| 1 | /* |
| 2 | * kmp_threadprivate.cpp -- OpenMP threadprivate support library |
| 3 | */ |
| 4 | |
| 5 | //===----------------------------------------------------------------------===// |
| 6 | // |
| 7 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 8 | // See https://llvm.org/LICENSE.txt for license information. |
| 9 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "kmp.h" |
| 14 | #include "kmp_i18n.h" |
| 15 | #include "kmp_itt.h" |
| 16 | |
| 17 | #define USE_CHECKS_COMMON |
| 18 | |
| 19 | #define KMP_INLINE_SUBR 1 |
| 20 | |
| 21 | void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, |
| 22 | void *data_addr, size_t pc_size); |
| 23 | struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, |
| 24 | void *data_addr, |
| 25 | size_t pc_size); |
| 26 | |
| 27 | struct shared_table __kmp_threadprivate_d_table; |
| 28 | |
| 29 | static |
| 30 | #ifdef KMP_INLINE_SUBR |
| 31 | __forceinline |
| 32 | #endif |
| 33 | struct private_common * |
| 34 | __kmp_threadprivate_find_task_common(struct common_table *tbl, int gtid, |
| 35 | void *pc_addr) |
| 36 | |
| 37 | { |
| 38 | struct private_common *tn; |
| 39 | |
| 40 | #ifdef KMP_TASK_COMMON_DEBUG |
| 41 | KC_TRACE(10, ("__kmp_threadprivate_find_task_common: thread#%d, called with " |
| 42 | "address %p\n" , |
| 43 | gtid, pc_addr)); |
| 44 | dump_list(); |
| 45 | #endif |
| 46 | |
| 47 | for (tn = tbl->data[KMP_HASH(pc_addr)]; tn; tn = tn->next) { |
| 48 | if (tn->gbl_addr == pc_addr) { |
| 49 | #ifdef KMP_TASK_COMMON_DEBUG |
| 50 | KC_TRACE(10, ("__kmp_threadprivate_find_task_common: thread#%d, found " |
| 51 | "node %p on list\n" , |
| 52 | gtid, pc_addr)); |
| 53 | #endif |
| 54 | return tn; |
| 55 | } |
| 56 | } |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | static |
| 61 | #ifdef KMP_INLINE_SUBR |
| 62 | __forceinline |
| 63 | #endif |
| 64 | struct shared_common * |
| 65 | __kmp_find_shared_task_common(struct shared_table *tbl, int gtid, |
| 66 | void *pc_addr) { |
| 67 | struct shared_common *tn; |
| 68 | |
| 69 | for (tn = tbl->data[KMP_HASH(pc_addr)]; tn; tn = tn->next) { |
| 70 | if (tn->gbl_addr == pc_addr) { |
| 71 | #ifdef KMP_TASK_COMMON_DEBUG |
| 72 | KC_TRACE( |
| 73 | 10, |
| 74 | ("__kmp_find_shared_task_common: thread#%d, found node %p on list\n" , |
| 75 | gtid, pc_addr)); |
| 76 | #endif |
| 77 | return tn; |
| 78 | } |
| 79 | } |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | // Create a template for the data initialized storage. Either the template is |
| 84 | // NULL indicating zero fill, or the template is a copy of the original data. |
| 85 | static struct private_data *__kmp_init_common_data(void *pc_addr, |
| 86 | size_t pc_size) { |
| 87 | struct private_data *d; |
| 88 | size_t i; |
| 89 | char *p; |
| 90 | |
| 91 | d = (struct private_data *)__kmp_allocate(sizeof(struct private_data)); |
| 92 | /* |
| 93 | d->data = 0; // AC: commented out because __kmp_allocate zeroes the |
| 94 | memory |
| 95 | d->next = 0; |
| 96 | */ |
| 97 | d->size = pc_size; |
| 98 | d->more = 1; |
| 99 | |
| 100 | p = (char *)pc_addr; |
| 101 | |
| 102 | for (i = pc_size; i > 0; --i) { |
| 103 | if (*p++ != '\0') { |
| 104 | d->data = __kmp_allocate(pc_size); |
| 105 | KMP_MEMCPY(dest: d->data, src: pc_addr, n: pc_size); |
| 106 | break; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | return d; |
| 111 | } |
| 112 | |
| 113 | // Initialize the data area from the template. |
| 114 | static void __kmp_copy_common_data(void *pc_addr, struct private_data *d) { |
| 115 | char *addr = (char *)pc_addr; |
| 116 | |
| 117 | for (size_t offset = 0; d != 0; d = d->next) { |
| 118 | for (int i = d->more; i > 0; --i) { |
| 119 | if (d->data == 0) |
| 120 | memset(s: &addr[offset], c: '\0', n: d->size); |
| 121 | else |
| 122 | KMP_MEMCPY(dest: &addr[offset], src: d->data, n: d->size); |
| 123 | offset += d->size; |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | /* we are called from __kmp_serial_initialize() with __kmp_initz_lock held. */ |
| 129 | void __kmp_common_initialize(void) { |
| 130 | if (!TCR_4(__kmp_init_common)) { |
| 131 | int q; |
| 132 | #ifdef KMP_DEBUG |
| 133 | int gtid; |
| 134 | #endif |
| 135 | |
| 136 | __kmp_threadpriv_cache_list = NULL; |
| 137 | |
| 138 | #ifdef KMP_DEBUG |
| 139 | /* verify the uber masters were initialized */ |
| 140 | for (gtid = 0; gtid < __kmp_threads_capacity; gtid++) |
| 141 | if (__kmp_root[gtid]) { |
| 142 | KMP_DEBUG_ASSERT(__kmp_root[gtid]->r.r_uber_thread); |
| 143 | for (q = 0; q < KMP_HASH_TABLE_SIZE; ++q) |
| 144 | KMP_DEBUG_ASSERT( |
| 145 | !__kmp_root[gtid]->r.r_uber_thread->th.th_pri_common->data[q]); |
| 146 | /* __kmp_root[ gitd ]-> r.r_uber_thread -> |
| 147 | * th.th_pri_common -> data[ q ] = 0;*/ |
| 148 | } |
| 149 | #endif /* KMP_DEBUG */ |
| 150 | |
| 151 | for (q = 0; q < KMP_HASH_TABLE_SIZE; ++q) |
| 152 | __kmp_threadprivate_d_table.data[q] = 0; |
| 153 | |
| 154 | TCW_4(__kmp_init_common, TRUE); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | /* Call all destructors for threadprivate data belonging to all threads. |
| 159 | Currently unused! */ |
| 160 | void __kmp_common_destroy(void) { |
| 161 | if (TCR_4(__kmp_init_common)) { |
| 162 | int q; |
| 163 | |
| 164 | TCW_4(__kmp_init_common, FALSE); |
| 165 | |
| 166 | for (q = 0; q < KMP_HASH_TABLE_SIZE; ++q) { |
| 167 | int gtid; |
| 168 | struct private_common *tn; |
| 169 | struct shared_common *d_tn; |
| 170 | |
| 171 | /* C++ destructors need to be called once per thread before exiting. |
| 172 | Don't call destructors for primary thread though unless we used copy |
| 173 | constructor */ |
| 174 | |
| 175 | for (d_tn = __kmp_threadprivate_d_table.data[q]; d_tn; |
| 176 | d_tn = d_tn->next) { |
| 177 | if (d_tn->is_vec) { |
| 178 | if (d_tn->dt.dtorv != 0) { |
| 179 | for (gtid = 0; gtid < __kmp_all_nth; ++gtid) { |
| 180 | if (__kmp_threads[gtid]) { |
| 181 | if ((__kmp_foreign_tp) ? (!KMP_INITIAL_GTID(gtid)) |
| 182 | : (!KMP_UBER_GTID(gtid))) { |
| 183 | tn = __kmp_threadprivate_find_task_common( |
| 184 | tbl: __kmp_threads[gtid]->th.th_pri_common, gtid, |
| 185 | pc_addr: d_tn->gbl_addr); |
| 186 | if (tn) { |
| 187 | (*d_tn->dt.dtorv)(tn->par_addr, d_tn->vec_len); |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | if (d_tn->obj_init != 0) { |
| 193 | (*d_tn->dt.dtorv)(d_tn->obj_init, d_tn->vec_len); |
| 194 | } |
| 195 | } |
| 196 | } else { |
| 197 | if (d_tn->dt.dtor != 0) { |
| 198 | for (gtid = 0; gtid < __kmp_all_nth; ++gtid) { |
| 199 | if (__kmp_threads[gtid]) { |
| 200 | if ((__kmp_foreign_tp) ? (!KMP_INITIAL_GTID(gtid)) |
| 201 | : (!KMP_UBER_GTID(gtid))) { |
| 202 | tn = __kmp_threadprivate_find_task_common( |
| 203 | tbl: __kmp_threads[gtid]->th.th_pri_common, gtid, |
| 204 | pc_addr: d_tn->gbl_addr); |
| 205 | if (tn) { |
| 206 | (*d_tn->dt.dtor)(tn->par_addr); |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | if (d_tn->obj_init != 0) { |
| 212 | (*d_tn->dt.dtor)(d_tn->obj_init); |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | __kmp_threadprivate_d_table.data[q] = 0; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | /* Call all destructors for threadprivate data belonging to this thread */ |
| 223 | void __kmp_common_destroy_gtid(int gtid) { |
| 224 | struct private_common *tn; |
| 225 | struct shared_common *d_tn; |
| 226 | |
| 227 | if (!TCR_4(__kmp_init_gtid)) { |
| 228 | // This is possible when one of multiple roots initiates early library |
| 229 | // termination in a sequential region while other teams are active, and its |
| 230 | // child threads are about to end. |
| 231 | return; |
| 232 | } |
| 233 | |
| 234 | KC_TRACE(10, ("__kmp_common_destroy_gtid: T#%d called\n" , gtid)); |
| 235 | if ((__kmp_foreign_tp) ? (!KMP_INITIAL_GTID(gtid)) : (!KMP_UBER_GTID(gtid))) { |
| 236 | |
| 237 | if (TCR_4(__kmp_init_common)) { |
| 238 | |
| 239 | /* Cannot do this here since not all threads have destroyed their data */ |
| 240 | /* TCW_4(__kmp_init_common, FALSE); */ |
| 241 | |
| 242 | for (tn = __kmp_threads[gtid]->th.th_pri_head; tn; tn = tn->link) { |
| 243 | |
| 244 | d_tn = __kmp_find_shared_task_common(tbl: &__kmp_threadprivate_d_table, gtid, |
| 245 | pc_addr: tn->gbl_addr); |
| 246 | if (d_tn == NULL) |
| 247 | continue; |
| 248 | if (d_tn->is_vec) { |
| 249 | if (d_tn->dt.dtorv != 0) { |
| 250 | (void)(*d_tn->dt.dtorv)(tn->par_addr, d_tn->vec_len); |
| 251 | if (d_tn->obj_init != 0) { |
| 252 | (void)(*d_tn->dt.dtorv)(d_tn->obj_init, d_tn->vec_len); |
| 253 | } |
| 254 | } |
| 255 | } else { |
| 256 | if (d_tn->dt.dtor != 0) { |
| 257 | (void)(*d_tn->dt.dtor)(tn->par_addr); |
| 258 | if (d_tn->obj_init != 0) { |
| 259 | (void)(*d_tn->dt.dtor)(d_tn->obj_init); |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | } |
| 264 | KC_TRACE(30, ("__kmp_common_destroy_gtid: T#%d threadprivate destructors " |
| 265 | "complete\n" , |
| 266 | gtid)); |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | #ifdef KMP_TASK_COMMON_DEBUG |
| 272 | static void dump_list(void) { |
| 273 | int p, q; |
| 274 | |
| 275 | for (p = 0; p < __kmp_all_nth; ++p) { |
| 276 | if (!__kmp_threads[p]) |
| 277 | continue; |
| 278 | for (q = 0; q < KMP_HASH_TABLE_SIZE; ++q) { |
| 279 | if (__kmp_threads[p]->th.th_pri_common->data[q]) { |
| 280 | struct private_common *tn; |
| 281 | |
| 282 | KC_TRACE(10, ("\tdump_list: gtid:%d addresses\n" , p)); |
| 283 | |
| 284 | for (tn = __kmp_threads[p]->th.th_pri_common->data[q]; tn; |
| 285 | tn = tn->next) { |
| 286 | KC_TRACE(10, |
| 287 | ("\tdump_list: THREADPRIVATE: Serial %p -> Parallel %p\n" , |
| 288 | tn->gbl_addr, tn->par_addr)); |
| 289 | } |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | #endif /* KMP_TASK_COMMON_DEBUG */ |
| 295 | |
| 296 | // NOTE: this routine is to be called only from the serial part of the program. |
| 297 | void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr, |
| 298 | void *data_addr, size_t pc_size) { |
| 299 | struct shared_common **lnk_tn, *d_tn; |
| 300 | KMP_DEBUG_ASSERT(__kmp_threads[gtid] && |
| 301 | __kmp_threads[gtid]->th.th_root->r.r_active == 0); |
| 302 | |
| 303 | d_tn = __kmp_find_shared_task_common(tbl: &__kmp_threadprivate_d_table, gtid, |
| 304 | pc_addr); |
| 305 | |
| 306 | if (d_tn == 0) { |
| 307 | d_tn = (struct shared_common *)__kmp_allocate(sizeof(struct shared_common)); |
| 308 | |
| 309 | d_tn->gbl_addr = pc_addr; |
| 310 | d_tn->pod_init = __kmp_init_common_data(pc_addr: data_addr, pc_size); |
| 311 | /* |
| 312 | d_tn->obj_init = 0; // AC: commented out because __kmp_allocate |
| 313 | zeroes the memory |
| 314 | d_tn->ct.ctor = 0; |
| 315 | d_tn->cct.cctor = 0;; |
| 316 | d_tn->dt.dtor = 0; |
| 317 | d_tn->is_vec = FALSE; |
| 318 | d_tn->vec_len = 0L; |
| 319 | */ |
| 320 | d_tn->cmn_size = pc_size; |
| 321 | |
| 322 | __kmp_acquire_lock(lck: &__kmp_global_lock, gtid); |
| 323 | |
| 324 | lnk_tn = &(__kmp_threadprivate_d_table.data[KMP_HASH(pc_addr)]); |
| 325 | |
| 326 | d_tn->next = *lnk_tn; |
| 327 | *lnk_tn = d_tn; |
| 328 | |
| 329 | __kmp_release_lock(lck: &__kmp_global_lock, gtid); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr, |
| 334 | void *data_addr, |
| 335 | size_t pc_size) { |
| 336 | struct private_common *tn, **tt; |
| 337 | struct shared_common *d_tn; |
| 338 | |
| 339 | /* +++++++++ START OF CRITICAL SECTION +++++++++ */ |
| 340 | __kmp_acquire_lock(lck: &__kmp_global_lock, gtid); |
| 341 | |
| 342 | tn = (struct private_common *)__kmp_allocate(sizeof(struct private_common)); |
| 343 | |
| 344 | tn->gbl_addr = pc_addr; |
| 345 | |
| 346 | d_tn = __kmp_find_shared_task_common( |
| 347 | tbl: &__kmp_threadprivate_d_table, gtid, |
| 348 | pc_addr); /* Only the MASTER data table exists. */ |
| 349 | |
| 350 | if (d_tn != 0) { |
| 351 | /* This threadprivate variable has already been seen. */ |
| 352 | |
| 353 | if (d_tn->pod_init == 0 && d_tn->obj_init == 0) { |
| 354 | d_tn->cmn_size = pc_size; |
| 355 | |
| 356 | if (d_tn->is_vec) { |
| 357 | if (d_tn->ct.ctorv != 0) { |
| 358 | /* Construct from scratch so no prototype exists */ |
| 359 | d_tn->obj_init = 0; |
| 360 | } else if (d_tn->cct.cctorv != 0) { |
| 361 | /* Now data initialize the prototype since it was previously |
| 362 | * registered */ |
| 363 | d_tn->obj_init = (void *)__kmp_allocate(d_tn->cmn_size); |
| 364 | (void)(*d_tn->cct.cctorv)(d_tn->obj_init, pc_addr, d_tn->vec_len); |
| 365 | } else { |
| 366 | d_tn->pod_init = __kmp_init_common_data(pc_addr: data_addr, pc_size: d_tn->cmn_size); |
| 367 | } |
| 368 | } else { |
| 369 | if (d_tn->ct.ctor != 0) { |
| 370 | /* Construct from scratch so no prototype exists */ |
| 371 | d_tn->obj_init = 0; |
| 372 | } else if (d_tn->cct.cctor != 0) { |
| 373 | /* Now data initialize the prototype since it was previously |
| 374 | registered */ |
| 375 | d_tn->obj_init = (void *)__kmp_allocate(d_tn->cmn_size); |
| 376 | (void)(*d_tn->cct.cctor)(d_tn->obj_init, pc_addr); |
| 377 | } else { |
| 378 | d_tn->pod_init = __kmp_init_common_data(pc_addr: data_addr, pc_size: d_tn->cmn_size); |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | } else { |
| 383 | struct shared_common **lnk_tn; |
| 384 | |
| 385 | d_tn = (struct shared_common *)__kmp_allocate(sizeof(struct shared_common)); |
| 386 | d_tn->gbl_addr = pc_addr; |
| 387 | d_tn->cmn_size = pc_size; |
| 388 | d_tn->pod_init = __kmp_init_common_data(pc_addr: data_addr, pc_size); |
| 389 | /* |
| 390 | d_tn->obj_init = 0; // AC: commented out because __kmp_allocate |
| 391 | zeroes the memory |
| 392 | d_tn->ct.ctor = 0; |
| 393 | d_tn->cct.cctor = 0; |
| 394 | d_tn->dt.dtor = 0; |
| 395 | d_tn->is_vec = FALSE; |
| 396 | d_tn->vec_len = 0L; |
| 397 | */ |
| 398 | lnk_tn = &(__kmp_threadprivate_d_table.data[KMP_HASH(pc_addr)]); |
| 399 | |
| 400 | d_tn->next = *lnk_tn; |
| 401 | *lnk_tn = d_tn; |
| 402 | } |
| 403 | |
| 404 | tn->cmn_size = d_tn->cmn_size; |
| 405 | |
| 406 | if ((__kmp_foreign_tp) ? (KMP_INITIAL_GTID(gtid)) : (KMP_UBER_GTID(gtid))) { |
| 407 | tn->par_addr = (void *)pc_addr; |
| 408 | } else { |
| 409 | tn->par_addr = (void *)__kmp_allocate(tn->cmn_size); |
| 410 | } |
| 411 | |
| 412 | __kmp_release_lock(lck: &__kmp_global_lock, gtid); |
| 413 | /* +++++++++ END OF CRITICAL SECTION +++++++++ */ |
| 414 | |
| 415 | #ifdef USE_CHECKS_COMMON |
| 416 | if (pc_size > d_tn->cmn_size) { |
| 417 | KC_TRACE( |
| 418 | 10, ("__kmp_threadprivate_insert: THREADPRIVATE: %p (%" KMP_UINTPTR_SPEC |
| 419 | " ,%" KMP_UINTPTR_SPEC ")\n" , |
| 420 | pc_addr, pc_size, d_tn->cmn_size)); |
| 421 | KMP_FATAL(TPCommonBlocksInconsist); |
| 422 | } |
| 423 | #endif /* USE_CHECKS_COMMON */ |
| 424 | |
| 425 | tt = &(__kmp_threads[gtid]->th.th_pri_common->data[KMP_HASH(pc_addr)]); |
| 426 | |
| 427 | #ifdef KMP_TASK_COMMON_DEBUG |
| 428 | if (*tt != 0) { |
| 429 | KC_TRACE( |
| 430 | 10, |
| 431 | ("__kmp_threadprivate_insert: WARNING! thread#%d: collision on %p\n" , |
| 432 | gtid, pc_addr)); |
| 433 | } |
| 434 | #endif |
| 435 | tn->next = *tt; |
| 436 | *tt = tn; |
| 437 | |
| 438 | #ifdef KMP_TASK_COMMON_DEBUG |
| 439 | KC_TRACE(10, |
| 440 | ("__kmp_threadprivate_insert: thread#%d, inserted node %p on list\n" , |
| 441 | gtid, pc_addr)); |
| 442 | dump_list(); |
| 443 | #endif |
| 444 | |
| 445 | /* Link the node into a simple list */ |
| 446 | |
| 447 | tn->link = __kmp_threads[gtid]->th.th_pri_head; |
| 448 | __kmp_threads[gtid]->th.th_pri_head = tn; |
| 449 | |
| 450 | if ((__kmp_foreign_tp) ? (KMP_INITIAL_GTID(gtid)) : (KMP_UBER_GTID(gtid))) |
| 451 | return tn; |
| 452 | |
| 453 | /* if C++ object with copy constructor, use it; |
| 454 | * else if C++ object with constructor, use it for the non-primary thread |
| 455 | copies only; |
| 456 | * else use pod_init and memcpy |
| 457 | * |
| 458 | * C++ constructors need to be called once for each non-primary thread on |
| 459 | * allocate |
| 460 | * C++ copy constructors need to be called once for each thread on allocate */ |
| 461 | |
| 462 | /* C++ object with constructors/destructors; don't call constructors for |
| 463 | primary thread though */ |
| 464 | if (d_tn->is_vec) { |
| 465 | if (d_tn->ct.ctorv != 0) { |
| 466 | (void)(*d_tn->ct.ctorv)(tn->par_addr, d_tn->vec_len); |
| 467 | } else if (d_tn->cct.cctorv != 0) { |
| 468 | (void)(*d_tn->cct.cctorv)(tn->par_addr, d_tn->obj_init, d_tn->vec_len); |
| 469 | } else if (tn->par_addr != tn->gbl_addr) { |
| 470 | __kmp_copy_common_data(pc_addr: tn->par_addr, d: d_tn->pod_init); |
| 471 | } |
| 472 | } else { |
| 473 | if (d_tn->ct.ctor != 0) { |
| 474 | (void)(*d_tn->ct.ctor)(tn->par_addr); |
| 475 | } else if (d_tn->cct.cctor != 0) { |
| 476 | (void)(*d_tn->cct.cctor)(tn->par_addr, d_tn->obj_init); |
| 477 | } else if (tn->par_addr != tn->gbl_addr) { |
| 478 | __kmp_copy_common_data(pc_addr: tn->par_addr, d: d_tn->pod_init); |
| 479 | } |
| 480 | } |
| 481 | /* !BUILD_OPENMP_C |
| 482 | if (tn->par_addr != tn->gbl_addr) |
| 483 | __kmp_copy_common_data( tn->par_addr, d_tn->pod_init ); */ |
| 484 | |
| 485 | return tn; |
| 486 | } |
| 487 | |
| 488 | /* ------------------------------------------------------------------------ */ |
| 489 | /* We are currently parallel, and we know the thread id. */ |
| 490 | /* ------------------------------------------------------------------------ */ |
| 491 | |
| 492 | /*! |
| 493 | @ingroup THREADPRIVATE |
| 494 | |
| 495 | @param loc source location information |
| 496 | @param data pointer to data being privatized |
| 497 | @param ctor pointer to constructor function for data |
| 498 | @param cctor pointer to copy constructor function for data |
| 499 | @param dtor pointer to destructor function for data |
| 500 | |
| 501 | Register constructors and destructors for thread private data. |
| 502 | This function is called when executing in parallel, when we know the thread id. |
| 503 | */ |
| 504 | void __kmpc_threadprivate_register(ident_t *loc, void *data, kmpc_ctor ctor, |
| 505 | kmpc_cctor cctor, kmpc_dtor dtor) { |
| 506 | struct shared_common *d_tn, **lnk_tn; |
| 507 | |
| 508 | KC_TRACE(10, ("__kmpc_threadprivate_register: called\n" )); |
| 509 | |
| 510 | #ifdef USE_CHECKS_COMMON |
| 511 | /* copy constructor must be zero for current code gen (Nov 2002 - jph) */ |
| 512 | KMP_ASSERT(cctor == 0); |
| 513 | #endif /* USE_CHECKS_COMMON */ |
| 514 | |
| 515 | /* Only the global data table exists. */ |
| 516 | d_tn = __kmp_find_shared_task_common(tbl: &__kmp_threadprivate_d_table, gtid: -1, pc_addr: data); |
| 517 | |
| 518 | if (d_tn == 0) { |
| 519 | d_tn = (struct shared_common *)__kmp_allocate(sizeof(struct shared_common)); |
| 520 | d_tn->gbl_addr = data; |
| 521 | |
| 522 | d_tn->ct.ctor = ctor; |
| 523 | d_tn->cct.cctor = cctor; |
| 524 | d_tn->dt.dtor = dtor; |
| 525 | /* |
| 526 | d_tn->is_vec = FALSE; // AC: commented out because __kmp_allocate |
| 527 | zeroes the memory |
| 528 | d_tn->vec_len = 0L; |
| 529 | d_tn->obj_init = 0; |
| 530 | d_tn->pod_init = 0; |
| 531 | */ |
| 532 | lnk_tn = &(__kmp_threadprivate_d_table.data[KMP_HASH(data)]); |
| 533 | |
| 534 | d_tn->next = *lnk_tn; |
| 535 | *lnk_tn = d_tn; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | void *__kmpc_threadprivate(ident_t *loc, kmp_int32 global_tid, void *data, |
| 540 | size_t size) { |
| 541 | void *ret; |
| 542 | struct private_common *tn; |
| 543 | |
| 544 | KC_TRACE(10, ("__kmpc_threadprivate: T#%d called\n" , global_tid)); |
| 545 | |
| 546 | #ifdef USE_CHECKS_COMMON |
| 547 | if (!__kmp_init_serial) |
| 548 | KMP_FATAL(RTLNotInitialized); |
| 549 | #endif /* USE_CHECKS_COMMON */ |
| 550 | |
| 551 | if (!__kmp_threads[global_tid]->th.th_root->r.r_active && !__kmp_foreign_tp) { |
| 552 | /* The parallel address will NEVER overlap with the data_address */ |
| 553 | /* dkp: 3rd arg to kmp_threadprivate_insert_private_data() is the |
| 554 | * data_address; use data_address = data */ |
| 555 | |
| 556 | KC_TRACE(20, ("__kmpc_threadprivate: T#%d inserting private data\n" , |
| 557 | global_tid)); |
| 558 | kmp_threadprivate_insert_private_data(gtid: global_tid, pc_addr: data, data_addr: data, pc_size: size); |
| 559 | |
| 560 | ret = data; |
| 561 | } else { |
| 562 | KC_TRACE( |
| 563 | 50, |
| 564 | ("__kmpc_threadprivate: T#%d try to find private data at address %p\n" , |
| 565 | global_tid, data)); |
| 566 | tn = __kmp_threadprivate_find_task_common( |
| 567 | tbl: __kmp_threads[global_tid]->th.th_pri_common, gtid: global_tid, pc_addr: data); |
| 568 | |
| 569 | if (tn) { |
| 570 | KC_TRACE(20, ("__kmpc_threadprivate: T#%d found data\n" , global_tid)); |
| 571 | #ifdef USE_CHECKS_COMMON |
| 572 | if ((size_t)size > tn->cmn_size) { |
| 573 | KC_TRACE(10, ("THREADPRIVATE: %p (%" KMP_UINTPTR_SPEC |
| 574 | " ,%" KMP_UINTPTR_SPEC ")\n" , |
| 575 | data, size, tn->cmn_size)); |
| 576 | KMP_FATAL(TPCommonBlocksInconsist); |
| 577 | } |
| 578 | #endif /* USE_CHECKS_COMMON */ |
| 579 | } else { |
| 580 | /* The parallel address will NEVER overlap with the data_address */ |
| 581 | /* dkp: 3rd arg to kmp_threadprivate_insert() is the data_address; use |
| 582 | * data_address = data */ |
| 583 | KC_TRACE(20, ("__kmpc_threadprivate: T#%d inserting data\n" , global_tid)); |
| 584 | tn = kmp_threadprivate_insert(gtid: global_tid, pc_addr: data, data_addr: data, pc_size: size); |
| 585 | } |
| 586 | |
| 587 | ret = tn->par_addr; |
| 588 | } |
| 589 | KC_TRACE(10, ("__kmpc_threadprivate: T#%d exiting; return value = %p\n" , |
| 590 | global_tid, ret)); |
| 591 | |
| 592 | return ret; |
| 593 | } |
| 594 | |
| 595 | static kmp_cached_addr_t *__kmp_find_cache(void *data) { |
| 596 | kmp_cached_addr_t *ptr = __kmp_threadpriv_cache_list; |
| 597 | while (ptr && ptr->data != data) |
| 598 | ptr = ptr->next; |
| 599 | return ptr; |
| 600 | } |
| 601 | |
| 602 | /*! |
| 603 | @ingroup THREADPRIVATE |
| 604 | @param loc source location information |
| 605 | @param global_tid global thread number |
| 606 | @param data pointer to data to privatize |
| 607 | @param size size of data to privatize |
| 608 | @param cache pointer to cache |
| 609 | @return pointer to private storage |
| 610 | |
| 611 | Allocate private storage for threadprivate data. |
| 612 | */ |
| 613 | void * |
| 614 | __kmpc_threadprivate_cached(ident_t *loc, |
| 615 | kmp_int32 global_tid, // gtid. |
| 616 | void *data, // Pointer to original global variable. |
| 617 | size_t size, // Size of original global variable. |
| 618 | void ***cache) { |
| 619 | KC_TRACE(10, ("__kmpc_threadprivate_cached: T#%d called with cache: %p, " |
| 620 | "address: %p, size: %" KMP_SIZE_T_SPEC "\n" , |
| 621 | global_tid, *cache, data, size)); |
| 622 | |
| 623 | if (TCR_PTR(*cache) == 0) { |
| 624 | __kmp_acquire_lock(lck: &__kmp_global_lock, gtid: global_tid); |
| 625 | |
| 626 | if (TCR_PTR(*cache) == 0) { |
| 627 | __kmp_acquire_bootstrap_lock(lck: &__kmp_tp_cached_lock); |
| 628 | // Compiler often passes in NULL cache, even if it's already been created |
| 629 | void **my_cache; |
| 630 | kmp_cached_addr_t *tp_cache_addr; |
| 631 | // Look for an existing cache |
| 632 | tp_cache_addr = __kmp_find_cache(data); |
| 633 | if (!tp_cache_addr) { // Cache was never created; do it now |
| 634 | __kmp_tp_cached = 1; |
| 635 | KMP_ITT_IGNORE(my_cache = (void **)__kmp_allocate( |
| 636 | sizeof(void *) * __kmp_tp_capacity + |
| 637 | sizeof(kmp_cached_addr_t));); |
| 638 | // No need to zero the allocated memory; __kmp_allocate does that. |
| 639 | KC_TRACE(50, ("__kmpc_threadprivate_cached: T#%d allocated cache at " |
| 640 | "address %p\n" , |
| 641 | global_tid, my_cache)); |
| 642 | /* TODO: free all this memory in __kmp_common_destroy using |
| 643 | * __kmp_threadpriv_cache_list */ |
| 644 | /* Add address of mycache to linked list for cleanup later */ |
| 645 | tp_cache_addr = (kmp_cached_addr_t *)&my_cache[__kmp_tp_capacity]; |
| 646 | tp_cache_addr->addr = my_cache; |
| 647 | tp_cache_addr->data = data; |
| 648 | tp_cache_addr->compiler_cache = cache; |
| 649 | tp_cache_addr->next = __kmp_threadpriv_cache_list; |
| 650 | __kmp_threadpriv_cache_list = tp_cache_addr; |
| 651 | } else { // A cache was already created; use it |
| 652 | my_cache = tp_cache_addr->addr; |
| 653 | tp_cache_addr->compiler_cache = cache; |
| 654 | } |
| 655 | KMP_MB(); |
| 656 | |
| 657 | TCW_PTR(*cache, my_cache); |
| 658 | __kmp_release_bootstrap_lock(lck: &__kmp_tp_cached_lock); |
| 659 | |
| 660 | KMP_MB(); |
| 661 | } |
| 662 | __kmp_release_lock(lck: &__kmp_global_lock, gtid: global_tid); |
| 663 | } |
| 664 | |
| 665 | void *ret; |
| 666 | if ((ret = TCR_PTR((*cache)[global_tid])) == 0) { |
| 667 | ret = __kmpc_threadprivate(loc, global_tid, data, size: (size_t)size); |
| 668 | |
| 669 | TCW_PTR((*cache)[global_tid], ret); |
| 670 | } |
| 671 | KC_TRACE(10, |
| 672 | ("__kmpc_threadprivate_cached: T#%d exiting; return value = %p\n" , |
| 673 | global_tid, ret)); |
| 674 | return ret; |
| 675 | } |
| 676 | |
| 677 | // This function should only be called when both __kmp_tp_cached_lock and |
| 678 | // kmp_forkjoin_lock are held. |
| 679 | void __kmp_threadprivate_resize_cache(int newCapacity) { |
| 680 | KC_TRACE(10, ("__kmp_threadprivate_resize_cache: called with size: %d\n" , |
| 681 | newCapacity)); |
| 682 | |
| 683 | kmp_cached_addr_t *ptr = __kmp_threadpriv_cache_list; |
| 684 | |
| 685 | while (ptr) { |
| 686 | if (ptr->data) { // this location has an active cache; resize it |
| 687 | void **my_cache; |
| 688 | KMP_ITT_IGNORE(my_cache = |
| 689 | (void **)__kmp_allocate(sizeof(void *) * newCapacity + |
| 690 | sizeof(kmp_cached_addr_t));); |
| 691 | // No need to zero the allocated memory; __kmp_allocate does that. |
| 692 | KC_TRACE(50, ("__kmp_threadprivate_resize_cache: allocated cache at %p\n" , |
| 693 | my_cache)); |
| 694 | // Now copy old cache into new cache |
| 695 | void **old_cache = ptr->addr; |
| 696 | for (int i = 0; i < __kmp_tp_capacity; ++i) { |
| 697 | my_cache[i] = old_cache[i]; |
| 698 | } |
| 699 | |
| 700 | // Add address of new my_cache to linked list for cleanup later |
| 701 | kmp_cached_addr_t *tp_cache_addr; |
| 702 | tp_cache_addr = (kmp_cached_addr_t *)&my_cache[newCapacity]; |
| 703 | tp_cache_addr->addr = my_cache; |
| 704 | tp_cache_addr->data = ptr->data; |
| 705 | tp_cache_addr->compiler_cache = ptr->compiler_cache; |
| 706 | tp_cache_addr->next = __kmp_threadpriv_cache_list; |
| 707 | __kmp_threadpriv_cache_list = tp_cache_addr; |
| 708 | |
| 709 | // Copy new cache to compiler's location: We can copy directly |
| 710 | // to (*compiler_cache) if compiler guarantees it will keep |
| 711 | // using the same location for the cache. This is not yet true |
| 712 | // for some compilers, in which case we have to check if |
| 713 | // compiler_cache is still pointing at old cache, and if so, we |
| 714 | // can point it at the new cache with an atomic compare&swap |
| 715 | // operation. (Old method will always work, but we should shift |
| 716 | // to new method (commented line below) when Intel and Clang |
| 717 | // compilers use new method.) |
| 718 | (void)KMP_COMPARE_AND_STORE_PTR(tp_cache_addr->compiler_cache, old_cache, |
| 719 | my_cache); |
| 720 | // TCW_PTR(*(tp_cache_addr->compiler_cache), my_cache); |
| 721 | |
| 722 | // If the store doesn't happen here, the compiler's old behavior will |
| 723 | // inevitably call __kmpc_threadprivate_cache with a new location for the |
| 724 | // cache, and that function will store the resized cache there at that |
| 725 | // point. |
| 726 | |
| 727 | // Nullify old cache's data pointer so we skip it next time |
| 728 | ptr->data = NULL; |
| 729 | } |
| 730 | ptr = ptr->next; |
| 731 | } |
| 732 | // After all caches are resized, update __kmp_tp_capacity to the new size |
| 733 | *(volatile int *)&__kmp_tp_capacity = newCapacity; |
| 734 | } |
| 735 | |
| 736 | /*! |
| 737 | @ingroup THREADPRIVATE |
| 738 | @param loc source location information |
| 739 | @param data pointer to data being privatized |
| 740 | @param ctor pointer to constructor function for data |
| 741 | @param cctor pointer to copy constructor function for data |
| 742 | @param dtor pointer to destructor function for data |
| 743 | @param vector_length length of the vector (bytes or elements?) |
| 744 | Register vector constructors and destructors for thread private data. |
| 745 | */ |
| 746 | void __kmpc_threadprivate_register_vec(ident_t *loc, void *data, |
| 747 | kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, |
| 748 | kmpc_dtor_vec dtor, |
| 749 | size_t vector_length) { |
| 750 | struct shared_common *d_tn, **lnk_tn; |
| 751 | |
| 752 | KC_TRACE(10, ("__kmpc_threadprivate_register_vec: called\n" )); |
| 753 | |
| 754 | #ifdef USE_CHECKS_COMMON |
| 755 | /* copy constructor must be zero for current code gen (Nov 2002 - jph) */ |
| 756 | KMP_ASSERT(cctor == 0); |
| 757 | #endif /* USE_CHECKS_COMMON */ |
| 758 | |
| 759 | d_tn = __kmp_find_shared_task_common( |
| 760 | tbl: &__kmp_threadprivate_d_table, gtid: -1, |
| 761 | pc_addr: data); /* Only the global data table exists. */ |
| 762 | |
| 763 | if (d_tn == 0) { |
| 764 | d_tn = (struct shared_common *)__kmp_allocate(sizeof(struct shared_common)); |
| 765 | d_tn->gbl_addr = data; |
| 766 | |
| 767 | d_tn->ct.ctorv = ctor; |
| 768 | d_tn->cct.cctorv = cctor; |
| 769 | d_tn->dt.dtorv = dtor; |
| 770 | d_tn->is_vec = TRUE; |
| 771 | d_tn->vec_len = (size_t)vector_length; |
| 772 | // d_tn->obj_init = 0; // AC: __kmp_allocate zeroes the memory |
| 773 | // d_tn->pod_init = 0; |
| 774 | lnk_tn = &(__kmp_threadprivate_d_table.data[KMP_HASH(data)]); |
| 775 | |
| 776 | d_tn->next = *lnk_tn; |
| 777 | *lnk_tn = d_tn; |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | void __kmp_cleanup_threadprivate_caches() { |
| 782 | kmp_cached_addr_t *ptr = __kmp_threadpriv_cache_list; |
| 783 | |
| 784 | while (ptr) { |
| 785 | void **cache = ptr->addr; |
| 786 | __kmp_threadpriv_cache_list = ptr->next; |
| 787 | if (*ptr->compiler_cache) |
| 788 | *ptr->compiler_cache = NULL; |
| 789 | ptr->compiler_cache = NULL; |
| 790 | ptr->data = NULL; |
| 791 | ptr->addr = NULL; |
| 792 | ptr->next = NULL; |
| 793 | // Threadprivate data pointed at by cache entries are destroyed at end of |
| 794 | // __kmp_launch_thread with __kmp_common_destroy_gtid. |
| 795 | __kmp_free(cache); // implicitly frees ptr too |
| 796 | ptr = __kmp_threadpriv_cache_list; |
| 797 | } |
| 798 | } |
| 799 | |