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); |
4338 | #endif /* USE_ITT_BUILD */ |
4339 | } |
4340 | |
4341 | // __kmp_give_task puts a task into a given thread queue if: |
4342 | // - the queue for that thread was created |
4343 | // - there's space in that queue |
4344 | // Because of this, __kmp_push_task needs to check if there's space after |
4345 | // getting the lock |
4346 | static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, |
4347 | kmp_int32 pass) { |
4348 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
4349 | kmp_task_team_t *task_team = taskdata->td_task_team; |
4350 | |
4351 | KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n" , |
4352 | taskdata, tid)); |
4353 | |
4354 | // If task_team is NULL something went really bad... |
4355 | KMP_DEBUG_ASSERT(task_team != NULL); |
4356 | |
4357 | bool result = false; |
4358 | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; |
4359 | |
4360 | if (thread_data->td.td_deque == NULL) { |
4361 | // There's no queue in this thread, go find another one |
4362 | // We're guaranteed that at least one thread has a queue |
4363 | KA_TRACE(30, |
4364 | ("__kmp_give_task: thread %d has no queue while giving task %p.\n" , |
4365 | tid, taskdata)); |
4366 | return result; |
4367 | } |
4368 | |
4369 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
4370 | TASK_DEQUE_SIZE(thread_data->td)) { |
4371 | KA_TRACE( |
4372 | 30, |
4373 | ("__kmp_give_task: queue is full while giving task %p to thread %d.\n" , |
4374 | taskdata, tid)); |
4375 | |
4376 | // if this deque is bigger than the pass ratio give a chance to another |
4377 | // thread |
4378 | if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) |
4379 | return result; |
4380 | |
4381 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
4382 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
4383 | TASK_DEQUE_SIZE(thread_data->td)) { |
4384 | // expand deque to push the task which is not allowed to execute |
4385 | __kmp_realloc_task_deque(thread, thread_data); |
4386 | } |
4387 | |
4388 | } else { |
4389 | |
4390 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
4391 | |
4392 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
4393 | TASK_DEQUE_SIZE(thread_data->td)) { |
4394 | KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " |
4395 | "thread %d.\n" , |
4396 | taskdata, tid)); |
4397 | |
4398 | // if this deque is bigger than the pass ratio give a chance to another |
4399 | // thread |
4400 | if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) |
4401 | goto release_and_exit; |
4402 | |
4403 | __kmp_realloc_task_deque(thread, thread_data); |
4404 | } |
4405 | } |
4406 | |
4407 | // lock is held here, and there is space in the deque |
4408 | |
4409 | thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; |
4410 | // Wrap index. |
4411 | thread_data->td.td_deque_tail = |
4412 | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); |
4413 | TCW_4(thread_data->td.td_deque_ntasks, |
4414 | TCR_4(thread_data->td.td_deque_ntasks) + 1); |
4415 | |
4416 | result = true; |
4417 | KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n" , |
4418 | taskdata, tid)); |
4419 | |
4420 | release_and_exit: |
4421 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
4422 | |
4423 | return result; |
4424 | } |
4425 | |
4426 | #define PROXY_TASK_FLAG 0x40000000 |
4427 | /* The finish of the proxy tasks is divided in two pieces: |
4428 | - the top half is the one that can be done from a thread outside the team |
4429 | - the bottom half must be run from a thread within the team |
4430 | |
4431 | In order to run the bottom half the task gets queued back into one of the |
4432 | threads of the team. Once the td_incomplete_child_task counter of the parent |
4433 | is decremented the threads can leave the barriers. So, the bottom half needs |
4434 | to be queued before the counter is decremented. The top half is therefore |
4435 | divided in two parts: |
4436 | - things that can be run before queuing the bottom half |
4437 | - things that must be run after queuing the bottom half |
4438 | |
4439 | This creates a second race as the bottom half can free the task before the |
4440 | second top half is executed. To avoid this we use the |
4441 | td_incomplete_child_task of the proxy task to synchronize the top and bottom |
4442 | half. */ |
4443 | static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { |
4444 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
4445 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4446 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); |
4447 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
4448 | |
4449 | taskdata->td_flags.complete = 1; // mark the task as completed |
4450 | #if OMPX_TASKGRAPH |
4451 | taskdata->td_flags.onced = 1; |
4452 | #endif |
4453 | |
4454 | if (taskdata->td_taskgroup) |
4455 | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); |
4456 | |
4457 | // Create an imaginary children for this task so the bottom half cannot |
4458 | // release the task before we have completed the second top half |
4459 | KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG); |
4460 | } |
4461 | |
4462 | static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { |
4463 | #if KMP_DEBUG |
4464 | kmp_int32 children = 0; |
4465 | // Predecrement simulated by "- 1" calculation |
4466 | children = -1 + |
4467 | #endif |
4468 | KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); |
4469 | KMP_DEBUG_ASSERT(children >= 0); |
4470 | |
4471 | // Remove the imaginary children |
4472 | KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG); |
4473 | } |
4474 | |
4475 | static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { |
4476 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4477 | kmp_info_t *thread = __kmp_threads[gtid]; |
4478 | |
4479 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4480 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == |
4481 | 1); // top half must run before bottom half |
4482 | |
4483 | // We need to wait to make sure the top half is finished |
4484 | // Spinning here should be ok as this should happen quickly |
4485 | while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) & |
4486 | PROXY_TASK_FLAG) > 0) |
4487 | ; |
4488 | |
4489 | __kmp_release_deps(gtid, task: taskdata); |
4490 | __kmp_free_task_and_ancestors(gtid, taskdata, thread); |
4491 | } |
4492 | |
4493 | /*! |
4494 | @ingroup TASKING |
4495 | @param gtid Global Thread ID of encountering thread |
4496 | @param ptask Task which execution is completed |
4497 | |
4498 | Execute the completion of a proxy task from a thread of that is part of the |
4499 | team. Run first and bottom halves directly. |
4500 | */ |
4501 | void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { |
4502 | KMP_DEBUG_ASSERT(ptask != NULL); |
4503 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4504 | KA_TRACE( |
4505 | 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n" , |
4506 | gtid, taskdata)); |
4507 | __kmp_assert_valid_gtid(gtid); |
4508 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4509 | |
4510 | __kmp_first_top_half_finish_proxy(taskdata); |
4511 | __kmp_second_top_half_finish_proxy(taskdata); |
4512 | __kmp_bottom_half_finish_proxy(gtid, ptask); |
4513 | |
4514 | KA_TRACE(10, |
4515 | ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n" , |
4516 | gtid, taskdata)); |
4517 | } |
4518 | |
4519 | void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) { |
4520 | KMP_DEBUG_ASSERT(ptask != NULL); |
4521 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4522 | |
4523 | // Enqueue task to complete bottom half completion from a thread within the |
4524 | // corresponding team |
4525 | kmp_team_t *team = taskdata->td_team; |
4526 | kmp_int32 nthreads = team->t.t_nproc; |
4527 | kmp_info_t *thread; |
4528 | |
4529 | // This should be similar to start_k = __kmp_get_random( thread ) % nthreads |
4530 | // but we cannot use __kmp_get_random here |
4531 | kmp_int32 start_k = start % nthreads; |
4532 | kmp_int32 pass = 1; |
4533 | kmp_int32 k = start_k; |
4534 | |
4535 | do { |
4536 | // For now we're just linearly trying to find a thread |
4537 | thread = team->t.t_threads[k]; |
4538 | k = (k + 1) % nthreads; |
4539 | |
4540 | // we did a full pass through all the threads |
4541 | if (k == start_k) |
4542 | pass = pass << 1; |
4543 | |
4544 | } while (!__kmp_give_task(thread, tid: k, task: ptask, pass)); |
4545 | |
4546 | if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) { |
4547 | // awake at least one thread to execute given task |
4548 | for (int i = 0; i < nthreads; ++i) { |
4549 | thread = team->t.t_threads[i]; |
4550 | if (thread->th.th_sleep_loc != NULL) { |
4551 | __kmp_null_resume_wrapper(thr: thread); |
4552 | break; |
4553 | } |
4554 | } |
4555 | } |
4556 | } |
4557 | |
4558 | /*! |
4559 | @ingroup TASKING |
4560 | @param ptask Task which execution is completed |
4561 | |
4562 | Execute the completion of a proxy task from a thread that could not belong to |
4563 | the team. |
4564 | */ |
4565 | void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { |
4566 | KMP_DEBUG_ASSERT(ptask != NULL); |
4567 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4568 | |
4569 | KA_TRACE( |
4570 | 10, |
4571 | ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n" , |
4572 | taskdata)); |
4573 | |
4574 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4575 | |
4576 | __kmp_first_top_half_finish_proxy(taskdata); |
4577 | |
4578 | __kmpc_give_task(ptask); |
4579 | |
4580 | __kmp_second_top_half_finish_proxy(taskdata); |
4581 | |
4582 | KA_TRACE( |
4583 | 10, |
4584 | ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n" , |
4585 | taskdata)); |
4586 | } |
4587 | |
4588 | kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, |
4589 | kmp_task_t *task) { |
4590 | kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); |
4591 | if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { |
4592 | td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; |
4593 | td->td_allow_completion_event.ed.task = task; |
4594 | __kmp_init_tas_lock(lck: &td->td_allow_completion_event.lock); |
4595 | } |
4596 | return &td->td_allow_completion_event; |
4597 | } |
4598 | |
4599 | void __kmp_fulfill_event(kmp_event_t *event) { |
4600 | if (event->type == KMP_EVENT_ALLOW_COMPLETION) { |
4601 | kmp_task_t *ptask = event->ed.task; |
4602 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4603 | bool detached = false; |
4604 | int gtid = __kmp_get_gtid(); |
4605 | |
4606 | // The associated task might have completed or could be completing at this |
4607 | // point. |
4608 | // We need to take the lock to avoid races |
4609 | __kmp_acquire_tas_lock(lck: &event->lock, gtid); |
4610 | if (taskdata->td_flags.proxy == TASK_PROXY) { |
4611 | detached = true; |
4612 | } else { |
4613 | #if OMPT_SUPPORT |
4614 | // The OMPT event must occur under mutual exclusion, |
4615 | // otherwise the tool might access ptask after free |
4616 | if (UNLIKELY(ompt_enabled.enabled)) |
4617 | __ompt_task_finish(task: ptask, NULL, status: ompt_task_early_fulfill); |
4618 | #endif |
4619 | } |
4620 | event->type = KMP_EVENT_UNINITIALIZED; |
4621 | __kmp_release_tas_lock(lck: &event->lock, gtid); |
4622 | |
4623 | if (detached) { |
4624 | #if OMPT_SUPPORT |
4625 | // We free ptask afterwards and know the task is finished, |
4626 | // so locking is not necessary |
4627 | if (UNLIKELY(ompt_enabled.enabled)) |
4628 | __ompt_task_finish(task: ptask, NULL, status: ompt_task_late_fulfill); |
4629 | #endif |
4630 | // If the task detached complete the proxy task |
4631 | if (gtid >= 0) { |
4632 | kmp_team_t *team = taskdata->td_team; |
4633 | kmp_info_t *thread = __kmp_get_thread(); |
4634 | if (thread->th.th_team == team) { |
4635 | __kmpc_proxy_task_completed(gtid, ptask); |
4636 | return; |
4637 | } |
4638 | } |
4639 | |
4640 | // fallback |
4641 | __kmpc_proxy_task_completed_ooo(ptask); |
4642 | } |
4643 | } |
4644 | } |
4645 | |
4646 | // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task |
4647 | // for taskloop |
4648 | // |
4649 | // thread: allocating thread |
4650 | // task_src: pointer to source task to be duplicated |
4651 | // taskloop_recur: used only when dealing with taskgraph, |
4652 | // indicating whether we need to update task->td_task_id |
4653 | // returns: a pointer to the allocated kmp_task_t structure (task). |
4654 | kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src |
4655 | #if OMPX_TASKGRAPH |
4656 | , int taskloop_recur |
4657 | #endif |
4658 | ) { |
4659 | kmp_task_t *task; |
4660 | kmp_taskdata_t *taskdata; |
4661 | kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); |
4662 | kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task |
4663 | size_t shareds_offset; |
4664 | size_t task_size; |
4665 | |
4666 | KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n" , thread, |
4667 | task_src)); |
4668 | KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == |
4669 | TASK_FULL); // it should not be proxy task |
4670 | KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); |
4671 | task_size = taskdata_src->td_size_alloc; |
4672 | |
4673 | // Allocate a kmp_taskdata_t block and a kmp_task_t block. |
4674 | KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n" , thread, |
4675 | task_size)); |
4676 | #if USE_FAST_MEMORY |
4677 | taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); |
4678 | #else |
4679 | taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); |
4680 | #endif /* USE_FAST_MEMORY */ |
4681 | KMP_MEMCPY(dest: taskdata, src: taskdata_src, n: task_size); |
4682 | |
4683 | task = KMP_TASKDATA_TO_TASK(taskdata); |
4684 | |
4685 | // Initialize new task (only specific fields not affected by memcpy) |
4686 | #if OMPX_TASKGRAPH |
4687 | if (taskdata->is_taskgraph && !taskloop_recur && |
4688 | __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status)) |
4689 | taskdata->td_tdg_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); |
4690 | #endif |
4691 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
4692 | if (task->shareds != NULL) { // need setup shareds pointer |
4693 | shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; |
4694 | task->shareds = &((char *)taskdata)[shareds_offset]; |
4695 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == |
4696 | 0); |
4697 | } |
4698 | taskdata->td_alloc_thread = thread; |
4699 | taskdata->td_parent = parent_task; |
4700 | // task inherits the taskgroup from the parent task |
4701 | taskdata->td_taskgroup = parent_task->td_taskgroup; |
4702 | // tied task needs to initialize the td_last_tied at creation, |
4703 | // untied one does this when it is scheduled for execution |
4704 | if (taskdata->td_flags.tiedness == TASK_TIED) |
4705 | taskdata->td_last_tied = taskdata; |
4706 | |
4707 | // Only need to keep track of child task counts if team parallel and tasking |
4708 | // not serialized |
4709 | if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { |
4710 | KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); |
4711 | if (parent_task->td_taskgroup) |
4712 | KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); |
4713 | // Only need to keep track of allocated child tasks for explicit tasks since |
4714 | // implicit not deallocated |
4715 | if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) |
4716 | KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); |
4717 | } |
4718 | |
4719 | KA_TRACE(20, |
4720 | ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n" , |
4721 | thread, taskdata, taskdata->td_parent)); |
4722 | #if OMPT_SUPPORT |
4723 | if (UNLIKELY(ompt_enabled.enabled)) |
4724 | __ompt_task_init(task: taskdata, tid: thread->th.th_info.ds.ds_gtid); |
4725 | #endif |
4726 | return task; |
4727 | } |
4728 | |
4729 | // Routine optionally generated by the compiler for setting the lastprivate flag |
4730 | // and calling needed constructors for private/firstprivate objects |
4731 | // (used to form taskloop tasks from pattern task) |
4732 | // Parameters: dest task, src task, lastprivate flag. |
4733 | typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); |
4734 | |
4735 | KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); |
4736 | |
4737 | // class to encapsulate manipulating loop bounds in a taskloop task. |
4738 | // this abstracts away the Intel vs GOMP taskloop interface for setting/getting |
4739 | // the loop bound variables. |
4740 | class kmp_taskloop_bounds_t { |
4741 | kmp_task_t *task; |
4742 | const kmp_taskdata_t *taskdata; |
4743 | size_t lower_offset; |
4744 | size_t upper_offset; |
4745 | |
4746 | public: |
4747 | kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) |
4748 | : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), |
4749 | lower_offset((char *)lb - (char *)task), |
4750 | upper_offset((char *)ub - (char *)task) { |
4751 | KMP_DEBUG_ASSERT((char *)lb > (char *)_task); |
4752 | KMP_DEBUG_ASSERT((char *)ub > (char *)_task); |
4753 | } |
4754 | kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) |
4755 | : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), |
4756 | lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} |
4757 | size_t get_lower_offset() const { return lower_offset; } |
4758 | size_t get_upper_offset() const { return upper_offset; } |
4759 | kmp_uint64 get_lb() const { |
4760 | kmp_int64 retval; |
4761 | #if defined(KMP_GOMP_COMPAT) |
4762 | // Intel task just returns the lower bound normally |
4763 | if (!taskdata->td_flags.native) { |
4764 | retval = *(kmp_int64 *)((char *)task + lower_offset); |
4765 | } else { |
4766 | // GOMP task has to take into account the sizeof(long) |
4767 | if (taskdata->td_size_loop_bounds == 4) { |
4768 | kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); |
4769 | retval = (kmp_int64)*lb; |
4770 | } else { |
4771 | kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); |
4772 | retval = (kmp_int64)*lb; |
4773 | } |
4774 | } |
4775 | #else |
4776 | (void)taskdata; |
4777 | retval = *(kmp_int64 *)((char *)task + lower_offset); |
4778 | #endif // defined(KMP_GOMP_COMPAT) |
4779 | return retval; |
4780 | } |
4781 | kmp_uint64 get_ub() const { |
4782 | kmp_int64 retval; |
4783 | #if defined(KMP_GOMP_COMPAT) |
4784 | // Intel task just returns the upper bound normally |
4785 | if (!taskdata->td_flags.native) { |
4786 | retval = *(kmp_int64 *)((char *)task + upper_offset); |
4787 | } else { |
4788 | // GOMP task has to take into account the sizeof(long) |
4789 | if (taskdata->td_size_loop_bounds == 4) { |
4790 | kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; |
4791 | retval = (kmp_int64)*ub; |
4792 | } else { |
4793 | kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; |
4794 | retval = (kmp_int64)*ub; |
4795 | } |
4796 | } |
4797 | #else |
4798 | retval = *(kmp_int64 *)((char *)task + upper_offset); |
4799 | #endif // defined(KMP_GOMP_COMPAT) |
4800 | return retval; |
4801 | } |
4802 | void set_lb(kmp_uint64 lb) { |
4803 | #if defined(KMP_GOMP_COMPAT) |
4804 | // Intel task just sets the lower bound normally |
4805 | if (!taskdata->td_flags.native) { |
4806 | *(kmp_uint64 *)((char *)task + lower_offset) = lb; |
4807 | } else { |
4808 | // GOMP task has to take into account the sizeof(long) |
4809 | if (taskdata->td_size_loop_bounds == 4) { |
4810 | kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); |
4811 | *lower = (kmp_uint32)lb; |
4812 | } else { |
4813 | kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); |
4814 | *lower = (kmp_uint64)lb; |
4815 | } |
4816 | } |
4817 | #else |
4818 | *(kmp_uint64 *)((char *)task + lower_offset) = lb; |
4819 | #endif // defined(KMP_GOMP_COMPAT) |
4820 | } |
4821 | void set_ub(kmp_uint64 ub) { |
4822 | #if defined(KMP_GOMP_COMPAT) |
4823 | // Intel task just sets the upper bound normally |
4824 | if (!taskdata->td_flags.native) { |
4825 | *(kmp_uint64 *)((char *)task + upper_offset) = ub; |
4826 | } else { |
4827 | // GOMP task has to take into account the sizeof(long) |
4828 | if (taskdata->td_size_loop_bounds == 4) { |
4829 | kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; |
4830 | *upper = (kmp_uint32)ub; |
4831 | } else { |
4832 | kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; |
4833 | *upper = (kmp_uint64)ub; |
4834 | } |
4835 | } |
4836 | #else |
4837 | *(kmp_uint64 *)((char *)task + upper_offset) = ub; |
4838 | #endif // defined(KMP_GOMP_COMPAT) |
4839 | } |
4840 | }; |
4841 | |
4842 | // __kmp_taskloop_linear: Start tasks of the taskloop linearly |
4843 | // |
4844 | // loc Source location information |
4845 | // gtid Global thread ID |
4846 | // task Pattern task, exposes the loop iteration range |
4847 | // lb Pointer to loop lower bound in task structure |
4848 | // ub Pointer to loop upper bound in task structure |
4849 | // st Loop stride |
4850 | // ub_glob Global upper bound (used for lastprivate check) |
4851 | // num_tasks Number of tasks to execute |
4852 | // grainsize Number of loop iterations per task |
4853 | // extras Number of chunks with grainsize+1 iterations |
4854 | // last_chunk Reduction of grainsize for last task |
4855 | // tc Iterations count |
4856 | // task_dup Tasks duplication routine |
4857 | // codeptr_ra Return address for OMPT events |
4858 | void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, |
4859 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
4860 | kmp_uint64 ub_glob, kmp_uint64 num_tasks, |
4861 | kmp_uint64 grainsize, kmp_uint64 , |
4862 | kmp_int64 last_chunk, kmp_uint64 tc, |
4863 | #if OMPT_SUPPORT |
4864 | void *codeptr_ra, |
4865 | #endif |
4866 | void *task_dup) { |
4867 | KMP_COUNT_BLOCK(OMP_TASKLOOP); |
4868 | KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); |
4869 | p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; |
4870 | // compiler provides global bounds here |
4871 | kmp_taskloop_bounds_t task_bounds(task, lb, ub); |
4872 | kmp_uint64 lower = task_bounds.get_lb(); |
4873 | kmp_uint64 upper = task_bounds.get_ub(); |
4874 | kmp_uint64 i; |
4875 | kmp_info_t *thread = __kmp_threads[gtid]; |
4876 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
4877 | kmp_task_t *next_task; |
4878 | kmp_int32 lastpriv = 0; |
4879 | |
4880 | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + |
4881 | (last_chunk < 0 ? last_chunk : extras)); |
4882 | KMP_DEBUG_ASSERT(num_tasks > extras); |
4883 | KMP_DEBUG_ASSERT(num_tasks > 0); |
4884 | KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " |
4885 | "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n" , |
4886 | gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, |
4887 | ub_glob, st, task_dup)); |
4888 | |
4889 | // Launch num_tasks tasks, assign grainsize iterations each task |
4890 | for (i = 0; i < num_tasks; ++i) { |
4891 | kmp_uint64 chunk_minus_1; |
4892 | if (extras == 0) { |
4893 | chunk_minus_1 = grainsize - 1; |
4894 | } else { |
4895 | chunk_minus_1 = grainsize; |
4896 | --extras; // first extras iterations get bigger chunk (grainsize+1) |
4897 | } |
4898 | upper = lower + st * chunk_minus_1; |
4899 | if (upper > *ub) { |
4900 | upper = *ub; |
4901 | } |
4902 | if (i == num_tasks - 1) { |
4903 | // schedule the last task, set lastprivate flag if needed |
4904 | if (st == 1) { // most common case |
4905 | KMP_DEBUG_ASSERT(upper == *ub); |
4906 | if (upper == ub_glob) |
4907 | lastpriv = 1; |
4908 | } else if (st > 0) { // positive loop stride |
4909 | KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); |
4910 | if ((kmp_uint64)st > ub_glob - upper) |
4911 | lastpriv = 1; |
4912 | } else { // negative loop stride |
4913 | KMP_DEBUG_ASSERT(upper + st < *ub); |
4914 | if (upper - ub_glob < (kmp_uint64)(-st)) |
4915 | lastpriv = 1; |
4916 | } |
4917 | } |
4918 | |
4919 | #if OMPX_TASKGRAPH |
4920 | next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0); |
4921 | #else |
4922 | next_task = __kmp_task_dup_alloc(thread, task_src: task); // allocate new task |
4923 | #endif |
4924 | |
4925 | kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); |
4926 | kmp_taskloop_bounds_t next_task_bounds = |
4927 | kmp_taskloop_bounds_t(next_task, task_bounds); |
4928 | |
4929 | // adjust task-specific bounds |
4930 | next_task_bounds.set_lb(lower); |
4931 | if (next_taskdata->td_flags.native) { |
4932 | next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); |
4933 | } else { |
4934 | next_task_bounds.set_ub(upper); |
4935 | } |
4936 | if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, |
4937 | // etc. |
4938 | ptask_dup(next_task, task, lastpriv); |
4939 | KA_TRACE(40, |
4940 | ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " |
4941 | "upper %lld stride %lld, (offsets %p %p)\n" , |
4942 | gtid, i, next_task, lower, upper, st, |
4943 | next_task_bounds.get_lower_offset(), |
4944 | next_task_bounds.get_upper_offset())); |
4945 | #if OMPT_SUPPORT |
4946 | __kmp_omp_taskloop_task(NULL, gtid, new_task: next_task, |
4947 | codeptr_ra); // schedule new task |
4948 | #if OMPT_OPTIONAL |
4949 | if (ompt_enabled.ompt_callback_dispatch) { |
4950 | OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk, |
4951 | lower, upper, st); |
4952 | } |
4953 | #endif // OMPT_OPTIONAL |
4954 | #else |
4955 | __kmp_omp_task(gtid, next_task, true); // schedule new task |
4956 | #endif |
4957 | lower = upper + st; // adjust lower bound for the next iteration |
4958 | } |
4959 | // free the pattern task and exit |
4960 | __kmp_task_start(gtid, task, current_task); // make internal bookkeeping |
4961 | // do not execute the pattern task, just do internal bookkeeping |
4962 | __kmp_task_finish<false>(gtid, task, resumed_task: current_task); |
4963 | } |
4964 | |
4965 | // Structure to keep taskloop parameters for auxiliary task |
4966 | // kept in the shareds of the task structure. |
4967 | typedef struct __taskloop_params { |
4968 | kmp_task_t *task; |
4969 | kmp_uint64 *lb; |
4970 | kmp_uint64 *ub; |
4971 | void *task_dup; |
4972 | kmp_int64 st; |
4973 | kmp_uint64 ub_glob; |
4974 | kmp_uint64 num_tasks; |
4975 | kmp_uint64 grainsize; |
4976 | kmp_uint64 ; |
4977 | kmp_int64 last_chunk; |
4978 | kmp_uint64 tc; |
4979 | kmp_uint64 num_t_min; |
4980 | #if OMPT_SUPPORT |
4981 | void *codeptr_ra; |
4982 | #endif |
4983 | } __taskloop_params_t; |
4984 | |
4985 | void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, |
4986 | kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, |
4987 | kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, |
4988 | kmp_uint64, |
4989 | #if OMPT_SUPPORT |
4990 | void *, |
4991 | #endif |
4992 | void *); |
4993 | |
4994 | // Execute part of the taskloop submitted as a task. |
4995 | int __kmp_taskloop_task(int gtid, void *ptask) { |
4996 | __taskloop_params_t *p = |
4997 | (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; |
4998 | kmp_task_t *task = p->task; |
4999 | kmp_uint64 *lb = p->lb; |
5000 | kmp_uint64 *ub = p->ub; |
5001 | void *task_dup = p->task_dup; |
5002 | // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; |
5003 | kmp_int64 st = p->st; |
5004 | kmp_uint64 ub_glob = p->ub_glob; |
5005 | kmp_uint64 num_tasks = p->num_tasks; |
5006 | kmp_uint64 grainsize = p->grainsize; |
5007 | kmp_uint64 = p->extras; |
5008 | kmp_int64 last_chunk = p->last_chunk; |
5009 | kmp_uint64 tc = p->tc; |
5010 | kmp_uint64 num_t_min = p->num_t_min; |
5011 | #if OMPT_SUPPORT |
5012 | void *codeptr_ra = p->codeptr_ra; |
5013 | #endif |
5014 | #if KMP_DEBUG |
5015 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
5016 | KMP_DEBUG_ASSERT(task != NULL); |
5017 | KA_TRACE(20, |
5018 | ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" |
5019 | " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n" , |
5020 | gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, |
5021 | st, task_dup)); |
5022 | #endif |
5023 | KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); |
5024 | if (num_tasks > num_t_min) |
5025 | __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5026 | grainsize, extras, last_chunk, tc, num_t_min, |
5027 | #if OMPT_SUPPORT |
5028 | codeptr_ra, |
5029 | #endif |
5030 | task_dup); |
5031 | else |
5032 | __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5033 | grainsize, extras, last_chunk, tc, |
5034 | #if OMPT_SUPPORT |
5035 | codeptr_ra, |
5036 | #endif |
5037 | task_dup); |
5038 | |
5039 | KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n" , gtid)); |
5040 | return 0; |
5041 | } |
5042 | |
5043 | // Schedule part of the taskloop as a task, |
5044 | // execute the rest of the taskloop. |
5045 | // |
5046 | // loc Source location information |
5047 | // gtid Global thread ID |
5048 | // task Pattern task, exposes the loop iteration range |
5049 | // lb Pointer to loop lower bound in task structure |
5050 | // ub Pointer to loop upper bound in task structure |
5051 | // st Loop stride |
5052 | // ub_glob Global upper bound (used for lastprivate check) |
5053 | // num_tasks Number of tasks to execute |
5054 | // grainsize Number of loop iterations per task |
5055 | // extras Number of chunks with grainsize+1 iterations |
5056 | // last_chunk Reduction of grainsize for last task |
5057 | // tc Iterations count |
5058 | // num_t_min Threshold to launch tasks recursively |
5059 | // task_dup Tasks duplication routine |
5060 | // codeptr_ra Return address for OMPT events |
5061 | void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, |
5062 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
5063 | kmp_uint64 ub_glob, kmp_uint64 num_tasks, |
5064 | kmp_uint64 grainsize, kmp_uint64 , |
5065 | kmp_int64 last_chunk, kmp_uint64 tc, |
5066 | kmp_uint64 num_t_min, |
5067 | #if OMPT_SUPPORT |
5068 | void *codeptr_ra, |
5069 | #endif |
5070 | void *task_dup) { |
5071 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
5072 | KMP_DEBUG_ASSERT(task != NULL); |
5073 | KMP_DEBUG_ASSERT(num_tasks > num_t_min); |
5074 | KA_TRACE(20, |
5075 | ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" |
5076 | " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n" , |
5077 | gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, |
5078 | st, task_dup)); |
5079 | p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; |
5080 | kmp_uint64 lower = *lb; |
5081 | kmp_info_t *thread = __kmp_threads[gtid]; |
5082 | // kmp_taskdata_t *current_task = thread->th.th_current_task; |
5083 | kmp_task_t *next_task; |
5084 | size_t lower_offset = |
5085 | (char *)lb - (char *)task; // remember offset of lb in the task structure |
5086 | size_t upper_offset = |
5087 | (char *)ub - (char *)task; // remember offset of ub in the task structure |
5088 | |
5089 | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + |
5090 | (last_chunk < 0 ? last_chunk : extras)); |
5091 | KMP_DEBUG_ASSERT(num_tasks > extras); |
5092 | KMP_DEBUG_ASSERT(num_tasks > 0); |
5093 | |
5094 | // split the loop in two halves |
5095 | kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; |
5096 | kmp_int64 last_chunk0 = 0, last_chunk1 = 0; |
5097 | kmp_uint64 gr_size0 = grainsize; |
5098 | kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute |
5099 | kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task |
5100 | if (last_chunk < 0) { |
5101 | ext0 = ext1 = 0; |
5102 | last_chunk1 = last_chunk; |
5103 | tc0 = grainsize * n_tsk0; |
5104 | tc1 = tc - tc0; |
5105 | } else if (n_tsk0 <= extras) { |
5106 | gr_size0++; // integrate extras into grainsize |
5107 | ext0 = 0; // no extra iters in 1st half |
5108 | ext1 = extras - n_tsk0; // remaining extras |
5109 | tc0 = gr_size0 * n_tsk0; |
5110 | tc1 = tc - tc0; |
5111 | } else { // n_tsk0 > extras |
5112 | ext1 = 0; // no extra iters in 2nd half |
5113 | ext0 = extras; |
5114 | tc1 = grainsize * n_tsk1; |
5115 | tc0 = tc - tc1; |
5116 | } |
5117 | ub0 = lower + st * (tc0 - 1); |
5118 | lb1 = ub0 + st; |
5119 | |
5120 | // create pattern task for 2nd half of the loop |
5121 | #if OMPX_TASKGRAPH |
5122 | next_task = __kmp_task_dup_alloc(thread, task, |
5123 | /* taskloop_recur */ 1); |
5124 | #else |
5125 | next_task = __kmp_task_dup_alloc(thread, task_src: task); // duplicate the task |
5126 | #endif |
5127 | // adjust lower bound (upper bound is not changed) for the 2nd half |
5128 | *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; |
5129 | if (ptask_dup != NULL) // construct firstprivates, etc. |
5130 | ptask_dup(next_task, task, 0); |
5131 | *ub = ub0; // adjust upper bound for the 1st half |
5132 | |
5133 | // create auxiliary task for 2nd half of the loop |
5134 | // make sure new task has same parent task as the pattern task |
5135 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
5136 | thread->th.th_current_task = taskdata->td_parent; |
5137 | kmp_task_t *new_task = |
5138 | __kmpc_omp_task_alloc(loc_ref: loc, gtid, flags: 1, sizeof_kmp_task_t: 3 * sizeof(void *), |
5139 | sizeof_shareds: sizeof(__taskloop_params_t), task_entry: &__kmp_taskloop_task); |
5140 | // restore current task |
5141 | thread->th.th_current_task = current_task; |
5142 | __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; |
5143 | p->task = next_task; |
5144 | p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); |
5145 | p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); |
5146 | p->task_dup = task_dup; |
5147 | p->st = st; |
5148 | p->ub_glob = ub_glob; |
5149 | p->num_tasks = n_tsk1; |
5150 | p->grainsize = grainsize; |
5151 | p->extras = ext1; |
5152 | p->last_chunk = last_chunk1; |
5153 | p->tc = tc1; |
5154 | p->num_t_min = num_t_min; |
5155 | #if OMPT_SUPPORT |
5156 | p->codeptr_ra = codeptr_ra; |
5157 | #endif |
5158 | |
5159 | #if OMPX_TASKGRAPH |
5160 | kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task); |
5161 | new_task_data->tdg = taskdata->tdg; |
5162 | new_task_data->is_taskgraph = 0; |
5163 | #endif |
5164 | |
5165 | #if OMPT_SUPPORT |
5166 | // schedule new task with correct return address for OMPT events |
5167 | __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); |
5168 | #else |
5169 | __kmp_omp_task(gtid, new_task, true); // schedule new task |
5170 | #endif |
5171 | |
5172 | // execute the 1st half of current subrange |
5173 | if (n_tsk0 > num_t_min) |
5174 | __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks: n_tsk0, grainsize: gr_size0, |
5175 | extras: ext0, last_chunk: last_chunk0, tc: tc0, num_t_min, |
5176 | #if OMPT_SUPPORT |
5177 | codeptr_ra, |
5178 | #endif |
5179 | task_dup); |
5180 | else |
5181 | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks: n_tsk0, |
5182 | grainsize: gr_size0, extras: ext0, last_chunk: last_chunk0, tc: tc0, |
5183 | #if OMPT_SUPPORT |
5184 | codeptr_ra, |
5185 | #endif |
5186 | task_dup); |
5187 | |
5188 | KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n" , gtid)); |
5189 | } |
5190 | |
5191 | static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, |
5192 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
5193 | int nogroup, int sched, kmp_uint64 grainsize, |
5194 | int modifier, void *task_dup) { |
5195 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
5196 | KMP_DEBUG_ASSERT(task != NULL); |
5197 | if (nogroup == 0) { |
5198 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5199 | OMPT_STORE_RETURN_ADDRESS(gtid); |
5200 | #endif |
5201 | __kmpc_taskgroup(loc, gtid); |
5202 | } |
5203 | |
5204 | #if OMPX_TASKGRAPH |
5205 | KMP_ATOMIC_DEC(&__kmp_tdg_task_id); |
5206 | #endif |
5207 | // ========================================================================= |
5208 | // calculate loop parameters |
5209 | kmp_taskloop_bounds_t task_bounds(task, lb, ub); |
5210 | kmp_uint64 tc; |
5211 | // compiler provides global bounds here |
5212 | kmp_uint64 lower = task_bounds.get_lb(); |
5213 | kmp_uint64 upper = task_bounds.get_ub(); |
5214 | kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag |
5215 | kmp_uint64 num_tasks = 0, = 0; |
5216 | kmp_int64 last_chunk = |
5217 | 0; // reduce grainsize of last task by last_chunk in strict mode |
5218 | kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; |
5219 | kmp_info_t *thread = __kmp_threads[gtid]; |
5220 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
5221 | |
5222 | KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " |
5223 | "grain %llu(%d, %d), dup %p\n" , |
5224 | gtid, taskdata, lower, upper, st, grainsize, sched, modifier, |
5225 | task_dup)); |
5226 | |
5227 | // compute trip count |
5228 | if (st == 1) { // most common case |
5229 | tc = upper - lower + 1; |
5230 | } else if (st < 0) { |
5231 | tc = (lower - upper) / (-st) + 1; |
5232 | } else { // st > 0 |
5233 | tc = (upper - lower) / st + 1; |
5234 | } |
5235 | if (tc == 0) { |
5236 | KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n" , gtid)); |
5237 | // free the pattern task and exit |
5238 | __kmp_task_start(gtid, task, current_task); |
5239 | // do not execute anything for zero-trip loop |
5240 | __kmp_task_finish<false>(gtid, task, resumed_task: current_task); |
5241 | return; |
5242 | } |
5243 | |
5244 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5245 | ompt_team_info_t *team_info = __ompt_get_teaminfo(depth: 0, NULL); |
5246 | ompt_task_info_t *task_info = __ompt_get_task_info_object(depth: 0); |
5247 | if (ompt_enabled.ompt_callback_work) { |
5248 | ompt_callbacks.ompt_callback(ompt_callback_work)( |
5249 | ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), |
5250 | &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); |
5251 | } |
5252 | #endif |
5253 | |
5254 | if (num_tasks_min == 0) |
5255 | // TODO: can we choose better default heuristic? |
5256 | num_tasks_min = |
5257 | KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); |
5258 | |
5259 | // compute num_tasks/grainsize based on the input provided |
5260 | switch (sched) { |
5261 | case 0: // no schedule clause specified, we can choose the default |
5262 | // let's try to schedule (team_size*10) tasks |
5263 | grainsize = thread->th.th_team_nproc * static_cast<kmp_uint64>(10); |
5264 | KMP_FALLTHROUGH(); |
5265 | case 2: // num_tasks provided |
5266 | if (grainsize > tc) { |
5267 | num_tasks = tc; // too big num_tasks requested, adjust values |
5268 | grainsize = 1; |
5269 | extras = 0; |
5270 | } else { |
5271 | num_tasks = grainsize; |
5272 | grainsize = tc / num_tasks; |
5273 | extras = tc % num_tasks; |
5274 | } |
5275 | break; |
5276 | case 1: // grainsize provided |
5277 | if (grainsize > tc) { |
5278 | num_tasks = 1; |
5279 | grainsize = tc; // too big grainsize requested, adjust values |
5280 | extras = 0; |
5281 | } else { |
5282 | if (modifier) { |
5283 | num_tasks = (tc + grainsize - 1) / grainsize; |
5284 | last_chunk = tc - (num_tasks * grainsize); |
5285 | extras = 0; |
5286 | } else { |
5287 | num_tasks = tc / grainsize; |
5288 | // adjust grainsize for balanced distribution of iterations |
5289 | grainsize = tc / num_tasks; |
5290 | extras = tc % num_tasks; |
5291 | } |
5292 | } |
5293 | break; |
5294 | default: |
5295 | KMP_ASSERT2(0, "unknown scheduling of taskloop" ); |
5296 | } |
5297 | |
5298 | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + |
5299 | (last_chunk < 0 ? last_chunk : extras)); |
5300 | KMP_DEBUG_ASSERT(num_tasks > extras); |
5301 | KMP_DEBUG_ASSERT(num_tasks > 0); |
5302 | // ========================================================================= |
5303 | |
5304 | // check if clause value first |
5305 | // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) |
5306 | if (if_val == 0) { // if(0) specified, mark task as serial |
5307 | taskdata->td_flags.task_serial = 1; |
5308 | taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied |
5309 | // always start serial tasks linearly |
5310 | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5311 | grainsize, extras, last_chunk, tc, |
5312 | #if OMPT_SUPPORT |
5313 | OMPT_GET_RETURN_ADDRESS(0), |
5314 | #endif |
5315 | task_dup); |
5316 | // !taskdata->td_flags.native => currently force linear spawning of tasks |
5317 | // for GOMP_taskloop |
5318 | } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { |
5319 | KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" |
5320 | "(%lld), grain %llu, extras %llu, last_chunk %lld\n" , |
5321 | gtid, tc, num_tasks, num_tasks_min, grainsize, extras, |
5322 | last_chunk)); |
5323 | __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5324 | grainsize, extras, last_chunk, tc, num_t_min: num_tasks_min, |
5325 | #if OMPT_SUPPORT |
5326 | OMPT_GET_RETURN_ADDRESS(0), |
5327 | #endif |
5328 | task_dup); |
5329 | } else { |
5330 | KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" |
5331 | "(%lld), grain %llu, extras %llu, last_chunk %lld\n" , |
5332 | gtid, tc, num_tasks, num_tasks_min, grainsize, extras, |
5333 | last_chunk)); |
5334 | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5335 | grainsize, extras, last_chunk, tc, |
5336 | #if OMPT_SUPPORT |
5337 | OMPT_GET_RETURN_ADDRESS(0), |
5338 | #endif |
5339 | task_dup); |
5340 | } |
5341 | |
5342 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5343 | if (ompt_enabled.ompt_callback_work) { |
5344 | ompt_callbacks.ompt_callback(ompt_callback_work)( |
5345 | ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), |
5346 | &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); |
5347 | } |
5348 | #endif |
5349 | |
5350 | if (nogroup == 0) { |
5351 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5352 | OMPT_STORE_RETURN_ADDRESS(gtid); |
5353 | #endif |
5354 | __kmpc_end_taskgroup(loc, gtid); |
5355 | } |
5356 | KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n" , gtid)); |
5357 | } |
5358 | |
5359 | /*! |
5360 | @ingroup TASKING |
5361 | @param loc Source location information |
5362 | @param gtid Global thread ID |
5363 | @param task Task structure |
5364 | @param if_val Value of the if clause |
5365 | @param lb Pointer to loop lower bound in task structure |
5366 | @param ub Pointer to loop upper bound in task structure |
5367 | @param st Loop stride |
5368 | @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise |
5369 | @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks |
5370 | @param grainsize Schedule value if specified |
5371 | @param task_dup Tasks duplication routine |
5372 | |
5373 | Execute the taskloop construct. |
5374 | */ |
5375 | void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, |
5376 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, |
5377 | int sched, kmp_uint64 grainsize, void *task_dup) { |
5378 | __kmp_assert_valid_gtid(gtid); |
5379 | KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n" , gtid)); |
5380 | __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, |
5381 | modifier: 0, task_dup); |
5382 | KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n" , gtid)); |
5383 | } |
5384 | |
5385 | /*! |
5386 | @ingroup TASKING |
5387 | @param loc Source location information |
5388 | @param gtid Global thread ID |
5389 | @param task Task structure |
5390 | @param if_val Value of the if clause |
5391 | @param lb Pointer to loop lower bound in task structure |
5392 | @param ub Pointer to loop upper bound in task structure |
5393 | @param st Loop stride |
5394 | @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise |
5395 | @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks |
5396 | @param grainsize Schedule value if specified |
5397 | @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise |
5398 | @param task_dup Tasks duplication routine |
5399 | |
5400 | Execute the taskloop construct. |
5401 | */ |
5402 | void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, |
5403 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
5404 | int nogroup, int sched, kmp_uint64 grainsize, |
5405 | int modifier, void *task_dup) { |
5406 | __kmp_assert_valid_gtid(gtid); |
5407 | KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n" , gtid)); |
5408 | __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, |
5409 | modifier, task_dup); |
5410 | KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n" , gtid)); |
5411 | } |
5412 | |
5413 | /*! |
5414 | @ingroup TASKING |
5415 | @param gtid Global Thread ID of current thread |
5416 | @return Returns a pointer to the thread's current task async handle. If no task |
5417 | is present or gtid is invalid, returns NULL. |
5418 | |
5419 | Acqurires a pointer to the target async handle from the current task. |
5420 | */ |
5421 | void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) { |
5422 | if (gtid == KMP_GTID_DNE) |
5423 | return NULL; |
5424 | |
5425 | kmp_info_t *thread = __kmp_thread_from_gtid(gtid); |
5426 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
5427 | |
5428 | if (!taskdata) |
5429 | return NULL; |
5430 | |
5431 | return &taskdata->td_target_data.async_handle; |
5432 | } |
5433 | |
5434 | /*! |
5435 | @ingroup TASKING |
5436 | @param gtid Global Thread ID of current thread |
5437 | @return Returns TRUE if the current task being executed of the given thread has |
5438 | a task team allocated to it. Otherwise, returns FALSE. |
5439 | |
5440 | Checks if the current thread has a task team. |
5441 | */ |
5442 | bool __kmpc_omp_has_task_team(kmp_int32 gtid) { |
5443 | if (gtid == KMP_GTID_DNE) |
5444 | return FALSE; |
5445 | |
5446 | kmp_info_t *thread = __kmp_thread_from_gtid(gtid); |
5447 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
5448 | |
5449 | if (!taskdata) |
5450 | return FALSE; |
5451 | |
5452 | return taskdata->td_task_team != NULL; |
5453 | } |
5454 | |
5455 | #if OMPX_TASKGRAPH |
5456 | // __kmp_find_tdg: identify a TDG through its ID |
5457 | // tdg_id: ID of the TDG |
5458 | // returns: If a TDG corresponding to this ID is found and not |
5459 | // its initial state, return the pointer to it, otherwise nullptr |
5460 | static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) { |
5461 | kmp_tdg_info_t *res = nullptr; |
5462 | if (__kmp_max_tdgs == 0) |
5463 | return res; |
5464 | |
5465 | if (__kmp_global_tdgs == NULL) |
5466 | __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate( |
5467 | sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs); |
5468 | |
5469 | if ((__kmp_global_tdgs[tdg_id]) && |
5470 | (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE)) |
5471 | res = __kmp_global_tdgs[tdg_id]; |
5472 | return res; |
5473 | } |
5474 | |
5475 | // __kmp_print_tdg_dot: prints the TDG to a dot file |
5476 | // tdg: ID of the TDG |
5477 | // gtid: Global Thread ID |
5478 | void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg, kmp_int32 gtid) { |
5479 | kmp_int32 tdg_id = tdg->tdg_id; |
5480 | KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n" , gtid, tdg_id)); |
5481 | |
5482 | char file_name[20]; |
5483 | sprintf(file_name, "tdg_%d.dot" , tdg_id); |
5484 | kmp_safe_raii_file_t tdg_file(file_name, "w" ); |
5485 | |
5486 | kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); |
5487 | fprintf(tdg_file, |
5488 | "digraph TDG {\n" |
5489 | " compound=true\n" |
5490 | " subgraph cluster {\n" |
5491 | " label=TDG_%d\n" , |
5492 | tdg_id); |
5493 | for (kmp_int32 i = 0; i < num_tasks; i++) { |
5494 | fprintf(tdg_file, " %d[style=bold]\n" , i); |
5495 | } |
5496 | fprintf(tdg_file, " }\n" ); |
5497 | for (kmp_int32 i = 0; i < num_tasks; i++) { |
5498 | kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors; |
5499 | kmp_int32 *successors = tdg->record_map[i].successors; |
5500 | if (nsuccessors > 0) { |
5501 | for (kmp_int32 j = 0; j < nsuccessors; j++) |
5502 | fprintf(tdg_file, " %d -> %d \n" , i, successors[j]); |
5503 | } |
5504 | } |
5505 | fprintf(tdg_file, "}" ); |
5506 | KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n" , gtid, tdg_id)); |
5507 | } |
5508 | |
5509 | // __kmp_exec_tdg: launch the execution of a previous |
5510 | // recorded TDG |
5511 | // gtid: Global Thread ID |
5512 | // tdg: ID of the TDG |
5513 | void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) { |
5514 | KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY); |
5515 | KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n" , gtid, |
5516 | tdg->tdg_id, tdg->num_roots)); |
5517 | kmp_node_info_t *this_record_map = tdg->record_map; |
5518 | kmp_int32 *this_root_tasks = tdg->root_tasks; |
5519 | kmp_int32 this_num_roots = tdg->num_roots; |
5520 | kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); |
5521 | |
5522 | kmp_info_t *thread = __kmp_threads[gtid]; |
5523 | kmp_taskdata_t *parent_task = thread->th.th_current_task; |
5524 | |
5525 | if (tdg->rec_taskred_data) { |
5526 | __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data); |
5527 | } |
5528 | |
5529 | for (kmp_int32 j = 0; j < this_num_tasks; j++) { |
5530 | kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task); |
5531 | |
5532 | td->td_parent = parent_task; |
5533 | this_record_map[j].parent_task = parent_task; |
5534 | |
5535 | kmp_taskgroup_t *parent_taskgroup = |
5536 | this_record_map[j].parent_task->td_taskgroup; |
5537 | |
5538 | KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter, |
5539 | this_record_map[j].npredecessors); |
5540 | KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks); |
5541 | |
5542 | if (parent_taskgroup) { |
5543 | KMP_ATOMIC_INC(&parent_taskgroup->count); |
5544 | // The taskgroup is different so we must update it |
5545 | td->td_taskgroup = parent_taskgroup; |
5546 | } else if (td->td_taskgroup != nullptr) { |
5547 | // If the parent doesnt have a taskgroup, remove it from the task |
5548 | td->td_taskgroup = nullptr; |
5549 | } |
5550 | if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT) |
5551 | KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks); |
5552 | } |
5553 | |
5554 | for (kmp_int32 j = 0; j < this_num_roots; ++j) { |
5555 | __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true); |
5556 | } |
5557 | KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n" , gtid, |
5558 | tdg->tdg_id, tdg->num_roots)); |
5559 | } |
5560 | |
5561 | // __kmp_start_record: set up a TDG structure and turn the |
5562 | // recording flag to true |
5563 | // gtid: Global Thread ID of the encountering thread |
5564 | // input_flags: Flags associated with the TDG |
5565 | // tdg_id: ID of the TDG to record |
5566 | static inline void __kmp_start_record(kmp_int32 gtid, |
5567 | kmp_taskgraph_flags_t *flags, |
5568 | kmp_int32 tdg_id) { |
5569 | kmp_tdg_info_t *tdg = |
5570 | (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t)); |
5571 | __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg; |
5572 | // Initializing the TDG structure |
5573 | tdg->tdg_id = tdg_id; |
5574 | tdg->map_size = INIT_MAPSIZE; |
5575 | tdg->num_roots = -1; |
5576 | tdg->root_tasks = nullptr; |
5577 | tdg->tdg_status = KMP_TDG_RECORDING; |
5578 | tdg->rec_num_taskred = 0; |
5579 | tdg->rec_taskred_data = nullptr; |
5580 | KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0); |
5581 | |
5582 | // Initializing the list of nodes in this TDG |
5583 | kmp_node_info_t *this_record_map = |
5584 | (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t)); |
5585 | for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) { |
5586 | kmp_int32 *successorsList = |
5587 | (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32)); |
5588 | this_record_map[i].task = nullptr; |
5589 | this_record_map[i].successors = successorsList; |
5590 | this_record_map[i].nsuccessors = 0; |
5591 | this_record_map[i].npredecessors = 0; |
5592 | this_record_map[i].successors_size = __kmp_successors_size; |
5593 | KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0); |
5594 | } |
5595 | |
5596 | __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map; |
5597 | } |
5598 | |
5599 | // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark |
5600 | // the beginning of the record process of a task region |
5601 | // loc_ref: Location of TDG, not used yet |
5602 | // gtid: Global Thread ID of the encountering thread |
5603 | // input_flags: Flags associated with the TDG |
5604 | // tdg_id: ID of the TDG to record, for now, incremental integer |
5605 | // returns: 1 if we record, otherwise, 0 |
5606 | kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid, |
5607 | kmp_int32 input_flags, kmp_int32 tdg_id) { |
5608 | |
5609 | kmp_int32 res; |
5610 | kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags; |
5611 | KA_TRACE(10, |
5612 | ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n" , |
5613 | gtid, loc_ref, input_flags, tdg_id)); |
5614 | |
5615 | if (__kmp_max_tdgs == 0) { |
5616 | KA_TRACE( |
5617 | 10, |
5618 | ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, " |
5619 | "__kmp_max_tdgs = 0\n" , |
5620 | gtid, loc_ref, input_flags, tdg_id)); |
5621 | return 1; |
5622 | } |
5623 | |
5624 | __kmpc_taskgroup(loc_ref, gtid); |
5625 | if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) { |
5626 | // TODO: use re_record flag |
5627 | __kmp_exec_tdg(gtid, tdg); |
5628 | res = 0; |
5629 | } else { |
5630 | __kmp_curr_tdg_idx = tdg_id; |
5631 | KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs); |
5632 | __kmp_start_record(gtid, flags, tdg_id); |
5633 | __kmp_num_tdg++; |
5634 | res = 1; |
5635 | } |
5636 | KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n" , |
5637 | gtid, tdg_id, res ? "record" : "execute" )); |
5638 | return res; |
5639 | } |
5640 | |
5641 | // __kmp_end_record: set up a TDG after recording it |
5642 | // gtid: Global thread ID |
5643 | // tdg: Pointer to the TDG |
5644 | void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) { |
5645 | // Store roots |
5646 | kmp_node_info_t *this_record_map = tdg->record_map; |
5647 | kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); |
5648 | kmp_int32 *this_root_tasks = |
5649 | (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32)); |
5650 | kmp_int32 this_map_size = tdg->map_size; |
5651 | kmp_int32 this_num_roots = 0; |
5652 | kmp_info_t *thread = __kmp_threads[gtid]; |
5653 | |
5654 | for (kmp_int32 i = 0; i < this_num_tasks; i++) { |
5655 | if (this_record_map[i].npredecessors == 0) { |
5656 | this_root_tasks[this_num_roots++] = i; |
5657 | } |
5658 | } |
5659 | |
5660 | // Update with roots info and mapsize |
5661 | tdg->map_size = this_map_size; |
5662 | tdg->num_roots = this_num_roots; |
5663 | tdg->root_tasks = this_root_tasks; |
5664 | KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING); |
5665 | tdg->tdg_status = KMP_TDG_READY; |
5666 | |
5667 | if (thread->th.th_current_task->td_dephash) { |
5668 | __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash); |
5669 | thread->th.th_current_task->td_dephash = NULL; |
5670 | } |
5671 | |
5672 | // Reset predecessor counter |
5673 | for (kmp_int32 i = 0; i < this_num_tasks; i++) { |
5674 | KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, |
5675 | this_record_map[i].npredecessors); |
5676 | } |
5677 | KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0); |
5678 | |
5679 | if (__kmp_tdg_dot) |
5680 | __kmp_print_tdg_dot(tdg, gtid); |
5681 | } |
5682 | |
5683 | // __kmpc_end_record_task: wrapper around __kmp_end_record to mark |
5684 | // the end of recording phase |
5685 | // |
5686 | // loc_ref: Source location information |
5687 | // gtid: Global thread ID |
5688 | // input_flags: Flags attached to the graph |
5689 | // tdg_id: ID of the TDG just finished recording |
5690 | void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid, |
5691 | kmp_int32 input_flags, kmp_int32 tdg_id) { |
5692 | kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id); |
5693 | |
5694 | KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording" |
5695 | " tdg=%d with flags=%d\n" , |
5696 | gtid, loc_ref, tdg_id, input_flags)); |
5697 | if (__kmp_max_tdgs) { |
5698 | // TODO: use input_flags->nowait |
5699 | __kmpc_end_taskgroup(loc_ref, gtid); |
5700 | if (__kmp_tdg_is_recording(tdg->tdg_status)) |
5701 | __kmp_end_record(gtid, tdg); |
5702 | } |
5703 | KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording" |
5704 | " tdg=%d, its status is now READY\n" , |
5705 | gtid, loc_ref, tdg_id)); |
5706 | } |
5707 | #endif |
5708 | |