1 | /* |
2 | * kmp_tasking.cpp -- OpenMP 3.0 tasking support. |
3 | */ |
4 | |
5 | //===----------------------------------------------------------------------===// |
6 | // |
7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
8 | // See https://llvm.org/LICENSE.txt for license information. |
9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "kmp.h" |
14 | #include "kmp_i18n.h" |
15 | #include "kmp_itt.h" |
16 | #include "kmp_stats.h" |
17 | #include "kmp_wait_release.h" |
18 | #include "kmp_taskdeps.h" |
19 | |
20 | #if OMPT_SUPPORT |
21 | #include "ompt-specific.h" |
22 | #endif |
23 | |
24 | #if ENABLE_LIBOMPTARGET |
25 | static void (*tgt_target_nowait_query)(void **); |
26 | |
27 | void __kmp_init_target_task() { |
28 | *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query" ); |
29 | } |
30 | #endif |
31 | |
32 | /* forward declaration */ |
33 | static void __kmp_enable_tasking(kmp_task_team_t *task_team, |
34 | kmp_info_t *this_thr); |
35 | static void __kmp_alloc_task_deque(kmp_info_t *thread, |
36 | kmp_thread_data_t *thread_data); |
37 | static int __kmp_realloc_task_threads_data(kmp_info_t *thread, |
38 | kmp_task_team_t *task_team); |
39 | static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); |
40 | #if OMPX_TASKGRAPH |
41 | static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id); |
42 | int __kmp_taskloop_task(int gtid, void *ptask); |
43 | #endif |
44 | |
45 | #ifdef BUILD_TIED_TASK_STACK |
46 | |
47 | // __kmp_trace_task_stack: print the tied tasks from the task stack in order |
48 | // from top do bottom |
49 | // |
50 | // gtid: global thread identifier for thread containing stack |
51 | // thread_data: thread data for task team thread containing stack |
52 | // threshold: value above which the trace statement triggers |
53 | // location: string identifying call site of this function (for trace) |
54 | static void __kmp_trace_task_stack(kmp_int32 gtid, |
55 | kmp_thread_data_t *thread_data, |
56 | int threshold, char *location) { |
57 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
58 | kmp_taskdata_t **stack_top = task_stack->ts_top; |
59 | kmp_int32 entries = task_stack->ts_entries; |
60 | kmp_taskdata_t *tied_task; |
61 | |
62 | KA_TRACE( |
63 | threshold, |
64 | ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " |
65 | "first_block = %p, stack_top = %p \n" , |
66 | location, gtid, entries, task_stack->ts_first_block, stack_top)); |
67 | |
68 | KMP_DEBUG_ASSERT(stack_top != NULL); |
69 | KMP_DEBUG_ASSERT(entries > 0); |
70 | |
71 | while (entries != 0) { |
72 | KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); |
73 | // fix up ts_top if we need to pop from previous block |
74 | if (entries & TASK_STACK_INDEX_MASK == 0) { |
75 | kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); |
76 | |
77 | stack_block = stack_block->sb_prev; |
78 | stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; |
79 | } |
80 | |
81 | // finish bookkeeping |
82 | stack_top--; |
83 | entries--; |
84 | |
85 | tied_task = *stack_top; |
86 | |
87 | KMP_DEBUG_ASSERT(tied_task != NULL); |
88 | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); |
89 | |
90 | KA_TRACE(threshold, |
91 | ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " |
92 | "stack_top=%p, tied_task=%p\n" , |
93 | location, gtid, entries, stack_top, tied_task)); |
94 | } |
95 | KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); |
96 | |
97 | KA_TRACE(threshold, |
98 | ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n" , |
99 | location, gtid)); |
100 | } |
101 | |
102 | // __kmp_init_task_stack: initialize the task stack for the first time |
103 | // after a thread_data structure is created. |
104 | // It should not be necessary to do this again (assuming the stack works). |
105 | // |
106 | // gtid: global thread identifier of calling thread |
107 | // thread_data: thread data for task team thread containing stack |
108 | static void __kmp_init_task_stack(kmp_int32 gtid, |
109 | kmp_thread_data_t *thread_data) { |
110 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
111 | kmp_stack_block_t *first_block; |
112 | |
113 | // set up the first block of the stack |
114 | first_block = &task_stack->ts_first_block; |
115 | task_stack->ts_top = (kmp_taskdata_t **)first_block; |
116 | memset((void *)first_block, '\0', |
117 | TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); |
118 | |
119 | // initialize the stack to be empty |
120 | task_stack->ts_entries = TASK_STACK_EMPTY; |
121 | first_block->sb_next = NULL; |
122 | first_block->sb_prev = NULL; |
123 | } |
124 | |
125 | // __kmp_free_task_stack: free the task stack when thread_data is destroyed. |
126 | // |
127 | // gtid: global thread identifier for calling thread |
128 | // thread_data: thread info for thread containing stack |
129 | static void __kmp_free_task_stack(kmp_int32 gtid, |
130 | kmp_thread_data_t *thread_data) { |
131 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
132 | kmp_stack_block_t *stack_block = &task_stack->ts_first_block; |
133 | |
134 | KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); |
135 | // free from the second block of the stack |
136 | while (stack_block != NULL) { |
137 | kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; |
138 | |
139 | stack_block->sb_next = NULL; |
140 | stack_block->sb_prev = NULL; |
141 | if (stack_block != &task_stack->ts_first_block) { |
142 | __kmp_thread_free(thread, |
143 | stack_block); // free the block, if not the first |
144 | } |
145 | stack_block = next_block; |
146 | } |
147 | // initialize the stack to be empty |
148 | task_stack->ts_entries = 0; |
149 | task_stack->ts_top = NULL; |
150 | } |
151 | |
152 | // __kmp_push_task_stack: Push the tied task onto the task stack. |
153 | // Grow the stack if necessary by allocating another block. |
154 | // |
155 | // gtid: global thread identifier for calling thread |
156 | // thread: thread info for thread containing stack |
157 | // tied_task: the task to push on the stack |
158 | static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, |
159 | kmp_taskdata_t *tied_task) { |
160 | // GEH - need to consider what to do if tt_threads_data not allocated yet |
161 | kmp_thread_data_t *thread_data = |
162 | &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; |
163 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
164 | |
165 | if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { |
166 | return; // Don't push anything on stack if team or team tasks are serialized |
167 | } |
168 | |
169 | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); |
170 | KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); |
171 | |
172 | KA_TRACE(20, |
173 | ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n" , |
174 | gtid, thread, tied_task)); |
175 | // Store entry |
176 | *(task_stack->ts_top) = tied_task; |
177 | |
178 | // Do bookkeeping for next push |
179 | task_stack->ts_top++; |
180 | task_stack->ts_entries++; |
181 | |
182 | if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { |
183 | // Find beginning of this task block |
184 | kmp_stack_block_t *stack_block = |
185 | (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); |
186 | |
187 | // Check if we already have a block |
188 | if (stack_block->sb_next != |
189 | NULL) { // reset ts_top to beginning of next block |
190 | task_stack->ts_top = &stack_block->sb_next->sb_block[0]; |
191 | } else { // Alloc new block and link it up |
192 | kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( |
193 | thread, sizeof(kmp_stack_block_t)); |
194 | |
195 | task_stack->ts_top = &new_block->sb_block[0]; |
196 | stack_block->sb_next = new_block; |
197 | new_block->sb_prev = stack_block; |
198 | new_block->sb_next = NULL; |
199 | |
200 | KA_TRACE( |
201 | 30, |
202 | ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n" , |
203 | gtid, tied_task, new_block)); |
204 | } |
205 | } |
206 | KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n" , gtid, |
207 | tied_task)); |
208 | } |
209 | |
210 | // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return |
211 | // the task, just check to make sure it matches the ending task passed in. |
212 | // |
213 | // gtid: global thread identifier for the calling thread |
214 | // thread: thread info structure containing stack |
215 | // tied_task: the task popped off the stack |
216 | // ending_task: the task that is ending (should match popped task) |
217 | static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, |
218 | kmp_taskdata_t *ending_task) { |
219 | // GEH - need to consider what to do if tt_threads_data not allocated yet |
220 | kmp_thread_data_t *thread_data = |
221 | &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; |
222 | kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; |
223 | kmp_taskdata_t *tied_task; |
224 | |
225 | if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { |
226 | // Don't pop anything from stack if team or team tasks are serialized |
227 | return; |
228 | } |
229 | |
230 | KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); |
231 | KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); |
232 | |
233 | KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n" , gtid, |
234 | thread)); |
235 | |
236 | // fix up ts_top if we need to pop from previous block |
237 | if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { |
238 | kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); |
239 | |
240 | stack_block = stack_block->sb_prev; |
241 | task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; |
242 | } |
243 | |
244 | // finish bookkeeping |
245 | task_stack->ts_top--; |
246 | task_stack->ts_entries--; |
247 | |
248 | tied_task = *(task_stack->ts_top); |
249 | |
250 | KMP_DEBUG_ASSERT(tied_task != NULL); |
251 | KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); |
252 | KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly |
253 | |
254 | KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n" , gtid, |
255 | tied_task)); |
256 | return; |
257 | } |
258 | #endif /* BUILD_TIED_TASK_STACK */ |
259 | |
260 | // returns 1 if new task is allowed to execute, 0 otherwise |
261 | // checks Task Scheduling constraint (if requested) and |
262 | // mutexinoutset dependencies if any |
263 | static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, |
264 | const kmp_taskdata_t *tasknew, |
265 | const kmp_taskdata_t *taskcurr) { |
266 | if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { |
267 | // Check if the candidate obeys the Task Scheduling Constraints (TSC) |
268 | // only descendant of all deferred tied tasks can be scheduled, checking |
269 | // the last one is enough, as it in turn is the descendant of all others |
270 | kmp_taskdata_t *current = taskcurr->td_last_tied; |
271 | KMP_DEBUG_ASSERT(current != NULL); |
272 | // check if the task is not suspended on barrier |
273 | if (current->td_flags.tasktype == TASK_EXPLICIT || |
274 | current->td_taskwait_thread > 0) { // <= 0 on barrier |
275 | kmp_int32 level = current->td_level; |
276 | kmp_taskdata_t *parent = tasknew->td_parent; |
277 | while (parent != current && parent->td_level > level) { |
278 | // check generation up to the level of the current task |
279 | parent = parent->td_parent; |
280 | KMP_DEBUG_ASSERT(parent != NULL); |
281 | } |
282 | if (parent != current) |
283 | return false; |
284 | } |
285 | } |
286 | // Check mutexinoutset dependencies, acquire locks |
287 | kmp_depnode_t *node = tasknew->td_depnode; |
288 | #if OMPX_TASKGRAPH |
289 | if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { |
290 | #else |
291 | if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { |
292 | #endif |
293 | for (int i = 0; i < node->dn.mtx_num_locks; ++i) { |
294 | KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); |
295 | if (__kmp_test_lock(lck: node->dn.mtx_locks[i], gtid)) |
296 | continue; |
297 | // could not get the lock, release previous locks |
298 | for (int j = i - 1; j >= 0; --j) |
299 | __kmp_release_lock(lck: node->dn.mtx_locks[j], gtid); |
300 | return false; |
301 | } |
302 | // negative num_locks means all locks acquired successfully |
303 | node->dn.mtx_num_locks = -node->dn.mtx_num_locks; |
304 | } |
305 | return true; |
306 | } |
307 | |
308 | // __kmp_realloc_task_deque: |
309 | // Re-allocates a task deque for a particular thread, copies the content from |
310 | // the old deque and adjusts the necessary data structures relating to the |
311 | // deque. This operation must be done with the deque_lock being held |
312 | static void __kmp_realloc_task_deque(kmp_info_t *thread, |
313 | kmp_thread_data_t *thread_data) { |
314 | kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); |
315 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); |
316 | kmp_int32 new_size = 2 * size; |
317 | |
318 | KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " |
319 | "%d] for thread_data %p\n" , |
320 | __kmp_gtid_from_thread(thread), size, new_size, thread_data)); |
321 | |
322 | kmp_taskdata_t **new_deque = |
323 | (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); |
324 | |
325 | int i, j; |
326 | for (i = thread_data->td.td_deque_head, j = 0; j < size; |
327 | i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) |
328 | new_deque[j] = thread_data->td.td_deque[i]; |
329 | |
330 | __kmp_free(thread_data->td.td_deque); |
331 | |
332 | thread_data->td.td_deque_head = 0; |
333 | thread_data->td.td_deque_tail = size; |
334 | thread_data->td.td_deque = new_deque; |
335 | thread_data->td.td_deque_size = new_size; |
336 | } |
337 | |
338 | static kmp_task_pri_t *__kmp_alloc_task_pri_list() { |
339 | kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t)); |
340 | kmp_thread_data_t *thread_data = &l->td; |
341 | __kmp_init_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
342 | thread_data->td.td_deque_last_stolen = -1; |
343 | KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] " |
344 | "for thread_data %p\n" , |
345 | __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data)); |
346 | thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( |
347 | INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); |
348 | thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; |
349 | return l; |
350 | } |
351 | |
352 | // The function finds the deque of priority tasks with given priority, or |
353 | // allocates a new deque and put it into sorted (high -> low) list of deques. |
354 | // Deques of non-default priority tasks are shared between all threads in team, |
355 | // as opposed to per-thread deques of tasks with default priority. |
356 | // The function is called under the lock task_team->tt.tt_task_pri_lock. |
357 | static kmp_thread_data_t * |
358 | __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) { |
359 | kmp_thread_data_t *thread_data; |
360 | kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; |
361 | if (lst->priority == pri) { |
362 | // Found queue of tasks with given priority. |
363 | thread_data = &lst->td; |
364 | } else if (lst->priority < pri) { |
365 | // All current priority queues contain tasks with lower priority. |
366 | // Allocate new one for given priority tasks. |
367 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
368 | thread_data = &list->td; |
369 | list->priority = pri; |
370 | list->next = lst; |
371 | task_team->tt.tt_task_pri_list = list; |
372 | } else { // task_team->tt.tt_task_pri_list->priority > pri |
373 | kmp_task_pri_t *next_queue = lst->next; |
374 | while (next_queue && next_queue->priority > pri) { |
375 | lst = next_queue; |
376 | next_queue = lst->next; |
377 | } |
378 | // lst->priority > pri && (next == NULL || pri >= next->priority) |
379 | if (next_queue == NULL) { |
380 | // No queue with pri priority, need to allocate new one. |
381 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
382 | thread_data = &list->td; |
383 | list->priority = pri; |
384 | list->next = NULL; |
385 | lst->next = list; |
386 | } else if (next_queue->priority == pri) { |
387 | // Found queue of tasks with given priority. |
388 | thread_data = &next_queue->td; |
389 | } else { // lst->priority > pri > next->priority |
390 | // insert newly allocated between existed queues |
391 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
392 | thread_data = &list->td; |
393 | list->priority = pri; |
394 | list->next = next_queue; |
395 | lst->next = list; |
396 | } |
397 | } |
398 | return thread_data; |
399 | } |
400 | |
401 | // __kmp_push_priority_task: Add a task to the team's priority task deque |
402 | static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread, |
403 | kmp_taskdata_t *taskdata, |
404 | kmp_task_team_t *task_team, |
405 | kmp_int32 pri) { |
406 | kmp_thread_data_t *thread_data = NULL; |
407 | KA_TRACE(20, |
408 | ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n" , |
409 | gtid, taskdata, pri)); |
410 | |
411 | // Find task queue specific to priority value |
412 | kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; |
413 | if (UNLIKELY(lst == NULL)) { |
414 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
415 | if (task_team->tt.tt_task_pri_list == NULL) { |
416 | // List of queues is still empty, allocate one. |
417 | kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); |
418 | thread_data = &list->td; |
419 | list->priority = pri; |
420 | list->next = NULL; |
421 | task_team->tt.tt_task_pri_list = list; |
422 | } else { |
423 | // Other thread initialized a queue. Check if it fits and get thread_data. |
424 | thread_data = __kmp_get_priority_deque_data(task_team, pri); |
425 | } |
426 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
427 | } else { |
428 | if (lst->priority == pri) { |
429 | // Found queue of tasks with given priority. |
430 | thread_data = &lst->td; |
431 | } else { |
432 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
433 | thread_data = __kmp_get_priority_deque_data(task_team, pri); |
434 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
435 | } |
436 | } |
437 | KMP_DEBUG_ASSERT(thread_data); |
438 | |
439 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
440 | // Check if deque is full |
441 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
442 | TASK_DEQUE_SIZE(thread_data->td)) { |
443 | if (__kmp_enable_task_throttling && |
444 | __kmp_task_is_allowed(gtid, is_constrained: __kmp_task_stealing_constraint, tasknew: taskdata, |
445 | taskcurr: thread->th.th_current_task)) { |
446 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
447 | KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning " |
448 | "TASK_NOT_PUSHED for task %p\n" , |
449 | gtid, taskdata)); |
450 | return TASK_NOT_PUSHED; |
451 | } else { |
452 | // expand deque to push the task which is not allowed to execute |
453 | __kmp_realloc_task_deque(thread, thread_data); |
454 | } |
455 | } |
456 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < |
457 | TASK_DEQUE_SIZE(thread_data->td)); |
458 | // Push taskdata. |
459 | thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; |
460 | // Wrap index. |
461 | thread_data->td.td_deque_tail = |
462 | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); |
463 | TCW_4(thread_data->td.td_deque_ntasks, |
464 | TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count |
465 | KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self |
466 | KMP_FSYNC_RELEASING(taskdata); // releasing child |
467 | KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning " |
468 | "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n" , |
469 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
470 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
471 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
472 | task_team->tt.tt_num_task_pri++; // atomic inc |
473 | return TASK_SUCCESSFULLY_PUSHED; |
474 | } |
475 | |
476 | // __kmp_push_task: Add a task to the thread's deque |
477 | static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { |
478 | kmp_info_t *thread = __kmp_threads[gtid]; |
479 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
480 | |
481 | // If we encounter a hidden helper task, and the current thread is not a |
482 | // hidden helper thread, we have to give the task to any hidden helper thread |
483 | // starting from its shadow one. |
484 | if (UNLIKELY(taskdata->td_flags.hidden_helper && |
485 | !KMP_HIDDEN_HELPER_THREAD(gtid))) { |
486 | kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid); |
487 | __kmpc_give_task(ptask: task, start: __kmp_tid_from_gtid(gtid: shadow_gtid)); |
488 | // Signal the hidden helper threads. |
489 | __kmp_hidden_helper_worker_thread_signal(); |
490 | return TASK_SUCCESSFULLY_PUSHED; |
491 | } |
492 | |
493 | kmp_task_team_t *task_team = thread->th.th_task_team; |
494 | kmp_int32 tid = __kmp_tid_from_gtid(gtid); |
495 | kmp_thread_data_t *thread_data; |
496 | |
497 | KA_TRACE(20, |
498 | ("__kmp_push_task: T#%d trying to push task %p.\n" , gtid, taskdata)); |
499 | |
500 | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { |
501 | // untied task needs to increment counter so that the task structure is not |
502 | // freed prematurely |
503 | kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); |
504 | KMP_DEBUG_USE_VAR(counter); |
505 | KA_TRACE( |
506 | 20, |
507 | ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n" , |
508 | gtid, counter, taskdata)); |
509 | } |
510 | |
511 | // The first check avoids building task_team thread data if serialized |
512 | if (UNLIKELY(taskdata->td_flags.task_serial)) { |
513 | KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " |
514 | "TASK_NOT_PUSHED for task %p\n" , |
515 | gtid, taskdata)); |
516 | return TASK_NOT_PUSHED; |
517 | } |
518 | |
519 | // Now that serialized tasks have returned, we can assume that we are not in |
520 | // immediate exec mode |
521 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
522 | if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { |
523 | __kmp_enable_tasking(task_team, this_thr: thread); |
524 | } |
525 | KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); |
526 | KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); |
527 | |
528 | if (taskdata->td_flags.priority_specified && task->data2.priority > 0 && |
529 | __kmp_max_task_priority > 0) { |
530 | int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority); |
531 | return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri); |
532 | } |
533 | |
534 | // Find tasking deque specific to encountering thread |
535 | thread_data = &task_team->tt.tt_threads_data[tid]; |
536 | |
537 | // No lock needed since only owner can allocate. If the task is hidden_helper, |
538 | // we don't need it either because we have initialized the dequeue for hidden |
539 | // helper thread data. |
540 | if (UNLIKELY(thread_data->td.td_deque == NULL)) { |
541 | __kmp_alloc_task_deque(thread, thread_data); |
542 | } |
543 | |
544 | int locked = 0; |
545 | // Check if deque is full |
546 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
547 | TASK_DEQUE_SIZE(thread_data->td)) { |
548 | if (__kmp_enable_task_throttling && |
549 | __kmp_task_is_allowed(gtid, is_constrained: __kmp_task_stealing_constraint, tasknew: taskdata, |
550 | taskcurr: thread->th.th_current_task)) { |
551 | KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " |
552 | "TASK_NOT_PUSHED for task %p\n" , |
553 | gtid, taskdata)); |
554 | return TASK_NOT_PUSHED; |
555 | } else { |
556 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
557 | locked = 1; |
558 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
559 | TASK_DEQUE_SIZE(thread_data->td)) { |
560 | // expand deque to push the task which is not allowed to execute |
561 | __kmp_realloc_task_deque(thread, thread_data); |
562 | } |
563 | } |
564 | } |
565 | // Lock the deque for the task push operation |
566 | if (!locked) { |
567 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
568 | // Need to recheck as we can get a proxy task from thread outside of OpenMP |
569 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
570 | TASK_DEQUE_SIZE(thread_data->td)) { |
571 | if (__kmp_enable_task_throttling && |
572 | __kmp_task_is_allowed(gtid, is_constrained: __kmp_task_stealing_constraint, tasknew: taskdata, |
573 | taskcurr: thread->th.th_current_task)) { |
574 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
575 | KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " |
576 | "returning TASK_NOT_PUSHED for task %p\n" , |
577 | gtid, taskdata)); |
578 | return TASK_NOT_PUSHED; |
579 | } else { |
580 | // expand deque to push the task which is not allowed to execute |
581 | __kmp_realloc_task_deque(thread, thread_data); |
582 | } |
583 | } |
584 | } |
585 | // Must have room since no thread can add tasks but calling thread |
586 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < |
587 | TASK_DEQUE_SIZE(thread_data->td)); |
588 | |
589 | thread_data->td.td_deque[thread_data->td.td_deque_tail] = |
590 | taskdata; // Push taskdata |
591 | // Wrap index. |
592 | thread_data->td.td_deque_tail = |
593 | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); |
594 | TCW_4(thread_data->td.td_deque_ntasks, |
595 | TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count |
596 | KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self |
597 | KMP_FSYNC_RELEASING(taskdata); // releasing child |
598 | KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " |
599 | "task=%p ntasks=%d head=%u tail=%u\n" , |
600 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
601 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
602 | |
603 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
604 | |
605 | return TASK_SUCCESSFULLY_PUSHED; |
606 | } |
607 | |
608 | // __kmp_pop_current_task_from_thread: set up current task from called thread |
609 | // when team ends |
610 | // |
611 | // this_thr: thread structure to set current_task in. |
612 | void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { |
613 | KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " |
614 | "this_thread=%p, curtask=%p, " |
615 | "curtask_parent=%p\n" , |
616 | 0, this_thr, this_thr->th.th_current_task, |
617 | this_thr->th.th_current_task->td_parent)); |
618 | |
619 | this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; |
620 | |
621 | KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " |
622 | "this_thread=%p, curtask=%p, " |
623 | "curtask_parent=%p\n" , |
624 | 0, this_thr, this_thr->th.th_current_task, |
625 | this_thr->th.th_current_task->td_parent)); |
626 | } |
627 | |
628 | // __kmp_push_current_task_to_thread: set up current task in called thread for a |
629 | // new team |
630 | // |
631 | // this_thr: thread structure to set up |
632 | // team: team for implicit task data |
633 | // tid: thread within team to set up |
634 | void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, |
635 | int tid) { |
636 | // current task of the thread is a parent of the new just created implicit |
637 | // tasks of new team |
638 | KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " |
639 | "curtask=%p " |
640 | "parent_task=%p\n" , |
641 | tid, this_thr, this_thr->th.th_current_task, |
642 | team->t.t_implicit_task_taskdata[tid].td_parent)); |
643 | |
644 | KMP_DEBUG_ASSERT(this_thr != NULL); |
645 | |
646 | if (tid == 0) { |
647 | if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { |
648 | team->t.t_implicit_task_taskdata[0].td_parent = |
649 | this_thr->th.th_current_task; |
650 | this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; |
651 | } |
652 | } else { |
653 | team->t.t_implicit_task_taskdata[tid].td_parent = |
654 | team->t.t_implicit_task_taskdata[0].td_parent; |
655 | this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; |
656 | } |
657 | |
658 | KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " |
659 | "curtask=%p " |
660 | "parent_task=%p\n" , |
661 | tid, this_thr, this_thr->th.th_current_task, |
662 | team->t.t_implicit_task_taskdata[tid].td_parent)); |
663 | } |
664 | |
665 | // __kmp_task_start: bookkeeping for a task starting execution |
666 | // |
667 | // GTID: global thread id of calling thread |
668 | // task: task starting execution |
669 | // current_task: task suspending |
670 | static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, |
671 | kmp_taskdata_t *current_task) { |
672 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
673 | kmp_info_t *thread = __kmp_threads[gtid]; |
674 | |
675 | KA_TRACE(10, |
676 | ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n" , |
677 | gtid, taskdata, current_task)); |
678 | |
679 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
680 | |
681 | // mark currently executing task as suspended |
682 | // TODO: GEH - make sure root team implicit task is initialized properly. |
683 | // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); |
684 | current_task->td_flags.executing = 0; |
685 | |
686 | // Add task to stack if tied |
687 | #ifdef BUILD_TIED_TASK_STACK |
688 | if (taskdata->td_flags.tiedness == TASK_TIED) { |
689 | __kmp_push_task_stack(gtid, thread, taskdata); |
690 | } |
691 | #endif /* BUILD_TIED_TASK_STACK */ |
692 | |
693 | // mark starting task as executing and as current task |
694 | thread->th.th_current_task = taskdata; |
695 | |
696 | KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || |
697 | taskdata->td_flags.tiedness == TASK_UNTIED); |
698 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || |
699 | taskdata->td_flags.tiedness == TASK_UNTIED); |
700 | taskdata->td_flags.started = 1; |
701 | taskdata->td_flags.executing = 1; |
702 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); |
703 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
704 | |
705 | // GEH TODO: shouldn't we pass some sort of location identifier here? |
706 | // APT: yes, we will pass location here. |
707 | // need to store current thread state (in a thread or taskdata structure) |
708 | // before setting work_state, otherwise wrong state is set after end of task |
709 | |
710 | KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n" , gtid, taskdata)); |
711 | |
712 | return; |
713 | } |
714 | |
715 | #if OMPT_SUPPORT |
716 | //------------------------------------------------------------------------------ |
717 | // __ompt_task_init: |
718 | // Initialize OMPT fields maintained by a task. This will only be called after |
719 | // ompt_start_tool, so we already know whether ompt is enabled or not. |
720 | |
721 | static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { |
722 | // The calls to __ompt_task_init already have the ompt_enabled condition. |
723 | task->ompt_task_info.task_data.value = 0; |
724 | task->ompt_task_info.frame.exit_frame = ompt_data_none; |
725 | task->ompt_task_info.frame.enter_frame = ompt_data_none; |
726 | task->ompt_task_info.frame.exit_frame_flags = |
727 | ompt_frame_runtime | ompt_frame_framepointer; |
728 | task->ompt_task_info.frame.enter_frame_flags = |
729 | ompt_frame_runtime | ompt_frame_framepointer; |
730 | task->ompt_task_info.dispatch_chunk.start = 0; |
731 | task->ompt_task_info.dispatch_chunk.iterations = 0; |
732 | } |
733 | |
734 | // __ompt_task_start: |
735 | // Build and trigger task-begin event |
736 | static inline void __ompt_task_start(kmp_task_t *task, |
737 | kmp_taskdata_t *current_task, |
738 | kmp_int32 gtid) { |
739 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
740 | ompt_task_status_t status = ompt_task_switch; |
741 | if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { |
742 | status = ompt_task_yield; |
743 | __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; |
744 | } |
745 | /* let OMPT know that we're about to run this task */ |
746 | if (ompt_enabled.ompt_callback_task_schedule) { |
747 | ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( |
748 | &(current_task->ompt_task_info.task_data), status, |
749 | &(taskdata->ompt_task_info.task_data)); |
750 | } |
751 | taskdata->ompt_task_info.scheduling_parent = current_task; |
752 | } |
753 | |
754 | // __ompt_task_finish: |
755 | // Build and trigger final task-schedule event |
756 | static inline void __ompt_task_finish(kmp_task_t *task, |
757 | kmp_taskdata_t *resumed_task, |
758 | ompt_task_status_t status) { |
759 | if (ompt_enabled.ompt_callback_task_schedule) { |
760 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
761 | if (__kmp_omp_cancellation && taskdata->td_taskgroup && |
762 | taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { |
763 | status = ompt_task_cancel; |
764 | } |
765 | |
766 | /* let OMPT know that we're returning to the callee task */ |
767 | ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( |
768 | &(taskdata->ompt_task_info.task_data), status, |
769 | (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); |
770 | } |
771 | } |
772 | #endif |
773 | |
774 | template <bool ompt> |
775 | static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, |
776 | kmp_task_t *task, |
777 | void *frame_address, |
778 | void *return_address) { |
779 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
780 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
781 | |
782 | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " |
783 | "current_task=%p\n" , |
784 | gtid, loc_ref, taskdata, current_task)); |
785 | |
786 | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { |
787 | // untied task needs to increment counter so that the task structure is not |
788 | // freed prematurely |
789 | kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); |
790 | KMP_DEBUG_USE_VAR(counter); |
791 | KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " |
792 | "incremented for task %p\n" , |
793 | gtid, counter, taskdata)); |
794 | } |
795 | |
796 | taskdata->td_flags.task_serial = |
797 | 1; // Execute this task immediately, not deferred. |
798 | __kmp_task_start(gtid, task, current_task); |
799 | |
800 | #if OMPT_SUPPORT |
801 | if (ompt) { |
802 | if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { |
803 | current_task->ompt_task_info.frame.enter_frame.ptr = |
804 | taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; |
805 | current_task->ompt_task_info.frame.enter_frame_flags = |
806 | taskdata->ompt_task_info.frame.exit_frame_flags = |
807 | ompt_frame_application | ompt_frame_framepointer; |
808 | } |
809 | if (ompt_enabled.ompt_callback_task_create) { |
810 | ompt_task_info_t *parent_info = &(current_task->ompt_task_info); |
811 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
812 | &(parent_info->task_data), &(parent_info->frame), |
813 | &(taskdata->ompt_task_info.task_data), |
814 | ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, |
815 | return_address); |
816 | } |
817 | __ompt_task_start(task, current_task, gtid); |
818 | } |
819 | #endif // OMPT_SUPPORT |
820 | |
821 | KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n" , gtid, |
822 | loc_ref, taskdata)); |
823 | } |
824 | |
825 | #if OMPT_SUPPORT |
826 | OMPT_NOINLINE |
827 | static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, |
828 | kmp_task_t *task, |
829 | void *frame_address, |
830 | void *return_address) { |
831 | __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, |
832 | return_address); |
833 | } |
834 | #endif // OMPT_SUPPORT |
835 | |
836 | // __kmpc_omp_task_begin_if0: report that a given serialized task has started |
837 | // execution |
838 | // |
839 | // loc_ref: source location information; points to beginning of task block. |
840 | // gtid: global thread number. |
841 | // task: task thunk for the started task. |
842 | #ifdef __s390x__ |
843 | // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x. |
844 | // In order for it to work correctly, the caller also needs to be compiled with |
845 | // backchain. If a caller is compiled without backchain, |
846 | // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not |
847 | // crash. |
848 | __attribute__((target("backchain" ))) |
849 | #endif |
850 | void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, |
851 | kmp_task_t *task) { |
852 | #if OMPT_SUPPORT |
853 | if (UNLIKELY(ompt_enabled.enabled)) { |
854 | OMPT_STORE_RETURN_ADDRESS(gtid); |
855 | __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, |
856 | OMPT_GET_FRAME_ADDRESS(1), |
857 | OMPT_LOAD_RETURN_ADDRESS(gtid)); |
858 | return; |
859 | } |
860 | #endif |
861 | __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); |
862 | } |
863 | |
864 | #ifdef TASK_UNUSED |
865 | // __kmpc_omp_task_begin: report that a given task has started execution |
866 | // NEVER GENERATED BY COMPILER, DEPRECATED!!! |
867 | void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { |
868 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
869 | |
870 | KA_TRACE( |
871 | 10, |
872 | ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n" , |
873 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); |
874 | |
875 | __kmp_task_start(gtid, task, current_task); |
876 | |
877 | KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n" , gtid, |
878 | loc_ref, KMP_TASK_TO_TASKDATA(task))); |
879 | return; |
880 | } |
881 | #endif // TASK_UNUSED |
882 | |
883 | // __kmp_free_task: free the current task space and the space for shareds |
884 | // |
885 | // gtid: Global thread ID of calling thread |
886 | // taskdata: task to free |
887 | // thread: thread data structure of caller |
888 | static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, |
889 | kmp_info_t *thread) { |
890 | KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n" , gtid, |
891 | taskdata)); |
892 | |
893 | // Check to make sure all flags and counters have the correct values |
894 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
895 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); |
896 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); |
897 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
898 | KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || |
899 | taskdata->td_flags.task_serial == 1); |
900 | KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); |
901 | kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata); |
902 | // Clear data to not be re-used later by mistake. |
903 | task->data1.destructors = NULL; |
904 | task->data2.priority = 0; |
905 | |
906 | taskdata->td_flags.freed = 1; |
907 | #if OMPX_TASKGRAPH |
908 | // do not free tasks in taskgraph |
909 | if (!taskdata->is_taskgraph) { |
910 | #endif |
911 | // deallocate the taskdata and shared variable blocks associated with this task |
912 | #if USE_FAST_MEMORY |
913 | __kmp_fast_free(thread, taskdata); |
914 | #else /* ! USE_FAST_MEMORY */ |
915 | __kmp_thread_free(thread, taskdata); |
916 | #endif |
917 | #if OMPX_TASKGRAPH |
918 | } else { |
919 | taskdata->td_flags.complete = 0; |
920 | taskdata->td_flags.started = 0; |
921 | taskdata->td_flags.freed = 0; |
922 | taskdata->td_flags.executing = 0; |
923 | taskdata->td_flags.task_serial = |
924 | (taskdata->td_parent->td_flags.final || |
925 | taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser); |
926 | |
927 | // taskdata->td_allow_completion_event.pending_events_count = 1; |
928 | KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); |
929 | KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); |
930 | // start at one because counts current task and children |
931 | KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); |
932 | } |
933 | #endif |
934 | |
935 | KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n" , gtid, taskdata)); |
936 | } |
937 | |
938 | // __kmp_free_task_and_ancestors: free the current task and ancestors without |
939 | // children |
940 | // |
941 | // gtid: Global thread ID of calling thread |
942 | // taskdata: task to free |
943 | // thread: thread data structure of caller |
944 | static void __kmp_free_task_and_ancestors(kmp_int32 gtid, |
945 | kmp_taskdata_t *taskdata, |
946 | kmp_info_t *thread) { |
947 | // Proxy tasks must always be allowed to free their parents |
948 | // because they can be run in background even in serial mode. |
949 | kmp_int32 team_serial = |
950 | (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && |
951 | !taskdata->td_flags.proxy; |
952 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
953 | |
954 | kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; |
955 | KMP_DEBUG_ASSERT(children >= 0); |
956 | |
957 | // Now, go up the ancestor tree to see if any ancestors can now be freed. |
958 | while (children == 0) { |
959 | kmp_taskdata_t *parent_taskdata = taskdata->td_parent; |
960 | |
961 | KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " |
962 | "and freeing itself\n" , |
963 | gtid, taskdata)); |
964 | |
965 | // --- Deallocate my ancestor task --- |
966 | __kmp_free_task(gtid, taskdata, thread); |
967 | |
968 | taskdata = parent_taskdata; |
969 | |
970 | if (team_serial) |
971 | return; |
972 | // Stop checking ancestors at implicit task instead of walking up ancestor |
973 | // tree to avoid premature deallocation of ancestors. |
974 | if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { |
975 | if (taskdata->td_dephash) { // do we need to cleanup dephash? |
976 | int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); |
977 | kmp_tasking_flags_t flags_old = taskdata->td_flags; |
978 | if (children == 0 && flags_old.complete == 1) { |
979 | kmp_tasking_flags_t flags_new = flags_old; |
980 | flags_new.complete = 0; |
981 | if (KMP_COMPARE_AND_STORE_ACQ32( |
982 | RCAST(kmp_int32 *, &taskdata->td_flags), |
983 | *RCAST(kmp_int32 *, &flags_old), |
984 | *RCAST(kmp_int32 *, &flags_new))) { |
985 | KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " |
986 | "dephash of implicit task %p\n" , |
987 | gtid, taskdata)); |
988 | // cleanup dephash of finished implicit task |
989 | __kmp_dephash_free_entries(thread, h: taskdata->td_dephash); |
990 | } |
991 | } |
992 | } |
993 | return; |
994 | } |
995 | // Predecrement simulated by "- 1" calculation |
996 | children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; |
997 | KMP_DEBUG_ASSERT(children >= 0); |
998 | } |
999 | |
1000 | KA_TRACE( |
1001 | 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " |
1002 | "not freeing it yet\n" , |
1003 | gtid, taskdata, children)); |
1004 | } |
1005 | |
1006 | // Only need to keep track of child task counts if any of the following: |
1007 | // 1. team parallel and tasking not serialized; |
1008 | // 2. it is a proxy or detachable or hidden helper task |
1009 | // 3. the children counter of its parent task is greater than 0. |
1010 | // The reason for the 3rd one is for serialized team that found detached task, |
1011 | // hidden helper task, T. In this case, the execution of T is still deferred, |
1012 | // and it is also possible that a regular task depends on T. In this case, if we |
1013 | // don't track the children, task synchronization will be broken. |
1014 | static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) { |
1015 | kmp_tasking_flags_t flags = taskdata->td_flags; |
1016 | bool ret = !(flags.team_serial || flags.tasking_ser); |
1017 | ret = ret || flags.proxy == TASK_PROXY || |
1018 | flags.detachable == TASK_DETACHABLE || flags.hidden_helper; |
1019 | ret = ret || |
1020 | KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0; |
1021 | #if OMPX_TASKGRAPH |
1022 | if (taskdata->td_taskgroup && taskdata->is_taskgraph) |
1023 | ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0; |
1024 | #endif |
1025 | return ret; |
1026 | } |
1027 | |
1028 | // __kmp_task_finish: bookkeeping to do when a task finishes execution |
1029 | // |
1030 | // gtid: global thread ID for calling thread |
1031 | // task: task to be finished |
1032 | // resumed_task: task to be resumed. (may be NULL if task is serialized) |
1033 | // |
1034 | // template<ompt>: effectively ompt_enabled.enabled!=0 |
1035 | // the version with ompt=false is inlined, allowing to optimize away all ompt |
1036 | // code in this case |
1037 | template <bool ompt> |
1038 | static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, |
1039 | kmp_taskdata_t *resumed_task) { |
1040 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
1041 | kmp_info_t *thread = __kmp_threads[gtid]; |
1042 | kmp_task_team_t *task_team = |
1043 | thread->th.th_task_team; // might be NULL for serial teams... |
1044 | #if OMPX_TASKGRAPH |
1045 | // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop |
1046 | bool is_taskgraph; |
1047 | #endif |
1048 | #if KMP_DEBUG |
1049 | kmp_int32 children = 0; |
1050 | #endif |
1051 | KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " |
1052 | "task %p\n" , |
1053 | gtid, taskdata, resumed_task)); |
1054 | |
1055 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
1056 | |
1057 | #if OMPX_TASKGRAPH |
1058 | is_taskgraph = taskdata->is_taskgraph; |
1059 | #endif |
1060 | |
1061 | // Pop task from stack if tied |
1062 | #ifdef BUILD_TIED_TASK_STACK |
1063 | if (taskdata->td_flags.tiedness == TASK_TIED) { |
1064 | __kmp_pop_task_stack(gtid, thread, taskdata); |
1065 | } |
1066 | #endif /* BUILD_TIED_TASK_STACK */ |
1067 | |
1068 | if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { |
1069 | // untied task needs to check the counter so that the task structure is not |
1070 | // freed prematurely |
1071 | kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; |
1072 | KA_TRACE( |
1073 | 20, |
1074 | ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n" , |
1075 | gtid, counter, taskdata)); |
1076 | if (counter > 0) { |
1077 | // untied task is not done, to be continued possibly by other thread, do |
1078 | // not free it now |
1079 | if (resumed_task == NULL) { |
1080 | KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); |
1081 | resumed_task = taskdata->td_parent; // In a serialized task, the resumed |
1082 | // task is the parent |
1083 | } |
1084 | thread->th.th_current_task = resumed_task; // restore current_task |
1085 | resumed_task->td_flags.executing = 1; // resume previous task |
1086 | KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " |
1087 | "resuming task %p\n" , |
1088 | gtid, taskdata, resumed_task)); |
1089 | return; |
1090 | } |
1091 | } |
1092 | |
1093 | // bookkeeping for resuming task: |
1094 | // GEH - note tasking_ser => task_serial |
1095 | KMP_DEBUG_ASSERT( |
1096 | (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == |
1097 | taskdata->td_flags.task_serial); |
1098 | if (taskdata->td_flags.task_serial) { |
1099 | if (resumed_task == NULL) { |
1100 | resumed_task = taskdata->td_parent; // In a serialized task, the resumed |
1101 | // task is the parent |
1102 | } |
1103 | } else { |
1104 | KMP_DEBUG_ASSERT(resumed_task != |
1105 | NULL); // verify that resumed task is passed as argument |
1106 | } |
1107 | |
1108 | /* If the tasks' destructor thunk flag has been set, we need to invoke the |
1109 | destructor thunk that has been generated by the compiler. The code is |
1110 | placed here, since at this point other tasks might have been released |
1111 | hence overlapping the destructor invocations with some other work in the |
1112 | released tasks. The OpenMP spec is not specific on when the destructors |
1113 | are invoked, so we should be free to choose. */ |
1114 | if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { |
1115 | kmp_routine_entry_t destr_thunk = task->data1.destructors; |
1116 | KMP_ASSERT(destr_thunk); |
1117 | destr_thunk(gtid, task); |
1118 | } |
1119 | |
1120 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); |
1121 | KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); |
1122 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
1123 | |
1124 | bool completed = true; |
1125 | if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { |
1126 | if (taskdata->td_allow_completion_event.type == |
1127 | KMP_EVENT_ALLOW_COMPLETION) { |
1128 | // event hasn't been fulfilled yet. Try to detach task. |
1129 | __kmp_acquire_tas_lock(lck: &taskdata->td_allow_completion_event.lock, gtid); |
1130 | if (taskdata->td_allow_completion_event.type == |
1131 | KMP_EVENT_ALLOW_COMPLETION) { |
1132 | // task finished execution |
1133 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); |
1134 | taskdata->td_flags.executing = 0; // suspend the finishing task |
1135 | |
1136 | #if OMPT_SUPPORT |
1137 | // For a detached task, which is not completed, we switch back |
1138 | // the omp_fulfill_event signals completion |
1139 | // locking is necessary to avoid a race with ompt_task_late_fulfill |
1140 | if (ompt) |
1141 | __ompt_task_finish(task, resumed_task, status: ompt_task_detach); |
1142 | #endif |
1143 | |
1144 | // no access to taskdata after this point! |
1145 | // __kmp_fulfill_event might free taskdata at any time from now |
1146 | |
1147 | taskdata->td_flags.proxy = TASK_PROXY; // proxify! |
1148 | completed = false; |
1149 | } |
1150 | __kmp_release_tas_lock(lck: &taskdata->td_allow_completion_event.lock, gtid); |
1151 | } |
1152 | } |
1153 | |
1154 | // Tasks with valid target async handles must be re-enqueued. |
1155 | if (taskdata->td_target_data.async_handle != NULL) { |
1156 | // Note: no need to translate gtid to its shadow. If the current thread is a |
1157 | // hidden helper one, then the gtid is already correct. Otherwise, hidden |
1158 | // helper threads are disabled, and gtid refers to a OpenMP thread. |
1159 | __kmpc_give_task(ptask: task, start: __kmp_tid_from_gtid(gtid)); |
1160 | if (KMP_HIDDEN_HELPER_THREAD(gtid)) |
1161 | __kmp_hidden_helper_worker_thread_signal(); |
1162 | completed = false; |
1163 | } |
1164 | |
1165 | if (completed) { |
1166 | taskdata->td_flags.complete = 1; // mark the task as completed |
1167 | #if OMPX_TASKGRAPH |
1168 | taskdata->td_flags.onced = 1; // mark the task as ran once already |
1169 | #endif |
1170 | |
1171 | #if OMPT_SUPPORT |
1172 | // This is not a detached task, we are done here |
1173 | if (ompt) |
1174 | __ompt_task_finish(task, resumed_task, status: ompt_task_complete); |
1175 | #endif |
1176 | // TODO: What would be the balance between the conditions in the function |
1177 | // and an atomic operation? |
1178 | if (__kmp_track_children_task(taskdata)) { |
1179 | __kmp_release_deps(gtid, task: taskdata); |
1180 | // Predecrement simulated by "- 1" calculation |
1181 | #if KMP_DEBUG |
1182 | children = -1 + |
1183 | #endif |
1184 | KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); |
1185 | KMP_DEBUG_ASSERT(children >= 0); |
1186 | #if OMPX_TASKGRAPH |
1187 | if (taskdata->td_taskgroup && !taskdata->is_taskgraph) |
1188 | #else |
1189 | if (taskdata->td_taskgroup) |
1190 | #endif |
1191 | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); |
1192 | } else if (task_team && (task_team->tt.tt_found_proxy_tasks || |
1193 | task_team->tt.tt_hidden_helper_task_encountered)) { |
1194 | // if we found proxy or hidden helper tasks there could exist a dependency |
1195 | // chain with the proxy task as origin |
1196 | __kmp_release_deps(gtid, task: taskdata); |
1197 | } |
1198 | // td_flags.executing must be marked as 0 after __kmp_release_deps has been |
1199 | // called. Othertwise, if a task is executed immediately from the |
1200 | // release_deps code, the flag will be reset to 1 again by this same |
1201 | // function |
1202 | KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); |
1203 | taskdata->td_flags.executing = 0; // suspend the finishing task |
1204 | |
1205 | // Decrement the counter of hidden helper tasks to be executed. |
1206 | if (taskdata->td_flags.hidden_helper) { |
1207 | // Hidden helper tasks can only be executed by hidden helper threads. |
1208 | KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); |
1209 | KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); |
1210 | } |
1211 | } |
1212 | |
1213 | KA_TRACE( |
1214 | 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n" , |
1215 | gtid, taskdata, children)); |
1216 | |
1217 | // Free this task and then ancestor tasks if they have no children. |
1218 | // Restore th_current_task first as suggested by John: |
1219 | // johnmc: if an asynchronous inquiry peers into the runtime system |
1220 | // it doesn't see the freed task as the current task. |
1221 | thread->th.th_current_task = resumed_task; |
1222 | if (completed) |
1223 | __kmp_free_task_and_ancestors(gtid, taskdata, thread); |
1224 | |
1225 | // TODO: GEH - make sure root team implicit task is initialized properly. |
1226 | // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); |
1227 | resumed_task->td_flags.executing = 1; // resume previous task |
1228 | |
1229 | #if OMPX_TASKGRAPH |
1230 | if (is_taskgraph && __kmp_track_children_task(taskdata) && |
1231 | taskdata->td_taskgroup) { |
1232 | // TDG: we only release taskgroup barrier here because |
1233 | // free_task_and_ancestors will call |
1234 | // __kmp_free_task, which resets all task parameters such as |
1235 | // taskdata->started, etc. If we release the barrier earlier, these |
1236 | // parameters could be read before being reset. This is not an issue for |
1237 | // non-TDG implementation because we never reuse a task(data) structure |
1238 | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); |
1239 | } |
1240 | #endif |
1241 | |
1242 | KA_TRACE( |
1243 | 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n" , |
1244 | gtid, taskdata, resumed_task)); |
1245 | |
1246 | return; |
1247 | } |
1248 | |
1249 | template <bool ompt> |
1250 | static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, |
1251 | kmp_int32 gtid, |
1252 | kmp_task_t *task) { |
1253 | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n" , |
1254 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1255 | KMP_DEBUG_ASSERT(gtid >= 0); |
1256 | // this routine will provide task to resume |
1257 | __kmp_task_finish<ompt>(gtid, task, NULL); |
1258 | |
1259 | KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n" , |
1260 | gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1261 | |
1262 | #if OMPT_SUPPORT |
1263 | if (ompt) { |
1264 | ompt_frame_t *ompt_frame; |
1265 | __ompt_get_task_info_internal(ancestor_level: 0, NULL, NULL, task_frame: &ompt_frame, NULL, NULL); |
1266 | ompt_frame->enter_frame = ompt_data_none; |
1267 | ompt_frame->enter_frame_flags = |
1268 | ompt_frame_runtime | ompt_frame_framepointer; |
1269 | } |
1270 | #endif |
1271 | |
1272 | return; |
1273 | } |
1274 | |
1275 | #if OMPT_SUPPORT |
1276 | OMPT_NOINLINE |
1277 | void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, |
1278 | kmp_task_t *task) { |
1279 | __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); |
1280 | } |
1281 | #endif // OMPT_SUPPORT |
1282 | |
1283 | // __kmpc_omp_task_complete_if0: report that a task has completed execution |
1284 | // |
1285 | // loc_ref: source location information; points to end of task block. |
1286 | // gtid: global thread number. |
1287 | // task: task thunk for the completed task. |
1288 | void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, |
1289 | kmp_task_t *task) { |
1290 | #if OMPT_SUPPORT |
1291 | if (UNLIKELY(ompt_enabled.enabled)) { |
1292 | __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); |
1293 | return; |
1294 | } |
1295 | #endif |
1296 | __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); |
1297 | } |
1298 | |
1299 | #ifdef TASK_UNUSED |
1300 | // __kmpc_omp_task_complete: report that a task has completed execution |
1301 | // NEVER GENERATED BY COMPILER, DEPRECATED!!! |
1302 | void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, |
1303 | kmp_task_t *task) { |
1304 | KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n" , gtid, |
1305 | loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1306 | |
1307 | __kmp_task_finish<false>(gtid, task, |
1308 | NULL); // Not sure how to find task to resume |
1309 | |
1310 | KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n" , gtid, |
1311 | loc_ref, KMP_TASK_TO_TASKDATA(task))); |
1312 | return; |
1313 | } |
1314 | #endif // TASK_UNUSED |
1315 | |
1316 | // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit |
1317 | // task for a given thread |
1318 | // |
1319 | // loc_ref: reference to source location of parallel region |
1320 | // this_thr: thread data structure corresponding to implicit task |
1321 | // team: team for this_thr |
1322 | // tid: thread id of given thread within team |
1323 | // set_curr_task: TRUE if need to push current task to thread |
1324 | // NOTE: Routine does not set up the implicit task ICVS. This is assumed to |
1325 | // have already been done elsewhere. |
1326 | // TODO: Get better loc_ref. Value passed in may be NULL |
1327 | void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, |
1328 | kmp_team_t *team, int tid, int set_curr_task) { |
1329 | kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; |
1330 | |
1331 | KF_TRACE( |
1332 | 10, |
1333 | ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n" , |
1334 | tid, team, task, set_curr_task ? "TRUE" : "FALSE" )); |
1335 | |
1336 | task->td_task_id = KMP_GEN_TASK_ID(); |
1337 | task->td_team = team; |
1338 | // task->td_parent = NULL; // fix for CQ230101 (broken parent task info |
1339 | // in debugger) |
1340 | task->td_ident = loc_ref; |
1341 | task->td_taskwait_ident = NULL; |
1342 | task->td_taskwait_counter = 0; |
1343 | task->td_taskwait_thread = 0; |
1344 | |
1345 | task->td_flags.tiedness = TASK_TIED; |
1346 | task->td_flags.tasktype = TASK_IMPLICIT; |
1347 | task->td_flags.proxy = TASK_FULL; |
1348 | |
1349 | // All implicit tasks are executed immediately, not deferred |
1350 | task->td_flags.task_serial = 1; |
1351 | task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); |
1352 | task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; |
1353 | |
1354 | task->td_flags.started = 1; |
1355 | task->td_flags.executing = 1; |
1356 | task->td_flags.complete = 0; |
1357 | task->td_flags.freed = 0; |
1358 | #if OMPX_TASKGRAPH |
1359 | task->td_flags.onced = 0; |
1360 | #endif |
1361 | |
1362 | task->td_depnode = NULL; |
1363 | task->td_last_tied = task; |
1364 | task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; |
1365 | |
1366 | if (set_curr_task) { // only do this init first time thread is created |
1367 | KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); |
1368 | // Not used: don't need to deallocate implicit task |
1369 | KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); |
1370 | task->td_taskgroup = NULL; // An implicit task does not have taskgroup |
1371 | task->td_dephash = NULL; |
1372 | __kmp_push_current_task_to_thread(this_thr, team, tid); |
1373 | } else { |
1374 | KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); |
1375 | KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); |
1376 | } |
1377 | |
1378 | #if OMPT_SUPPORT |
1379 | if (UNLIKELY(ompt_enabled.enabled)) |
1380 | __ompt_task_init(task, tid); |
1381 | #endif |
1382 | |
1383 | KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n" , tid, |
1384 | team, task)); |
1385 | } |
1386 | |
1387 | // __kmp_finish_implicit_task: Release resources associated to implicit tasks |
1388 | // at the end of parallel regions. Some resources are kept for reuse in the next |
1389 | // parallel region. |
1390 | // |
1391 | // thread: thread data structure corresponding to implicit task |
1392 | void __kmp_finish_implicit_task(kmp_info_t *thread) { |
1393 | kmp_taskdata_t *task = thread->th.th_current_task; |
1394 | if (task->td_dephash) { |
1395 | int children; |
1396 | task->td_flags.complete = 1; |
1397 | #if OMPX_TASKGRAPH |
1398 | task->td_flags.onced = 1; |
1399 | #endif |
1400 | children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); |
1401 | kmp_tasking_flags_t flags_old = task->td_flags; |
1402 | if (children == 0 && flags_old.complete == 1) { |
1403 | kmp_tasking_flags_t flags_new = flags_old; |
1404 | flags_new.complete = 0; |
1405 | if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), |
1406 | *RCAST(kmp_int32 *, &flags_old), |
1407 | *RCAST(kmp_int32 *, &flags_new))) { |
1408 | KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " |
1409 | "dephash of implicit task %p\n" , |
1410 | thread->th.th_info.ds.ds_gtid, task)); |
1411 | __kmp_dephash_free_entries(thread, h: task->td_dephash); |
1412 | } |
1413 | } |
1414 | } |
1415 | } |
1416 | |
1417 | // __kmp_free_implicit_task: Release resources associated to implicit tasks |
1418 | // when these are destroyed regions |
1419 | // |
1420 | // thread: thread data structure corresponding to implicit task |
1421 | void __kmp_free_implicit_task(kmp_info_t *thread) { |
1422 | kmp_taskdata_t *task = thread->th.th_current_task; |
1423 | if (task && task->td_dephash) { |
1424 | __kmp_dephash_free(thread, h: task->td_dephash); |
1425 | task->td_dephash = NULL; |
1426 | } |
1427 | } |
1428 | |
1429 | // Round up a size to a power of two specified by val: Used to insert padding |
1430 | // between structures co-allocated using a single malloc() call |
1431 | static size_t __kmp_round_up_to_val(size_t size, size_t val) { |
1432 | if (size & (val - 1)) { |
1433 | size &= ~(val - 1); |
1434 | if (size <= KMP_SIZE_T_MAX - val) { |
1435 | size += val; // Round up if there is no overflow. |
1436 | } |
1437 | } |
1438 | return size; |
1439 | } // __kmp_round_up_to_va |
1440 | |
1441 | // __kmp_task_alloc: Allocate the taskdata and task data structures for a task |
1442 | // |
1443 | // loc_ref: source location information |
1444 | // gtid: global thread number. |
1445 | // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' |
1446 | // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. |
1447 | // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including |
1448 | // private vars accessed in task. |
1449 | // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed |
1450 | // in task. |
1451 | // task_entry: Pointer to task code entry point generated by compiler. |
1452 | // returns: a pointer to the allocated kmp_task_t structure (task). |
1453 | kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, |
1454 | kmp_tasking_flags_t *flags, |
1455 | size_t sizeof_kmp_task_t, size_t sizeof_shareds, |
1456 | kmp_routine_entry_t task_entry) { |
1457 | kmp_task_t *task; |
1458 | kmp_taskdata_t *taskdata; |
1459 | kmp_info_t *thread = __kmp_threads[gtid]; |
1460 | kmp_team_t *team = thread->th.th_team; |
1461 | kmp_taskdata_t *parent_task = thread->th.th_current_task; |
1462 | size_t shareds_offset; |
1463 | |
1464 | if (UNLIKELY(!TCR_4(__kmp_init_middle))) |
1465 | __kmp_middle_initialize(); |
1466 | |
1467 | if (flags->hidden_helper) { |
1468 | if (__kmp_enable_hidden_helper) { |
1469 | if (!TCR_4(__kmp_init_hidden_helper)) |
1470 | __kmp_hidden_helper_initialize(); |
1471 | } else { |
1472 | // If the hidden helper task is not enabled, reset the flag to FALSE. |
1473 | flags->hidden_helper = FALSE; |
1474 | } |
1475 | } |
1476 | |
1477 | KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " |
1478 | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n" , |
1479 | gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, |
1480 | sizeof_shareds, task_entry)); |
1481 | |
1482 | KMP_DEBUG_ASSERT(parent_task); |
1483 | if (parent_task->td_flags.final) { |
1484 | if (flags->merged_if0) { |
1485 | } |
1486 | flags->final = 1; |
1487 | } |
1488 | |
1489 | if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { |
1490 | // Untied task encountered causes the TSC algorithm to check entire deque of |
1491 | // the victim thread. If no untied task encountered, then checking the head |
1492 | // of the deque should be enough. |
1493 | KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); |
1494 | } |
1495 | |
1496 | // Detachable tasks are not proxy tasks yet but could be in the future. Doing |
1497 | // the tasking setup |
1498 | // when that happens is too late. |
1499 | if (UNLIKELY(flags->proxy == TASK_PROXY || |
1500 | flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { |
1501 | if (flags->proxy == TASK_PROXY) { |
1502 | flags->tiedness = TASK_UNTIED; |
1503 | flags->merged_if0 = 1; |
1504 | } |
1505 | /* are we running in a sequential parallel or tskm_immediate_exec... we need |
1506 | tasking support enabled */ |
1507 | if ((thread->th.th_task_team) == NULL) { |
1508 | /* This should only happen if the team is serialized |
1509 | setup a task team and propagate it to the thread */ |
1510 | KMP_DEBUG_ASSERT(team->t.t_serialized); |
1511 | KA_TRACE(30, |
1512 | ("T#%d creating task team in __kmp_task_alloc for proxy task\n" , |
1513 | gtid)); |
1514 | // 1 indicates setup the current team regardless of nthreads |
1515 | __kmp_task_team_setup(this_thr: thread, team, always: 1); |
1516 | thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; |
1517 | } |
1518 | kmp_task_team_t *task_team = thread->th.th_task_team; |
1519 | |
1520 | /* tasking must be enabled now as the task might not be pushed */ |
1521 | if (!KMP_TASKING_ENABLED(task_team)) { |
1522 | KA_TRACE( |
1523 | 30, |
1524 | ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n" , gtid)); |
1525 | __kmp_enable_tasking(task_team, this_thr: thread); |
1526 | kmp_int32 tid = thread->th.th_info.ds.ds_tid; |
1527 | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; |
1528 | // No lock needed since only owner can allocate |
1529 | if (thread_data->td.td_deque == NULL) { |
1530 | __kmp_alloc_task_deque(thread, thread_data); |
1531 | } |
1532 | } |
1533 | |
1534 | if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && |
1535 | task_team->tt.tt_found_proxy_tasks == FALSE) |
1536 | TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); |
1537 | if (flags->hidden_helper && |
1538 | task_team->tt.tt_hidden_helper_task_encountered == FALSE) |
1539 | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); |
1540 | } |
1541 | |
1542 | // Calculate shared structure offset including padding after kmp_task_t struct |
1543 | // to align pointers in shared struct |
1544 | shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; |
1545 | shareds_offset = __kmp_round_up_to_val(size: shareds_offset, val: sizeof(void *)); |
1546 | |
1547 | // Allocate a kmp_taskdata_t block and a kmp_task_t block. |
1548 | KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n" , gtid, |
1549 | shareds_offset)); |
1550 | KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n" , gtid, |
1551 | sizeof_shareds)); |
1552 | |
1553 | // Avoid double allocation here by combining shareds with taskdata |
1554 | #if USE_FAST_MEMORY |
1555 | taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + |
1556 | sizeof_shareds); |
1557 | #else /* ! USE_FAST_MEMORY */ |
1558 | taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + |
1559 | sizeof_shareds); |
1560 | #endif /* USE_FAST_MEMORY */ |
1561 | |
1562 | task = KMP_TASKDATA_TO_TASK(taskdata); |
1563 | |
1564 | // Make sure task & taskdata are aligned appropriately |
1565 | #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD |
1566 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); |
1567 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); |
1568 | #else |
1569 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); |
1570 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); |
1571 | #endif |
1572 | if (sizeof_shareds > 0) { |
1573 | // Avoid double allocation here by combining shareds with taskdata |
1574 | task->shareds = &((char *)taskdata)[shareds_offset]; |
1575 | // Make sure shareds struct is aligned to pointer size |
1576 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == |
1577 | 0); |
1578 | } else { |
1579 | task->shareds = NULL; |
1580 | } |
1581 | task->routine = task_entry; |
1582 | task->part_id = 0; // AC: Always start with 0 part id |
1583 | |
1584 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
1585 | taskdata->td_team = thread->th.th_team; |
1586 | taskdata->td_alloc_thread = thread; |
1587 | taskdata->td_parent = parent_task; |
1588 | taskdata->td_level = parent_task->td_level + 1; // increment nesting level |
1589 | KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); |
1590 | taskdata->td_ident = loc_ref; |
1591 | taskdata->td_taskwait_ident = NULL; |
1592 | taskdata->td_taskwait_counter = 0; |
1593 | taskdata->td_taskwait_thread = 0; |
1594 | KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); |
1595 | // avoid copying icvs for proxy tasks |
1596 | if (flags->proxy == TASK_FULL) |
1597 | copy_icvs(dst: &taskdata->td_icvs, src: &taskdata->td_parent->td_icvs); |
1598 | |
1599 | taskdata->td_flags = *flags; |
1600 | taskdata->td_task_team = thread->th.th_task_team; |
1601 | taskdata->td_size_alloc = shareds_offset + sizeof_shareds; |
1602 | taskdata->td_flags.tasktype = TASK_EXPLICIT; |
1603 | // If it is hidden helper task, we need to set the team and task team |
1604 | // correspondingly. |
1605 | if (flags->hidden_helper) { |
1606 | kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; |
1607 | taskdata->td_team = shadow_thread->th.th_team; |
1608 | taskdata->td_task_team = shadow_thread->th.th_task_team; |
1609 | } |
1610 | |
1611 | // GEH - TODO: fix this to copy parent task's value of tasking_ser flag |
1612 | taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); |
1613 | |
1614 | // GEH - TODO: fix this to copy parent task's value of team_serial flag |
1615 | taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; |
1616 | |
1617 | // GEH - Note we serialize the task if the team is serialized to make sure |
1618 | // implicit parallel region tasks are not left until program termination to |
1619 | // execute. Also, it helps locality to execute immediately. |
1620 | |
1621 | taskdata->td_flags.task_serial = |
1622 | (parent_task->td_flags.final || taskdata->td_flags.team_serial || |
1623 | taskdata->td_flags.tasking_ser || flags->merged_if0); |
1624 | |
1625 | taskdata->td_flags.started = 0; |
1626 | taskdata->td_flags.executing = 0; |
1627 | taskdata->td_flags.complete = 0; |
1628 | taskdata->td_flags.freed = 0; |
1629 | #if OMPX_TASKGRAPH |
1630 | taskdata->td_flags.onced = 0; |
1631 | #endif |
1632 | KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); |
1633 | // start at one because counts current task and children |
1634 | KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); |
1635 | taskdata->td_taskgroup = |
1636 | parent_task->td_taskgroup; // task inherits taskgroup from the parent task |
1637 | taskdata->td_dephash = NULL; |
1638 | taskdata->td_depnode = NULL; |
1639 | taskdata->td_target_data.async_handle = NULL; |
1640 | if (flags->tiedness == TASK_UNTIED) |
1641 | taskdata->td_last_tied = NULL; // will be set when the task is scheduled |
1642 | else |
1643 | taskdata->td_last_tied = taskdata; |
1644 | taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; |
1645 | #if OMPT_SUPPORT |
1646 | if (UNLIKELY(ompt_enabled.enabled)) |
1647 | __ompt_task_init(task: taskdata, tid: gtid); |
1648 | #endif |
1649 | // TODO: What would be the balance between the conditions in the function and |
1650 | // an atomic operation? |
1651 | if (__kmp_track_children_task(taskdata)) { |
1652 | KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); |
1653 | if (parent_task->td_taskgroup) |
1654 | KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); |
1655 | // Only need to keep track of allocated child tasks for explicit tasks since |
1656 | // implicit not deallocated |
1657 | if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { |
1658 | KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); |
1659 | } |
1660 | if (flags->hidden_helper) { |
1661 | taskdata->td_flags.task_serial = FALSE; |
1662 | // Increment the number of hidden helper tasks to be executed |
1663 | KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); |
1664 | } |
1665 | } |
1666 | |
1667 | #if OMPX_TASKGRAPH |
1668 | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); |
1669 | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) && |
1670 | (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) { |
1671 | taskdata->is_taskgraph = 1; |
1672 | taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; |
1673 | taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); |
1674 | } |
1675 | #endif |
1676 | KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n" , |
1677 | gtid, taskdata, taskdata->td_parent)); |
1678 | |
1679 | return task; |
1680 | } |
1681 | |
1682 | kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, |
1683 | kmp_int32 flags, size_t sizeof_kmp_task_t, |
1684 | size_t sizeof_shareds, |
1685 | kmp_routine_entry_t task_entry) { |
1686 | kmp_task_t *retval; |
1687 | kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; |
1688 | __kmp_assert_valid_gtid(gtid); |
1689 | input_flags->native = FALSE; |
1690 | // __kmp_task_alloc() sets up all other runtime flags |
1691 | KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " |
1692 | "sizeof_task=%ld sizeof_shared=%ld entry=%p\n" , |
1693 | gtid, loc_ref, input_flags->tiedness ? "tied " : "untied" , |
1694 | input_flags->proxy ? "proxy" : "" , |
1695 | input_flags->detachable ? "detachable" : "" , sizeof_kmp_task_t, |
1696 | sizeof_shareds, task_entry)); |
1697 | |
1698 | retval = __kmp_task_alloc(loc_ref, gtid, flags: input_flags, sizeof_kmp_task_t, |
1699 | sizeof_shareds, task_entry); |
1700 | |
1701 | KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n" , gtid, retval)); |
1702 | |
1703 | return retval; |
1704 | } |
1705 | |
1706 | kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, |
1707 | kmp_int32 flags, |
1708 | size_t sizeof_kmp_task_t, |
1709 | size_t sizeof_shareds, |
1710 | kmp_routine_entry_t task_entry, |
1711 | kmp_int64 device_id) { |
1712 | auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); |
1713 | // target task is untied defined in the specification |
1714 | input_flags.tiedness = TASK_UNTIED; |
1715 | |
1716 | if (__kmp_enable_hidden_helper) |
1717 | input_flags.hidden_helper = TRUE; |
1718 | |
1719 | return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, |
1720 | sizeof_shareds, task_entry); |
1721 | } |
1722 | |
1723 | /*! |
1724 | @ingroup TASKING |
1725 | @param loc_ref location of the original task directive |
1726 | @param gtid Global Thread ID of encountering thread |
1727 | @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new |
1728 | task'' |
1729 | @param naffins Number of affinity items |
1730 | @param affin_list List of affinity items |
1731 | @return Returns non-zero if registering affinity information was not successful. |
1732 | Returns 0 if registration was successful |
1733 | This entry registers the affinity information attached to a task with the task |
1734 | thunk structure kmp_taskdata_t. |
1735 | */ |
1736 | kmp_int32 |
1737 | __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, |
1738 | kmp_task_t *new_task, kmp_int32 naffins, |
1739 | kmp_task_affinity_info_t *affin_list) { |
1740 | return 0; |
1741 | } |
1742 | |
1743 | // __kmp_invoke_task: invoke the specified task |
1744 | // |
1745 | // gtid: global thread ID of caller |
1746 | // task: the task to invoke |
1747 | // current_task: the task to resume after task invocation |
1748 | #ifdef __s390x__ |
1749 | __attribute__((target("backchain" ))) |
1750 | #endif |
1751 | static void |
1752 | __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, |
1753 | kmp_taskdata_t *current_task) { |
1754 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
1755 | kmp_info_t *thread; |
1756 | int discard = 0 /* false */; |
1757 | KA_TRACE( |
1758 | 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n" , |
1759 | gtid, taskdata, current_task)); |
1760 | KMP_DEBUG_ASSERT(task); |
1761 | if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && |
1762 | taskdata->td_flags.complete == 1)) { |
1763 | // This is a proxy task that was already completed but it needs to run |
1764 | // its bottom-half finish |
1765 | KA_TRACE( |
1766 | 30, |
1767 | ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n" , |
1768 | gtid, taskdata)); |
1769 | |
1770 | __kmp_bottom_half_finish_proxy(gtid, ptask: task); |
1771 | |
1772 | KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " |
1773 | "proxy task %p, resuming task %p\n" , |
1774 | gtid, taskdata, current_task)); |
1775 | |
1776 | return; |
1777 | } |
1778 | |
1779 | #if OMPT_SUPPORT |
1780 | // For untied tasks, the first task executed only calls __kmpc_omp_task and |
1781 | // does not execute code. |
1782 | ompt_thread_info_t oldInfo; |
1783 | if (UNLIKELY(ompt_enabled.enabled)) { |
1784 | // Store the threads states and restore them after the task |
1785 | thread = __kmp_threads[gtid]; |
1786 | oldInfo = thread->th.ompt_thread_info; |
1787 | thread->th.ompt_thread_info.wait_id = 0; |
1788 | thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) |
1789 | ? ompt_state_work_serial |
1790 | : ompt_state_work_parallel; |
1791 | taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
1792 | } |
1793 | #endif |
1794 | |
1795 | // Proxy tasks are not handled by the runtime |
1796 | if (taskdata->td_flags.proxy != TASK_PROXY) { |
1797 | __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded |
1798 | } |
1799 | |
1800 | // TODO: cancel tasks if the parallel region has also been cancelled |
1801 | // TODO: check if this sequence can be hoisted above __kmp_task_start |
1802 | // if cancellation has been enabled for this run ... |
1803 | if (UNLIKELY(__kmp_omp_cancellation)) { |
1804 | thread = __kmp_threads[gtid]; |
1805 | kmp_team_t *this_team = thread->th.th_team; |
1806 | kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; |
1807 | if ((taskgroup && taskgroup->cancel_request) || |
1808 | (this_team->t.t_cancel_request == cancel_parallel)) { |
1809 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
1810 | ompt_data_t *task_data; |
1811 | if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { |
1812 | __ompt_get_task_info_internal(ancestor_level: 0, NULL, task_data: &task_data, NULL, NULL, NULL); |
1813 | ompt_callbacks.ompt_callback(ompt_callback_cancel)( |
1814 | task_data, |
1815 | ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup |
1816 | : ompt_cancel_parallel) | |
1817 | ompt_cancel_discarded_task, |
1818 | NULL); |
1819 | } |
1820 | #endif |
1821 | KMP_COUNT_BLOCK(TASK_cancelled); |
1822 | // this task belongs to a task group and we need to cancel it |
1823 | discard = 1 /* true */; |
1824 | } |
1825 | } |
1826 | |
1827 | // Invoke the task routine and pass in relevant data. |
1828 | // Thunks generated by gcc take a different argument list. |
1829 | if (!discard) { |
1830 | if (taskdata->td_flags.tiedness == TASK_UNTIED) { |
1831 | taskdata->td_last_tied = current_task->td_last_tied; |
1832 | KMP_DEBUG_ASSERT(taskdata->td_last_tied); |
1833 | } |
1834 | #if KMP_STATS_ENABLED |
1835 | KMP_COUNT_BLOCK(TASK_executed); |
1836 | switch (KMP_GET_THREAD_STATE()) { |
1837 | case FORK_JOIN_BARRIER: |
1838 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); |
1839 | break; |
1840 | case PLAIN_BARRIER: |
1841 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); |
1842 | break; |
1843 | case TASKYIELD: |
1844 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); |
1845 | break; |
1846 | case TASKWAIT: |
1847 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); |
1848 | break; |
1849 | case TASKGROUP: |
1850 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); |
1851 | break; |
1852 | default: |
1853 | KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); |
1854 | break; |
1855 | } |
1856 | #endif // KMP_STATS_ENABLED |
1857 | |
1858 | // OMPT task begin |
1859 | #if OMPT_SUPPORT |
1860 | if (UNLIKELY(ompt_enabled.enabled)) |
1861 | __ompt_task_start(task, current_task, gtid); |
1862 | #endif |
1863 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
1864 | if (UNLIKELY(ompt_enabled.ompt_callback_dispatch && |
1865 | taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) { |
1866 | ompt_data_t instance = ompt_data_none; |
1867 | instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk); |
1868 | ompt_team_info_t *team_info = __ompt_get_teaminfo(depth: 0, NULL); |
1869 | ompt_callbacks.ompt_callback(ompt_callback_dispatch)( |
1870 | &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data), |
1871 | ompt_dispatch_taskloop_chunk, instance); |
1872 | taskdata->ompt_task_info.dispatch_chunk = {.start: 0, .iterations: 0}; |
1873 | } |
1874 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
1875 | |
1876 | #if OMPD_SUPPORT |
1877 | if (ompd_state & OMPD_ENABLE_BP) |
1878 | ompd_bp_task_begin(); |
1879 | #endif |
1880 | |
1881 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
1882 | kmp_uint64 cur_time; |
1883 | kmp_int32 kmp_itt_count_task = |
1884 | __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && |
1885 | current_task->td_flags.tasktype == TASK_IMPLICIT; |
1886 | if (kmp_itt_count_task) { |
1887 | thread = __kmp_threads[gtid]; |
1888 | // Time outer level explicit task on barrier for adjusting imbalance time |
1889 | if (thread->th.th_bar_arrive_time) |
1890 | cur_time = __itt_get_timestamp(); |
1891 | else |
1892 | kmp_itt_count_task = 0; // thread is not on a barrier - skip timing |
1893 | } |
1894 | KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) |
1895 | #endif |
1896 | |
1897 | #if ENABLE_LIBOMPTARGET |
1898 | if (taskdata->td_target_data.async_handle != NULL) { |
1899 | // If we have a valid target async handle, that means that we have already |
1900 | // executed the task routine once. We must query for the handle completion |
1901 | // instead of re-executing the routine. |
1902 | KMP_ASSERT(tgt_target_nowait_query); |
1903 | tgt_target_nowait_query(&taskdata->td_target_data.async_handle); |
1904 | } else |
1905 | #endif |
1906 | if (task->routine != NULL) { |
1907 | #ifdef KMP_GOMP_COMPAT |
1908 | if (taskdata->td_flags.native) { |
1909 | ((void (*)(void *))(*(task->routine)))(task->shareds); |
1910 | } else |
1911 | #endif /* KMP_GOMP_COMPAT */ |
1912 | { |
1913 | (*(task->routine))(gtid, task); |
1914 | } |
1915 | } |
1916 | KMP_POP_PARTITIONED_TIMER(); |
1917 | |
1918 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
1919 | if (kmp_itt_count_task) { |
1920 | // Barrier imbalance - adjust arrive time with the task duration |
1921 | thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); |
1922 | } |
1923 | KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) |
1924 | KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent |
1925 | #endif |
1926 | } |
1927 | |
1928 | #if OMPD_SUPPORT |
1929 | if (ompd_state & OMPD_ENABLE_BP) |
1930 | ompd_bp_task_end(); |
1931 | #endif |
1932 | |
1933 | // Proxy tasks are not handled by the runtime |
1934 | if (taskdata->td_flags.proxy != TASK_PROXY) { |
1935 | #if OMPT_SUPPORT |
1936 | if (UNLIKELY(ompt_enabled.enabled)) { |
1937 | thread->th.ompt_thread_info = oldInfo; |
1938 | if (taskdata->td_flags.tiedness == TASK_TIED) { |
1939 | taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; |
1940 | } |
1941 | __kmp_task_finish<true>(gtid, task, resumed_task: current_task); |
1942 | } else |
1943 | #endif |
1944 | __kmp_task_finish<false>(gtid, task, resumed_task: current_task); |
1945 | } |
1946 | |
1947 | KA_TRACE( |
1948 | 30, |
1949 | ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n" , |
1950 | gtid, taskdata, current_task)); |
1951 | return; |
1952 | } |
1953 | |
1954 | // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution |
1955 | // |
1956 | // loc_ref: location of original task pragma (ignored) |
1957 | // gtid: Global Thread ID of encountering thread |
1958 | // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' |
1959 | // Returns: |
1960 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
1961 | // be resumed later. |
1962 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
1963 | // resumed later. |
1964 | kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, |
1965 | kmp_task_t *new_task) { |
1966 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
1967 | |
1968 | KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n" , gtid, |
1969 | loc_ref, new_taskdata)); |
1970 | |
1971 | #if OMPT_SUPPORT |
1972 | kmp_taskdata_t *parent; |
1973 | if (UNLIKELY(ompt_enabled.enabled)) { |
1974 | parent = new_taskdata->td_parent; |
1975 | if (ompt_enabled.ompt_callback_task_create) { |
1976 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
1977 | &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), |
1978 | &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, |
1979 | OMPT_GET_RETURN_ADDRESS(0)); |
1980 | } |
1981 | } |
1982 | #endif |
1983 | |
1984 | /* Should we execute the new task or queue it? For now, let's just always try |
1985 | to queue it. If the queue fills up, then we'll execute it. */ |
1986 | |
1987 | if (__kmp_push_task(gtid, task: new_task) == TASK_NOT_PUSHED) // if cannot defer |
1988 | { // Execute this task immediately |
1989 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
1990 | new_taskdata->td_flags.task_serial = 1; |
1991 | __kmp_invoke_task(gtid, task: new_task, current_task); |
1992 | } |
1993 | |
1994 | KA_TRACE( |
1995 | 10, |
1996 | ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " |
1997 | "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n" , |
1998 | gtid, loc_ref, new_taskdata)); |
1999 | |
2000 | #if OMPT_SUPPORT |
2001 | if (UNLIKELY(ompt_enabled.enabled)) { |
2002 | parent->ompt_task_info.frame.enter_frame = ompt_data_none; |
2003 | } |
2004 | #endif |
2005 | return TASK_CURRENT_NOT_QUEUED; |
2006 | } |
2007 | |
2008 | // __kmp_omp_task: Schedule a non-thread-switchable task for execution |
2009 | // |
2010 | // gtid: Global Thread ID of encountering thread |
2011 | // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() |
2012 | // serialize_immediate: if TRUE then if the task is executed immediately its |
2013 | // execution will be serialized |
2014 | // Returns: |
2015 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
2016 | // be resumed later. |
2017 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
2018 | // resumed later. |
2019 | kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, |
2020 | bool serialize_immediate) { |
2021 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
2022 | |
2023 | #if OMPX_TASKGRAPH |
2024 | if (new_taskdata->is_taskgraph && |
2025 | __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) { |
2026 | kmp_tdg_info_t *tdg = new_taskdata->tdg; |
2027 | // extend the record_map if needed |
2028 | if (new_taskdata->td_task_id >= new_taskdata->tdg->map_size) { |
2029 | __kmp_acquire_bootstrap_lock(&tdg->graph_lock); |
2030 | // map_size could have been updated by another thread if recursive |
2031 | // taskloop |
2032 | if (new_taskdata->td_task_id >= tdg->map_size) { |
2033 | kmp_uint old_size = tdg->map_size; |
2034 | kmp_uint new_size = old_size * 2; |
2035 | kmp_node_info_t *old_record = tdg->record_map; |
2036 | kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate( |
2037 | new_size * sizeof(kmp_node_info_t)); |
2038 | |
2039 | KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t)); |
2040 | tdg->record_map = new_record; |
2041 | |
2042 | __kmp_free(old_record); |
2043 | |
2044 | for (kmp_int i = old_size; i < new_size; i++) { |
2045 | kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate( |
2046 | __kmp_successors_size * sizeof(kmp_int32)); |
2047 | new_record[i].task = nullptr; |
2048 | new_record[i].successors = successorsList; |
2049 | new_record[i].nsuccessors = 0; |
2050 | new_record[i].npredecessors = 0; |
2051 | new_record[i].successors_size = __kmp_successors_size; |
2052 | KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0); |
2053 | } |
2054 | // update the size at the end, so that we avoid other |
2055 | // threads use old_record while map_size is already updated |
2056 | tdg->map_size = new_size; |
2057 | } |
2058 | __kmp_release_bootstrap_lock(&tdg->graph_lock); |
2059 | } |
2060 | // record a task |
2061 | if (tdg->record_map[new_taskdata->td_task_id].task == nullptr) { |
2062 | tdg->record_map[new_taskdata->td_task_id].task = new_task; |
2063 | tdg->record_map[new_taskdata->td_task_id].parent_task = |
2064 | new_taskdata->td_parent; |
2065 | KMP_ATOMIC_INC(&tdg->num_tasks); |
2066 | } |
2067 | } |
2068 | #endif |
2069 | |
2070 | /* Should we execute the new task or queue it? For now, let's just always try |
2071 | to queue it. If the queue fills up, then we'll execute it. */ |
2072 | if (new_taskdata->td_flags.proxy == TASK_PROXY || |
2073 | __kmp_push_task(gtid, task: new_task) == TASK_NOT_PUSHED) // if cannot defer |
2074 | { // Execute this task immediately |
2075 | kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; |
2076 | if (serialize_immediate) |
2077 | new_taskdata->td_flags.task_serial = 1; |
2078 | __kmp_invoke_task(gtid, task: new_task, current_task); |
2079 | } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && |
2080 | __kmp_wpolicy_passive) { |
2081 | kmp_info_t *this_thr = __kmp_threads[gtid]; |
2082 | kmp_team_t *team = this_thr->th.th_team; |
2083 | kmp_int32 nthreads = this_thr->th.th_team_nproc; |
2084 | for (int i = 0; i < nthreads; ++i) { |
2085 | kmp_info_t *thread = team->t.t_threads[i]; |
2086 | if (thread == this_thr) |
2087 | continue; |
2088 | if (thread->th.th_sleep_loc != NULL) { |
2089 | __kmp_null_resume_wrapper(thr: thread); |
2090 | break; // awake one thread at a time |
2091 | } |
2092 | } |
2093 | } |
2094 | return TASK_CURRENT_NOT_QUEUED; |
2095 | } |
2096 | |
2097 | // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a |
2098 | // non-thread-switchable task from the parent thread only! |
2099 | // |
2100 | // loc_ref: location of original task pragma (ignored) |
2101 | // gtid: Global Thread ID of encountering thread |
2102 | // new_task: non-thread-switchable task thunk allocated by |
2103 | // __kmp_omp_task_alloc() |
2104 | // Returns: |
2105 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
2106 | // be resumed later. |
2107 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
2108 | // resumed later. |
2109 | kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, |
2110 | kmp_task_t *new_task) { |
2111 | kmp_int32 res; |
2112 | KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); |
2113 | |
2114 | #if KMP_DEBUG || OMPT_SUPPORT |
2115 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
2116 | #endif |
2117 | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n" , gtid, loc_ref, |
2118 | new_taskdata)); |
2119 | __kmp_assert_valid_gtid(gtid); |
2120 | |
2121 | #if OMPT_SUPPORT |
2122 | kmp_taskdata_t *parent = NULL; |
2123 | if (UNLIKELY(ompt_enabled.enabled)) { |
2124 | if (!new_taskdata->td_flags.started) { |
2125 | OMPT_STORE_RETURN_ADDRESS(gtid); |
2126 | parent = new_taskdata->td_parent; |
2127 | if (!parent->ompt_task_info.frame.enter_frame.ptr) { |
2128 | parent->ompt_task_info.frame.enter_frame.ptr = |
2129 | OMPT_GET_FRAME_ADDRESS(0); |
2130 | } |
2131 | if (ompt_enabled.ompt_callback_task_create) { |
2132 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
2133 | &(parent->ompt_task_info.task_data), |
2134 | &(parent->ompt_task_info.frame), |
2135 | &(new_taskdata->ompt_task_info.task_data), |
2136 | ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, |
2137 | OMPT_LOAD_RETURN_ADDRESS(gtid)); |
2138 | } |
2139 | } else { |
2140 | // We are scheduling the continuation of an UNTIED task. |
2141 | // Scheduling back to the parent task. |
2142 | __ompt_task_finish(task: new_task, |
2143 | resumed_task: new_taskdata->ompt_task_info.scheduling_parent, |
2144 | status: ompt_task_switch); |
2145 | new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; |
2146 | } |
2147 | } |
2148 | #endif |
2149 | |
2150 | res = __kmp_omp_task(gtid, new_task, serialize_immediate: true); |
2151 | |
2152 | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " |
2153 | "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n" , |
2154 | gtid, loc_ref, new_taskdata)); |
2155 | #if OMPT_SUPPORT |
2156 | if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { |
2157 | parent->ompt_task_info.frame.enter_frame = ompt_data_none; |
2158 | } |
2159 | #endif |
2160 | return res; |
2161 | } |
2162 | |
2163 | // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule |
2164 | // a taskloop task with the correct OMPT return address |
2165 | // |
2166 | // loc_ref: location of original task pragma (ignored) |
2167 | // gtid: Global Thread ID of encountering thread |
2168 | // new_task: non-thread-switchable task thunk allocated by |
2169 | // __kmp_omp_task_alloc() |
2170 | // codeptr_ra: return address for OMPT callback |
2171 | // Returns: |
2172 | // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to |
2173 | // be resumed later. |
2174 | // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be |
2175 | // resumed later. |
2176 | kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, |
2177 | kmp_task_t *new_task, void *codeptr_ra) { |
2178 | kmp_int32 res; |
2179 | KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); |
2180 | |
2181 | #if KMP_DEBUG || OMPT_SUPPORT |
2182 | kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); |
2183 | #endif |
2184 | KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n" , gtid, loc_ref, |
2185 | new_taskdata)); |
2186 | |
2187 | #if OMPT_SUPPORT |
2188 | kmp_taskdata_t *parent = NULL; |
2189 | if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { |
2190 | parent = new_taskdata->td_parent; |
2191 | if (!parent->ompt_task_info.frame.enter_frame.ptr) |
2192 | parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
2193 | if (ompt_enabled.ompt_callback_task_create) { |
2194 | ompt_callbacks.ompt_callback(ompt_callback_task_create)( |
2195 | &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), |
2196 | &(new_taskdata->ompt_task_info.task_data), |
2197 | ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, |
2198 | codeptr_ra); |
2199 | } |
2200 | } |
2201 | #endif |
2202 | |
2203 | res = __kmp_omp_task(gtid, new_task, serialize_immediate: true); |
2204 | |
2205 | KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " |
2206 | "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n" , |
2207 | gtid, loc_ref, new_taskdata)); |
2208 | #if OMPT_SUPPORT |
2209 | if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { |
2210 | parent->ompt_task_info.frame.enter_frame = ompt_data_none; |
2211 | } |
2212 | #endif |
2213 | return res; |
2214 | } |
2215 | |
2216 | template <bool ompt> |
2217 | static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, |
2218 | void *frame_address, |
2219 | void *return_address) { |
2220 | kmp_taskdata_t *taskdata = nullptr; |
2221 | kmp_info_t *thread; |
2222 | int thread_finished = FALSE; |
2223 | KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); |
2224 | |
2225 | KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n" , gtid, loc_ref)); |
2226 | KMP_DEBUG_ASSERT(gtid >= 0); |
2227 | |
2228 | if (__kmp_tasking_mode != tskm_immediate_exec) { |
2229 | thread = __kmp_threads[gtid]; |
2230 | taskdata = thread->th.th_current_task; |
2231 | |
2232 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2233 | ompt_data_t *my_task_data; |
2234 | ompt_data_t *my_parallel_data; |
2235 | |
2236 | if (ompt) { |
2237 | my_task_data = &(taskdata->ompt_task_info.task_data); |
2238 | my_parallel_data = OMPT_CUR_TEAM_DATA(thread); |
2239 | |
2240 | taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; |
2241 | |
2242 | if (ompt_enabled.ompt_callback_sync_region) { |
2243 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
2244 | ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, |
2245 | my_task_data, return_address); |
2246 | } |
2247 | |
2248 | if (ompt_enabled.ompt_callback_sync_region_wait) { |
2249 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2250 | ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, |
2251 | my_task_data, return_address); |
2252 | } |
2253 | } |
2254 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
2255 | |
2256 | // Debugger: The taskwait is active. Store location and thread encountered the |
2257 | // taskwait. |
2258 | #if USE_ITT_BUILD |
2259 | // Note: These values are used by ITT events as well. |
2260 | #endif /* USE_ITT_BUILD */ |
2261 | taskdata->td_taskwait_counter += 1; |
2262 | taskdata->td_taskwait_ident = loc_ref; |
2263 | taskdata->td_taskwait_thread = gtid + 1; |
2264 | |
2265 | #if USE_ITT_BUILD |
2266 | void *itt_sync_obj = NULL; |
2267 | #if USE_ITT_NOTIFY |
2268 | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); |
2269 | #endif /* USE_ITT_NOTIFY */ |
2270 | #endif /* USE_ITT_BUILD */ |
2271 | |
2272 | bool must_wait = |
2273 | !taskdata->td_flags.team_serial && !taskdata->td_flags.final; |
2274 | |
2275 | must_wait = must_wait || (thread->th.th_task_team != NULL && |
2276 | thread->th.th_task_team->tt.tt_found_proxy_tasks); |
2277 | // If hidden helper thread is encountered, we must enable wait here. |
2278 | must_wait = |
2279 | must_wait || |
2280 | (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && |
2281 | thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); |
2282 | |
2283 | if (must_wait) { |
2284 | kmp_flag_32<false, false> flag( |
2285 | RCAST(std::atomic<kmp_uint32> *, |
2286 | &(taskdata->td_incomplete_child_tasks)), |
2287 | 0U); |
2288 | while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { |
2289 | flag.execute_tasks(this_thr: thread, gtid, FALSE, |
2290 | thread_finished: &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), |
2291 | is_constrained: __kmp_task_stealing_constraint); |
2292 | } |
2293 | } |
2294 | #if USE_ITT_BUILD |
2295 | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); |
2296 | KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children |
2297 | #endif /* USE_ITT_BUILD */ |
2298 | |
2299 | // Debugger: The taskwait is completed. Location remains, but thread is |
2300 | // negated. |
2301 | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; |
2302 | |
2303 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2304 | if (ompt) { |
2305 | if (ompt_enabled.ompt_callback_sync_region_wait) { |
2306 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2307 | ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, |
2308 | my_task_data, return_address); |
2309 | } |
2310 | if (ompt_enabled.ompt_callback_sync_region) { |
2311 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
2312 | ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, |
2313 | my_task_data, return_address); |
2314 | } |
2315 | taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; |
2316 | } |
2317 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
2318 | } |
2319 | |
2320 | KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " |
2321 | "returning TASK_CURRENT_NOT_QUEUED\n" , |
2322 | gtid, taskdata)); |
2323 | |
2324 | return TASK_CURRENT_NOT_QUEUED; |
2325 | } |
2326 | |
2327 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2328 | OMPT_NOINLINE |
2329 | static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, |
2330 | void *frame_address, |
2331 | void *return_address) { |
2332 | return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, |
2333 | return_address); |
2334 | } |
2335 | #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
2336 | |
2337 | // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are |
2338 | // complete |
2339 | kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { |
2340 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2341 | if (UNLIKELY(ompt_enabled.enabled)) { |
2342 | OMPT_STORE_RETURN_ADDRESS(gtid); |
2343 | return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), |
2344 | OMPT_LOAD_RETURN_ADDRESS(gtid)); |
2345 | } |
2346 | #endif |
2347 | return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); |
2348 | } |
2349 | |
2350 | // __kmpc_omp_taskyield: switch to a different task |
2351 | kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { |
2352 | kmp_taskdata_t *taskdata = NULL; |
2353 | kmp_info_t *thread; |
2354 | int thread_finished = FALSE; |
2355 | |
2356 | KMP_COUNT_BLOCK(OMP_TASKYIELD); |
2357 | KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); |
2358 | |
2359 | KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n" , |
2360 | gtid, loc_ref, end_part)); |
2361 | __kmp_assert_valid_gtid(gtid); |
2362 | |
2363 | if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { |
2364 | thread = __kmp_threads[gtid]; |
2365 | taskdata = thread->th.th_current_task; |
2366 | // Should we model this as a task wait or not? |
2367 | // Debugger: The taskwait is active. Store location and thread encountered the |
2368 | // taskwait. |
2369 | #if USE_ITT_BUILD |
2370 | // Note: These values are used by ITT events as well. |
2371 | #endif /* USE_ITT_BUILD */ |
2372 | taskdata->td_taskwait_counter += 1; |
2373 | taskdata->td_taskwait_ident = loc_ref; |
2374 | taskdata->td_taskwait_thread = gtid + 1; |
2375 | |
2376 | #if USE_ITT_BUILD |
2377 | void *itt_sync_obj = NULL; |
2378 | #if USE_ITT_NOTIFY |
2379 | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); |
2380 | #endif /* USE_ITT_NOTIFY */ |
2381 | #endif /* USE_ITT_BUILD */ |
2382 | if (!taskdata->td_flags.team_serial) { |
2383 | kmp_task_team_t *task_team = thread->th.th_task_team; |
2384 | if (task_team != NULL) { |
2385 | if (KMP_TASKING_ENABLED(task_team)) { |
2386 | #if OMPT_SUPPORT |
2387 | if (UNLIKELY(ompt_enabled.enabled)) |
2388 | thread->th.ompt_thread_info.ompt_task_yielded = 1; |
2389 | #endif |
2390 | __kmp_execute_tasks_32( |
2391 | thread, gtid, flag: (kmp_flag_32<> *)NULL, FALSE, |
2392 | thread_finished: &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), |
2393 | is_constrained: __kmp_task_stealing_constraint); |
2394 | #if OMPT_SUPPORT |
2395 | if (UNLIKELY(ompt_enabled.enabled)) |
2396 | thread->th.ompt_thread_info.ompt_task_yielded = 0; |
2397 | #endif |
2398 | } |
2399 | } |
2400 | } |
2401 | #if USE_ITT_BUILD |
2402 | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); |
2403 | #endif /* USE_ITT_BUILD */ |
2404 | |
2405 | // Debugger: The taskwait is completed. Location remains, but thread is |
2406 | // negated. |
2407 | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; |
2408 | } |
2409 | |
2410 | KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " |
2411 | "returning TASK_CURRENT_NOT_QUEUED\n" , |
2412 | gtid, taskdata)); |
2413 | |
2414 | return TASK_CURRENT_NOT_QUEUED; |
2415 | } |
2416 | |
2417 | // Task Reduction implementation |
2418 | // |
2419 | // Note: initial implementation didn't take into account the possibility |
2420 | // to specify omp_orig for initializer of the UDR (user defined reduction). |
2421 | // Corrected implementation takes into account the omp_orig object. |
2422 | // Compiler is free to use old implementation if omp_orig is not specified. |
2423 | |
2424 | /*! |
2425 | @ingroup BASIC_TYPES |
2426 | @{ |
2427 | */ |
2428 | |
2429 | /*! |
2430 | Flags for special info per task reduction item. |
2431 | */ |
2432 | typedef struct kmp_taskred_flags { |
2433 | /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */ |
2434 | unsigned lazy_priv : 1; |
2435 | unsigned reserved31 : 31; |
2436 | } kmp_taskred_flags_t; |
2437 | |
2438 | /*! |
2439 | Internal struct for reduction data item related info set up by compiler. |
2440 | */ |
2441 | typedef struct kmp_task_red_input { |
2442 | void *reduce_shar; /**< shared between tasks item to reduce into */ |
2443 | size_t reduce_size; /**< size of data item in bytes */ |
2444 | // three compiler-generated routines (init, fini are optional): |
2445 | void *reduce_init; /**< data initialization routine (single parameter) */ |
2446 | void *reduce_fini; /**< data finalization routine */ |
2447 | void *reduce_comb; /**< data combiner routine */ |
2448 | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ |
2449 | } kmp_task_red_input_t; |
2450 | |
2451 | /*! |
2452 | Internal struct for reduction data item related info saved by the library. |
2453 | */ |
2454 | typedef struct kmp_taskred_data { |
2455 | void *reduce_shar; /**< shared between tasks item to reduce into */ |
2456 | size_t reduce_size; /**< size of data item */ |
2457 | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ |
2458 | void *reduce_priv; /**< array of thread specific items */ |
2459 | void *reduce_pend; /**< end of private data for faster comparison op */ |
2460 | // three compiler-generated routines (init, fini are optional): |
2461 | void *reduce_comb; /**< data combiner routine */ |
2462 | void *reduce_init; /**< data initialization routine (two parameters) */ |
2463 | void *reduce_fini; /**< data finalization routine */ |
2464 | void *reduce_orig; /**< original item (can be used in UDR initializer) */ |
2465 | } kmp_taskred_data_t; |
2466 | |
2467 | /*! |
2468 | Internal struct for reduction data item related info set up by compiler. |
2469 | |
2470 | New interface: added reduce_orig field to provide omp_orig for UDR initializer. |
2471 | */ |
2472 | typedef struct kmp_taskred_input { |
2473 | void *reduce_shar; /**< shared between tasks item to reduce into */ |
2474 | void *reduce_orig; /**< original reduction item used for initialization */ |
2475 | size_t reduce_size; /**< size of data item */ |
2476 | // three compiler-generated routines (init, fini are optional): |
2477 | void *reduce_init; /**< data initialization routine (two parameters) */ |
2478 | void *reduce_fini; /**< data finalization routine */ |
2479 | void *reduce_comb; /**< data combiner routine */ |
2480 | kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ |
2481 | } kmp_taskred_input_t; |
2482 | /*! |
2483 | @} |
2484 | */ |
2485 | |
2486 | template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); |
2487 | template <> |
2488 | void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, |
2489 | kmp_task_red_input_t &src) { |
2490 | item.reduce_orig = NULL; |
2491 | } |
2492 | template <> |
2493 | void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, |
2494 | kmp_taskred_input_t &src) { |
2495 | if (src.reduce_orig != NULL) { |
2496 | item.reduce_orig = src.reduce_orig; |
2497 | } else { |
2498 | item.reduce_orig = src.reduce_shar; |
2499 | } // non-NULL reduce_orig means new interface used |
2500 | } |
2501 | |
2502 | template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); |
2503 | template <> |
2504 | void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, |
2505 | size_t offset) { |
2506 | ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); |
2507 | } |
2508 | template <> |
2509 | void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, |
2510 | size_t offset) { |
2511 | ((void (*)(void *, void *))item.reduce_init)( |
2512 | (char *)(item.reduce_priv) + offset, item.reduce_orig); |
2513 | } |
2514 | |
2515 | template <typename T> |
2516 | void *__kmp_task_reduction_init(int gtid, int num, T *data) { |
2517 | __kmp_assert_valid_gtid(gtid); |
2518 | kmp_info_t *thread = __kmp_threads[gtid]; |
2519 | kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; |
2520 | kmp_uint32 nth = thread->th.th_team_nproc; |
2521 | kmp_taskred_data_t *arr; |
2522 | |
2523 | // check input data just in case |
2524 | KMP_ASSERT(tg != NULL); |
2525 | KMP_ASSERT(data != NULL); |
2526 | KMP_ASSERT(num > 0); |
2527 | if (nth == 1 && !__kmp_enable_hidden_helper) { |
2528 | KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n" , |
2529 | gtid, tg)); |
2530 | return (void *)tg; |
2531 | } |
2532 | KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n" , |
2533 | gtid, tg, num)); |
2534 | arr = (kmp_taskred_data_t *)__kmp_thread_malloc( |
2535 | thread, num * sizeof(kmp_taskred_data_t)); |
2536 | for (int i = 0; i < num; ++i) { |
2537 | size_t size = data[i].reduce_size - 1; |
2538 | // round the size up to cache line per thread-specific item |
2539 | size += CACHE_LINE - size % CACHE_LINE; |
2540 | KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory |
2541 | arr[i].reduce_shar = data[i].reduce_shar; |
2542 | arr[i].reduce_size = size; |
2543 | arr[i].flags = data[i].flags; |
2544 | arr[i].reduce_comb = data[i].reduce_comb; |
2545 | arr[i].reduce_init = data[i].reduce_init; |
2546 | arr[i].reduce_fini = data[i].reduce_fini; |
2547 | __kmp_assign_orig<T>(arr[i], data[i]); |
2548 | if (!arr[i].flags.lazy_priv) { |
2549 | // allocate cache-line aligned block and fill it with zeros |
2550 | arr[i].reduce_priv = __kmp_allocate(nth * size); |
2551 | arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; |
2552 | if (arr[i].reduce_init != NULL) { |
2553 | // initialize all thread-specific items |
2554 | for (size_t j = 0; j < nth; ++j) { |
2555 | __kmp_call_init<T>(arr[i], j * size); |
2556 | } |
2557 | } |
2558 | } else { |
2559 | // only allocate space for pointers now, |
2560 | // objects will be lazily allocated/initialized if/when requested |
2561 | // note that __kmp_allocate zeroes the allocated memory |
2562 | arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); |
2563 | } |
2564 | } |
2565 | tg->reduce_data = (void *)arr; |
2566 | tg->reduce_num_data = num; |
2567 | return (void *)tg; |
2568 | } |
2569 | |
2570 | /*! |
2571 | @ingroup TASKING |
2572 | @param gtid Global thread ID |
2573 | @param num Number of data items to reduce |
2574 | @param data Array of data for reduction |
2575 | @return The taskgroup identifier |
2576 | |
2577 | Initialize task reduction for the taskgroup. |
2578 | |
2579 | Note: this entry supposes the optional compiler-generated initializer routine |
2580 | has single parameter - pointer to object to be initialized. That means |
2581 | the reduction either does not use omp_orig object, or the omp_orig is accessible |
2582 | without help of the runtime library. |
2583 | */ |
2584 | void *__kmpc_task_reduction_init(int gtid, int num, void *data) { |
2585 | #if OMPX_TASKGRAPH |
2586 | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); |
2587 | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { |
2588 | kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; |
2589 | this_tdg->rec_taskred_data = |
2590 | __kmp_allocate(sizeof(kmp_task_red_input_t) * num); |
2591 | this_tdg->rec_num_taskred = num; |
2592 | KMP_MEMCPY(this_tdg->rec_taskred_data, data, |
2593 | sizeof(kmp_task_red_input_t) * num); |
2594 | } |
2595 | #endif |
2596 | return __kmp_task_reduction_init(gtid, num, data: (kmp_task_red_input_t *)data); |
2597 | } |
2598 | |
2599 | /*! |
2600 | @ingroup TASKING |
2601 | @param gtid Global thread ID |
2602 | @param num Number of data items to reduce |
2603 | @param data Array of data for reduction |
2604 | @return The taskgroup identifier |
2605 | |
2606 | Initialize task reduction for the taskgroup. |
2607 | |
2608 | Note: this entry supposes the optional compiler-generated initializer routine |
2609 | has two parameters, pointer to object to be initialized and pointer to omp_orig |
2610 | */ |
2611 | void *__kmpc_taskred_init(int gtid, int num, void *data) { |
2612 | #if OMPX_TASKGRAPH |
2613 | kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); |
2614 | if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { |
2615 | kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; |
2616 | this_tdg->rec_taskred_data = |
2617 | __kmp_allocate(sizeof(kmp_task_red_input_t) * num); |
2618 | this_tdg->rec_num_taskred = num; |
2619 | KMP_MEMCPY(this_tdg->rec_taskred_data, data, |
2620 | sizeof(kmp_task_red_input_t) * num); |
2621 | } |
2622 | #endif |
2623 | return __kmp_task_reduction_init(gtid, num, data: (kmp_taskred_input_t *)data); |
2624 | } |
2625 | |
2626 | // Copy task reduction data (except for shared pointers). |
2627 | template <typename T> |
2628 | void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, |
2629 | kmp_taskgroup_t *tg, void *reduce_data) { |
2630 | kmp_taskred_data_t *arr; |
2631 | KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," |
2632 | " from data %p\n" , |
2633 | thr, tg, reduce_data)); |
2634 | arr = (kmp_taskred_data_t *)__kmp_thread_malloc( |
2635 | thr, num * sizeof(kmp_taskred_data_t)); |
2636 | // threads will share private copies, thunk routines, sizes, flags, etc.: |
2637 | KMP_MEMCPY(dest: arr, src: reduce_data, n: num * sizeof(kmp_taskred_data_t)); |
2638 | for (int i = 0; i < num; ++i) { |
2639 | arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers |
2640 | } |
2641 | tg->reduce_data = (void *)arr; |
2642 | tg->reduce_num_data = num; |
2643 | } |
2644 | |
2645 | /*! |
2646 | @ingroup TASKING |
2647 | @param gtid Global thread ID |
2648 | @param tskgrp The taskgroup ID (optional) |
2649 | @param data Shared location of the item |
2650 | @return The pointer to per-thread data |
2651 | |
2652 | Get thread-specific location of data item |
2653 | */ |
2654 | void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { |
2655 | __kmp_assert_valid_gtid(gtid); |
2656 | kmp_info_t *thread = __kmp_threads[gtid]; |
2657 | kmp_int32 nth = thread->th.th_team_nproc; |
2658 | if (nth == 1) |
2659 | return data; // nothing to do |
2660 | |
2661 | kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; |
2662 | if (tg == NULL) |
2663 | tg = thread->th.th_current_task->td_taskgroup; |
2664 | KMP_ASSERT(tg != NULL); |
2665 | kmp_taskred_data_t *arr; |
2666 | kmp_int32 num; |
2667 | kmp_int32 tid = thread->th.th_info.ds.ds_tid; |
2668 | |
2669 | #if OMPX_TASKGRAPH |
2670 | if ((thread->th.th_current_task->is_taskgraph) && |
2671 | (!__kmp_tdg_is_recording( |
2672 | __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) { |
2673 | tg = thread->th.th_current_task->td_taskgroup; |
2674 | KMP_ASSERT(tg != NULL); |
2675 | KMP_ASSERT(tg->reduce_data != NULL); |
2676 | arr = (kmp_taskred_data_t *)(tg->reduce_data); |
2677 | num = tg->reduce_num_data; |
2678 | } |
2679 | #endif |
2680 | |
2681 | KMP_ASSERT(data != NULL); |
2682 | while (tg != NULL) { |
2683 | arr = (kmp_taskred_data_t *)(tg->reduce_data); |
2684 | num = tg->reduce_num_data; |
2685 | for (int i = 0; i < num; ++i) { |
2686 | if (!arr[i].flags.lazy_priv) { |
2687 | if (data == arr[i].reduce_shar || |
2688 | (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) |
2689 | return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; |
2690 | } else { |
2691 | // check shared location first |
2692 | void **p_priv = (void **)(arr[i].reduce_priv); |
2693 | if (data == arr[i].reduce_shar) |
2694 | goto found; |
2695 | // check if we get some thread specific location as parameter |
2696 | for (int j = 0; j < nth; ++j) |
2697 | if (data == p_priv[j]) |
2698 | goto found; |
2699 | continue; // not found, continue search |
2700 | found: |
2701 | if (p_priv[tid] == NULL) { |
2702 | // allocate thread specific object lazily |
2703 | p_priv[tid] = __kmp_allocate(arr[i].reduce_size); |
2704 | if (arr[i].reduce_init != NULL) { |
2705 | if (arr[i].reduce_orig != NULL) { // new interface |
2706 | ((void (*)(void *, void *))arr[i].reduce_init)( |
2707 | p_priv[tid], arr[i].reduce_orig); |
2708 | } else { // old interface (single parameter) |
2709 | ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); |
2710 | } |
2711 | } |
2712 | } |
2713 | return p_priv[tid]; |
2714 | } |
2715 | } |
2716 | KMP_ASSERT(tg->parent); |
2717 | tg = tg->parent; |
2718 | } |
2719 | KMP_ASSERT2(0, "Unknown task reduction item" ); |
2720 | return NULL; // ERROR, this line never executed |
2721 | } |
2722 | |
2723 | // Finalize task reduction. |
2724 | // Called from __kmpc_end_taskgroup() |
2725 | static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { |
2726 | kmp_int32 nth = th->th.th_team_nproc; |
2727 | KMP_DEBUG_ASSERT( |
2728 | nth > 1 || |
2729 | __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we |
2730 | // are using hidden helper threads |
2731 | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; |
2732 | kmp_int32 num = tg->reduce_num_data; |
2733 | for (int i = 0; i < num; ++i) { |
2734 | void *sh_data = arr[i].reduce_shar; |
2735 | void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); |
2736 | void (*f_comb)(void *, void *) = |
2737 | (void (*)(void *, void *))(arr[i].reduce_comb); |
2738 | if (!arr[i].flags.lazy_priv) { |
2739 | void *pr_data = arr[i].reduce_priv; |
2740 | size_t size = arr[i].reduce_size; |
2741 | for (int j = 0; j < nth; ++j) { |
2742 | void *priv_data = (char *)pr_data + j * size; |
2743 | f_comb(sh_data, priv_data); // combine results |
2744 | if (f_fini) |
2745 | f_fini(priv_data); // finalize if needed |
2746 | } |
2747 | } else { |
2748 | void **pr_data = (void **)(arr[i].reduce_priv); |
2749 | for (int j = 0; j < nth; ++j) { |
2750 | if (pr_data[j] != NULL) { |
2751 | f_comb(sh_data, pr_data[j]); // combine results |
2752 | if (f_fini) |
2753 | f_fini(pr_data[j]); // finalize if needed |
2754 | __kmp_free(pr_data[j]); |
2755 | } |
2756 | } |
2757 | } |
2758 | __kmp_free(arr[i].reduce_priv); |
2759 | } |
2760 | __kmp_thread_free(th, arr); |
2761 | tg->reduce_data = NULL; |
2762 | tg->reduce_num_data = 0; |
2763 | } |
2764 | |
2765 | // Cleanup task reduction data for parallel or worksharing, |
2766 | // do not touch task private data other threads still working with. |
2767 | // Called from __kmpc_end_taskgroup() |
2768 | static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { |
2769 | __kmp_thread_free(th, tg->reduce_data); |
2770 | tg->reduce_data = NULL; |
2771 | tg->reduce_num_data = 0; |
2772 | } |
2773 | |
2774 | template <typename T> |
2775 | void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, |
2776 | int num, T *data) { |
2777 | __kmp_assert_valid_gtid(gtid); |
2778 | kmp_info_t *thr = __kmp_threads[gtid]; |
2779 | kmp_int32 nth = thr->th.th_team_nproc; |
2780 | __kmpc_taskgroup(loc, gtid); // form new taskgroup first |
2781 | if (nth == 1) { |
2782 | KA_TRACE(10, |
2783 | ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n" , |
2784 | gtid, thr->th.th_current_task->td_taskgroup)); |
2785 | return (void *)thr->th.th_current_task->td_taskgroup; |
2786 | } |
2787 | kmp_team_t *team = thr->th.th_team; |
2788 | void *reduce_data; |
2789 | kmp_taskgroup_t *tg; |
2790 | reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); |
2791 | if (reduce_data == NULL && |
2792 | __kmp_atomic_compare_store(p: &team->t.t_tg_reduce_data[is_ws], expected: reduce_data, |
2793 | desired: (void *)1)) { |
2794 | // single thread enters this block to initialize common reduction data |
2795 | KMP_DEBUG_ASSERT(reduce_data == NULL); |
2796 | // first initialize own data, then make a copy other threads can use |
2797 | tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); |
2798 | reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); |
2799 | KMP_MEMCPY(dest: reduce_data, src: tg->reduce_data, n: num * sizeof(kmp_taskred_data_t)); |
2800 | // fini counters should be 0 at this point |
2801 | KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); |
2802 | KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); |
2803 | KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); |
2804 | } else { |
2805 | while ( |
2806 | (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == |
2807 | (void *)1) { // wait for task reduction initialization |
2808 | KMP_CPU_PAUSE(); |
2809 | } |
2810 | KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here |
2811 | tg = thr->th.th_current_task->td_taskgroup; |
2812 | __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); |
2813 | } |
2814 | return tg; |
2815 | } |
2816 | |
2817 | /*! |
2818 | @ingroup TASKING |
2819 | @param loc Source location info |
2820 | @param gtid Global thread ID |
2821 | @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise |
2822 | @param num Number of data items to reduce |
2823 | @param data Array of data for reduction |
2824 | @return The taskgroup identifier |
2825 | |
2826 | Initialize task reduction for a parallel or worksharing. |
2827 | |
2828 | Note: this entry supposes the optional compiler-generated initializer routine |
2829 | has single parameter - pointer to object to be initialized. That means |
2830 | the reduction either does not use omp_orig object, or the omp_orig is accessible |
2831 | without help of the runtime library. |
2832 | */ |
2833 | void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, |
2834 | int num, void *data) { |
2835 | return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, |
2836 | data: (kmp_task_red_input_t *)data); |
2837 | } |
2838 | |
2839 | /*! |
2840 | @ingroup TASKING |
2841 | @param loc Source location info |
2842 | @param gtid Global thread ID |
2843 | @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise |
2844 | @param num Number of data items to reduce |
2845 | @param data Array of data for reduction |
2846 | @return The taskgroup identifier |
2847 | |
2848 | Initialize task reduction for a parallel or worksharing. |
2849 | |
2850 | Note: this entry supposes the optional compiler-generated initializer routine |
2851 | has two parameters, pointer to object to be initialized and pointer to omp_orig |
2852 | */ |
2853 | void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, |
2854 | void *data) { |
2855 | return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, |
2856 | data: (kmp_taskred_input_t *)data); |
2857 | } |
2858 | |
2859 | /*! |
2860 | @ingroup TASKING |
2861 | @param loc Source location info |
2862 | @param gtid Global thread ID |
2863 | @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise |
2864 | |
2865 | Finalize task reduction for a parallel or worksharing. |
2866 | */ |
2867 | void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { |
2868 | __kmpc_end_taskgroup(loc, gtid); |
2869 | } |
2870 | |
2871 | // __kmpc_taskgroup: Start a new taskgroup |
2872 | void __kmpc_taskgroup(ident_t *loc, int gtid) { |
2873 | __kmp_assert_valid_gtid(gtid); |
2874 | kmp_info_t *thread = __kmp_threads[gtid]; |
2875 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
2876 | kmp_taskgroup_t *tg_new = |
2877 | (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); |
2878 | KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n" , gtid, loc, tg_new)); |
2879 | KMP_ATOMIC_ST_RLX(&tg_new->count, 0); |
2880 | KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); |
2881 | tg_new->parent = taskdata->td_taskgroup; |
2882 | tg_new->reduce_data = NULL; |
2883 | tg_new->reduce_num_data = 0; |
2884 | tg_new->gomp_data = NULL; |
2885 | taskdata->td_taskgroup = tg_new; |
2886 | |
2887 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2888 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { |
2889 | void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
2890 | if (!codeptr) |
2891 | codeptr = OMPT_GET_RETURN_ADDRESS(0); |
2892 | kmp_team_t *team = thread->th.th_team; |
2893 | ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; |
2894 | // FIXME: I think this is wrong for lwt! |
2895 | ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; |
2896 | |
2897 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
2898 | ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), |
2899 | &(my_task_data), codeptr); |
2900 | } |
2901 | #endif |
2902 | } |
2903 | |
2904 | // __kmpc_end_taskgroup: Wait until all tasks generated by the current task |
2905 | // and its descendants are complete |
2906 | void __kmpc_end_taskgroup(ident_t *loc, int gtid) { |
2907 | __kmp_assert_valid_gtid(gtid); |
2908 | kmp_info_t *thread = __kmp_threads[gtid]; |
2909 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
2910 | kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; |
2911 | int thread_finished = FALSE; |
2912 | |
2913 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2914 | kmp_team_t *team; |
2915 | ompt_data_t my_task_data; |
2916 | ompt_data_t my_parallel_data; |
2917 | void *codeptr = nullptr; |
2918 | if (UNLIKELY(ompt_enabled.enabled)) { |
2919 | team = thread->th.th_team; |
2920 | my_task_data = taskdata->ompt_task_info.task_data; |
2921 | // FIXME: I think this is wrong for lwt! |
2922 | my_parallel_data = team->t.ompt_team_info.parallel_data; |
2923 | codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
2924 | if (!codeptr) |
2925 | codeptr = OMPT_GET_RETURN_ADDRESS(0); |
2926 | } |
2927 | #endif |
2928 | |
2929 | KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n" , gtid, loc)); |
2930 | KMP_DEBUG_ASSERT(taskgroup != NULL); |
2931 | KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); |
2932 | |
2933 | if (__kmp_tasking_mode != tskm_immediate_exec) { |
2934 | // mark task as waiting not on a barrier |
2935 | taskdata->td_taskwait_counter += 1; |
2936 | taskdata->td_taskwait_ident = loc; |
2937 | taskdata->td_taskwait_thread = gtid + 1; |
2938 | #if USE_ITT_BUILD |
2939 | // For ITT the taskgroup wait is similar to taskwait until we need to |
2940 | // distinguish them |
2941 | void *itt_sync_obj = NULL; |
2942 | #if USE_ITT_NOTIFY |
2943 | KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); |
2944 | #endif /* USE_ITT_NOTIFY */ |
2945 | #endif /* USE_ITT_BUILD */ |
2946 | |
2947 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2948 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { |
2949 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2950 | ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), |
2951 | &(my_task_data), codeptr); |
2952 | } |
2953 | #endif |
2954 | |
2955 | if (!taskdata->td_flags.team_serial || |
2956 | (thread->th.th_task_team != NULL && |
2957 | (thread->th.th_task_team->tt.tt_found_proxy_tasks || |
2958 | thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) { |
2959 | kmp_flag_32<false, false> flag( |
2960 | RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); |
2961 | while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { |
2962 | flag.execute_tasks(this_thr: thread, gtid, FALSE, |
2963 | thread_finished: &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), |
2964 | is_constrained: __kmp_task_stealing_constraint); |
2965 | } |
2966 | } |
2967 | taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting |
2968 | |
2969 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
2970 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { |
2971 | ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( |
2972 | ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), |
2973 | &(my_task_data), codeptr); |
2974 | } |
2975 | #endif |
2976 | |
2977 | #if USE_ITT_BUILD |
2978 | KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); |
2979 | KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants |
2980 | #endif /* USE_ITT_BUILD */ |
2981 | } |
2982 | KMP_DEBUG_ASSERT(taskgroup->count == 0); |
2983 | |
2984 | if (taskgroup->reduce_data != NULL && |
2985 | !taskgroup->gomp_data) { // need to reduce? |
2986 | int cnt; |
2987 | void *reduce_data; |
2988 | kmp_team_t *t = thread->th.th_team; |
2989 | kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; |
2990 | // check if <priv> data of the first reduction variable shared for the team |
2991 | void *priv0 = arr[0].reduce_priv; |
2992 | if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && |
2993 | ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { |
2994 | // finishing task reduction on parallel |
2995 | cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); |
2996 | if (cnt == thread->th.th_team_nproc - 1) { |
2997 | // we are the last thread passing __kmpc_reduction_modifier_fini() |
2998 | // finalize task reduction: |
2999 | __kmp_task_reduction_fini(th: thread, tg: taskgroup); |
3000 | // cleanup fields in the team structure: |
3001 | // TODO: is relaxed store enough here (whole barrier should follow)? |
3002 | __kmp_thread_free(thread, reduce_data); |
3003 | KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); |
3004 | KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); |
3005 | } else { |
3006 | // we are not the last thread passing __kmpc_reduction_modifier_fini(), |
3007 | // so do not finalize reduction, just clean own copy of the data |
3008 | __kmp_task_reduction_clean(th: thread, tg: taskgroup); |
3009 | } |
3010 | } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != |
3011 | NULL && |
3012 | ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { |
3013 | // finishing task reduction on worksharing |
3014 | cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); |
3015 | if (cnt == thread->th.th_team_nproc - 1) { |
3016 | // we are the last thread passing __kmpc_reduction_modifier_fini() |
3017 | __kmp_task_reduction_fini(th: thread, tg: taskgroup); |
3018 | // cleanup fields in team structure: |
3019 | // TODO: is relaxed store enough here (whole barrier should follow)? |
3020 | __kmp_thread_free(thread, reduce_data); |
3021 | KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); |
3022 | KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); |
3023 | } else { |
3024 | // we are not the last thread passing __kmpc_reduction_modifier_fini(), |
3025 | // so do not finalize reduction, just clean own copy of the data |
3026 | __kmp_task_reduction_clean(th: thread, tg: taskgroup); |
3027 | } |
3028 | } else { |
3029 | // finishing task reduction on taskgroup |
3030 | __kmp_task_reduction_fini(th: thread, tg: taskgroup); |
3031 | } |
3032 | } |
3033 | // Restore parent taskgroup for the current task |
3034 | taskdata->td_taskgroup = taskgroup->parent; |
3035 | __kmp_thread_free(thread, taskgroup); |
3036 | |
3037 | KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n" , |
3038 | gtid, taskdata)); |
3039 | |
3040 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
3041 | if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { |
3042 | ompt_callbacks.ompt_callback(ompt_callback_sync_region)( |
3043 | ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), |
3044 | &(my_task_data), codeptr); |
3045 | } |
3046 | #endif |
3047 | } |
3048 | |
3049 | static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid, |
3050 | kmp_task_team_t *task_team, |
3051 | kmp_int32 is_constrained) { |
3052 | kmp_task_t *task = NULL; |
3053 | kmp_taskdata_t *taskdata; |
3054 | kmp_taskdata_t *current; |
3055 | kmp_thread_data_t *thread_data; |
3056 | int ntasks = task_team->tt.tt_num_task_pri; |
3057 | if (ntasks == 0) { |
3058 | KA_TRACE( |
3059 | 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n" , gtid)); |
3060 | return NULL; |
3061 | } |
3062 | do { |
3063 | // decrement num_tasks to "reserve" one task to get for execution |
3064 | if (__kmp_atomic_compare_store(p: &task_team->tt.tt_num_task_pri, expected: ntasks, |
3065 | desired: ntasks - 1)) |
3066 | break; |
3067 | ntasks = task_team->tt.tt_num_task_pri; |
3068 | } while (ntasks > 0); |
3069 | if (ntasks == 0) { |
3070 | KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n" , |
3071 | __kmp_get_gtid())); |
3072 | return NULL; |
3073 | } |
3074 | // We got a "ticket" to get a "reserved" priority task |
3075 | int deque_ntasks; |
3076 | kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; |
3077 | do { |
3078 | KMP_ASSERT(list != NULL); |
3079 | thread_data = &list->td; |
3080 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3081 | deque_ntasks = thread_data->td.td_deque_ntasks; |
3082 | if (deque_ntasks == 0) { |
3083 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3084 | KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n" , |
3085 | __kmp_get_gtid(), thread_data)); |
3086 | list = list->next; |
3087 | } |
3088 | } while (deque_ntasks == 0); |
3089 | KMP_DEBUG_ASSERT(deque_ntasks); |
3090 | int target = thread_data->td.td_deque_head; |
3091 | current = __kmp_threads[gtid]->th.th_current_task; |
3092 | taskdata = thread_data->td.td_deque[target]; |
3093 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3094 | // Bump head pointer and Wrap. |
3095 | thread_data->td.td_deque_head = |
3096 | (target + 1) & TASK_DEQUE_MASK(thread_data->td); |
3097 | } else { |
3098 | if (!task_team->tt.tt_untied_task_encountered) { |
3099 | // The TSC does not allow to steal victim task |
3100 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3101 | KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task " |
3102 | "from %p: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3103 | gtid, thread_data, task_team, deque_ntasks, target, |
3104 | thread_data->td.td_deque_tail)); |
3105 | task_team->tt.tt_num_task_pri++; // atomic inc, restore value |
3106 | return NULL; |
3107 | } |
3108 | int i; |
3109 | // walk through the deque trying to steal any task |
3110 | taskdata = NULL; |
3111 | for (i = 1; i < deque_ntasks; ++i) { |
3112 | target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); |
3113 | taskdata = thread_data->td.td_deque[target]; |
3114 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3115 | break; // found task to execute |
3116 | } else { |
3117 | taskdata = NULL; |
3118 | } |
3119 | } |
3120 | if (taskdata == NULL) { |
3121 | // No appropriate candidate found to execute |
3122 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3123 | KA_TRACE( |
3124 | 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from " |
3125 | "%p: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3126 | gtid, thread_data, task_team, deque_ntasks, |
3127 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3128 | task_team->tt.tt_num_task_pri++; // atomic inc, restore value |
3129 | return NULL; |
3130 | } |
3131 | int prev = target; |
3132 | for (i = i + 1; i < deque_ntasks; ++i) { |
3133 | // shift remaining tasks in the deque left by 1 |
3134 | target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); |
3135 | thread_data->td.td_deque[prev] = thread_data->td.td_deque[target]; |
3136 | prev = target; |
3137 | } |
3138 | KMP_DEBUG_ASSERT( |
3139 | thread_data->td.td_deque_tail == |
3140 | (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td))); |
3141 | thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped)) |
3142 | } |
3143 | thread_data->td.td_deque_ntasks = deque_ntasks - 1; |
3144 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3145 | task = KMP_TASKDATA_TO_TASK(taskdata); |
3146 | return task; |
3147 | } |
3148 | |
3149 | // __kmp_remove_my_task: remove a task from my own deque |
3150 | static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, |
3151 | kmp_task_team_t *task_team, |
3152 | kmp_int32 is_constrained) { |
3153 | kmp_task_t *task; |
3154 | kmp_taskdata_t *taskdata; |
3155 | kmp_thread_data_t *thread_data; |
3156 | kmp_uint32 tail; |
3157 | |
3158 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
3159 | KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != |
3160 | NULL); // Caller should check this condition |
3161 | |
3162 | thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; |
3163 | |
3164 | KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n" , |
3165 | gtid, thread_data->td.td_deque_ntasks, |
3166 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3167 | |
3168 | if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { |
3169 | KA_TRACE(10, |
3170 | ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " |
3171 | "ntasks=%d head=%u tail=%u\n" , |
3172 | gtid, thread_data->td.td_deque_ntasks, |
3173 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3174 | return NULL; |
3175 | } |
3176 | |
3177 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3178 | |
3179 | if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { |
3180 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3181 | KA_TRACE(10, |
3182 | ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " |
3183 | "ntasks=%d head=%u tail=%u\n" , |
3184 | gtid, thread_data->td.td_deque_ntasks, |
3185 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3186 | return NULL; |
3187 | } |
3188 | |
3189 | tail = (thread_data->td.td_deque_tail - 1) & |
3190 | TASK_DEQUE_MASK(thread_data->td); // Wrap index. |
3191 | taskdata = thread_data->td.td_deque[tail]; |
3192 | |
3193 | if (!__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, |
3194 | taskcurr: thread->th.th_current_task)) { |
3195 | // The TSC does not allow to steal victim task |
3196 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3197 | KA_TRACE(10, |
3198 | ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " |
3199 | "ntasks=%d head=%u tail=%u\n" , |
3200 | gtid, thread_data->td.td_deque_ntasks, |
3201 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3202 | return NULL; |
3203 | } |
3204 | |
3205 | thread_data->td.td_deque_tail = tail; |
3206 | TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); |
3207 | |
3208 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3209 | |
3210 | KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " |
3211 | "ntasks=%d head=%u tail=%u\n" , |
3212 | gtid, taskdata, thread_data->td.td_deque_ntasks, |
3213 | thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); |
3214 | |
3215 | task = KMP_TASKDATA_TO_TASK(taskdata); |
3216 | return task; |
3217 | } |
3218 | |
3219 | // __kmp_steal_task: remove a task from another thread's deque |
3220 | // Assume that calling thread has already checked existence of |
3221 | // task_team thread_data before calling this routine. |
3222 | static kmp_task_t *__kmp_steal_task(kmp_int32 victim_tid, kmp_int32 gtid, |
3223 | kmp_task_team_t *task_team, |
3224 | std::atomic<kmp_int32> *unfinished_threads, |
3225 | int *thread_finished, |
3226 | kmp_int32 is_constrained) { |
3227 | kmp_task_t *task; |
3228 | kmp_taskdata_t *taskdata; |
3229 | kmp_taskdata_t *current; |
3230 | kmp_thread_data_t *victim_td, *threads_data; |
3231 | kmp_int32 target; |
3232 | kmp_info_t *victim_thr; |
3233 | |
3234 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
3235 | |
3236 | threads_data = task_team->tt.tt_threads_data; |
3237 | KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition |
3238 | KMP_DEBUG_ASSERT(victim_tid >= 0); |
3239 | KMP_DEBUG_ASSERT(victim_tid < task_team->tt.tt_nproc); |
3240 | |
3241 | victim_td = &threads_data[victim_tid]; |
3242 | victim_thr = victim_td->td.td_thr; |
3243 | (void)victim_thr; // Use in TRACE messages which aren't always enabled. |
3244 | |
3245 | KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " |
3246 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3247 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, |
3248 | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, |
3249 | victim_td->td.td_deque_tail)); |
3250 | |
3251 | if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { |
3252 | KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " |
3253 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3254 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, |
3255 | victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, |
3256 | victim_td->td.td_deque_tail)); |
3257 | return NULL; |
3258 | } |
3259 | |
3260 | __kmp_acquire_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3261 | |
3262 | int ntasks = TCR_4(victim_td->td.td_deque_ntasks); |
3263 | // Check again after we acquire the lock |
3264 | if (ntasks == 0) { |
3265 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3266 | KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " |
3267 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3268 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, |
3269 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3270 | return NULL; |
3271 | } |
3272 | |
3273 | KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); |
3274 | current = __kmp_threads[gtid]->th.th_current_task; |
3275 | taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; |
3276 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3277 | // Bump head pointer and Wrap. |
3278 | victim_td->td.td_deque_head = |
3279 | (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); |
3280 | } else { |
3281 | if (!task_team->tt.tt_untied_task_encountered) { |
3282 | // The TSC does not allow to steal victim task |
3283 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3284 | KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " |
3285 | "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3286 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, |
3287 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3288 | return NULL; |
3289 | } |
3290 | int i; |
3291 | // walk through victim's deque trying to steal any task |
3292 | target = victim_td->td.td_deque_head; |
3293 | taskdata = NULL; |
3294 | for (i = 1; i < ntasks; ++i) { |
3295 | target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); |
3296 | taskdata = victim_td->td.td_deque[target]; |
3297 | if (__kmp_task_is_allowed(gtid, is_constrained, tasknew: taskdata, taskcurr: current)) { |
3298 | break; // found victim task |
3299 | } else { |
3300 | taskdata = NULL; |
3301 | } |
3302 | } |
3303 | if (taskdata == NULL) { |
3304 | // No appropriate candidate to steal found |
3305 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3306 | KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " |
3307 | "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n" , |
3308 | gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, |
3309 | victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3310 | return NULL; |
3311 | } |
3312 | int prev = target; |
3313 | for (i = i + 1; i < ntasks; ++i) { |
3314 | // shift remaining tasks in the deque left by 1 |
3315 | target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); |
3316 | victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; |
3317 | prev = target; |
3318 | } |
3319 | KMP_DEBUG_ASSERT( |
3320 | victim_td->td.td_deque_tail == |
3321 | (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); |
3322 | victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) |
3323 | } |
3324 | if (*thread_finished) { |
3325 | // We need to un-mark this victim as a finished victim. This must be done |
3326 | // before releasing the lock, or else other threads (starting with the |
3327 | // primary thread victim) might be prematurely released from the barrier!!! |
3328 | #if KMP_DEBUG |
3329 | kmp_int32 count = |
3330 | #endif |
3331 | KMP_ATOMIC_INC(unfinished_threads); |
3332 | KA_TRACE( |
3333 | 20, |
3334 | ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n" , |
3335 | gtid, count + 1, task_team)); |
3336 | *thread_finished = FALSE; |
3337 | } |
3338 | TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); |
3339 | |
3340 | __kmp_release_bootstrap_lock(lck: &victim_td->td.td_deque_lock); |
3341 | |
3342 | KMP_COUNT_BLOCK(TASK_stolen); |
3343 | KA_TRACE(10, |
3344 | ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " |
3345 | "task_team=%p ntasks=%d head=%u tail=%u\n" , |
3346 | gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, |
3347 | ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); |
3348 | |
3349 | task = KMP_TASKDATA_TO_TASK(taskdata); |
3350 | return task; |
3351 | } |
3352 | |
3353 | // __kmp_execute_tasks_template: Choose and execute tasks until either the |
3354 | // condition is statisfied (return true) or there are none left (return false). |
3355 | // |
3356 | // final_spin is TRUE if this is the spin at the release barrier. |
3357 | // thread_finished indicates whether the thread is finished executing all |
3358 | // the tasks it has on its deque, and is at the release barrier. |
3359 | // spinner is the location on which to spin. |
3360 | // spinner == NULL means only execute a single task and return. |
3361 | // checker is the value to check to terminate the spin. |
3362 | template <class C> |
3363 | static inline int __kmp_execute_tasks_template( |
3364 | kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, |
3365 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3366 | kmp_int32 is_constrained) { |
3367 | kmp_task_team_t *task_team = thread->th.th_task_team; |
3368 | kmp_thread_data_t *threads_data; |
3369 | kmp_task_t *task; |
3370 | kmp_info_t *other_thread; |
3371 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
3372 | std::atomic<kmp_int32> *unfinished_threads; |
3373 | kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, |
3374 | tid = thread->th.th_info.ds.ds_tid; |
3375 | |
3376 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
3377 | KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); |
3378 | |
3379 | if (task_team == NULL || current_task == NULL) |
3380 | return FALSE; |
3381 | |
3382 | KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " |
3383 | "*thread_finished=%d\n" , |
3384 | gtid, final_spin, *thread_finished)); |
3385 | |
3386 | thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; |
3387 | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); |
3388 | |
3389 | KMP_DEBUG_ASSERT(threads_data != NULL); |
3390 | |
3391 | nthreads = task_team->tt.tt_nproc; |
3392 | unfinished_threads = &(task_team->tt.tt_unfinished_threads); |
3393 | KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || |
3394 | task_team->tt.tt_hidden_helper_task_encountered); |
3395 | KMP_DEBUG_ASSERT(*unfinished_threads >= 0); |
3396 | |
3397 | while (1) { // Outer loop keeps trying to find tasks in case of single thread |
3398 | // getting tasks from target constructs |
3399 | while (1) { // Inner loop to find a task and execute it |
3400 | task = NULL; |
3401 | if (task_team->tt.tt_num_task_pri) { // get priority task first |
3402 | task = __kmp_get_priority_task(gtid, task_team, is_constrained); |
3403 | } |
3404 | if (task == NULL && use_own_tasks) { // check own queue next |
3405 | task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); |
3406 | } |
3407 | if ((task == NULL) && (nthreads > 1)) { // Steal a task finally |
3408 | int asleep = 1; |
3409 | use_own_tasks = 0; |
3410 | // Try to steal from the last place I stole from successfully. |
3411 | if (victim_tid == -2) { // haven't stolen anything yet |
3412 | victim_tid = threads_data[tid].td.td_deque_last_stolen; |
3413 | if (victim_tid != |
3414 | -1) // if we have a last stolen from victim, get the thread |
3415 | other_thread = threads_data[victim_tid].td.td_thr; |
3416 | } |
3417 | if (victim_tid != -1) { // found last victim |
3418 | asleep = 0; |
3419 | } else if (!new_victim) { // no recent steals and we haven't already |
3420 | // used a new victim; select a random thread |
3421 | do { // Find a different thread to steal work from. |
3422 | // Pick a random thread. Initial plan was to cycle through all the |
3423 | // threads, and only return if we tried to steal from every thread, |
3424 | // and failed. Arch says that's not such a great idea. |
3425 | victim_tid = __kmp_get_random(thread) % (nthreads - 1); |
3426 | if (victim_tid >= tid) { |
3427 | ++victim_tid; // Adjusts random distribution to exclude self |
3428 | } |
3429 | // Found a potential victim |
3430 | other_thread = threads_data[victim_tid].td.td_thr; |
3431 | // There is a slight chance that __kmp_enable_tasking() did not wake |
3432 | // up all threads waiting at the barrier. If victim is sleeping, |
3433 | // then wake it up. Since we were going to pay the cache miss |
3434 | // penalty for referencing another thread's kmp_info_t struct |
3435 | // anyway, |
3436 | // the check shouldn't cost too much performance at this point. In |
3437 | // extra barrier mode, tasks do not sleep at the separate tasking |
3438 | // barrier, so this isn't a problem. |
3439 | asleep = 0; |
3440 | if ((__kmp_tasking_mode == tskm_task_teams) && |
3441 | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && |
3442 | (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != |
3443 | NULL)) { |
3444 | asleep = 1; |
3445 | __kmp_null_resume_wrapper(thr: other_thread); |
3446 | // A sleeping thread should not have any tasks on it's queue. |
3447 | // There is a slight possibility that it resumes, steals a task |
3448 | // from another thread, which spawns more tasks, all in the time |
3449 | // that it takes this thread to check => don't write an assertion |
3450 | // that the victim's queue is empty. Try stealing from a |
3451 | // different thread. |
3452 | } |
3453 | } while (asleep); |
3454 | } |
3455 | |
3456 | if (!asleep) { |
3457 | // We have a victim to try to steal from |
3458 | task = |
3459 | __kmp_steal_task(victim_tid, gtid, task_team, unfinished_threads, |
3460 | thread_finished, is_constrained); |
3461 | } |
3462 | if (task != NULL) { // set last stolen to victim |
3463 | if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { |
3464 | threads_data[tid].td.td_deque_last_stolen = victim_tid; |
3465 | // The pre-refactored code did not try more than 1 successful new |
3466 | // vicitm, unless the last one generated more local tasks; |
3467 | // new_victim keeps track of this |
3468 | new_victim = 1; |
3469 | } |
3470 | } else { // No tasks found; unset last_stolen |
3471 | KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); |
3472 | victim_tid = -2; // no successful victim found |
3473 | } |
3474 | } |
3475 | |
3476 | if (task == NULL) |
3477 | break; // break out of tasking loop |
3478 | |
3479 | // Found a task; execute it |
3480 | #if USE_ITT_BUILD && USE_ITT_NOTIFY |
3481 | if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { |
3482 | if (itt_sync_obj == NULL) { // we are at fork barrier where we could not |
3483 | // get the object reliably |
3484 | itt_sync_obj = __kmp_itt_barrier_object(gtid, bt: bs_forkjoin_barrier); |
3485 | } |
3486 | __kmp_itt_task_starting(object: itt_sync_obj); |
3487 | } |
3488 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ |
3489 | __kmp_invoke_task(gtid, task, current_task); |
3490 | #if USE_ITT_BUILD |
3491 | if (itt_sync_obj != NULL) |
3492 | __kmp_itt_task_finished(object: itt_sync_obj); |
3493 | #endif /* USE_ITT_BUILD */ |
3494 | // If this thread is only partway through the barrier and the condition is |
3495 | // met, then return now, so that the barrier gather/release pattern can |
3496 | // proceed. If this thread is in the last spin loop in the barrier, |
3497 | // waiting to be released, we know that the termination condition will not |
3498 | // be satisfied, so don't waste any cycles checking it. |
3499 | if (flag == NULL || (!final_spin && flag->done_check())) { |
3500 | KA_TRACE( |
3501 | 15, |
3502 | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n" , |
3503 | gtid)); |
3504 | return TRUE; |
3505 | } |
3506 | if (thread->th.th_task_team == NULL) { |
3507 | break; |
3508 | } |
3509 | KMP_YIELD(__kmp_library == library_throughput); // Yield before next task |
3510 | // If execution of a stolen task results in more tasks being placed on our |
3511 | // run queue, reset use_own_tasks |
3512 | if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { |
3513 | KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " |
3514 | "other tasks, restart\n" , |
3515 | gtid)); |
3516 | use_own_tasks = 1; |
3517 | new_victim = 0; |
3518 | } |
3519 | } |
3520 | |
3521 | // The task source has been exhausted. If in final spin loop of barrier, |
3522 | // check if termination condition is satisfied. The work queue may be empty |
3523 | // but there might be proxy tasks still executing. |
3524 | if (final_spin && |
3525 | KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { |
3526 | // First, decrement the #unfinished threads, if that has not already been |
3527 | // done. This decrement might be to the spin location, and result in the |
3528 | // termination condition being satisfied. |
3529 | if (!*thread_finished) { |
3530 | #if KMP_DEBUG |
3531 | kmp_int32 count = -1 + |
3532 | #endif |
3533 | KMP_ATOMIC_DEC(unfinished_threads); |
3534 | KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " |
3535 | "unfinished_threads to %d task_team=%p\n" , |
3536 | gtid, count, task_team)); |
3537 | *thread_finished = TRUE; |
3538 | } |
3539 | |
3540 | // It is now unsafe to reference thread->th.th_team !!! |
3541 | // Decrementing task_team->tt.tt_unfinished_threads can allow the primary |
3542 | // thread to pass through the barrier, where it might reset each thread's |
3543 | // th.th_team field for the next parallel region. If we can steal more |
3544 | // work, we know that this has not happened yet. |
3545 | if (flag != NULL && flag->done_check()) { |
3546 | KA_TRACE( |
3547 | 15, |
3548 | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n" , |
3549 | gtid)); |
3550 | return TRUE; |
3551 | } |
3552 | } |
3553 | |
3554 | // If this thread's task team is NULL, primary thread has recognized that |
3555 | // there are no more tasks; bail out |
3556 | if (thread->th.th_task_team == NULL) { |
3557 | KA_TRACE(15, |
3558 | ("__kmp_execute_tasks_template: T#%d no more tasks\n" , gtid)); |
3559 | return FALSE; |
3560 | } |
3561 | |
3562 | // Check the flag again to see if it has already done in case to be trapped |
3563 | // into infinite loop when a if0 task depends on a hidden helper task |
3564 | // outside any parallel region. Detached tasks are not impacted in this case |
3565 | // because the only thread executing this function has to execute the proxy |
3566 | // task so it is in another code path that has the same check. |
3567 | if (flag == NULL || (!final_spin && flag->done_check())) { |
3568 | KA_TRACE(15, |
3569 | ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n" , |
3570 | gtid)); |
3571 | return TRUE; |
3572 | } |
3573 | |
3574 | // We could be getting tasks from target constructs; if this is the only |
3575 | // thread, keep trying to execute tasks from own queue |
3576 | if (nthreads == 1 && |
3577 | KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) |
3578 | use_own_tasks = 1; |
3579 | else { |
3580 | KA_TRACE(15, |
3581 | ("__kmp_execute_tasks_template: T#%d can't find work\n" , gtid)); |
3582 | return FALSE; |
3583 | } |
3584 | } |
3585 | } |
3586 | |
3587 | template <bool C, bool S> |
3588 | int __kmp_execute_tasks_32( |
3589 | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, |
3590 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3591 | kmp_int32 is_constrained) { |
3592 | return __kmp_execute_tasks_template( |
3593 | thread, gtid, flag, final_spin, |
3594 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3595 | } |
3596 | |
3597 | template <bool C, bool S> |
3598 | int __kmp_execute_tasks_64( |
3599 | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, |
3600 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3601 | kmp_int32 is_constrained) { |
3602 | return __kmp_execute_tasks_template( |
3603 | thread, gtid, flag, final_spin, |
3604 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3605 | } |
3606 | |
3607 | template <bool C, bool S> |
3608 | int __kmp_atomic_execute_tasks_64( |
3609 | kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag, |
3610 | int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3611 | kmp_int32 is_constrained) { |
3612 | return __kmp_execute_tasks_template( |
3613 | thread, gtid, flag, final_spin, |
3614 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3615 | } |
3616 | |
3617 | int __kmp_execute_tasks_oncore( |
3618 | kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, |
3619 | int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), |
3620 | kmp_int32 is_constrained) { |
3621 | return __kmp_execute_tasks_template( |
3622 | thread, gtid, flag, final_spin, |
3623 | thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); |
3624 | } |
3625 | |
3626 | template int |
3627 | __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, |
3628 | kmp_flag_32<false, false> *, int, |
3629 | int *USE_ITT_BUILD_ARG(void *), kmp_int32); |
3630 | |
3631 | template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, |
3632 | kmp_flag_64<false, true> *, |
3633 | int, |
3634 | int *USE_ITT_BUILD_ARG(void *), |
3635 | kmp_int32); |
3636 | |
3637 | template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, |
3638 | kmp_flag_64<true, false> *, |
3639 | int, |
3640 | int *USE_ITT_BUILD_ARG(void *), |
3641 | kmp_int32); |
3642 | |
3643 | template int __kmp_atomic_execute_tasks_64<false, true>( |
3644 | kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int, |
3645 | int *USE_ITT_BUILD_ARG(void *), kmp_int32); |
3646 | |
3647 | template int __kmp_atomic_execute_tasks_64<true, false>( |
3648 | kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int, |
3649 | int *USE_ITT_BUILD_ARG(void *), kmp_int32); |
3650 | |
3651 | // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the |
3652 | // next barrier so they can assist in executing enqueued tasks. |
3653 | // First thread in allocates the task team atomically. |
3654 | static void __kmp_enable_tasking(kmp_task_team_t *task_team, |
3655 | kmp_info_t *this_thr) { |
3656 | kmp_thread_data_t *threads_data; |
3657 | int nthreads, i, is_init_thread; |
3658 | |
3659 | KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n" , |
3660 | __kmp_gtid_from_thread(this_thr))); |
3661 | |
3662 | KMP_DEBUG_ASSERT(task_team != NULL); |
3663 | KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); |
3664 | |
3665 | nthreads = task_team->tt.tt_nproc; |
3666 | KMP_DEBUG_ASSERT(nthreads > 0); |
3667 | KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); |
3668 | |
3669 | // Allocate or increase the size of threads_data if necessary |
3670 | is_init_thread = __kmp_realloc_task_threads_data(thread: this_thr, task_team); |
3671 | |
3672 | if (!is_init_thread) { |
3673 | // Some other thread already set up the array. |
3674 | KA_TRACE( |
3675 | 20, |
3676 | ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n" , |
3677 | __kmp_gtid_from_thread(this_thr))); |
3678 | return; |
3679 | } |
3680 | threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); |
3681 | KMP_DEBUG_ASSERT(threads_data != NULL); |
3682 | |
3683 | if (__kmp_tasking_mode == tskm_task_teams && |
3684 | (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { |
3685 | // Release any threads sleeping at the barrier, so that they can steal |
3686 | // tasks and execute them. In extra barrier mode, tasks do not sleep |
3687 | // at the separate tasking barrier, so this isn't a problem. |
3688 | for (i = 0; i < nthreads; i++) { |
3689 | void *sleep_loc; |
3690 | kmp_info_t *thread = threads_data[i].td.td_thr; |
3691 | |
3692 | if (i == this_thr->th.th_info.ds.ds_tid) { |
3693 | continue; |
3694 | } |
3695 | // Since we haven't locked the thread's suspend mutex lock at this |
3696 | // point, there is a small window where a thread might be putting |
3697 | // itself to sleep, but hasn't set the th_sleep_loc field yet. |
3698 | // To work around this, __kmp_execute_tasks_template() periodically checks |
3699 | // see if other threads are sleeping (using the same random mechanism that |
3700 | // is used for task stealing) and awakens them if they are. |
3701 | if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != |
3702 | NULL) { |
3703 | KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n" , |
3704 | __kmp_gtid_from_thread(this_thr), |
3705 | __kmp_gtid_from_thread(thread))); |
3706 | __kmp_null_resume_wrapper(thr: thread); |
3707 | } else { |
3708 | KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n" , |
3709 | __kmp_gtid_from_thread(this_thr), |
3710 | __kmp_gtid_from_thread(thread))); |
3711 | } |
3712 | } |
3713 | } |
3714 | |
3715 | KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n" , |
3716 | __kmp_gtid_from_thread(this_thr))); |
3717 | } |
3718 | |
3719 | /* // TODO: Check the comment consistency |
3720 | * Utility routines for "task teams". A task team (kmp_task_t) is kind of |
3721 | * like a shadow of the kmp_team_t data struct, with a different lifetime. |
3722 | * After a child * thread checks into a barrier and calls __kmp_release() from |
3723 | * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no |
3724 | * longer assume that the kmp_team_t structure is intact (at any moment, the |
3725 | * primary thread may exit the barrier code and free the team data structure, |
3726 | * and return the threads to the thread pool). |
3727 | * |
3728 | * This does not work with the tasking code, as the thread is still |
3729 | * expected to participate in the execution of any tasks that may have been |
3730 | * spawned my a member of the team, and the thread still needs access to all |
3731 | * to each thread in the team, so that it can steal work from it. |
3732 | * |
3733 | * Enter the existence of the kmp_task_team_t struct. It employs a reference |
3734 | * counting mechanism, and is allocated by the primary thread before calling |
3735 | * __kmp_<barrier_kind>_release, and then is release by the last thread to |
3736 | * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes |
3737 | * of the kmp_task_team_t structs for consecutive barriers can overlap |
3738 | * (and will, unless the primary thread is the last thread to exit the barrier |
3739 | * release phase, which is not typical). The existence of such a struct is |
3740 | * useful outside the context of tasking. |
3741 | * |
3742 | * We currently use the existence of the threads array as an indicator that |
3743 | * tasks were spawned since the last barrier. If the structure is to be |
3744 | * useful outside the context of tasking, then this will have to change, but |
3745 | * not setting the field minimizes the performance impact of tasking on |
3746 | * barriers, when no explicit tasks were spawned (pushed, actually). |
3747 | */ |
3748 | |
3749 | static kmp_task_team_t *__kmp_free_task_teams = |
3750 | NULL; // Free list for task_team data structures |
3751 | // Lock for task team data structures |
3752 | kmp_bootstrap_lock_t __kmp_task_team_lock = |
3753 | KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); |
3754 | |
3755 | // __kmp_alloc_task_deque: |
3756 | // Allocates a task deque for a particular thread, and initialize the necessary |
3757 | // data structures relating to the deque. This only happens once per thread |
3758 | // per task team since task teams are recycled. No lock is needed during |
3759 | // allocation since each thread allocates its own deque. |
3760 | static void __kmp_alloc_task_deque(kmp_info_t *thread, |
3761 | kmp_thread_data_t *thread_data) { |
3762 | __kmp_init_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3763 | KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); |
3764 | |
3765 | // Initialize last stolen task field to "none" |
3766 | thread_data->td.td_deque_last_stolen = -1; |
3767 | |
3768 | KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); |
3769 | KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); |
3770 | KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); |
3771 | |
3772 | KE_TRACE( |
3773 | 10, |
3774 | ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n" , |
3775 | __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); |
3776 | // Allocate space for task deque, and zero the deque |
3777 | // Cannot use __kmp_thread_calloc() because threads not around for |
3778 | // kmp_reap_task_team( ). |
3779 | thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( |
3780 | INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); |
3781 | thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; |
3782 | } |
3783 | |
3784 | // __kmp_free_task_deque: |
3785 | // Deallocates a task deque for a particular thread. Happens at library |
3786 | // deallocation so don't need to reset all thread data fields. |
3787 | static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { |
3788 | if (thread_data->td.td_deque != NULL) { |
3789 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3790 | TCW_4(thread_data->td.td_deque_ntasks, 0); |
3791 | __kmp_free(thread_data->td.td_deque); |
3792 | thread_data->td.td_deque = NULL; |
3793 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
3794 | } |
3795 | |
3796 | #ifdef BUILD_TIED_TASK_STACK |
3797 | // GEH: Figure out what to do here for td_susp_tied_tasks |
3798 | if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { |
3799 | __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); |
3800 | } |
3801 | #endif // BUILD_TIED_TASK_STACK |
3802 | } |
3803 | |
3804 | // __kmp_realloc_task_threads_data: |
3805 | // Allocates a threads_data array for a task team, either by allocating an |
3806 | // initial array or enlarging an existing array. Only the first thread to get |
3807 | // the lock allocs or enlarges the array and re-initializes the array elements. |
3808 | // That thread returns "TRUE", the rest return "FALSE". |
3809 | // Assumes that the new array size is given by task_team -> tt.tt_nproc. |
3810 | // The current size is given by task_team -> tt.tt_max_threads. |
3811 | static int __kmp_realloc_task_threads_data(kmp_info_t *thread, |
3812 | kmp_task_team_t *task_team) { |
3813 | kmp_thread_data_t **threads_data_p; |
3814 | kmp_int32 nthreads, maxthreads; |
3815 | int is_init_thread = FALSE; |
3816 | |
3817 | if (TCR_4(task_team->tt.tt_found_tasks)) { |
3818 | // Already reallocated and initialized. |
3819 | return FALSE; |
3820 | } |
3821 | |
3822 | threads_data_p = &task_team->tt.tt_threads_data; |
3823 | nthreads = task_team->tt.tt_nproc; |
3824 | maxthreads = task_team->tt.tt_max_threads; |
3825 | |
3826 | // All threads must lock when they encounter the first task of the implicit |
3827 | // task region to make sure threads_data fields are (re)initialized before |
3828 | // used. |
3829 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3830 | |
3831 | if (!TCR_4(task_team->tt.tt_found_tasks)) { |
3832 | // first thread to enable tasking |
3833 | kmp_team_t *team = thread->th.th_team; |
3834 | int i; |
3835 | |
3836 | is_init_thread = TRUE; |
3837 | if (maxthreads < nthreads) { |
3838 | |
3839 | if (*threads_data_p != NULL) { |
3840 | kmp_thread_data_t *old_data = *threads_data_p; |
3841 | kmp_thread_data_t *new_data = NULL; |
3842 | |
3843 | KE_TRACE( |
3844 | 10, |
3845 | ("__kmp_realloc_task_threads_data: T#%d reallocating " |
3846 | "threads data for task_team %p, new_size = %d, old_size = %d\n" , |
3847 | __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); |
3848 | // Reallocate threads_data to have more elements than current array |
3849 | // Cannot use __kmp_thread_realloc() because threads not around for |
3850 | // kmp_reap_task_team( ). Note all new array entries are initialized |
3851 | // to zero by __kmp_allocate(). |
3852 | new_data = (kmp_thread_data_t *)__kmp_allocate( |
3853 | nthreads * sizeof(kmp_thread_data_t)); |
3854 | // copy old data to new data |
3855 | KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), |
3856 | (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); |
3857 | |
3858 | #ifdef BUILD_TIED_TASK_STACK |
3859 | // GEH: Figure out if this is the right thing to do |
3860 | for (i = maxthreads; i < nthreads; i++) { |
3861 | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; |
3862 | __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); |
3863 | } |
3864 | #endif // BUILD_TIED_TASK_STACK |
3865 | // Install the new data and free the old data |
3866 | (*threads_data_p) = new_data; |
3867 | __kmp_free(old_data); |
3868 | } else { |
3869 | KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " |
3870 | "threads data for task_team %p, size = %d\n" , |
3871 | __kmp_gtid_from_thread(thread), task_team, nthreads)); |
3872 | // Make the initial allocate for threads_data array, and zero entries |
3873 | // Cannot use __kmp_thread_calloc() because threads not around for |
3874 | // kmp_reap_task_team( ). |
3875 | *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( |
3876 | nthreads * sizeof(kmp_thread_data_t)); |
3877 | #ifdef BUILD_TIED_TASK_STACK |
3878 | // GEH: Figure out if this is the right thing to do |
3879 | for (i = 0; i < nthreads; i++) { |
3880 | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; |
3881 | __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); |
3882 | } |
3883 | #endif // BUILD_TIED_TASK_STACK |
3884 | } |
3885 | task_team->tt.tt_max_threads = nthreads; |
3886 | } else { |
3887 | // If array has (more than) enough elements, go ahead and use it |
3888 | KMP_DEBUG_ASSERT(*threads_data_p != NULL); |
3889 | } |
3890 | |
3891 | // initialize threads_data pointers back to thread_info structures |
3892 | for (i = 0; i < nthreads; i++) { |
3893 | kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; |
3894 | thread_data->td.td_thr = team->t.t_threads[i]; |
3895 | |
3896 | if (thread_data->td.td_deque_last_stolen >= nthreads) { |
3897 | // The last stolen field survives across teams / barrier, and the number |
3898 | // of threads may have changed. It's possible (likely?) that a new |
3899 | // parallel region will exhibit the same behavior as previous region. |
3900 | thread_data->td.td_deque_last_stolen = -1; |
3901 | } |
3902 | } |
3903 | |
3904 | KMP_MB(); |
3905 | TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); |
3906 | } |
3907 | |
3908 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3909 | return is_init_thread; |
3910 | } |
3911 | |
3912 | // __kmp_free_task_threads_data: |
3913 | // Deallocates a threads_data array for a task team, including any attached |
3914 | // tasking deques. Only occurs at library shutdown. |
3915 | static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { |
3916 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3917 | if (task_team->tt.tt_threads_data != NULL) { |
3918 | int i; |
3919 | for (i = 0; i < task_team->tt.tt_max_threads; i++) { |
3920 | __kmp_free_task_deque(thread_data: &task_team->tt.tt_threads_data[i]); |
3921 | } |
3922 | __kmp_free(task_team->tt.tt_threads_data); |
3923 | task_team->tt.tt_threads_data = NULL; |
3924 | } |
3925 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3926 | } |
3927 | |
3928 | // __kmp_free_task_pri_list: |
3929 | // Deallocates tasking deques used for priority tasks. |
3930 | // Only occurs at library shutdown. |
3931 | static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) { |
3932 | __kmp_acquire_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
3933 | if (task_team->tt.tt_task_pri_list != NULL) { |
3934 | kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; |
3935 | while (list != NULL) { |
3936 | kmp_task_pri_t *next = list->next; |
3937 | __kmp_free_task_deque(thread_data: &list->td); |
3938 | __kmp_free(list); |
3939 | list = next; |
3940 | } |
3941 | task_team->tt.tt_task_pri_list = NULL; |
3942 | } |
3943 | __kmp_release_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
3944 | } |
3945 | |
3946 | // __kmp_allocate_task_team: |
3947 | // Allocates a task team associated with a specific team, taking it from |
3948 | // the global task team free list if possible. Also initializes data |
3949 | // structures. |
3950 | static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, |
3951 | kmp_team_t *team) { |
3952 | kmp_task_team_t *task_team = NULL; |
3953 | int nthreads; |
3954 | |
3955 | KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n" , |
3956 | (thread ? __kmp_gtid_from_thread(thread) : -1), team)); |
3957 | |
3958 | if (TCR_PTR(__kmp_free_task_teams) != NULL) { |
3959 | // Take a task team from the task team pool |
3960 | __kmp_acquire_bootstrap_lock(lck: &__kmp_task_team_lock); |
3961 | if (__kmp_free_task_teams != NULL) { |
3962 | task_team = __kmp_free_task_teams; |
3963 | TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); |
3964 | task_team->tt.tt_next = NULL; |
3965 | } |
3966 | __kmp_release_bootstrap_lock(lck: &__kmp_task_team_lock); |
3967 | } |
3968 | |
3969 | if (task_team == NULL) { |
3970 | KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " |
3971 | "task team for team %p\n" , |
3972 | __kmp_gtid_from_thread(thread), team)); |
3973 | // Allocate a new task team if one is not available. Cannot use |
3974 | // __kmp_thread_malloc because threads not around for kmp_reap_task_team. |
3975 | task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); |
3976 | __kmp_init_bootstrap_lock(lck: &task_team->tt.tt_threads_lock); |
3977 | __kmp_init_bootstrap_lock(lck: &task_team->tt.tt_task_pri_lock); |
3978 | #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG |
3979 | // suppress race conditions detection on synchronization flags in debug mode |
3980 | // this helps to analyze library internals eliminating false positives |
3981 | __itt_suppress_mark_range( |
3982 | __itt_suppress_range, __itt_suppress_threading_errors, |
3983 | &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); |
3984 | __itt_suppress_mark_range(__itt_suppress_range, |
3985 | __itt_suppress_threading_errors, |
3986 | CCAST(kmp_uint32 *, &task_team->tt.tt_active), |
3987 | sizeof(task_team->tt.tt_active)); |
3988 | #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ |
3989 | // Note: __kmp_allocate zeroes returned memory, othewise we would need: |
3990 | // task_team->tt.tt_threads_data = NULL; |
3991 | // task_team->tt.tt_max_threads = 0; |
3992 | // task_team->tt.tt_next = NULL; |
3993 | } |
3994 | |
3995 | TCW_4(task_team->tt.tt_found_tasks, FALSE); |
3996 | TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); |
3997 | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); |
3998 | task_team->tt.tt_nproc = nthreads = team->t.t_nproc; |
3999 | |
4000 | KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); |
4001 | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); |
4002 | TCW_4(task_team->tt.tt_active, TRUE); |
4003 | |
4004 | KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " |
4005 | "unfinished_threads init'd to %d\n" , |
4006 | (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, |
4007 | KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); |
4008 | return task_team; |
4009 | } |
4010 | |
4011 | // __kmp_free_task_team: |
4012 | // Frees the task team associated with a specific thread, and adds it |
4013 | // to the global task team free list. |
4014 | void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { |
4015 | KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n" , |
4016 | thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); |
4017 | |
4018 | // Put task team back on free list |
4019 | __kmp_acquire_bootstrap_lock(lck: &__kmp_task_team_lock); |
4020 | |
4021 | KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); |
4022 | task_team->tt.tt_next = __kmp_free_task_teams; |
4023 | TCW_PTR(__kmp_free_task_teams, task_team); |
4024 | |
4025 | __kmp_release_bootstrap_lock(lck: &__kmp_task_team_lock); |
4026 | } |
4027 | |
4028 | // __kmp_reap_task_teams: |
4029 | // Free all the task teams on the task team free list. |
4030 | // Should only be done during library shutdown. |
4031 | // Cannot do anything that needs a thread structure or gtid since they are |
4032 | // already gone. |
4033 | void __kmp_reap_task_teams(void) { |
4034 | kmp_task_team_t *task_team; |
4035 | |
4036 | if (TCR_PTR(__kmp_free_task_teams) != NULL) { |
4037 | // Free all task_teams on the free list |
4038 | __kmp_acquire_bootstrap_lock(lck: &__kmp_task_team_lock); |
4039 | while ((task_team = __kmp_free_task_teams) != NULL) { |
4040 | __kmp_free_task_teams = task_team->tt.tt_next; |
4041 | task_team->tt.tt_next = NULL; |
4042 | |
4043 | // Free threads_data if necessary |
4044 | if (task_team->tt.tt_threads_data != NULL) { |
4045 | __kmp_free_task_threads_data(task_team); |
4046 | } |
4047 | if (task_team->tt.tt_task_pri_list != NULL) { |
4048 | __kmp_free_task_pri_list(task_team); |
4049 | } |
4050 | __kmp_free(task_team); |
4051 | } |
4052 | __kmp_release_bootstrap_lock(lck: &__kmp_task_team_lock); |
4053 | } |
4054 | } |
4055 | |
4056 | // __kmp_wait_to_unref_task_teams: |
4057 | // Some threads could still be in the fork barrier release code, possibly |
4058 | // trying to steal tasks. Wait for each thread to unreference its task team. |
4059 | void __kmp_wait_to_unref_task_teams(void) { |
4060 | kmp_info_t *thread; |
4061 | kmp_uint32 spins; |
4062 | kmp_uint64 time; |
4063 | int done; |
4064 | |
4065 | KMP_INIT_YIELD(spins); |
4066 | KMP_INIT_BACKOFF(time); |
4067 | |
4068 | for (;;) { |
4069 | done = TRUE; |
4070 | |
4071 | // TODO: GEH - this may be is wrong because some sync would be necessary |
4072 | // in case threads are added to the pool during the traversal. Need to |
4073 | // verify that lock for thread pool is held when calling this routine. |
4074 | for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; |
4075 | thread = thread->th.th_next_pool) { |
4076 | #if KMP_OS_WINDOWS |
4077 | DWORD exit_val; |
4078 | #endif |
4079 | if (TCR_PTR(thread->th.th_task_team) == NULL) { |
4080 | KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n" , |
4081 | __kmp_gtid_from_thread(thread))); |
4082 | continue; |
4083 | } |
4084 | #if KMP_OS_WINDOWS |
4085 | // TODO: GEH - add this check for Linux* OS / OS X* as well? |
4086 | if (!__kmp_is_thread_alive(thread, &exit_val)) { |
4087 | thread->th.th_task_team = NULL; |
4088 | continue; |
4089 | } |
4090 | #endif |
4091 | |
4092 | done = FALSE; // Because th_task_team pointer is not NULL for this thread |
4093 | |
4094 | KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " |
4095 | "unreference task_team\n" , |
4096 | __kmp_gtid_from_thread(thread))); |
4097 | |
4098 | if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { |
4099 | void *sleep_loc; |
4100 | // If the thread is sleeping, awaken it. |
4101 | if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != |
4102 | NULL) { |
4103 | KA_TRACE( |
4104 | 10, |
4105 | ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n" , |
4106 | __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); |
4107 | __kmp_null_resume_wrapper(thr: thread); |
4108 | } |
4109 | } |
4110 | } |
4111 | if (done) { |
4112 | break; |
4113 | } |
4114 | |
4115 | // If oversubscribed or have waited a bit, yield. |
4116 | KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); |
4117 | } |
4118 | } |
4119 | |
4120 | void __kmp_shift_task_state_stack(kmp_info_t *this_thr, kmp_uint8 value) { |
4121 | // Shift values from th_task_state_top+1 to task_state_stack_sz |
4122 | if (this_thr->th.th_task_state_top + 1 >= |
4123 | this_thr->th.th_task_state_stack_sz) { // increase size |
4124 | kmp_uint32 new_size = 2 * this_thr->th.th_task_state_stack_sz; |
4125 | kmp_uint8 *old_stack, *new_stack; |
4126 | kmp_uint32 i; |
4127 | new_stack = (kmp_uint8 *)__kmp_allocate(new_size); |
4128 | for (i = 0; i <= this_thr->th.th_task_state_top; ++i) { |
4129 | new_stack[i] = this_thr->th.th_task_state_memo_stack[i]; |
4130 | } |
4131 | // If we need to reallocate do the shift at the same time. |
4132 | for (; i < this_thr->th.th_task_state_stack_sz; ++i) { |
4133 | new_stack[i + 1] = this_thr->th.th_task_state_memo_stack[i]; |
4134 | } |
4135 | for (i = this_thr->th.th_task_state_stack_sz; i < new_size; |
4136 | ++i) { // zero-init rest of stack |
4137 | new_stack[i] = 0; |
4138 | } |
4139 | old_stack = this_thr->th.th_task_state_memo_stack; |
4140 | this_thr->th.th_task_state_memo_stack = new_stack; |
4141 | this_thr->th.th_task_state_stack_sz = new_size; |
4142 | __kmp_free(old_stack); |
4143 | } else { |
4144 | kmp_uint8 *end; |
4145 | kmp_uint32 i; |
4146 | |
4147 | end = &this_thr->th |
4148 | .th_task_state_memo_stack[this_thr->th.th_task_state_stack_sz]; |
4149 | |
4150 | for (i = this_thr->th.th_task_state_stack_sz - 1; |
4151 | i > this_thr->th.th_task_state_top; i--, end--) |
4152 | end[0] = end[-1]; |
4153 | } |
4154 | this_thr->th.th_task_state_memo_stack[this_thr->th.th_task_state_top + 1] = |
4155 | value; |
4156 | } |
4157 | |
4158 | // __kmp_task_team_setup: Create a task_team for the current team, but use |
4159 | // an already created, unused one if it already exists. |
4160 | void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { |
4161 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
4162 | |
4163 | // If this task_team hasn't been created yet, allocate it. It will be used in |
4164 | // the region after the next. |
4165 | // If it exists, it is the current task team and shouldn't be touched yet as |
4166 | // it may still be in use. |
4167 | if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && |
4168 | (always || team->t.t_nproc > 1)) { |
4169 | team->t.t_task_team[this_thr->th.th_task_state] = |
4170 | __kmp_allocate_task_team(thread: this_thr, team); |
4171 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" |
4172 | " for team %d at parity=%d\n" , |
4173 | __kmp_gtid_from_thread(this_thr), |
4174 | team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, |
4175 | this_thr->th.th_task_state)); |
4176 | } |
4177 | if (this_thr->th.th_task_state == 1 && always && team->t.t_nproc == 1) { |
4178 | // fix task state stack to adjust for proxy and helper tasks |
4179 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d needs to shift stack" |
4180 | " for team %d at parity=%d\n" , |
4181 | __kmp_gtid_from_thread(this_thr), team->t.t_id, |
4182 | this_thr->th.th_task_state)); |
4183 | __kmp_shift_task_state_stack(this_thr, value: this_thr->th.th_task_state); |
4184 | } |
4185 | |
4186 | // After threads exit the release, they will call sync, and then point to this |
4187 | // other task_team; make sure it is allocated and properly initialized. As |
4188 | // threads spin in the barrier release phase, they will continue to use the |
4189 | // previous task_team struct(above), until they receive the signal to stop |
4190 | // checking for tasks (they can't safely reference the kmp_team_t struct, |
4191 | // which could be reallocated by the primary thread). No task teams are formed |
4192 | // for serialized teams. |
4193 | if (team->t.t_nproc > 1) { |
4194 | int other_team = 1 - this_thr->th.th_task_state; |
4195 | KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); |
4196 | if (team->t.t_task_team[other_team] == NULL) { // setup other team as well |
4197 | team->t.t_task_team[other_team] = |
4198 | __kmp_allocate_task_team(thread: this_thr, team); |
4199 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " |
4200 | "task_team %p for team %d at parity=%d\n" , |
4201 | __kmp_gtid_from_thread(this_thr), |
4202 | team->t.t_task_team[other_team], team->t.t_id, other_team)); |
4203 | } else { // Leave the old task team struct in place for the upcoming region; |
4204 | // adjust as needed |
4205 | kmp_task_team_t *task_team = team->t.t_task_team[other_team]; |
4206 | if (!task_team->tt.tt_active || |
4207 | team->t.t_nproc != task_team->tt.tt_nproc) { |
4208 | TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); |
4209 | TCW_4(task_team->tt.tt_found_tasks, FALSE); |
4210 | TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); |
4211 | TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); |
4212 | KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, |
4213 | team->t.t_nproc); |
4214 | TCW_4(task_team->tt.tt_active, TRUE); |
4215 | } |
4216 | // if team size has changed, the first thread to enable tasking will |
4217 | // realloc threads_data if necessary |
4218 | KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " |
4219 | "%p for team %d at parity=%d\n" , |
4220 | __kmp_gtid_from_thread(this_thr), |
4221 | team->t.t_task_team[other_team], team->t.t_id, other_team)); |
4222 | } |
4223 | } |
4224 | |
4225 | // For regular thread, task enabling should be called when the task is going |
4226 | // to be pushed to a dequeue. However, for the hidden helper thread, we need |
4227 | // it ahead of time so that some operations can be performed without race |
4228 | // condition. |
4229 | if (this_thr == __kmp_hidden_helper_main_thread) { |
4230 | for (int i = 0; i < 2; ++i) { |
4231 | kmp_task_team_t *task_team = team->t.t_task_team[i]; |
4232 | if (KMP_TASKING_ENABLED(task_team)) { |
4233 | continue; |
4234 | } |
4235 | __kmp_enable_tasking(task_team, this_thr); |
4236 | for (int j = 0; j < task_team->tt.tt_nproc; ++j) { |
4237 | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; |
4238 | if (thread_data->td.td_deque == NULL) { |
4239 | __kmp_alloc_task_deque(thread: __kmp_hidden_helper_threads[j], thread_data); |
4240 | } |
4241 | } |
4242 | } |
4243 | } |
4244 | } |
4245 | |
4246 | // __kmp_task_team_sync: Propagation of task team data from team to threads |
4247 | // which happens just after the release phase of a team barrier. This may be |
4248 | // called by any thread, but only for teams with # threads > 1. |
4249 | void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { |
4250 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
4251 | |
4252 | // Toggle the th_task_state field, to switch which task_team this thread |
4253 | // refers to |
4254 | this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); |
4255 | |
4256 | // It is now safe to propagate the task team pointer from the team struct to |
4257 | // the current thread. |
4258 | TCW_PTR(this_thr->th.th_task_team, |
4259 | team->t.t_task_team[this_thr->th.th_task_state]); |
4260 | KA_TRACE(20, |
4261 | ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " |
4262 | "%p from Team #%d (parity=%d)\n" , |
4263 | __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, |
4264 | team->t.t_id, this_thr->th.th_task_state)); |
4265 | } |
4266 | |
4267 | // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the |
4268 | // barrier gather phase. Only called by primary thread if #threads in team > 1 |
4269 | // or if proxy tasks were created. |
4270 | // |
4271 | // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off |
4272 | // by passing in 0 optionally as the last argument. When wait is zero, primary |
4273 | // thread does not wait for unfinished_threads to reach 0. |
4274 | void __kmp_task_team_wait( |
4275 | kmp_info_t *this_thr, |
4276 | kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { |
4277 | kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; |
4278 | |
4279 | KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); |
4280 | KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); |
4281 | |
4282 | if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { |
4283 | if (wait) { |
4284 | KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " |
4285 | "(for unfinished_threads to reach 0) on task_team = %p\n" , |
4286 | __kmp_gtid_from_thread(this_thr), task_team)); |
4287 | // Worker threads may have dropped through to release phase, but could |
4288 | // still be executing tasks. Wait here for tasks to complete. To avoid |
4289 | // memory contention, only primary thread checks termination condition. |
4290 | kmp_flag_32<false, false> flag( |
4291 | RCAST(std::atomic<kmp_uint32> *, |
4292 | &task_team->tt.tt_unfinished_threads), |
4293 | 0U); |
4294 | flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); |
4295 | } |
4296 | // Deactivate the old task team, so that the worker threads will stop |
4297 | // referencing it while spinning. |
4298 | KA_TRACE( |
4299 | 20, |
4300 | ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " |
4301 | "setting active to false, setting local and team's pointer to NULL\n" , |
4302 | __kmp_gtid_from_thread(this_thr), task_team)); |
4303 | KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || |
4304 | task_team->tt.tt_found_proxy_tasks == TRUE || |
4305 | task_team->tt.tt_hidden_helper_task_encountered == TRUE); |
4306 | TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); |
4307 | TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); |
4308 | KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); |
4309 | TCW_SYNC_4(task_team->tt.tt_active, FALSE); |
4310 | KMP_MB(); |
4311 | |
4312 | TCW_PTR(this_thr->th.th_task_team, NULL); |
4313 | } |
4314 | } |
4315 | |
4316 | // __kmp_tasking_barrier: |
4317 | // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. |
4318 | // Internal function to execute all tasks prior to a regular barrier or a join |
4319 | // barrier. It is a full barrier itself, which unfortunately turns regular |
4320 | // barriers into double barriers and join barriers into 1 1/2 barriers. |
4321 | void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { |
4322 | std::atomic<kmp_uint32> *spin = RCAST( |
4323 | std::atomic<kmp_uint32> *, |
4324 | &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); |
4325 | int flag = FALSE; |
4326 | KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); |
4327 | |
4328 | #if USE_ITT_BUILD |
4329 | KMP_FSYNC_SPIN_INIT(spin, NULL); |
4330 | #endif /* USE_ITT_BUILD */ |
4331 | kmp_flag_32<false, false> spin_flag(spin, 0U); |
4332 | while (!spin_flag.execute_tasks(this_thr: thread, gtid, TRUE, |
4333 | thread_finished: &flag USE_ITT_BUILD_ARG(NULL), is_constrained: 0)) { |
4334 | #if USE_ITT_BUILD |
4335 | // TODO: What about itt_sync_obj?? |
4336 | KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); |
4337 | #endif /* USE_ITT_BUILD */ |
4338 | |
4339 | if (TCR_4(__kmp_global.g.g_done)) { |
4340 | if (__kmp_global.g.g_abort) |
4341 | __kmp_abort_thread(); |
4342 | break; |
4343 | } |
4344 | KMP_YIELD(TRUE); |
4345 | } |
4346 | #if USE_ITT_BUILD |
4347 | KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); |
4348 | #endif /* USE_ITT_BUILD */ |
4349 | } |
4350 | |
4351 | // __kmp_give_task puts a task into a given thread queue if: |
4352 | // - the queue for that thread was created |
4353 | // - there's space in that queue |
4354 | // Because of this, __kmp_push_task needs to check if there's space after |
4355 | // getting the lock |
4356 | static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, |
4357 | kmp_int32 pass) { |
4358 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
4359 | kmp_task_team_t *task_team = taskdata->td_task_team; |
4360 | |
4361 | KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n" , |
4362 | taskdata, tid)); |
4363 | |
4364 | // If task_team is NULL something went really bad... |
4365 | KMP_DEBUG_ASSERT(task_team != NULL); |
4366 | |
4367 | bool result = false; |
4368 | kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; |
4369 | |
4370 | if (thread_data->td.td_deque == NULL) { |
4371 | // There's no queue in this thread, go find another one |
4372 | // We're guaranteed that at least one thread has a queue |
4373 | KA_TRACE(30, |
4374 | ("__kmp_give_task: thread %d has no queue while giving task %p.\n" , |
4375 | tid, taskdata)); |
4376 | return result; |
4377 | } |
4378 | |
4379 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
4380 | TASK_DEQUE_SIZE(thread_data->td)) { |
4381 | KA_TRACE( |
4382 | 30, |
4383 | ("__kmp_give_task: queue is full while giving task %p to thread %d.\n" , |
4384 | taskdata, tid)); |
4385 | |
4386 | // if this deque is bigger than the pass ratio give a chance to another |
4387 | // thread |
4388 | if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) |
4389 | return result; |
4390 | |
4391 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
4392 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
4393 | TASK_DEQUE_SIZE(thread_data->td)) { |
4394 | // expand deque to push the task which is not allowed to execute |
4395 | __kmp_realloc_task_deque(thread, thread_data); |
4396 | } |
4397 | |
4398 | } else { |
4399 | |
4400 | __kmp_acquire_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
4401 | |
4402 | if (TCR_4(thread_data->td.td_deque_ntasks) >= |
4403 | TASK_DEQUE_SIZE(thread_data->td)) { |
4404 | KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " |
4405 | "thread %d.\n" , |
4406 | taskdata, tid)); |
4407 | |
4408 | // if this deque is bigger than the pass ratio give a chance to another |
4409 | // thread |
4410 | if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) |
4411 | goto release_and_exit; |
4412 | |
4413 | __kmp_realloc_task_deque(thread, thread_data); |
4414 | } |
4415 | } |
4416 | |
4417 | // lock is held here, and there is space in the deque |
4418 | |
4419 | thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; |
4420 | // Wrap index. |
4421 | thread_data->td.td_deque_tail = |
4422 | (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); |
4423 | TCW_4(thread_data->td.td_deque_ntasks, |
4424 | TCR_4(thread_data->td.td_deque_ntasks) + 1); |
4425 | |
4426 | result = true; |
4427 | KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n" , |
4428 | taskdata, tid)); |
4429 | |
4430 | release_and_exit: |
4431 | __kmp_release_bootstrap_lock(lck: &thread_data->td.td_deque_lock); |
4432 | |
4433 | return result; |
4434 | } |
4435 | |
4436 | #define PROXY_TASK_FLAG 0x40000000 |
4437 | /* The finish of the proxy tasks is divided in two pieces: |
4438 | - the top half is the one that can be done from a thread outside the team |
4439 | - the bottom half must be run from a thread within the team |
4440 | |
4441 | In order to run the bottom half the task gets queued back into one of the |
4442 | threads of the team. Once the td_incomplete_child_task counter of the parent |
4443 | is decremented the threads can leave the barriers. So, the bottom half needs |
4444 | to be queued before the counter is decremented. The top half is therefore |
4445 | divided in two parts: |
4446 | - things that can be run before queuing the bottom half |
4447 | - things that must be run after queuing the bottom half |
4448 | |
4449 | This creates a second race as the bottom half can free the task before the |
4450 | second top half is executed. To avoid this we use the |
4451 | td_incomplete_child_task of the proxy task to synchronize the top and bottom |
4452 | half. */ |
4453 | static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { |
4454 | KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); |
4455 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4456 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); |
4457 | KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); |
4458 | |
4459 | taskdata->td_flags.complete = 1; // mark the task as completed |
4460 | #if OMPX_TASKGRAPH |
4461 | taskdata->td_flags.onced = 1; |
4462 | #endif |
4463 | |
4464 | if (taskdata->td_taskgroup) |
4465 | KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); |
4466 | |
4467 | // Create an imaginary children for this task so the bottom half cannot |
4468 | // release the task before we have completed the second top half |
4469 | KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG); |
4470 | } |
4471 | |
4472 | static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { |
4473 | #if KMP_DEBUG |
4474 | kmp_int32 children = 0; |
4475 | // Predecrement simulated by "- 1" calculation |
4476 | children = -1 + |
4477 | #endif |
4478 | KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); |
4479 | KMP_DEBUG_ASSERT(children >= 0); |
4480 | |
4481 | // Remove the imaginary children |
4482 | KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG); |
4483 | } |
4484 | |
4485 | static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { |
4486 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4487 | kmp_info_t *thread = __kmp_threads[gtid]; |
4488 | |
4489 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4490 | KMP_DEBUG_ASSERT(taskdata->td_flags.complete == |
4491 | 1); // top half must run before bottom half |
4492 | |
4493 | // We need to wait to make sure the top half is finished |
4494 | // Spinning here should be ok as this should happen quickly |
4495 | while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) & |
4496 | PROXY_TASK_FLAG) > 0) |
4497 | ; |
4498 | |
4499 | __kmp_release_deps(gtid, task: taskdata); |
4500 | __kmp_free_task_and_ancestors(gtid, taskdata, thread); |
4501 | } |
4502 | |
4503 | /*! |
4504 | @ingroup TASKING |
4505 | @param gtid Global Thread ID of encountering thread |
4506 | @param ptask Task which execution is completed |
4507 | |
4508 | Execute the completion of a proxy task from a thread of that is part of the |
4509 | team. Run first and bottom halves directly. |
4510 | */ |
4511 | void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { |
4512 | KMP_DEBUG_ASSERT(ptask != NULL); |
4513 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4514 | KA_TRACE( |
4515 | 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n" , |
4516 | gtid, taskdata)); |
4517 | __kmp_assert_valid_gtid(gtid); |
4518 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4519 | |
4520 | __kmp_first_top_half_finish_proxy(taskdata); |
4521 | __kmp_second_top_half_finish_proxy(taskdata); |
4522 | __kmp_bottom_half_finish_proxy(gtid, ptask); |
4523 | |
4524 | KA_TRACE(10, |
4525 | ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n" , |
4526 | gtid, taskdata)); |
4527 | } |
4528 | |
4529 | void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) { |
4530 | KMP_DEBUG_ASSERT(ptask != NULL); |
4531 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4532 | |
4533 | // Enqueue task to complete bottom half completion from a thread within the |
4534 | // corresponding team |
4535 | kmp_team_t *team = taskdata->td_team; |
4536 | kmp_int32 nthreads = team->t.t_nproc; |
4537 | kmp_info_t *thread; |
4538 | |
4539 | // This should be similar to start_k = __kmp_get_random( thread ) % nthreads |
4540 | // but we cannot use __kmp_get_random here |
4541 | kmp_int32 start_k = start % nthreads; |
4542 | kmp_int32 pass = 1; |
4543 | kmp_int32 k = start_k; |
4544 | |
4545 | do { |
4546 | // For now we're just linearly trying to find a thread |
4547 | thread = team->t.t_threads[k]; |
4548 | k = (k + 1) % nthreads; |
4549 | |
4550 | // we did a full pass through all the threads |
4551 | if (k == start_k) |
4552 | pass = pass << 1; |
4553 | |
4554 | } while (!__kmp_give_task(thread, tid: k, task: ptask, pass)); |
4555 | |
4556 | if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) { |
4557 | // awake at least one thread to execute given task |
4558 | for (int i = 0; i < nthreads; ++i) { |
4559 | thread = team->t.t_threads[i]; |
4560 | if (thread->th.th_sleep_loc != NULL) { |
4561 | __kmp_null_resume_wrapper(thr: thread); |
4562 | break; |
4563 | } |
4564 | } |
4565 | } |
4566 | } |
4567 | |
4568 | /*! |
4569 | @ingroup TASKING |
4570 | @param ptask Task which execution is completed |
4571 | |
4572 | Execute the completion of a proxy task from a thread that could not belong to |
4573 | the team. |
4574 | */ |
4575 | void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { |
4576 | KMP_DEBUG_ASSERT(ptask != NULL); |
4577 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4578 | |
4579 | KA_TRACE( |
4580 | 10, |
4581 | ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n" , |
4582 | taskdata)); |
4583 | |
4584 | KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); |
4585 | |
4586 | __kmp_first_top_half_finish_proxy(taskdata); |
4587 | |
4588 | __kmpc_give_task(ptask); |
4589 | |
4590 | __kmp_second_top_half_finish_proxy(taskdata); |
4591 | |
4592 | KA_TRACE( |
4593 | 10, |
4594 | ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n" , |
4595 | taskdata)); |
4596 | } |
4597 | |
4598 | kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, |
4599 | kmp_task_t *task) { |
4600 | kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); |
4601 | if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { |
4602 | td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; |
4603 | td->td_allow_completion_event.ed.task = task; |
4604 | __kmp_init_tas_lock(lck: &td->td_allow_completion_event.lock); |
4605 | } |
4606 | return &td->td_allow_completion_event; |
4607 | } |
4608 | |
4609 | void __kmp_fulfill_event(kmp_event_t *event) { |
4610 | if (event->type == KMP_EVENT_ALLOW_COMPLETION) { |
4611 | kmp_task_t *ptask = event->ed.task; |
4612 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); |
4613 | bool detached = false; |
4614 | int gtid = __kmp_get_gtid(); |
4615 | |
4616 | // The associated task might have completed or could be completing at this |
4617 | // point. |
4618 | // We need to take the lock to avoid races |
4619 | __kmp_acquire_tas_lock(lck: &event->lock, gtid); |
4620 | if (taskdata->td_flags.proxy == TASK_PROXY) { |
4621 | detached = true; |
4622 | } else { |
4623 | #if OMPT_SUPPORT |
4624 | // The OMPT event must occur under mutual exclusion, |
4625 | // otherwise the tool might access ptask after free |
4626 | if (UNLIKELY(ompt_enabled.enabled)) |
4627 | __ompt_task_finish(task: ptask, NULL, status: ompt_task_early_fulfill); |
4628 | #endif |
4629 | } |
4630 | event->type = KMP_EVENT_UNINITIALIZED; |
4631 | __kmp_release_tas_lock(lck: &event->lock, gtid); |
4632 | |
4633 | if (detached) { |
4634 | #if OMPT_SUPPORT |
4635 | // We free ptask afterwards and know the task is finished, |
4636 | // so locking is not necessary |
4637 | if (UNLIKELY(ompt_enabled.enabled)) |
4638 | __ompt_task_finish(task: ptask, NULL, status: ompt_task_late_fulfill); |
4639 | #endif |
4640 | // If the task detached complete the proxy task |
4641 | if (gtid >= 0) { |
4642 | kmp_team_t *team = taskdata->td_team; |
4643 | kmp_info_t *thread = __kmp_get_thread(); |
4644 | if (thread->th.th_team == team) { |
4645 | __kmpc_proxy_task_completed(gtid, ptask); |
4646 | return; |
4647 | } |
4648 | } |
4649 | |
4650 | // fallback |
4651 | __kmpc_proxy_task_completed_ooo(ptask); |
4652 | } |
4653 | } |
4654 | } |
4655 | |
4656 | // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task |
4657 | // for taskloop |
4658 | // |
4659 | // thread: allocating thread |
4660 | // task_src: pointer to source task to be duplicated |
4661 | // taskloop_recur: used only when dealing with taskgraph, |
4662 | // indicating whether we need to update task->td_task_id |
4663 | // returns: a pointer to the allocated kmp_task_t structure (task). |
4664 | kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src |
4665 | #if OMPX_TASKGRAPH |
4666 | , int taskloop_recur |
4667 | #endif |
4668 | ) { |
4669 | kmp_task_t *task; |
4670 | kmp_taskdata_t *taskdata; |
4671 | kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); |
4672 | kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task |
4673 | size_t shareds_offset; |
4674 | size_t task_size; |
4675 | |
4676 | KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n" , thread, |
4677 | task_src)); |
4678 | KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == |
4679 | TASK_FULL); // it should not be proxy task |
4680 | KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); |
4681 | task_size = taskdata_src->td_size_alloc; |
4682 | |
4683 | // Allocate a kmp_taskdata_t block and a kmp_task_t block. |
4684 | KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n" , thread, |
4685 | task_size)); |
4686 | #if USE_FAST_MEMORY |
4687 | taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); |
4688 | #else |
4689 | taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); |
4690 | #endif /* USE_FAST_MEMORY */ |
4691 | KMP_MEMCPY(dest: taskdata, src: taskdata_src, n: task_size); |
4692 | |
4693 | task = KMP_TASKDATA_TO_TASK(taskdata); |
4694 | |
4695 | // Initialize new task (only specific fields not affected by memcpy) |
4696 | #if OMPX_TASKGRAPH |
4697 | if (!taskdata->is_taskgraph || taskloop_recur) |
4698 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
4699 | else if (taskdata->is_taskgraph && |
4700 | __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status)) |
4701 | taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); |
4702 | #else |
4703 | taskdata->td_task_id = KMP_GEN_TASK_ID(); |
4704 | #endif |
4705 | if (task->shareds != NULL) { // need setup shareds pointer |
4706 | shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; |
4707 | task->shareds = &((char *)taskdata)[shareds_offset]; |
4708 | KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == |
4709 | 0); |
4710 | } |
4711 | taskdata->td_alloc_thread = thread; |
4712 | taskdata->td_parent = parent_task; |
4713 | // task inherits the taskgroup from the parent task |
4714 | taskdata->td_taskgroup = parent_task->td_taskgroup; |
4715 | // tied task needs to initialize the td_last_tied at creation, |
4716 | // untied one does this when it is scheduled for execution |
4717 | if (taskdata->td_flags.tiedness == TASK_TIED) |
4718 | taskdata->td_last_tied = taskdata; |
4719 | |
4720 | // Only need to keep track of child task counts if team parallel and tasking |
4721 | // not serialized |
4722 | if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { |
4723 | KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); |
4724 | if (parent_task->td_taskgroup) |
4725 | KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); |
4726 | // Only need to keep track of allocated child tasks for explicit tasks since |
4727 | // implicit not deallocated |
4728 | if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) |
4729 | KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); |
4730 | } |
4731 | |
4732 | KA_TRACE(20, |
4733 | ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n" , |
4734 | thread, taskdata, taskdata->td_parent)); |
4735 | #if OMPT_SUPPORT |
4736 | if (UNLIKELY(ompt_enabled.enabled)) |
4737 | __ompt_task_init(task: taskdata, tid: thread->th.th_info.ds.ds_gtid); |
4738 | #endif |
4739 | return task; |
4740 | } |
4741 | |
4742 | // Routine optionally generated by the compiler for setting the lastprivate flag |
4743 | // and calling needed constructors for private/firstprivate objects |
4744 | // (used to form taskloop tasks from pattern task) |
4745 | // Parameters: dest task, src task, lastprivate flag. |
4746 | typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); |
4747 | |
4748 | KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); |
4749 | |
4750 | // class to encapsulate manipulating loop bounds in a taskloop task. |
4751 | // this abstracts away the Intel vs GOMP taskloop interface for setting/getting |
4752 | // the loop bound variables. |
4753 | class kmp_taskloop_bounds_t { |
4754 | kmp_task_t *task; |
4755 | const kmp_taskdata_t *taskdata; |
4756 | size_t lower_offset; |
4757 | size_t upper_offset; |
4758 | |
4759 | public: |
4760 | kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) |
4761 | : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), |
4762 | lower_offset((char *)lb - (char *)task), |
4763 | upper_offset((char *)ub - (char *)task) { |
4764 | KMP_DEBUG_ASSERT((char *)lb > (char *)_task); |
4765 | KMP_DEBUG_ASSERT((char *)ub > (char *)_task); |
4766 | } |
4767 | kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) |
4768 | : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), |
4769 | lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} |
4770 | size_t get_lower_offset() const { return lower_offset; } |
4771 | size_t get_upper_offset() const { return upper_offset; } |
4772 | kmp_uint64 get_lb() const { |
4773 | kmp_int64 retval; |
4774 | #if defined(KMP_GOMP_COMPAT) |
4775 | // Intel task just returns the lower bound normally |
4776 | if (!taskdata->td_flags.native) { |
4777 | retval = *(kmp_int64 *)((char *)task + lower_offset); |
4778 | } else { |
4779 | // GOMP task has to take into account the sizeof(long) |
4780 | if (taskdata->td_size_loop_bounds == 4) { |
4781 | kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); |
4782 | retval = (kmp_int64)*lb; |
4783 | } else { |
4784 | kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); |
4785 | retval = (kmp_int64)*lb; |
4786 | } |
4787 | } |
4788 | #else |
4789 | (void)taskdata; |
4790 | retval = *(kmp_int64 *)((char *)task + lower_offset); |
4791 | #endif // defined(KMP_GOMP_COMPAT) |
4792 | return retval; |
4793 | } |
4794 | kmp_uint64 get_ub() const { |
4795 | kmp_int64 retval; |
4796 | #if defined(KMP_GOMP_COMPAT) |
4797 | // Intel task just returns the upper bound normally |
4798 | if (!taskdata->td_flags.native) { |
4799 | retval = *(kmp_int64 *)((char *)task + upper_offset); |
4800 | } else { |
4801 | // GOMP task has to take into account the sizeof(long) |
4802 | if (taskdata->td_size_loop_bounds == 4) { |
4803 | kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; |
4804 | retval = (kmp_int64)*ub; |
4805 | } else { |
4806 | kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; |
4807 | retval = (kmp_int64)*ub; |
4808 | } |
4809 | } |
4810 | #else |
4811 | retval = *(kmp_int64 *)((char *)task + upper_offset); |
4812 | #endif // defined(KMP_GOMP_COMPAT) |
4813 | return retval; |
4814 | } |
4815 | void set_lb(kmp_uint64 lb) { |
4816 | #if defined(KMP_GOMP_COMPAT) |
4817 | // Intel task just sets the lower bound normally |
4818 | if (!taskdata->td_flags.native) { |
4819 | *(kmp_uint64 *)((char *)task + lower_offset) = lb; |
4820 | } else { |
4821 | // GOMP task has to take into account the sizeof(long) |
4822 | if (taskdata->td_size_loop_bounds == 4) { |
4823 | kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); |
4824 | *lower = (kmp_uint32)lb; |
4825 | } else { |
4826 | kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); |
4827 | *lower = (kmp_uint64)lb; |
4828 | } |
4829 | } |
4830 | #else |
4831 | *(kmp_uint64 *)((char *)task + lower_offset) = lb; |
4832 | #endif // defined(KMP_GOMP_COMPAT) |
4833 | } |
4834 | void set_ub(kmp_uint64 ub) { |
4835 | #if defined(KMP_GOMP_COMPAT) |
4836 | // Intel task just sets the upper bound normally |
4837 | if (!taskdata->td_flags.native) { |
4838 | *(kmp_uint64 *)((char *)task + upper_offset) = ub; |
4839 | } else { |
4840 | // GOMP task has to take into account the sizeof(long) |
4841 | if (taskdata->td_size_loop_bounds == 4) { |
4842 | kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; |
4843 | *upper = (kmp_uint32)ub; |
4844 | } else { |
4845 | kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; |
4846 | *upper = (kmp_uint64)ub; |
4847 | } |
4848 | } |
4849 | #else |
4850 | *(kmp_uint64 *)((char *)task + upper_offset) = ub; |
4851 | #endif // defined(KMP_GOMP_COMPAT) |
4852 | } |
4853 | }; |
4854 | |
4855 | // __kmp_taskloop_linear: Start tasks of the taskloop linearly |
4856 | // |
4857 | // loc Source location information |
4858 | // gtid Global thread ID |
4859 | // task Pattern task, exposes the loop iteration range |
4860 | // lb Pointer to loop lower bound in task structure |
4861 | // ub Pointer to loop upper bound in task structure |
4862 | // st Loop stride |
4863 | // ub_glob Global upper bound (used for lastprivate check) |
4864 | // num_tasks Number of tasks to execute |
4865 | // grainsize Number of loop iterations per task |
4866 | // extras Number of chunks with grainsize+1 iterations |
4867 | // last_chunk Reduction of grainsize for last task |
4868 | // tc Iterations count |
4869 | // task_dup Tasks duplication routine |
4870 | // codeptr_ra Return address for OMPT events |
4871 | void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, |
4872 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
4873 | kmp_uint64 ub_glob, kmp_uint64 num_tasks, |
4874 | kmp_uint64 grainsize, kmp_uint64 , |
4875 | kmp_int64 last_chunk, kmp_uint64 tc, |
4876 | #if OMPT_SUPPORT |
4877 | void *codeptr_ra, |
4878 | #endif |
4879 | void *task_dup) { |
4880 | KMP_COUNT_BLOCK(OMP_TASKLOOP); |
4881 | KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); |
4882 | p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; |
4883 | // compiler provides global bounds here |
4884 | kmp_taskloop_bounds_t task_bounds(task, lb, ub); |
4885 | kmp_uint64 lower = task_bounds.get_lb(); |
4886 | kmp_uint64 upper = task_bounds.get_ub(); |
4887 | kmp_uint64 i; |
4888 | kmp_info_t *thread = __kmp_threads[gtid]; |
4889 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
4890 | kmp_task_t *next_task; |
4891 | kmp_int32 lastpriv = 0; |
4892 | |
4893 | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + |
4894 | (last_chunk < 0 ? last_chunk : extras)); |
4895 | KMP_DEBUG_ASSERT(num_tasks > extras); |
4896 | KMP_DEBUG_ASSERT(num_tasks > 0); |
4897 | KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " |
4898 | "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n" , |
4899 | gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, |
4900 | ub_glob, st, task_dup)); |
4901 | |
4902 | // Launch num_tasks tasks, assign grainsize iterations each task |
4903 | for (i = 0; i < num_tasks; ++i) { |
4904 | kmp_uint64 chunk_minus_1; |
4905 | if (extras == 0) { |
4906 | chunk_minus_1 = grainsize - 1; |
4907 | } else { |
4908 | chunk_minus_1 = grainsize; |
4909 | --extras; // first extras iterations get bigger chunk (grainsize+1) |
4910 | } |
4911 | upper = lower + st * chunk_minus_1; |
4912 | if (upper > *ub) { |
4913 | upper = *ub; |
4914 | } |
4915 | if (i == num_tasks - 1) { |
4916 | // schedule the last task, set lastprivate flag if needed |
4917 | if (st == 1) { // most common case |
4918 | KMP_DEBUG_ASSERT(upper == *ub); |
4919 | if (upper == ub_glob) |
4920 | lastpriv = 1; |
4921 | } else if (st > 0) { // positive loop stride |
4922 | KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); |
4923 | if ((kmp_uint64)st > ub_glob - upper) |
4924 | lastpriv = 1; |
4925 | } else { // negative loop stride |
4926 | KMP_DEBUG_ASSERT(upper + st < *ub); |
4927 | if (upper - ub_glob < (kmp_uint64)(-st)) |
4928 | lastpriv = 1; |
4929 | } |
4930 | } |
4931 | |
4932 | #if OMPX_TASKGRAPH |
4933 | next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0); |
4934 | #else |
4935 | next_task = __kmp_task_dup_alloc(thread, task_src: task); // allocate new task |
4936 | #endif |
4937 | |
4938 | kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); |
4939 | kmp_taskloop_bounds_t next_task_bounds = |
4940 | kmp_taskloop_bounds_t(next_task, task_bounds); |
4941 | |
4942 | // adjust task-specific bounds |
4943 | next_task_bounds.set_lb(lower); |
4944 | if (next_taskdata->td_flags.native) { |
4945 | next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); |
4946 | } else { |
4947 | next_task_bounds.set_ub(upper); |
4948 | } |
4949 | if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, |
4950 | // etc. |
4951 | ptask_dup(next_task, task, lastpriv); |
4952 | KA_TRACE(40, |
4953 | ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " |
4954 | "upper %lld stride %lld, (offsets %p %p)\n" , |
4955 | gtid, i, next_task, lower, upper, st, |
4956 | next_task_bounds.get_lower_offset(), |
4957 | next_task_bounds.get_upper_offset())); |
4958 | #if OMPT_SUPPORT |
4959 | __kmp_omp_taskloop_task(NULL, gtid, new_task: next_task, |
4960 | codeptr_ra); // schedule new task |
4961 | #if OMPT_OPTIONAL |
4962 | if (ompt_enabled.ompt_callback_dispatch) { |
4963 | OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk, |
4964 | lower, upper, st); |
4965 | } |
4966 | #endif // OMPT_OPTIONAL |
4967 | #else |
4968 | __kmp_omp_task(gtid, next_task, true); // schedule new task |
4969 | #endif |
4970 | lower = upper + st; // adjust lower bound for the next iteration |
4971 | } |
4972 | // free the pattern task and exit |
4973 | __kmp_task_start(gtid, task, current_task); // make internal bookkeeping |
4974 | // do not execute the pattern task, just do internal bookkeeping |
4975 | __kmp_task_finish<false>(gtid, task, resumed_task: current_task); |
4976 | } |
4977 | |
4978 | // Structure to keep taskloop parameters for auxiliary task |
4979 | // kept in the shareds of the task structure. |
4980 | typedef struct __taskloop_params { |
4981 | kmp_task_t *task; |
4982 | kmp_uint64 *lb; |
4983 | kmp_uint64 *ub; |
4984 | void *task_dup; |
4985 | kmp_int64 st; |
4986 | kmp_uint64 ub_glob; |
4987 | kmp_uint64 num_tasks; |
4988 | kmp_uint64 grainsize; |
4989 | kmp_uint64 ; |
4990 | kmp_int64 last_chunk; |
4991 | kmp_uint64 tc; |
4992 | kmp_uint64 num_t_min; |
4993 | #if OMPT_SUPPORT |
4994 | void *codeptr_ra; |
4995 | #endif |
4996 | } __taskloop_params_t; |
4997 | |
4998 | void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, |
4999 | kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, |
5000 | kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, |
5001 | kmp_uint64, |
5002 | #if OMPT_SUPPORT |
5003 | void *, |
5004 | #endif |
5005 | void *); |
5006 | |
5007 | // Execute part of the taskloop submitted as a task. |
5008 | int __kmp_taskloop_task(int gtid, void *ptask) { |
5009 | __taskloop_params_t *p = |
5010 | (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; |
5011 | kmp_task_t *task = p->task; |
5012 | kmp_uint64 *lb = p->lb; |
5013 | kmp_uint64 *ub = p->ub; |
5014 | void *task_dup = p->task_dup; |
5015 | // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; |
5016 | kmp_int64 st = p->st; |
5017 | kmp_uint64 ub_glob = p->ub_glob; |
5018 | kmp_uint64 num_tasks = p->num_tasks; |
5019 | kmp_uint64 grainsize = p->grainsize; |
5020 | kmp_uint64 = p->extras; |
5021 | kmp_int64 last_chunk = p->last_chunk; |
5022 | kmp_uint64 tc = p->tc; |
5023 | kmp_uint64 num_t_min = p->num_t_min; |
5024 | #if OMPT_SUPPORT |
5025 | void *codeptr_ra = p->codeptr_ra; |
5026 | #endif |
5027 | #if KMP_DEBUG |
5028 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
5029 | KMP_DEBUG_ASSERT(task != NULL); |
5030 | KA_TRACE(20, |
5031 | ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" |
5032 | " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n" , |
5033 | gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, |
5034 | st, task_dup)); |
5035 | #endif |
5036 | KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); |
5037 | if (num_tasks > num_t_min) |
5038 | __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5039 | grainsize, extras, last_chunk, tc, num_t_min, |
5040 | #if OMPT_SUPPORT |
5041 | codeptr_ra, |
5042 | #endif |
5043 | task_dup); |
5044 | else |
5045 | __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5046 | grainsize, extras, last_chunk, tc, |
5047 | #if OMPT_SUPPORT |
5048 | codeptr_ra, |
5049 | #endif |
5050 | task_dup); |
5051 | |
5052 | KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n" , gtid)); |
5053 | return 0; |
5054 | } |
5055 | |
5056 | // Schedule part of the taskloop as a task, |
5057 | // execute the rest of the taskloop. |
5058 | // |
5059 | // loc Source location information |
5060 | // gtid Global thread ID |
5061 | // task Pattern task, exposes the loop iteration range |
5062 | // lb Pointer to loop lower bound in task structure |
5063 | // ub Pointer to loop upper bound in task structure |
5064 | // st Loop stride |
5065 | // ub_glob Global upper bound (used for lastprivate check) |
5066 | // num_tasks Number of tasks to execute |
5067 | // grainsize Number of loop iterations per task |
5068 | // extras Number of chunks with grainsize+1 iterations |
5069 | // last_chunk Reduction of grainsize for last task |
5070 | // tc Iterations count |
5071 | // num_t_min Threshold to launch tasks recursively |
5072 | // task_dup Tasks duplication routine |
5073 | // codeptr_ra Return address for OMPT events |
5074 | void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, |
5075 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
5076 | kmp_uint64 ub_glob, kmp_uint64 num_tasks, |
5077 | kmp_uint64 grainsize, kmp_uint64 , |
5078 | kmp_int64 last_chunk, kmp_uint64 tc, |
5079 | kmp_uint64 num_t_min, |
5080 | #if OMPT_SUPPORT |
5081 | void *codeptr_ra, |
5082 | #endif |
5083 | void *task_dup) { |
5084 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
5085 | KMP_DEBUG_ASSERT(task != NULL); |
5086 | KMP_DEBUG_ASSERT(num_tasks > num_t_min); |
5087 | KA_TRACE(20, |
5088 | ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" |
5089 | " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n" , |
5090 | gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, |
5091 | st, task_dup)); |
5092 | p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; |
5093 | kmp_uint64 lower = *lb; |
5094 | kmp_info_t *thread = __kmp_threads[gtid]; |
5095 | // kmp_taskdata_t *current_task = thread->th.th_current_task; |
5096 | kmp_task_t *next_task; |
5097 | size_t lower_offset = |
5098 | (char *)lb - (char *)task; // remember offset of lb in the task structure |
5099 | size_t upper_offset = |
5100 | (char *)ub - (char *)task; // remember offset of ub in the task structure |
5101 | |
5102 | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + |
5103 | (last_chunk < 0 ? last_chunk : extras)); |
5104 | KMP_DEBUG_ASSERT(num_tasks > extras); |
5105 | KMP_DEBUG_ASSERT(num_tasks > 0); |
5106 | |
5107 | // split the loop in two halves |
5108 | kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; |
5109 | kmp_int64 last_chunk0 = 0, last_chunk1 = 0; |
5110 | kmp_uint64 gr_size0 = grainsize; |
5111 | kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute |
5112 | kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task |
5113 | if (last_chunk < 0) { |
5114 | ext0 = ext1 = 0; |
5115 | last_chunk1 = last_chunk; |
5116 | tc0 = grainsize * n_tsk0; |
5117 | tc1 = tc - tc0; |
5118 | } else if (n_tsk0 <= extras) { |
5119 | gr_size0++; // integrate extras into grainsize |
5120 | ext0 = 0; // no extra iters in 1st half |
5121 | ext1 = extras - n_tsk0; // remaining extras |
5122 | tc0 = gr_size0 * n_tsk0; |
5123 | tc1 = tc - tc0; |
5124 | } else { // n_tsk0 > extras |
5125 | ext1 = 0; // no extra iters in 2nd half |
5126 | ext0 = extras; |
5127 | tc1 = grainsize * n_tsk1; |
5128 | tc0 = tc - tc1; |
5129 | } |
5130 | ub0 = lower + st * (tc0 - 1); |
5131 | lb1 = ub0 + st; |
5132 | |
5133 | // create pattern task for 2nd half of the loop |
5134 | #if OMPX_TASKGRAPH |
5135 | next_task = __kmp_task_dup_alloc(thread, task, |
5136 | /* taskloop_recur */ 1); |
5137 | #else |
5138 | next_task = __kmp_task_dup_alloc(thread, task_src: task); // duplicate the task |
5139 | #endif |
5140 | // adjust lower bound (upper bound is not changed) for the 2nd half |
5141 | *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; |
5142 | if (ptask_dup != NULL) // construct firstprivates, etc. |
5143 | ptask_dup(next_task, task, 0); |
5144 | *ub = ub0; // adjust upper bound for the 1st half |
5145 | |
5146 | // create auxiliary task for 2nd half of the loop |
5147 | // make sure new task has same parent task as the pattern task |
5148 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
5149 | thread->th.th_current_task = taskdata->td_parent; |
5150 | kmp_task_t *new_task = |
5151 | __kmpc_omp_task_alloc(loc_ref: loc, gtid, flags: 1, sizeof_kmp_task_t: 3 * sizeof(void *), |
5152 | sizeof_shareds: sizeof(__taskloop_params_t), task_entry: &__kmp_taskloop_task); |
5153 | // restore current task |
5154 | thread->th.th_current_task = current_task; |
5155 | __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; |
5156 | p->task = next_task; |
5157 | p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); |
5158 | p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); |
5159 | p->task_dup = task_dup; |
5160 | p->st = st; |
5161 | p->ub_glob = ub_glob; |
5162 | p->num_tasks = n_tsk1; |
5163 | p->grainsize = grainsize; |
5164 | p->extras = ext1; |
5165 | p->last_chunk = last_chunk1; |
5166 | p->tc = tc1; |
5167 | p->num_t_min = num_t_min; |
5168 | #if OMPT_SUPPORT |
5169 | p->codeptr_ra = codeptr_ra; |
5170 | #endif |
5171 | |
5172 | #if OMPX_TASKGRAPH |
5173 | kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task); |
5174 | new_task_data->tdg = taskdata->tdg; |
5175 | new_task_data->is_taskgraph = 0; |
5176 | #endif |
5177 | |
5178 | #if OMPT_SUPPORT |
5179 | // schedule new task with correct return address for OMPT events |
5180 | __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); |
5181 | #else |
5182 | __kmp_omp_task(gtid, new_task, true); // schedule new task |
5183 | #endif |
5184 | |
5185 | // execute the 1st half of current subrange |
5186 | if (n_tsk0 > num_t_min) |
5187 | __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks: n_tsk0, grainsize: gr_size0, |
5188 | extras: ext0, last_chunk: last_chunk0, tc: tc0, num_t_min, |
5189 | #if OMPT_SUPPORT |
5190 | codeptr_ra, |
5191 | #endif |
5192 | task_dup); |
5193 | else |
5194 | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks: n_tsk0, |
5195 | grainsize: gr_size0, extras: ext0, last_chunk: last_chunk0, tc: tc0, |
5196 | #if OMPT_SUPPORT |
5197 | codeptr_ra, |
5198 | #endif |
5199 | task_dup); |
5200 | |
5201 | KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n" , gtid)); |
5202 | } |
5203 | |
5204 | static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, |
5205 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
5206 | int nogroup, int sched, kmp_uint64 grainsize, |
5207 | int modifier, void *task_dup) { |
5208 | kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); |
5209 | KMP_DEBUG_ASSERT(task != NULL); |
5210 | if (nogroup == 0) { |
5211 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5212 | OMPT_STORE_RETURN_ADDRESS(gtid); |
5213 | #endif |
5214 | __kmpc_taskgroup(loc, gtid); |
5215 | } |
5216 | |
5217 | #if OMPX_TASKGRAPH |
5218 | KMP_ATOMIC_DEC(&__kmp_tdg_task_id); |
5219 | #endif |
5220 | // ========================================================================= |
5221 | // calculate loop parameters |
5222 | kmp_taskloop_bounds_t task_bounds(task, lb, ub); |
5223 | kmp_uint64 tc; |
5224 | // compiler provides global bounds here |
5225 | kmp_uint64 lower = task_bounds.get_lb(); |
5226 | kmp_uint64 upper = task_bounds.get_ub(); |
5227 | kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag |
5228 | kmp_uint64 num_tasks = 0, = 0; |
5229 | kmp_int64 last_chunk = |
5230 | 0; // reduce grainsize of last task by last_chunk in strict mode |
5231 | kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; |
5232 | kmp_info_t *thread = __kmp_threads[gtid]; |
5233 | kmp_taskdata_t *current_task = thread->th.th_current_task; |
5234 | |
5235 | KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " |
5236 | "grain %llu(%d, %d), dup %p\n" , |
5237 | gtid, taskdata, lower, upper, st, grainsize, sched, modifier, |
5238 | task_dup)); |
5239 | |
5240 | // compute trip count |
5241 | if (st == 1) { // most common case |
5242 | tc = upper - lower + 1; |
5243 | } else if (st < 0) { |
5244 | tc = (lower - upper) / (-st) + 1; |
5245 | } else { // st > 0 |
5246 | tc = (upper - lower) / st + 1; |
5247 | } |
5248 | if (tc == 0) { |
5249 | KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n" , gtid)); |
5250 | // free the pattern task and exit |
5251 | __kmp_task_start(gtid, task, current_task); |
5252 | // do not execute anything for zero-trip loop |
5253 | __kmp_task_finish<false>(gtid, task, resumed_task: current_task); |
5254 | return; |
5255 | } |
5256 | |
5257 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5258 | ompt_team_info_t *team_info = __ompt_get_teaminfo(depth: 0, NULL); |
5259 | ompt_task_info_t *task_info = __ompt_get_task_info_object(depth: 0); |
5260 | if (ompt_enabled.ompt_callback_work) { |
5261 | ompt_callbacks.ompt_callback(ompt_callback_work)( |
5262 | ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), |
5263 | &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); |
5264 | } |
5265 | #endif |
5266 | |
5267 | if (num_tasks_min == 0) |
5268 | // TODO: can we choose better default heuristic? |
5269 | num_tasks_min = |
5270 | KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); |
5271 | |
5272 | // compute num_tasks/grainsize based on the input provided |
5273 | switch (sched) { |
5274 | case 0: // no schedule clause specified, we can choose the default |
5275 | // let's try to schedule (team_size*10) tasks |
5276 | grainsize = thread->th.th_team_nproc * 10; |
5277 | KMP_FALLTHROUGH(); |
5278 | case 2: // num_tasks provided |
5279 | if (grainsize > tc) { |
5280 | num_tasks = tc; // too big num_tasks requested, adjust values |
5281 | grainsize = 1; |
5282 | extras = 0; |
5283 | } else { |
5284 | num_tasks = grainsize; |
5285 | grainsize = tc / num_tasks; |
5286 | extras = tc % num_tasks; |
5287 | } |
5288 | break; |
5289 | case 1: // grainsize provided |
5290 | if (grainsize > tc) { |
5291 | num_tasks = 1; |
5292 | grainsize = tc; // too big grainsize requested, adjust values |
5293 | extras = 0; |
5294 | } else { |
5295 | if (modifier) { |
5296 | num_tasks = (tc + grainsize - 1) / grainsize; |
5297 | last_chunk = tc - (num_tasks * grainsize); |
5298 | extras = 0; |
5299 | } else { |
5300 | num_tasks = tc / grainsize; |
5301 | // adjust grainsize for balanced distribution of iterations |
5302 | grainsize = tc / num_tasks; |
5303 | extras = tc % num_tasks; |
5304 | } |
5305 | } |
5306 | break; |
5307 | default: |
5308 | KMP_ASSERT2(0, "unknown scheduling of taskloop" ); |
5309 | } |
5310 | |
5311 | KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + |
5312 | (last_chunk < 0 ? last_chunk : extras)); |
5313 | KMP_DEBUG_ASSERT(num_tasks > extras); |
5314 | KMP_DEBUG_ASSERT(num_tasks > 0); |
5315 | // ========================================================================= |
5316 | |
5317 | // check if clause value first |
5318 | // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) |
5319 | if (if_val == 0) { // if(0) specified, mark task as serial |
5320 | taskdata->td_flags.task_serial = 1; |
5321 | taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied |
5322 | // always start serial tasks linearly |
5323 | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5324 | grainsize, extras, last_chunk, tc, |
5325 | #if OMPT_SUPPORT |
5326 | OMPT_GET_RETURN_ADDRESS(0), |
5327 | #endif |
5328 | task_dup); |
5329 | // !taskdata->td_flags.native => currently force linear spawning of tasks |
5330 | // for GOMP_taskloop |
5331 | } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { |
5332 | KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" |
5333 | "(%lld), grain %llu, extras %llu, last_chunk %lld\n" , |
5334 | gtid, tc, num_tasks, num_tasks_min, grainsize, extras, |
5335 | last_chunk)); |
5336 | __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5337 | grainsize, extras, last_chunk, tc, num_t_min: num_tasks_min, |
5338 | #if OMPT_SUPPORT |
5339 | OMPT_GET_RETURN_ADDRESS(0), |
5340 | #endif |
5341 | task_dup); |
5342 | } else { |
5343 | KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" |
5344 | "(%lld), grain %llu, extras %llu, last_chunk %lld\n" , |
5345 | gtid, tc, num_tasks, num_tasks_min, grainsize, extras, |
5346 | last_chunk)); |
5347 | __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, |
5348 | grainsize, extras, last_chunk, tc, |
5349 | #if OMPT_SUPPORT |
5350 | OMPT_GET_RETURN_ADDRESS(0), |
5351 | #endif |
5352 | task_dup); |
5353 | } |
5354 | |
5355 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5356 | if (ompt_enabled.ompt_callback_work) { |
5357 | ompt_callbacks.ompt_callback(ompt_callback_work)( |
5358 | ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), |
5359 | &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); |
5360 | } |
5361 | #endif |
5362 | |
5363 | if (nogroup == 0) { |
5364 | #if OMPT_SUPPORT && OMPT_OPTIONAL |
5365 | OMPT_STORE_RETURN_ADDRESS(gtid); |
5366 | #endif |
5367 | __kmpc_end_taskgroup(loc, gtid); |
5368 | } |
5369 | KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n" , gtid)); |
5370 | } |
5371 | |
5372 | /*! |
5373 | @ingroup TASKING |
5374 | @param loc Source location information |
5375 | @param gtid Global thread ID |
5376 | @param task Task structure |
5377 | @param if_val Value of the if clause |
5378 | @param lb Pointer to loop lower bound in task structure |
5379 | @param ub Pointer to loop upper bound in task structure |
5380 | @param st Loop stride |
5381 | @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise |
5382 | @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks |
5383 | @param grainsize Schedule value if specified |
5384 | @param task_dup Tasks duplication routine |
5385 | |
5386 | Execute the taskloop construct. |
5387 | */ |
5388 | void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, |
5389 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, |
5390 | int sched, kmp_uint64 grainsize, void *task_dup) { |
5391 | __kmp_assert_valid_gtid(gtid); |
5392 | KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n" , gtid)); |
5393 | __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, |
5394 | modifier: 0, task_dup); |
5395 | KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n" , gtid)); |
5396 | } |
5397 | |
5398 | /*! |
5399 | @ingroup TASKING |
5400 | @param loc Source location information |
5401 | @param gtid Global thread ID |
5402 | @param task Task structure |
5403 | @param if_val Value of the if clause |
5404 | @param lb Pointer to loop lower bound in task structure |
5405 | @param ub Pointer to loop upper bound in task structure |
5406 | @param st Loop stride |
5407 | @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise |
5408 | @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks |
5409 | @param grainsize Schedule value if specified |
5410 | @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise |
5411 | @param task_dup Tasks duplication routine |
5412 | |
5413 | Execute the taskloop construct. |
5414 | */ |
5415 | void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, |
5416 | kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, |
5417 | int nogroup, int sched, kmp_uint64 grainsize, |
5418 | int modifier, void *task_dup) { |
5419 | __kmp_assert_valid_gtid(gtid); |
5420 | KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n" , gtid)); |
5421 | __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, |
5422 | modifier, task_dup); |
5423 | KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n" , gtid)); |
5424 | } |
5425 | |
5426 | /*! |
5427 | @ingroup TASKING |
5428 | @param gtid Global Thread ID of current thread |
5429 | @return Returns a pointer to the thread's current task async handle. If no task |
5430 | is present or gtid is invalid, returns NULL. |
5431 | |
5432 | Acqurires a pointer to the target async handle from the current task. |
5433 | */ |
5434 | void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) { |
5435 | if (gtid == KMP_GTID_DNE) |
5436 | return NULL; |
5437 | |
5438 | kmp_info_t *thread = __kmp_thread_from_gtid(gtid); |
5439 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
5440 | |
5441 | if (!taskdata) |
5442 | return NULL; |
5443 | |
5444 | return &taskdata->td_target_data.async_handle; |
5445 | } |
5446 | |
5447 | /*! |
5448 | @ingroup TASKING |
5449 | @param gtid Global Thread ID of current thread |
5450 | @return Returns TRUE if the current task being executed of the given thread has |
5451 | a task team allocated to it. Otherwise, returns FALSE. |
5452 | |
5453 | Checks if the current thread has a task team. |
5454 | */ |
5455 | bool __kmpc_omp_has_task_team(kmp_int32 gtid) { |
5456 | if (gtid == KMP_GTID_DNE) |
5457 | return FALSE; |
5458 | |
5459 | kmp_info_t *thread = __kmp_thread_from_gtid(gtid); |
5460 | kmp_taskdata_t *taskdata = thread->th.th_current_task; |
5461 | |
5462 | if (!taskdata) |
5463 | return FALSE; |
5464 | |
5465 | return taskdata->td_task_team != NULL; |
5466 | } |
5467 | |
5468 | #if OMPX_TASKGRAPH |
5469 | // __kmp_find_tdg: identify a TDG through its ID |
5470 | // gtid: Global Thread ID |
5471 | // tdg_id: ID of the TDG |
5472 | // returns: If a TDG corresponding to this ID is found and not |
5473 | // its initial state, return the pointer to it, otherwise nullptr |
5474 | static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) { |
5475 | kmp_tdg_info_t *res = nullptr; |
5476 | if (__kmp_max_tdgs == 0) |
5477 | return res; |
5478 | |
5479 | if (__kmp_global_tdgs == NULL) |
5480 | __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate( |
5481 | sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs); |
5482 | |
5483 | if ((__kmp_global_tdgs[tdg_id]) && |
5484 | (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE)) |
5485 | res = __kmp_global_tdgs[tdg_id]; |
5486 | return res; |
5487 | } |
5488 | |
5489 | // __kmp_print_tdg_dot: prints the TDG to a dot file |
5490 | // tdg: ID of the TDG |
5491 | void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg) { |
5492 | kmp_int32 tdg_id = tdg->tdg_id; |
5493 | KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n" , gtid, tdg_id)); |
5494 | |
5495 | char file_name[20]; |
5496 | sprintf(file_name, "tdg_%d.dot" , tdg_id); |
5497 | kmp_safe_raii_file_t tdg_file(file_name, "w" ); |
5498 | |
5499 | kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); |
5500 | fprintf(tdg_file, |
5501 | "digraph TDG {\n" |
5502 | " compound=true\n" |
5503 | " subgraph cluster {\n" |
5504 | " label=TDG_%d\n" , |
5505 | tdg_id); |
5506 | for (kmp_int32 i = 0; i < num_tasks; i++) { |
5507 | fprintf(tdg_file, " %d[style=bold]\n" , i); |
5508 | } |
5509 | fprintf(tdg_file, " }\n" ); |
5510 | for (kmp_int32 i = 0; i < num_tasks; i++) { |
5511 | kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors; |
5512 | kmp_int32 *successors = tdg->record_map[i].successors; |
5513 | if (nsuccessors > 0) { |
5514 | for (kmp_int32 j = 0; j < nsuccessors; j++) |
5515 | fprintf(tdg_file, " %d -> %d \n" , i, successors[j]); |
5516 | } |
5517 | } |
5518 | fprintf(tdg_file, "}" ); |
5519 | KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n" , gtid, tdg_id)); |
5520 | } |
5521 | |
5522 | // __kmp_start_record: launch the execution of a previous |
5523 | // recorded TDG |
5524 | // gtid: Global Thread ID |
5525 | // tdg: ID of the TDG |
5526 | void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) { |
5527 | KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY); |
5528 | KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n" , gtid, |
5529 | tdg->tdg_id, tdg->num_roots)); |
5530 | kmp_node_info_t *this_record_map = tdg->record_map; |
5531 | kmp_int32 *this_root_tasks = tdg->root_tasks; |
5532 | kmp_int32 this_num_roots = tdg->num_roots; |
5533 | kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); |
5534 | |
5535 | kmp_info_t *thread = __kmp_threads[gtid]; |
5536 | kmp_taskdata_t *parent_task = thread->th.th_current_task; |
5537 | |
5538 | if (tdg->rec_taskred_data) { |
5539 | __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data); |
5540 | } |
5541 | |
5542 | for (kmp_int32 j = 0; j < this_num_tasks; j++) { |
5543 | kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task); |
5544 | |
5545 | td->td_parent = parent_task; |
5546 | this_record_map[j].parent_task = parent_task; |
5547 | |
5548 | kmp_taskgroup_t *parent_taskgroup = |
5549 | this_record_map[j].parent_task->td_taskgroup; |
5550 | |
5551 | KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter, |
5552 | this_record_map[j].npredecessors); |
5553 | KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks); |
5554 | |
5555 | if (parent_taskgroup) { |
5556 | KMP_ATOMIC_INC(&parent_taskgroup->count); |
5557 | // The taskgroup is different so we must update it |
5558 | td->td_taskgroup = parent_taskgroup; |
5559 | } else if (td->td_taskgroup != nullptr) { |
5560 | // If the parent doesnt have a taskgroup, remove it from the task |
5561 | td->td_taskgroup = nullptr; |
5562 | } |
5563 | if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT) |
5564 | KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks); |
5565 | } |
5566 | |
5567 | for (kmp_int32 j = 0; j < this_num_roots; ++j) { |
5568 | __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true); |
5569 | } |
5570 | KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n" , gtid, |
5571 | tdg->tdg_id, tdg->num_roots)); |
5572 | } |
5573 | |
5574 | // __kmp_start_record: set up a TDG structure and turn the |
5575 | // recording flag to true |
5576 | // gtid: Global Thread ID of the encountering thread |
5577 | // input_flags: Flags associated with the TDG |
5578 | // tdg_id: ID of the TDG to record |
5579 | static inline void __kmp_start_record(kmp_int32 gtid, |
5580 | kmp_taskgraph_flags_t *flags, |
5581 | kmp_int32 tdg_id) { |
5582 | kmp_tdg_info_t *tdg = |
5583 | (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t)); |
5584 | __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg; |
5585 | // Initializing the TDG structure |
5586 | tdg->tdg_id = tdg_id; |
5587 | tdg->map_size = INIT_MAPSIZE; |
5588 | tdg->num_roots = -1; |
5589 | tdg->root_tasks = nullptr; |
5590 | tdg->tdg_status = KMP_TDG_RECORDING; |
5591 | tdg->rec_num_taskred = 0; |
5592 | tdg->rec_taskred_data = nullptr; |
5593 | KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0); |
5594 | |
5595 | // Initializing the list of nodes in this TDG |
5596 | kmp_node_info_t *this_record_map = |
5597 | (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t)); |
5598 | for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) { |
5599 | kmp_int32 *successorsList = |
5600 | (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32)); |
5601 | this_record_map[i].task = nullptr; |
5602 | this_record_map[i].successors = successorsList; |
5603 | this_record_map[i].nsuccessors = 0; |
5604 | this_record_map[i].npredecessors = 0; |
5605 | this_record_map[i].successors_size = __kmp_successors_size; |
5606 | KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0); |
5607 | } |
5608 | |
5609 | __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map; |
5610 | } |
5611 | |
5612 | // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark |
5613 | // the beginning of the record process of a task region |
5614 | // loc_ref: Location of TDG, not used yet |
5615 | // gtid: Global Thread ID of the encountering thread |
5616 | // input_flags: Flags associated with the TDG |
5617 | // tdg_id: ID of the TDG to record, for now, incremental integer |
5618 | // returns: 1 if we record, otherwise, 0 |
5619 | kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid, |
5620 | kmp_int32 input_flags, kmp_int32 tdg_id) { |
5621 | |
5622 | kmp_int32 res; |
5623 | kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags; |
5624 | KA_TRACE(10, |
5625 | ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n" , |
5626 | gtid, loc_ref, input_flags, tdg_id)); |
5627 | |
5628 | if (__kmp_max_tdgs == 0) { |
5629 | KA_TRACE( |
5630 | 10, |
5631 | ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, " |
5632 | "__kmp_max_tdgs = 0\n" , |
5633 | gtid, loc_ref, input_flags, tdg_id)); |
5634 | return 1; |
5635 | } |
5636 | |
5637 | __kmpc_taskgroup(loc_ref, gtid); |
5638 | if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) { |
5639 | // TODO: use re_record flag |
5640 | __kmp_exec_tdg(gtid, tdg); |
5641 | res = 0; |
5642 | } else { |
5643 | __kmp_curr_tdg_idx = tdg_id; |
5644 | KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs); |
5645 | __kmp_start_record(gtid, flags, tdg_id); |
5646 | __kmp_num_tdg++; |
5647 | res = 1; |
5648 | } |
5649 | KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n" , |
5650 | gtid, tdg_id, res ? "record" : "execute" )); |
5651 | return res; |
5652 | } |
5653 | |
5654 | // __kmp_end_record: set up a TDG after recording it |
5655 | // gtid: Global thread ID |
5656 | // tdg: Pointer to the TDG |
5657 | void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) { |
5658 | // Store roots |
5659 | kmp_node_info_t *this_record_map = tdg->record_map; |
5660 | kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); |
5661 | kmp_int32 *this_root_tasks = |
5662 | (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32)); |
5663 | kmp_int32 this_map_size = tdg->map_size; |
5664 | kmp_int32 this_num_roots = 0; |
5665 | kmp_info_t *thread = __kmp_threads[gtid]; |
5666 | |
5667 | for (kmp_int32 i = 0; i < this_num_tasks; i++) { |
5668 | if (this_record_map[i].npredecessors == 0) { |
5669 | this_root_tasks[this_num_roots++] = i; |
5670 | } |
5671 | } |
5672 | |
5673 | // Update with roots info and mapsize |
5674 | tdg->map_size = this_map_size; |
5675 | tdg->num_roots = this_num_roots; |
5676 | tdg->root_tasks = this_root_tasks; |
5677 | KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING); |
5678 | tdg->tdg_status = KMP_TDG_READY; |
5679 | |
5680 | if (thread->th.th_current_task->td_dephash) { |
5681 | __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash); |
5682 | thread->th.th_current_task->td_dephash = NULL; |
5683 | } |
5684 | |
5685 | // Reset predecessor counter |
5686 | for (kmp_int32 i = 0; i < this_num_tasks; i++) { |
5687 | KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, |
5688 | this_record_map[i].npredecessors); |
5689 | } |
5690 | KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0); |
5691 | |
5692 | if (__kmp_tdg_dot) |
5693 | __kmp_print_tdg_dot(tdg); |
5694 | } |
5695 | |
5696 | // __kmpc_end_record_task: wrapper around __kmp_end_record to mark |
5697 | // the end of recording phase |
5698 | // |
5699 | // loc_ref: Source location information |
5700 | // gtid: Global thread ID |
5701 | // input_flags: Flags attached to the graph |
5702 | // tdg_id: ID of the TDG just finished recording |
5703 | void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid, |
5704 | kmp_int32 input_flags, kmp_int32 tdg_id) { |
5705 | kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id); |
5706 | |
5707 | KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording" |
5708 | " tdg=%d with flags=%d\n" , |
5709 | gtid, loc_ref, tdg_id, input_flags)); |
5710 | if (__kmp_max_tdgs) { |
5711 | // TODO: use input_flags->nowait |
5712 | __kmpc_end_taskgroup(loc_ref, gtid); |
5713 | if (__kmp_tdg_is_recording(tdg->tdg_status)) |
5714 | __kmp_end_record(gtid, tdg); |
5715 | } |
5716 | KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording" |
5717 | " tdg=%d, its status is now READY\n" , |
5718 | gtid, loc_ref, tdg_id)); |
5719 | } |
5720 | #endif |
5721 | |