1/*
2 * z_Linux_util.cpp -- platform specific routines.
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_itt.h"
18#include "kmp_lock.h"
19#include "kmp_stats.h"
20#include "kmp_str.h"
21#include "kmp_wait_release.h"
22#include "kmp_wrapper_getpid.h"
23
24#if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25#include <alloca.h>
26#endif
27#include <math.h> // HUGE_VAL.
28#if KMP_OS_LINUX
29#include <semaphore.h>
30#endif // KMP_OS_LINUX
31#include <sys/resource.h>
32#if !KMP_OS_AIX
33#include <sys/syscall.h>
34#endif
35#include <sys/time.h>
36#include <sys/times.h>
37#include <unistd.h>
38
39#if KMP_OS_LINUX
40#include <sys/sysinfo.h>
41#if KMP_USE_FUTEX
42// We should really include <futex.h>, but that causes compatibility problems on
43// different Linux* OS distributions that either require that you include (or
44// break when you try to include) <pci/types.h>. Since all we need is the two
45// macros below (which are part of the kernel ABI, so can't change) we just
46// define the constants here and don't include <futex.h>
47#ifndef FUTEX_WAIT
48#define FUTEX_WAIT 0
49#endif
50#ifndef FUTEX_WAKE
51#define FUTEX_WAKE 1
52#endif
53#endif
54#elif KMP_OS_DARWIN
55#include <mach/mach.h>
56#include <sys/sysctl.h>
57#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
58#include <sys/types.h>
59#include <sys/sysctl.h>
60#include <sys/user.h>
61#include <pthread_np.h>
62#if KMP_OS_DRAGONFLY
63#include <kvm.h>
64#endif
65#elif KMP_OS_NETBSD || KMP_OS_OPENBSD
66#include <sys/types.h>
67#include <sys/sysctl.h>
68#if KMP_OS_NETBSD
69#include <sched.h>
70#endif
71#elif KMP_OS_SOLARIS
72#include <libproc.h>
73#include <procfs.h>
74#include <thread.h>
75#include <sys/loadavg.h>
76#endif
77
78#include <ctype.h>
79#include <dirent.h>
80#include <fcntl.h>
81
82struct kmp_sys_timer {
83 struct timespec start;
84};
85
86#ifndef TIMEVAL_TO_TIMESPEC
87// Convert timeval to timespec.
88#define TIMEVAL_TO_TIMESPEC(tv, ts) \
89 do { \
90 (ts)->tv_sec = (tv)->tv_sec; \
91 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
92 } while (0)
93#endif
94
95// Convert timespec to nanoseconds.
96#define TS2NS(timespec) \
97 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
98
99static struct kmp_sys_timer __kmp_sys_timer_data;
100
101#if KMP_HANDLE_SIGNALS
102typedef void (*sig_func_t)(int);
103STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
104static sigset_t __kmp_sigset;
105#endif
106
107static int __kmp_init_runtime = FALSE;
108
109static int __kmp_fork_count = 0;
110
111static pthread_condattr_t __kmp_suspend_cond_attr;
112static pthread_mutexattr_t __kmp_suspend_mutex_attr;
113
114static kmp_cond_align_t __kmp_wait_cv;
115static kmp_mutex_align_t __kmp_wait_mx;
116
117kmp_uint64 __kmp_ticks_per_msec = 1000000;
118kmp_uint64 __kmp_ticks_per_usec = 1000;
119
120#ifdef DEBUG_SUSPEND
121static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
122 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
123 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
124 cond->c_cond.__c_waiting);
125}
126#endif
127
128#if ((KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
129 KMP_OS_AIX) && \
130 KMP_AFFINITY_SUPPORTED)
131
132/* Affinity support */
133
134void __kmp_affinity_bind_thread(int which) {
135 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
136 "Illegal set affinity operation when not capable");
137
138 kmp_affin_mask_t *mask;
139 KMP_CPU_ALLOC_ON_STACK(mask);
140 KMP_CPU_ZERO(mask);
141 KMP_CPU_SET(which, mask);
142 __kmp_set_system_affinity(mask, TRUE);
143 KMP_CPU_FREE_FROM_STACK(mask);
144}
145
146#if KMP_OS_AIX
147void __kmp_affinity_determine_capable(const char *env_var) {
148 // All versions of AIX support bindprocessor().
149
150 size_t mask_size = __kmp_xproc / CHAR_BIT;
151 // Round up to byte boundary.
152 if (__kmp_xproc % CHAR_BIT)
153 ++mask_size;
154
155 // Round up to the mask_size_type boundary.
156 if (mask_size % sizeof(__kmp_affin_mask_size))
157 mask_size += sizeof(__kmp_affin_mask_size) -
158 mask_size % sizeof(__kmp_affin_mask_size);
159 KMP_AFFINITY_ENABLE(mask_size);
160 KA_TRACE(10,
161 ("__kmp_affinity_determine_capable: "
162 "AIX OS affinity interface bindprocessor functional (mask size = "
163 "%" KMP_SIZE_T_SPEC ").\n",
164 __kmp_affin_mask_size));
165}
166
167#else // !KMP_OS_AIX
168
169/* Determine if we can access affinity functionality on this version of
170 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
171 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
172void __kmp_affinity_determine_capable(const char *env_var) {
173 // Check and see if the OS supports thread affinity.
174
175#if KMP_OS_LINUX
176#define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
177#define KMP_CPU_SET_TRY_SIZE CACHE_LINE
178#elif KMP_OS_FREEBSD || KMP_OS_DRAGONFLY
179#define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
180#elif KMP_OS_NETBSD
181#define KMP_CPU_SET_SIZE_LIMIT (256)
182#endif
183
184 int verbose = __kmp_affinity.flags.verbose;
185 int warnings = __kmp_affinity.flags.warnings;
186 enum affinity_type type = __kmp_affinity.type;
187
188#if KMP_OS_LINUX
189 long gCode;
190 unsigned char *buf;
191 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
192
193 // If the syscall returns a suggestion for the size,
194 // then we don't have to search for an appropriate size.
195 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
196 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197 "initial getaffinity call returned %ld errno = %d\n",
198 gCode, errno));
199
200 if (gCode < 0 && errno != EINVAL) {
201 // System call not supported
202 if (verbose ||
203 (warnings && (type != affinity_none) && (type != affinity_default) &&
204 (type != affinity_disabled))) {
205 int error = errno;
206 kmp_msg_t err_code = KMP_ERR(error);
207 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
208 err_code, __kmp_msg_null);
209 if (__kmp_generate_warnings == kmp_warnings_off) {
210 __kmp_str_free(str: &err_code.str);
211 }
212 }
213 KMP_AFFINITY_DISABLE();
214 KMP_INTERNAL_FREE(buf);
215 return;
216 } else if (gCode > 0) {
217 // The optimal situation: the OS returns the size of the buffer it expects.
218 KMP_AFFINITY_ENABLE(gCode);
219 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
220 "affinity supported (mask size %d)\n",
221 (int)__kmp_affin_mask_size));
222 KMP_INTERNAL_FREE(buf);
223 return;
224 }
225
226 // Call the getaffinity system call repeatedly with increasing set sizes
227 // until we succeed, or reach an upper bound on the search.
228 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
229 "searching for proper set size\n"));
230 int size;
231 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
232 gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
233 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234 "getaffinity for mask size %ld returned %ld errno = %d\n",
235 size, gCode, errno));
236
237 if (gCode < 0) {
238 if (errno == ENOSYS) {
239 // We shouldn't get here
240 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
241 "inconsistent OS call behavior: errno == ENOSYS for mask "
242 "size %d\n",
243 size));
244 if (verbose ||
245 (warnings && (type != affinity_none) &&
246 (type != affinity_default) && (type != affinity_disabled))) {
247 int error = errno;
248 kmp_msg_t err_code = KMP_ERR(error);
249 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
250 err_code, __kmp_msg_null);
251 if (__kmp_generate_warnings == kmp_warnings_off) {
252 __kmp_str_free(str: &err_code.str);
253 }
254 }
255 KMP_AFFINITY_DISABLE();
256 KMP_INTERNAL_FREE(buf);
257 return;
258 }
259 continue;
260 }
261
262 KMP_AFFINITY_ENABLE(gCode);
263 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
264 "affinity supported (mask size %d)\n",
265 (int)__kmp_affin_mask_size));
266 KMP_INTERNAL_FREE(buf);
267 return;
268 }
269#elif KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY
270 long gCode;
271 unsigned char *buf;
272 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
273 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
274 reinterpret_cast<cpuset_t *>(buf));
275 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
276 "initial getaffinity call returned %d errno = %d\n",
277 gCode, errno));
278 if (gCode == 0) {
279 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
280 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
281 "affinity supported (mask size %d)\n",
282 (int)__kmp_affin_mask_size));
283 KMP_INTERNAL_FREE(buf);
284 return;
285 }
286#endif
287 KMP_INTERNAL_FREE(buf);
288
289 // Affinity is not supported
290 KMP_AFFINITY_DISABLE();
291 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
292 "cannot determine mask size - affinity not supported\n"));
293 if (verbose || (warnings && (type != affinity_none) &&
294 (type != affinity_default) && (type != affinity_disabled))) {
295 KMP_WARNING(AffCantGetMaskSize, env_var);
296 }
297}
298#endif // KMP_OS_AIX
299#endif // (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
300 KMP_OS_DRAGONFLY || KMP_OS_AIX) && KMP_AFFINITY_SUPPORTED
301
302#if KMP_USE_FUTEX
303
304int __kmp_futex_determine_capable() {
305 int loc = 0;
306 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
307 int retval = (rc == 0) || (errno != ENOSYS);
308
309 KA_TRACE(10,
310 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
311 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
312 retval ? "" : " not"));
313
314 return retval;
315}
316
317#endif // KMP_USE_FUTEX
318
319#if (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_WASM) && (!KMP_ASM_INTRINS)
320/* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
321 use compare_and_store for these routines */
322
323kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
324 kmp_int8 old_value, new_value;
325
326 old_value = TCR_1(*p);
327 new_value = old_value | d;
328
329 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
330 KMP_CPU_PAUSE();
331 old_value = TCR_1(*p);
332 new_value = old_value | d;
333 }
334 return old_value;
335}
336
337kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
338 kmp_int8 old_value, new_value;
339
340 old_value = TCR_1(*p);
341 new_value = old_value & d;
342
343 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
344 KMP_CPU_PAUSE();
345 old_value = TCR_1(*p);
346 new_value = old_value & d;
347 }
348 return old_value;
349}
350
351kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
352 kmp_uint32 old_value, new_value;
353
354 old_value = TCR_4(*p);
355 new_value = old_value | d;
356
357 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
358 KMP_CPU_PAUSE();
359 old_value = TCR_4(*p);
360 new_value = old_value | d;
361 }
362 return old_value;
363}
364
365kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
366 kmp_uint32 old_value, new_value;
367
368 old_value = TCR_4(*p);
369 new_value = old_value & d;
370
371 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
372 KMP_CPU_PAUSE();
373 old_value = TCR_4(*p);
374 new_value = old_value & d;
375 }
376 return old_value;
377}
378
379#if KMP_ARCH_X86 || KMP_ARCH_WASM
380kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
381 kmp_int8 old_value, new_value;
382
383 old_value = TCR_1(*p);
384 new_value = old_value + d;
385
386 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
387 KMP_CPU_PAUSE();
388 old_value = TCR_1(*p);
389 new_value = old_value + d;
390 }
391 return old_value;
392}
393
394kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
395 kmp_int64 old_value, new_value;
396
397 old_value = TCR_8(*p);
398 new_value = old_value + d;
399
400 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
401 KMP_CPU_PAUSE();
402 old_value = TCR_8(*p);
403 new_value = old_value + d;
404 }
405 return old_value;
406}
407#endif /* KMP_ARCH_X86 */
408
409kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
410 kmp_uint64 old_value, new_value;
411
412 old_value = TCR_8(*p);
413 new_value = old_value | d;
414 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
415 KMP_CPU_PAUSE();
416 old_value = TCR_8(*p);
417 new_value = old_value | d;
418 }
419 return old_value;
420}
421
422kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
423 kmp_uint64 old_value, new_value;
424
425 old_value = TCR_8(*p);
426 new_value = old_value & d;
427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
428 KMP_CPU_PAUSE();
429 old_value = TCR_8(*p);
430 new_value = old_value & d;
431 }
432 return old_value;
433}
434
435#endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
436
437void __kmp_terminate_thread(int gtid) {
438 int status;
439 kmp_info_t *th = __kmp_threads[gtid];
440
441 if (!th)
442 return;
443
444#ifdef KMP_CANCEL_THREADS
445 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
446 status = pthread_cancel(th: th->th.th_info.ds.ds_thread);
447 if (status != 0 && status != ESRCH) {
448 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
449 __kmp_msg_null);
450 }
451#endif
452 KMP_YIELD(TRUE);
453} //
454
455/* Set thread stack info.
456 If values are unreasonable, assume call failed and use incremental stack
457 refinement method instead. Returns TRUE if the stack parameters could be
458 determined exactly, FALSE if incremental refinement is necessary. */
459static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
460 int stack_data;
461#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
462 KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
463 int status;
464 size_t size = 0;
465 void *addr = 0;
466
467 /* Always do incremental stack refinement for ubermaster threads since the
468 initial thread stack range can be reduced by sibling thread creation so
469 pthread_attr_getstack may cause thread gtid aliasing */
470 if (!KMP_UBER_GTID(gtid)) {
471
472#if KMP_OS_SOLARIS
473 stack_t s;
474 if ((status = thr_stksegment(&s)) < 0) {
475 KMP_CHECK_SYSFAIL("thr_stksegment", status);
476 }
477
478 addr = s.ss_sp;
479 size = s.ss_size;
480 KA_TRACE(60, ("__kmp_set_stack_info: T#%d thr_stksegment returned size:"
481 " %lu, low addr: %p\n",
482 gtid, size, addr));
483#else
484 pthread_attr_t attr;
485 /* Fetch the real thread attributes */
486 status = pthread_attr_init(attr: &attr);
487 KMP_CHECK_SYSFAIL("pthread_attr_init", status);
488#if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
489 status = pthread_attr_get_np(pthread_self(), &attr);
490 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
491#else
492 status = pthread_getattr_np(th: pthread_self(), attr: &attr);
493 KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
494#endif
495 status = pthread_attr_getstack(attr: &attr, stackaddr: &addr, stacksize: &size);
496 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
497 KA_TRACE(60,
498 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
499 " %lu, low addr: %p\n",
500 gtid, size, addr));
501 status = pthread_attr_destroy(attr: &attr);
502 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
503#endif
504 }
505
506 if (size != 0 && addr != 0) { // was stack parameter determination successful?
507 /* Store the correct base and size */
508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
511 return TRUE;
512 }
513#endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
514 || KMP_OS_HURD || KMP_OS_SOLARIS */
515 /* Use incremental refinement starting from initial conservative estimate */
516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
519 return FALSE;
520}
521
522static void *__kmp_launch_worker(void *thr) {
523 int status, old_type, old_state;
524#ifdef KMP_BLOCK_SIGNALS
525 sigset_t new_set, old_set;
526#endif /* KMP_BLOCK_SIGNALS */
527 void *exit_val;
528#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
529 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
530 void *volatile padding = 0;
531#endif
532 int gtid;
533
534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
535 __kmp_gtid_set_specific(gtid);
536#ifdef KMP_TDATA_GTID
537 __kmp_gtid = gtid;
538#endif
539#if KMP_STATS_ENABLED
540 // set thread local index to point to thread-specific stats
541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
542 __kmp_stats_thread_ptr->startLife();
543 KMP_SET_THREAD_STATE(IDLE);
544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
545#endif
546
547#if USE_ITT_BUILD
548 __kmp_itt_thread_name(gtid);
549#endif /* USE_ITT_BUILD */
550
551#if KMP_AFFINITY_SUPPORTED
552 __kmp_affinity_bind_init_mask(gtid);
553#endif
554
555#ifdef KMP_CANCEL_THREADS
556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, oldtype: &old_type);
557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, oldstate: &old_state);
560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
561#endif
562
563#if KMP_ARCH_X86 || KMP_ARCH_X86_64
564 // Set FP control regs to be a copy of the parallel initialization thread's.
565 __kmp_clear_x87_fpu_status_word();
566 __kmp_load_x87_fpu_control_word(p: &__kmp_init_x87_fpu_control_word);
567 __kmp_load_mxcsr(p: &__kmp_init_mxcsr);
568#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
569
570#ifdef KMP_BLOCK_SIGNALS
571 status = sigfillset(&new_set);
572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
574 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
575#endif /* KMP_BLOCK_SIGNALS */
576
577#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
578 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
579 if (__kmp_stkoffset > 0 && gtid > 0) {
580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
581 (void)padding;
582 }
583#endif
584
585 KMP_MB();
586 __kmp_set_stack_info(gtid, th: (kmp_info_t *)thr);
587
588 __kmp_check_stack_overlap(thr: (kmp_info_t *)thr);
589
590 exit_val = __kmp_launch_thread(thr: (kmp_info_t *)thr);
591
592#ifdef KMP_BLOCK_SIGNALS
593 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
594 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
595#endif /* KMP_BLOCK_SIGNALS */
596
597 return exit_val;
598}
599
600#if KMP_USE_MONITOR
601/* The monitor thread controls all of the threads in the complex */
602
603static void *__kmp_launch_monitor(void *thr) {
604 int status, old_type, old_state;
605#ifdef KMP_BLOCK_SIGNALS
606 sigset_t new_set;
607#endif /* KMP_BLOCK_SIGNALS */
608 struct timespec interval;
609
610 KMP_MB(); /* Flush all pending memory write invalidates. */
611
612 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
613
614 /* register us as the monitor thread */
615 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
616#ifdef KMP_TDATA_GTID
617 __kmp_gtid = KMP_GTID_MONITOR;
618#endif
619
620 KMP_MB();
621
622#if USE_ITT_BUILD
623 // Instruct Intel(R) Threading Tools to ignore monitor thread.
624 __kmp_itt_thread_ignore();
625#endif /* USE_ITT_BUILD */
626
627 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
628 (kmp_info_t *)thr);
629
630 __kmp_check_stack_overlap((kmp_info_t *)thr);
631
632#ifdef KMP_CANCEL_THREADS
633 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
634 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
635 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
636 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
637 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
638#endif
639
640#if KMP_REAL_TIME_FIX
641 // This is a potential fix which allows application with real-time scheduling
642 // policy work. However, decision about the fix is not made yet, so it is
643 // disabled by default.
644 { // Are program started with real-time scheduling policy?
645 int sched = sched_getscheduler(0);
646 if (sched == SCHED_FIFO || sched == SCHED_RR) {
647 // Yes, we are a part of real-time application. Try to increase the
648 // priority of the monitor.
649 struct sched_param param;
650 int max_priority = sched_get_priority_max(sched);
651 int rc;
652 KMP_WARNING(RealTimeSchedNotSupported);
653 sched_getparam(0, &param);
654 if (param.sched_priority < max_priority) {
655 param.sched_priority += 1;
656 rc = sched_setscheduler(0, sched, &param);
657 if (rc != 0) {
658 int error = errno;
659 kmp_msg_t err_code = KMP_ERR(error);
660 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
661 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
662 if (__kmp_generate_warnings == kmp_warnings_off) {
663 __kmp_str_free(&err_code.str);
664 }
665 }
666 } else {
667 // We cannot abort here, because number of CPUs may be enough for all
668 // the threads, including the monitor thread, so application could
669 // potentially work...
670 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
671 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
672 __kmp_msg_null);
673 }
674 }
675 // AC: free thread that waits for monitor started
676 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
677 }
678#endif // KMP_REAL_TIME_FIX
679
680 KMP_MB(); /* Flush all pending memory write invalidates. */
681
682 if (__kmp_monitor_wakeups == 1) {
683 interval.tv_sec = 1;
684 interval.tv_nsec = 0;
685 } else {
686 interval.tv_sec = 0;
687 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
688 }
689
690 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
691
692 while (!TCR_4(__kmp_global.g.g_done)) {
693 struct timespec now;
694 struct timeval tval;
695
696 /* This thread monitors the state of the system */
697
698 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
699
700 status = gettimeofday(&tval, NULL);
701 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
702 TIMEVAL_TO_TIMESPEC(&tval, &now);
703
704 now.tv_sec += interval.tv_sec;
705 now.tv_nsec += interval.tv_nsec;
706
707 if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
708 now.tv_sec += 1;
709 now.tv_nsec -= KMP_NSEC_PER_SEC;
710 }
711
712 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
713 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
714 // AC: the monitor should not fall asleep if g_done has been set
715 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
716 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
717 &__kmp_wait_mx.m_mutex, &now);
718 if (status != 0) {
719 if (status != ETIMEDOUT && status != EINTR) {
720 KMP_SYSFAIL("pthread_cond_timedwait", status);
721 }
722 }
723 }
724 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
725 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
726
727 TCW_4(__kmp_global.g.g_time.dt.t_value,
728 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
729
730 KMP_MB(); /* Flush all pending memory write invalidates. */
731 }
732
733 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
734
735#ifdef KMP_BLOCK_SIGNALS
736 status = sigfillset(&new_set);
737 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
738 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
739 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
740#endif /* KMP_BLOCK_SIGNALS */
741
742 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
743
744 if (__kmp_global.g.g_abort != 0) {
745 /* now we need to terminate the worker threads */
746 /* the value of t_abort is the signal we caught */
747
748 int gtid;
749
750 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
751 __kmp_global.g.g_abort));
752
753 /* terminate the OpenMP worker threads */
754 /* TODO this is not valid for sibling threads!!
755 * the uber master might not be 0 anymore.. */
756 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
757 __kmp_terminate_thread(gtid);
758
759 __kmp_cleanup();
760
761 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
762 __kmp_global.g.g_abort));
763
764 if (__kmp_global.g.g_abort > 0)
765 raise(__kmp_global.g.g_abort);
766 }
767
768 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
769
770 return thr;
771}
772#endif // KMP_USE_MONITOR
773
774void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
775 pthread_t handle;
776 pthread_attr_t thread_attr;
777 int status;
778
779 th->th.th_info.ds.ds_gtid = gtid;
780
781#if KMP_STATS_ENABLED
782 // sets up worker thread stats
783 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
784
785 // th->th.th_stats is used to transfer thread-specific stats-pointer to
786 // __kmp_launch_worker. So when thread is created (goes into
787 // __kmp_launch_worker) it will set its thread local pointer to
788 // th->th.th_stats
789 if (!KMP_UBER_GTID(gtid)) {
790 th->th.th_stats = __kmp_stats_list->push_back(gtid);
791 } else {
792 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
793 // so set the th->th.th_stats field to it.
794 th->th.th_stats = __kmp_stats_thread_ptr;
795 }
796 __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
797
798#endif // KMP_STATS_ENABLED
799
800 if (KMP_UBER_GTID(gtid)) {
801 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
802 th->th.th_info.ds.ds_thread = pthread_self();
803 __kmp_set_stack_info(gtid, th);
804 __kmp_check_stack_overlap(thr: th);
805 return;
806 }
807
808 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
809
810 KMP_MB(); /* Flush all pending memory write invalidates. */
811
812#ifdef KMP_THREAD_ATTR
813 status = pthread_attr_init(attr: &thread_attr);
814 if (status != 0) {
815 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
816 }
817 status = pthread_attr_setdetachstate(attr: &thread_attr, PTHREAD_CREATE_JOINABLE);
818 if (status != 0) {
819 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
820 }
821
822 /* Set stack size for this thread now.
823 The multiple of 2 is there because on some machines, requesting an unusual
824 stacksize causes the thread to have an offset before the dummy alloca()
825 takes place to create the offset. Since we want the user to have a
826 sufficient stacksize AND support a stack offset, we alloca() twice the
827 offset so that the upcoming alloca() does not eliminate any premade offset,
828 and also gives the user the stack space they requested for all threads */
829 stack_size += gtid * __kmp_stkoffset * 2;
830
831 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
832 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
833 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
834
835#ifdef _POSIX_THREAD_ATTR_STACKSIZE
836 status = pthread_attr_setstacksize(attr: &thread_attr, stacksize: stack_size);
837#ifdef KMP_BACKUP_STKSIZE
838 if (status != 0) {
839 if (!__kmp_env_stksize) {
840 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
841 __kmp_stksize = KMP_BACKUP_STKSIZE;
842 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
843 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
844 "bytes\n",
845 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
846 status = pthread_attr_setstacksize(attr: &thread_attr, stacksize: stack_size);
847 }
848 }
849#endif /* KMP_BACKUP_STKSIZE */
850 if (status != 0) {
851 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
852 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
853 }
854#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
855
856#endif /* KMP_THREAD_ATTR */
857
858 status =
859 pthread_create(newthread: &handle, attr: &thread_attr, start_routine: __kmp_launch_worker, arg: (void *)th);
860 if (status != 0 || !handle) { // ??? Why do we check handle??
861#ifdef _POSIX_THREAD_ATTR_STACKSIZE
862 if (status == EINVAL) {
863 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
864 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
865 }
866 if (status == ENOMEM) {
867 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
868 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
869 }
870#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
871 if (status == EAGAIN) {
872 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
873 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
874 }
875 KMP_SYSFAIL("pthread_create", status);
876 }
877
878 th->th.th_info.ds.ds_thread = handle;
879
880#ifdef KMP_THREAD_ATTR
881 status = pthread_attr_destroy(attr: &thread_attr);
882 if (status) {
883 kmp_msg_t err_code = KMP_ERR(status);
884 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
885 __kmp_msg_null);
886 if (__kmp_generate_warnings == kmp_warnings_off) {
887 __kmp_str_free(str: &err_code.str);
888 }
889 }
890#endif /* KMP_THREAD_ATTR */
891
892 KMP_MB(); /* Flush all pending memory write invalidates. */
893
894 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
895
896} // __kmp_create_worker
897
898#if KMP_USE_MONITOR
899void __kmp_create_monitor(kmp_info_t *th) {
900 pthread_t handle;
901 pthread_attr_t thread_attr;
902 size_t size;
903 int status;
904 int auto_adj_size = FALSE;
905
906 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
907 // We don't need monitor thread in case of MAX_BLOCKTIME
908 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
909 "MAX blocktime\n"));
910 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
911 th->th.th_info.ds.ds_gtid = 0;
912 return;
913 }
914 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
915
916 KMP_MB(); /* Flush all pending memory write invalidates. */
917
918 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
919 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
920#if KMP_REAL_TIME_FIX
921 TCW_4(__kmp_global.g.g_time.dt.t_value,
922 -1); // Will use it for synchronization a bit later.
923#else
924 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
925#endif // KMP_REAL_TIME_FIX
926
927#ifdef KMP_THREAD_ATTR
928 if (__kmp_monitor_stksize == 0) {
929 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
930 auto_adj_size = TRUE;
931 }
932 status = pthread_attr_init(&thread_attr);
933 if (status != 0) {
934 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
935 }
936 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
937 if (status != 0) {
938 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
939 }
940
941#ifdef _POSIX_THREAD_ATTR_STACKSIZE
942 status = pthread_attr_getstacksize(&thread_attr, &size);
943 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
944#else
945 size = __kmp_sys_min_stksize;
946#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
947#endif /* KMP_THREAD_ATTR */
948
949 if (__kmp_monitor_stksize == 0) {
950 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
951 }
952 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
953 __kmp_monitor_stksize = __kmp_sys_min_stksize;
954 }
955
956 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
957 "requested stacksize = %lu bytes\n",
958 size, __kmp_monitor_stksize));
959
960retry:
961
962/* Set stack size for this thread now. */
963#ifdef _POSIX_THREAD_ATTR_STACKSIZE
964 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
965 __kmp_monitor_stksize));
966 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
967 if (status != 0) {
968 if (auto_adj_size) {
969 __kmp_monitor_stksize *= 2;
970 goto retry;
971 }
972 kmp_msg_t err_code = KMP_ERR(status);
973 __kmp_msg(kmp_ms_warning, // should this be fatal? BB
974 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
975 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
976 if (__kmp_generate_warnings == kmp_warnings_off) {
977 __kmp_str_free(&err_code.str);
978 }
979 }
980#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
981
982 status =
983 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
984
985 if (status != 0) {
986#ifdef _POSIX_THREAD_ATTR_STACKSIZE
987 if (status == EINVAL) {
988 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
989 __kmp_monitor_stksize *= 2;
990 goto retry;
991 }
992 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
993 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
994 __kmp_msg_null);
995 }
996 if (status == ENOMEM) {
997 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
998 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
999 __kmp_msg_null);
1000 }
1001#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1002 if (status == EAGAIN) {
1003 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1004 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1005 }
1006 KMP_SYSFAIL("pthread_create", status);
1007 }
1008
1009 th->th.th_info.ds.ds_thread = handle;
1010
1011#if KMP_REAL_TIME_FIX
1012 // Wait for the monitor thread is really started and set its *priority*.
1013 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1014 sizeof(__kmp_global.g.g_time.dt.t_value));
1015 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1016 &__kmp_neq_4, NULL);
1017#endif // KMP_REAL_TIME_FIX
1018
1019#ifdef KMP_THREAD_ATTR
1020 status = pthread_attr_destroy(&thread_attr);
1021 if (status != 0) {
1022 kmp_msg_t err_code = KMP_ERR(status);
1023 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1024 __kmp_msg_null);
1025 if (__kmp_generate_warnings == kmp_warnings_off) {
1026 __kmp_str_free(&err_code.str);
1027 }
1028 }
1029#endif
1030
1031 KMP_MB(); /* Flush all pending memory write invalidates. */
1032
1033 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1034 th->th.th_info.ds.ds_thread));
1035
1036} // __kmp_create_monitor
1037#endif // KMP_USE_MONITOR
1038
1039void __kmp_exit_thread(int exit_status) {
1040#if KMP_OS_WASI
1041// TODO: the wasm32-wasi-threads target does not yet support pthread_exit.
1042#else
1043 pthread_exit(retval: (void *)(intptr_t)exit_status);
1044#endif
1045} // __kmp_exit_thread
1046
1047#if KMP_USE_MONITOR
1048void __kmp_resume_monitor();
1049
1050extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1051 int status;
1052 void *exit_val;
1053
1054 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1055 " %#.8lx\n",
1056 th->th.th_info.ds.ds_thread));
1057
1058 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1059 // If both tid and gtid are 0, it means the monitor did not ever start.
1060 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1061 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1062 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1063 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1064 return;
1065 }
1066
1067 KMP_MB(); /* Flush all pending memory write invalidates. */
1068
1069 /* First, check to see whether the monitor thread exists to wake it up. This
1070 is to avoid performance problem when the monitor sleeps during
1071 blocktime-size interval */
1072
1073 status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1074 if (status != ESRCH) {
1075 __kmp_resume_monitor(); // Wake up the monitor thread
1076 }
1077 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1078 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1079 if (exit_val != th) {
1080 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1081 }
1082
1083 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1084 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1085
1086 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1087 " %#.8lx\n",
1088 th->th.th_info.ds.ds_thread));
1089
1090 KMP_MB(); /* Flush all pending memory write invalidates. */
1091}
1092#else
1093// Empty symbol to export (see exports_so.txt) when
1094// monitor thread feature is disabled
1095extern "C" void __kmp_reap_monitor(kmp_info_t *th) { (void)th; }
1096#endif // KMP_USE_MONITOR
1097
1098void __kmp_reap_worker(kmp_info_t *th) {
1099 int status;
1100 void *exit_val;
1101
1102 KMP_MB(); /* Flush all pending memory write invalidates. */
1103
1104 KA_TRACE(
1105 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1106
1107 status = pthread_join(th: th->th.th_info.ds.ds_thread, thread_return: &exit_val);
1108#ifdef KMP_DEBUG
1109 /* Don't expose these to the user until we understand when they trigger */
1110 if (status != 0) {
1111 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1112 }
1113 if (exit_val != th) {
1114 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1115 "exit_val = %p\n",
1116 th->th.th_info.ds.ds_gtid, exit_val));
1117 }
1118#else
1119 (void)status; // unused variable
1120#endif /* KMP_DEBUG */
1121
1122 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1123 th->th.th_info.ds.ds_gtid));
1124
1125 KMP_MB(); /* Flush all pending memory write invalidates. */
1126}
1127
1128#if KMP_HANDLE_SIGNALS
1129
1130static void __kmp_null_handler(int signo) {
1131 // Do nothing, for doing SIG_IGN-type actions.
1132} // __kmp_null_handler
1133
1134static void __kmp_team_handler(int signo) {
1135 if (__kmp_global.g.g_abort == 0) {
1136/* Stage 1 signal handler, let's shut down all of the threads */
1137#ifdef KMP_DEBUG
1138 __kmp_debug_printf(format: "__kmp_team_handler: caught signal = %d\n", signo);
1139#endif
1140 switch (signo) {
1141 case SIGHUP:
1142 case SIGINT:
1143 case SIGQUIT:
1144 case SIGILL:
1145 case SIGABRT:
1146 case SIGFPE:
1147 case SIGBUS:
1148 case SIGSEGV:
1149#ifdef SIGSYS
1150 case SIGSYS:
1151#endif
1152 case SIGTERM:
1153 if (__kmp_debug_buf) {
1154 __kmp_dump_debug_buffer();
1155 }
1156 __kmp_unregister_library(); // cleanup shared memory
1157 KMP_MB(); // Flush all pending memory write invalidates.
1158 TCW_4(__kmp_global.g.g_abort, signo);
1159 KMP_MB(); // Flush all pending memory write invalidates.
1160 TCW_4(__kmp_global.g.g_done, TRUE);
1161 KMP_MB(); // Flush all pending memory write invalidates.
1162 break;
1163 default:
1164#ifdef KMP_DEBUG
1165 __kmp_debug_printf(format: "__kmp_team_handler: unknown signal type");
1166#endif
1167 break;
1168 }
1169 }
1170} // __kmp_team_handler
1171
1172static void __kmp_sigaction(int signum, const struct sigaction *act,
1173 struct sigaction *oldact) {
1174 int rc = sigaction(sig: signum, act: act, oact: oldact);
1175 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1176}
1177
1178static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1179 int parallel_init) {
1180 KMP_MB(); // Flush all pending memory write invalidates.
1181 KB_TRACE(60,
1182 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1183 if (parallel_init) {
1184 struct sigaction new_action;
1185 struct sigaction old_action;
1186 new_action.sa_handler = handler_func;
1187 new_action.sa_flags = 0;
1188 sigfillset(set: &new_action.sa_mask);
1189 __kmp_sigaction(signum: sig, act: &new_action, oldact: &old_action);
1190 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1191 sigaddset(set: &__kmp_sigset, signo: sig);
1192 } else {
1193 // Restore/keep user's handler if one previously installed.
1194 __kmp_sigaction(signum: sig, act: &old_action, NULL);
1195 }
1196 } else {
1197 // Save initial/system signal handlers to see if user handlers installed.
1198 __kmp_sigaction(signum: sig, NULL, oldact: &__kmp_sighldrs[sig]);
1199 }
1200 KMP_MB(); // Flush all pending memory write invalidates.
1201} // __kmp_install_one_handler
1202
1203static void __kmp_remove_one_handler(int sig) {
1204 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1205 if (sigismember(set: &__kmp_sigset, signo: sig)) {
1206 struct sigaction old;
1207 KMP_MB(); // Flush all pending memory write invalidates.
1208 __kmp_sigaction(signum: sig, act: &__kmp_sighldrs[sig], oldact: &old);
1209 if ((old.sa_handler != __kmp_team_handler) &&
1210 (old.sa_handler != __kmp_null_handler)) {
1211 // Restore the users signal handler.
1212 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1213 "restoring: sig=%d\n",
1214 sig));
1215 __kmp_sigaction(signum: sig, act: &old, NULL);
1216 }
1217 sigdelset(set: &__kmp_sigset, signo: sig);
1218 KMP_MB(); // Flush all pending memory write invalidates.
1219 }
1220} // __kmp_remove_one_handler
1221
1222void __kmp_install_signals(int parallel_init) {
1223 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1224 if (__kmp_handle_signals || !parallel_init) {
1225 // If ! parallel_init, we do not install handlers, just save original
1226 // handlers. Let us do it even __handle_signals is 0.
1227 sigemptyset(set: &__kmp_sigset);
1228 __kmp_install_one_handler(SIGHUP, handler_func: __kmp_team_handler, parallel_init);
1229 __kmp_install_one_handler(SIGINT, handler_func: __kmp_team_handler, parallel_init);
1230 __kmp_install_one_handler(SIGQUIT, handler_func: __kmp_team_handler, parallel_init);
1231 __kmp_install_one_handler(SIGILL, handler_func: __kmp_team_handler, parallel_init);
1232 __kmp_install_one_handler(SIGABRT, handler_func: __kmp_team_handler, parallel_init);
1233 __kmp_install_one_handler(SIGFPE, handler_func: __kmp_team_handler, parallel_init);
1234 __kmp_install_one_handler(SIGBUS, handler_func: __kmp_team_handler, parallel_init);
1235 __kmp_install_one_handler(SIGSEGV, handler_func: __kmp_team_handler, parallel_init);
1236#ifdef SIGSYS
1237 __kmp_install_one_handler(SIGSYS, handler_func: __kmp_team_handler, parallel_init);
1238#endif // SIGSYS
1239 __kmp_install_one_handler(SIGTERM, handler_func: __kmp_team_handler, parallel_init);
1240#ifdef SIGPIPE
1241 __kmp_install_one_handler(SIGPIPE, handler_func: __kmp_team_handler, parallel_init);
1242#endif // SIGPIPE
1243 }
1244} // __kmp_install_signals
1245
1246void __kmp_remove_signals(void) {
1247 int sig;
1248 KB_TRACE(10, ("__kmp_remove_signals()\n"));
1249 for (sig = 1; sig < NSIG; ++sig) {
1250 __kmp_remove_one_handler(sig);
1251 }
1252} // __kmp_remove_signals
1253
1254#endif // KMP_HANDLE_SIGNALS
1255
1256void __kmp_enable(int new_state) {
1257#ifdef KMP_CANCEL_THREADS
1258 int status, old_state;
1259 status = pthread_setcancelstate(state: new_state, oldstate: &old_state);
1260 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1261 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1262#endif
1263}
1264
1265void __kmp_disable(int *old_state) {
1266#ifdef KMP_CANCEL_THREADS
1267 int status;
1268 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, oldstate: old_state);
1269 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1270#endif
1271}
1272
1273static void __kmp_atfork_prepare(void) {
1274 __kmp_acquire_bootstrap_lock(lck: &__kmp_initz_lock);
1275 __kmp_acquire_bootstrap_lock(lck: &__kmp_forkjoin_lock);
1276}
1277
1278static void __kmp_atfork_parent(void) {
1279 __kmp_release_bootstrap_lock(lck: &__kmp_forkjoin_lock);
1280 __kmp_release_bootstrap_lock(lck: &__kmp_initz_lock);
1281}
1282
1283/* Reset the library so execution in the child starts "all over again" with
1284 clean data structures in initial states. Don't worry about freeing memory
1285 allocated by parent, just abandon it to be safe. */
1286static void __kmp_atfork_child(void) {
1287 __kmp_release_bootstrap_lock(lck: &__kmp_forkjoin_lock);
1288 __kmp_release_bootstrap_lock(lck: &__kmp_initz_lock);
1289 /* TODO make sure this is done right for nested/sibling */
1290 // ATT: Memory leaks are here? TODO: Check it and fix.
1291 /* KMP_ASSERT( 0 ); */
1292
1293 ++__kmp_fork_count;
1294
1295#if KMP_AFFINITY_SUPPORTED
1296#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
1297 KMP_OS_AIX
1298 // reset the affinity in the child to the initial thread
1299 // affinity in the parent
1300 kmp_set_thread_affinity_mask_initial();
1301#endif
1302 // Set default not to bind threads tightly in the child (we're expecting
1303 // over-subscription after the fork and this can improve things for
1304 // scripting languages that use OpenMP inside process-parallel code).
1305 if (__kmp_nested_proc_bind.bind_types != NULL) {
1306 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1307 }
1308 for (kmp_affinity_t *affinity : __kmp_affinities)
1309 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
1310 __kmp_affin_fullMask = nullptr;
1311 __kmp_affin_origMask = nullptr;
1312 __kmp_topology = nullptr;
1313#endif // KMP_AFFINITY_SUPPORTED
1314
1315#if KMP_USE_MONITOR
1316 __kmp_init_monitor = 0;
1317#endif
1318 __kmp_init_parallel = FALSE;
1319 __kmp_init_middle = FALSE;
1320 __kmp_init_serial = FALSE;
1321 TCW_4(__kmp_init_gtid, FALSE);
1322 __kmp_init_common = FALSE;
1323
1324 TCW_4(__kmp_init_user_locks, FALSE);
1325#if !KMP_USE_DYNAMIC_LOCK
1326 __kmp_user_lock_table.used = 1;
1327 __kmp_user_lock_table.allocated = 0;
1328 __kmp_user_lock_table.table = NULL;
1329 __kmp_lock_blocks = NULL;
1330#endif
1331
1332 __kmp_all_nth = 0;
1333 TCW_4(__kmp_nth, 0);
1334
1335 __kmp_thread_pool = NULL;
1336 __kmp_thread_pool_insert_pt = NULL;
1337 __kmp_team_pool = NULL;
1338
1339 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1340 here so threadprivate doesn't use stale data */
1341 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1342 __kmp_threadpriv_cache_list));
1343
1344 while (__kmp_threadpriv_cache_list != NULL) {
1345
1346 if (*__kmp_threadpriv_cache_list->addr != NULL) {
1347 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1348 &(*__kmp_threadpriv_cache_list->addr)));
1349
1350 *__kmp_threadpriv_cache_list->addr = NULL;
1351 }
1352 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1353 }
1354
1355 __kmp_init_runtime = FALSE;
1356
1357 /* reset statically initialized locks */
1358 __kmp_init_bootstrap_lock(lck: &__kmp_initz_lock);
1359 __kmp_init_bootstrap_lock(lck: &__kmp_stdio_lock);
1360 __kmp_init_bootstrap_lock(lck: &__kmp_console_lock);
1361 __kmp_init_bootstrap_lock(lck: &__kmp_task_team_lock);
1362
1363#if USE_ITT_BUILD
1364 __kmp_itt_reset(); // reset ITT's global state
1365#endif /* USE_ITT_BUILD */
1366
1367 {
1368 // Child process often get terminated without any use of OpenMP. That might
1369 // cause mapped shared memory file to be left unattended. Thus we postpone
1370 // library registration till middle initialization in the child process.
1371 __kmp_need_register_serial = FALSE;
1372 __kmp_serial_initialize();
1373 }
1374
1375 /* This is necessary to make sure no stale data is left around */
1376 /* AC: customers complain that we use unsafe routines in the atfork
1377 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1378 in dynamic_link when check the presence of shared tbbmalloc library.
1379 Suggestion is to make the library initialization lazier, similar
1380 to what done for __kmpc_begin(). */
1381 // TODO: synchronize all static initializations with regular library
1382 // startup; look at kmp_global.cpp and etc.
1383 //__kmp_internal_begin ();
1384}
1385
1386void __kmp_register_atfork(void) {
1387 if (__kmp_need_register_atfork) {
1388#if !KMP_OS_WASI
1389 int status = pthread_atfork(prepare: __kmp_atfork_prepare, parent: __kmp_atfork_parent,
1390 child: __kmp_atfork_child);
1391 KMP_CHECK_SYSFAIL("pthread_atfork", status);
1392#endif
1393 __kmp_need_register_atfork = FALSE;
1394 }
1395}
1396
1397void __kmp_suspend_initialize(void) {
1398 int status;
1399 status = pthread_mutexattr_init(attr: &__kmp_suspend_mutex_attr);
1400 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1401 status = pthread_condattr_init(attr: &__kmp_suspend_cond_attr);
1402 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1403}
1404
1405void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1406 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1407 int new_value = __kmp_fork_count + 1;
1408 // Return if already initialized
1409 if (old_value == new_value)
1410 return;
1411 // Wait, then return if being initialized
1412 if (old_value == -1 || !__kmp_atomic_compare_store(
1413 p: &th->th.th_suspend_init_count, expected: old_value, desired: -1)) {
1414 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1415 KMP_CPU_PAUSE();
1416 }
1417 } else {
1418 // Claim to be the initializer and do initializations
1419 int status;
1420 status = pthread_cond_init(cond: &th->th.th_suspend_cv.c_cond,
1421 cond_attr: &__kmp_suspend_cond_attr);
1422 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1423 status = pthread_mutex_init(mutex: &th->th.th_suspend_mx.m_mutex,
1424 mutexattr: &__kmp_suspend_mutex_attr);
1425 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1426 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1427 }
1428}
1429
1430void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1431 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1432 /* this means we have initialize the suspension pthread objects for this
1433 thread in this instance of the process */
1434 int status;
1435
1436 status = pthread_cond_destroy(cond: &th->th.th_suspend_cv.c_cond);
1437 if (status != 0 && status != EBUSY) {
1438 KMP_SYSFAIL("pthread_cond_destroy", status);
1439 }
1440 status = pthread_mutex_destroy(mutex: &th->th.th_suspend_mx.m_mutex);
1441 if (status != 0 && status != EBUSY) {
1442 KMP_SYSFAIL("pthread_mutex_destroy", status);
1443 }
1444 --th->th.th_suspend_init_count;
1445 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1446 __kmp_fork_count);
1447 }
1448}
1449
1450// return true if lock obtained, false otherwise
1451int __kmp_try_suspend_mx(kmp_info_t *th) {
1452 return (pthread_mutex_trylock(mutex: &th->th.th_suspend_mx.m_mutex) == 0);
1453}
1454
1455void __kmp_lock_suspend_mx(kmp_info_t *th) {
1456 int status = pthread_mutex_lock(mutex: &th->th.th_suspend_mx.m_mutex);
1457 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1458}
1459
1460void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1461 int status = pthread_mutex_unlock(mutex: &th->th.th_suspend_mx.m_mutex);
1462 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1463}
1464
1465/* This routine puts the calling thread to sleep after setting the
1466 sleep bit for the indicated flag variable to true. */
1467template <class C>
1468static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1469 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1470 kmp_info_t *th = __kmp_threads[th_gtid];
1471 int status;
1472 typename C::flag_t old_spin;
1473
1474 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1475 flag->get()));
1476
1477 __kmp_suspend_initialize_thread(th);
1478
1479 __kmp_lock_suspend_mx(th);
1480
1481 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1482 th_gtid, flag->get()));
1483
1484 /* TODO: shouldn't this use release semantics to ensure that
1485 __kmp_suspend_initialize_thread gets called first? */
1486 old_spin = flag->set_sleeping();
1487 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1488 th->th.th_sleep_loc_type = flag->get_type();
1489 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1490 __kmp_pause_status != kmp_soft_paused) {
1491 flag->unset_sleeping();
1492 TCW_PTR(th->th.th_sleep_loc, NULL);
1493 th->th.th_sleep_loc_type = flag_unset;
1494 __kmp_unlock_suspend_mx(th);
1495 return;
1496 }
1497 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1498 " was %x\n",
1499 th_gtid, flag->get(), flag->load(), old_spin));
1500
1501 if (flag->done_check_val(old_spin) || flag->done_check()) {
1502 flag->unset_sleeping();
1503 TCW_PTR(th->th.th_sleep_loc, NULL);
1504 th->th.th_sleep_loc_type = flag_unset;
1505 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1506 "for spin(%p)\n",
1507 th_gtid, flag->get()));
1508 } else {
1509 /* Encapsulate in a loop as the documentation states that this may
1510 "with low probability" return when the condition variable has
1511 not been signaled or broadcast */
1512 int deactivated = FALSE;
1513
1514 while (flag->is_sleeping()) {
1515#ifdef DEBUG_SUSPEND
1516 char buffer[128];
1517 __kmp_suspend_count++;
1518 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1519 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1520 buffer);
1521#endif
1522 // Mark the thread as no longer active (only in the first iteration of the
1523 // loop).
1524 if (!deactivated) {
1525 th->th.th_active = FALSE;
1526 if (th->th.th_active_in_pool) {
1527 th->th.th_active_in_pool = FALSE;
1528 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1529 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1530 }
1531 deactivated = TRUE;
1532 }
1533
1534 KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1535 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1536
1537#if USE_SUSPEND_TIMEOUT
1538 struct timespec now;
1539 struct timeval tval;
1540 int msecs;
1541
1542 status = gettimeofday(&tval, NULL);
1543 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1544 TIMEVAL_TO_TIMESPEC(&tval, &now);
1545
1546 msecs = (4 * __kmp_dflt_blocktime) + 200;
1547 now.tv_sec += msecs / 1000;
1548 now.tv_nsec += (msecs % 1000) * 1000;
1549
1550 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1551 "pthread_cond_timedwait\n",
1552 th_gtid));
1553 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1554 &th->th.th_suspend_mx.m_mutex, &now);
1555#else
1556 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1557 " pthread_cond_wait\n",
1558 th_gtid));
1559 status = pthread_cond_wait(cond: &th->th.th_suspend_cv.c_cond,
1560 mutex: &th->th.th_suspend_mx.m_mutex);
1561#endif // USE_SUSPEND_TIMEOUT
1562
1563 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1564 KMP_SYSFAIL("pthread_cond_wait", status);
1565 }
1566
1567 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1568
1569 if (!flag->is_sleeping() &&
1570 ((status == EINTR) || (status == ETIMEDOUT))) {
1571 // if interrupt or timeout, and thread is no longer sleeping, we need to
1572 // make sure sleep_loc gets reset; however, this shouldn't be needed if
1573 // we woke up with resume
1574 flag->unset_sleeping();
1575 TCW_PTR(th->th.th_sleep_loc, NULL);
1576 th->th.th_sleep_loc_type = flag_unset;
1577 }
1578#ifdef KMP_DEBUG
1579 if (status == ETIMEDOUT) {
1580 if (flag->is_sleeping()) {
1581 KF_TRACE(100,
1582 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1583 } else {
1584 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1585 "not set!\n",
1586 th_gtid));
1587 TCW_PTR(th->th.th_sleep_loc, NULL);
1588 th->th.th_sleep_loc_type = flag_unset;
1589 }
1590 } else if (flag->is_sleeping()) {
1591 KF_TRACE(100,
1592 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1593 }
1594#endif
1595 } // while
1596
1597 // Mark the thread as active again (if it was previous marked as inactive)
1598 if (deactivated) {
1599 th->th.th_active = TRUE;
1600 if (TCR_4(th->th.th_in_pool)) {
1601 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1602 th->th.th_active_in_pool = TRUE;
1603 }
1604 }
1605 }
1606 // We may have had the loop variable set before entering the loop body;
1607 // so we need to reset sleep_loc.
1608 TCW_PTR(th->th.th_sleep_loc, NULL);
1609 th->th.th_sleep_loc_type = flag_unset;
1610
1611 KMP_DEBUG_ASSERT(!flag->is_sleeping());
1612 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1613#ifdef DEBUG_SUSPEND
1614 {
1615 char buffer[128];
1616 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1617 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1618 buffer);
1619 }
1620#endif
1621
1622 __kmp_unlock_suspend_mx(th);
1623 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1624}
1625
1626template <bool C, bool S>
1627void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1628 __kmp_suspend_template(th_gtid, flag);
1629}
1630template <bool C, bool S>
1631void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1632 __kmp_suspend_template(th_gtid, flag);
1633}
1634template <bool C, bool S>
1635void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1636 __kmp_suspend_template(th_gtid, flag);
1637}
1638void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1639 __kmp_suspend_template(th_gtid, flag);
1640}
1641
1642template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1643template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1644template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1645template void
1646__kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1647template void
1648__kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1649
1650/* This routine signals the thread specified by target_gtid to wake up
1651 after setting the sleep bit indicated by the flag argument to FALSE.
1652 The target thread must already have called __kmp_suspend_template() */
1653template <class C>
1654static inline void __kmp_resume_template(int target_gtid, C *flag) {
1655 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1656 kmp_info_t *th = __kmp_threads[target_gtid];
1657 int status;
1658
1659#ifdef KMP_DEBUG
1660 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1661#endif
1662
1663 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1664 gtid, target_gtid));
1665 KMP_DEBUG_ASSERT(gtid != target_gtid);
1666
1667 __kmp_suspend_initialize_thread(th);
1668
1669 __kmp_lock_suspend_mx(th);
1670
1671 if (!flag || flag != th->th.th_sleep_loc) {
1672 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1673 // different location; wake up at new location
1674 flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1675 }
1676
1677 // First, check if the flag is null or its type has changed. If so, someone
1678 // else woke it up.
1679 if (!flag) { // Thread doesn't appear to be sleeping on anything
1680 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1681 "awake: flag(%p)\n",
1682 gtid, target_gtid, (void *)NULL));
1683 __kmp_unlock_suspend_mx(th);
1684 return;
1685 } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1686 // Flag type does not appear to match this function template; possibly the
1687 // thread is sleeping on something else. Try null resume again.
1688 KF_TRACE(
1689 5,
1690 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1691 "spin(%p) type=%d ptr_type=%d\n",
1692 gtid, target_gtid, flag, flag->get(), flag->get_type(),
1693 th->th.th_sleep_loc_type));
1694 __kmp_unlock_suspend_mx(th);
1695 __kmp_null_resume_wrapper(thr: th);
1696 return;
1697 } else { // if multiple threads are sleeping, flag should be internally
1698 // referring to a specific thread here
1699 if (!flag->is_sleeping()) {
1700 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1701 "awake: flag(%p): %u\n",
1702 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1703 __kmp_unlock_suspend_mx(th);
1704 return;
1705 }
1706 }
1707 KMP_DEBUG_ASSERT(flag);
1708 flag->unset_sleeping();
1709 TCW_PTR(th->th.th_sleep_loc, NULL);
1710 th->th.th_sleep_loc_type = flag_unset;
1711
1712 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1713 "sleep bit for flag's loc(%p): %u\n",
1714 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1715
1716#ifdef DEBUG_SUSPEND
1717 {
1718 char buffer[128];
1719 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1720 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1721 target_gtid, buffer);
1722 }
1723#endif
1724 status = pthread_cond_signal(cond: &th->th.th_suspend_cv.c_cond);
1725 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1726 __kmp_unlock_suspend_mx(th);
1727 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1728 " for T#%d\n",
1729 gtid, target_gtid));
1730}
1731
1732template <bool C, bool S>
1733void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1734 __kmp_resume_template(target_gtid, flag);
1735}
1736template <bool C, bool S>
1737void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1738 __kmp_resume_template(target_gtid, flag);
1739}
1740template <bool C, bool S>
1741void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1742 __kmp_resume_template(target_gtid, flag);
1743}
1744void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1745 __kmp_resume_template(target_gtid, flag);
1746}
1747
1748template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1749template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1750template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1751template void
1752__kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1753
1754#if KMP_USE_MONITOR
1755void __kmp_resume_monitor() {
1756 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1757 int status;
1758#ifdef KMP_DEBUG
1759 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1760 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1761 KMP_GTID_MONITOR));
1762 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1763#endif
1764 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1765 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1766#ifdef DEBUG_SUSPEND
1767 {
1768 char buffer[128];
1769 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1770 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1771 KMP_GTID_MONITOR, buffer);
1772 }
1773#endif
1774 status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1775 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1776 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1777 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1778 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1779 " for T#%d\n",
1780 gtid, KMP_GTID_MONITOR));
1781}
1782#endif // KMP_USE_MONITOR
1783
1784void __kmp_yield() { sched_yield(); }
1785
1786void __kmp_gtid_set_specific(int gtid) {
1787 if (__kmp_init_gtid) {
1788 int status;
1789 status = pthread_setspecific(key: __kmp_gtid_threadprivate_key,
1790 pointer: (void *)(intptr_t)(gtid + 1));
1791 KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1792 } else {
1793 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1794 }
1795}
1796
1797int __kmp_gtid_get_specific() {
1798 int gtid;
1799 if (!__kmp_init_gtid) {
1800 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1801 "KMP_GTID_SHUTDOWN\n"));
1802 return KMP_GTID_SHUTDOWN;
1803 }
1804 gtid = (int)(size_t)pthread_getspecific(key: __kmp_gtid_threadprivate_key);
1805 if (gtid == 0) {
1806 gtid = KMP_GTID_DNE;
1807 } else {
1808 gtid--;
1809 }
1810 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1811 __kmp_gtid_threadprivate_key, gtid));
1812 return gtid;
1813}
1814
1815double __kmp_read_cpu_time(void) {
1816 /*clock_t t;*/
1817 struct tms buffer;
1818
1819 /*t =*/times(buffer: &buffer);
1820
1821 return (double)(buffer.tms_utime + buffer.tms_cutime) /
1822 (double)CLOCKS_PER_SEC;
1823}
1824
1825int __kmp_read_system_info(struct kmp_sys_info *info) {
1826 int status;
1827 struct rusage r_usage;
1828
1829 memset(s: info, c: 0, n: sizeof(*info));
1830
1831 status = getrusage(RUSAGE_SELF, usage: &r_usage);
1832 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1833
1834#if !KMP_OS_WASI
1835 // The maximum resident set size utilized (in kilobytes)
1836 info->maxrss = r_usage.ru_maxrss;
1837 // The number of page faults serviced without any I/O
1838 info->minflt = r_usage.ru_minflt;
1839 // The number of page faults serviced that required I/O
1840 info->majflt = r_usage.ru_majflt;
1841 // The number of times a process was "swapped" out of memory
1842 info->nswap = r_usage.ru_nswap;
1843 // The number of times the file system had to perform input
1844 info->inblock = r_usage.ru_inblock;
1845 // The number of times the file system had to perform output
1846 info->oublock = r_usage.ru_oublock;
1847 // The number of times a context switch was voluntarily
1848 info->nvcsw = r_usage.ru_nvcsw;
1849 // The number of times a context switch was forced
1850 info->nivcsw = r_usage.ru_nivcsw;
1851#endif
1852
1853 return (status != 0);
1854}
1855
1856void __kmp_read_system_time(double *delta) {
1857 double t_ns;
1858 struct timeval tval;
1859 struct timespec stop;
1860 int status;
1861
1862 status = gettimeofday(tv: &tval, NULL);
1863 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1864 TIMEVAL_TO_TIMESPEC(&tval, &stop);
1865 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1866 *delta = (t_ns * 1e-9);
1867}
1868
1869void __kmp_clear_system_time(void) {
1870 struct timeval tval;
1871 int status;
1872 status = gettimeofday(tv: &tval, NULL);
1873 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1874 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1875}
1876
1877static int __kmp_get_xproc(void) {
1878
1879 int r = 0;
1880
1881#if KMP_OS_LINUX
1882
1883 __kmp_type_convert(src: sysconf(_SC_NPROCESSORS_CONF), dest: &(r));
1884
1885#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1886 KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
1887
1888 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1889
1890#elif KMP_OS_DARWIN
1891
1892 size_t len = sizeof(r);
1893 sysctlbyname("hw.logicalcpu", &r, &len, NULL, 0);
1894
1895#else
1896
1897#error "Unknown or unsupported OS."
1898
1899#endif
1900
1901 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1902
1903} // __kmp_get_xproc
1904
1905int __kmp_read_from_file(char const *path, char const *format, ...) {
1906 int result;
1907 va_list args;
1908
1909 va_start(args, format);
1910 FILE *f = fopen(filename: path, modes: "rb");
1911 if (f == NULL) {
1912 va_end(args);
1913 return 0;
1914 }
1915 result = vfscanf(s: f, format: format, arg: args);
1916 fclose(stream: f);
1917 va_end(args);
1918
1919 return result;
1920}
1921
1922void __kmp_runtime_initialize(void) {
1923 int status;
1924 pthread_mutexattr_t mutex_attr;
1925 pthread_condattr_t cond_attr;
1926
1927 if (__kmp_init_runtime) {
1928 return;
1929 }
1930
1931#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1932 if (!__kmp_cpuinfo.initialized) {
1933 __kmp_query_cpuid(p: &__kmp_cpuinfo);
1934 }
1935#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1936
1937 __kmp_xproc = __kmp_get_xproc();
1938
1939#if !KMP_32_BIT_ARCH
1940 struct rlimit rlim;
1941 // read stack size of calling thread, save it as default for worker threads;
1942 // this should be done before reading environment variables
1943 status = getrlimit(RLIMIT_STACK, rlimits: &rlim);
1944 if (status == 0) { // success?
1945 __kmp_stksize = rlim.rlim_cur;
1946 __kmp_check_stksize(val: &__kmp_stksize); // check value and adjust if needed
1947 }
1948#endif /* KMP_32_BIT_ARCH */
1949
1950 if (sysconf(_SC_THREADS)) {
1951
1952 /* Query the maximum number of threads */
1953 __kmp_type_convert(src: sysconf(_SC_THREAD_THREADS_MAX), dest: &(__kmp_sys_max_nth));
1954#ifdef __ve__
1955 if (__kmp_sys_max_nth == -1) {
1956 // VE's pthread supports only up to 64 threads per a VE process.
1957 // So we use that KMP_MAX_NTH (predefined as 64) here.
1958 __kmp_sys_max_nth = KMP_MAX_NTH;
1959 }
1960#else
1961 if (__kmp_sys_max_nth == -1) {
1962 /* Unlimited threads for NPTL */
1963 __kmp_sys_max_nth = INT_MAX;
1964 } else if (__kmp_sys_max_nth <= 1) {
1965 /* Can't tell, just use PTHREAD_THREADS_MAX */
1966 __kmp_sys_max_nth = KMP_MAX_NTH;
1967 }
1968#endif
1969
1970 /* Query the minimum stack size */
1971 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1972 if (__kmp_sys_min_stksize <= 1) {
1973 __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1974 }
1975 }
1976
1977 /* Set up minimum number of threads to switch to TLS gtid */
1978 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1979
1980 status = pthread_key_create(key: &__kmp_gtid_threadprivate_key,
1981 destr_function: __kmp_internal_end_dest);
1982 KMP_CHECK_SYSFAIL("pthread_key_create", status);
1983 status = pthread_mutexattr_init(attr: &mutex_attr);
1984 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1985 status = pthread_mutex_init(mutex: &__kmp_wait_mx.m_mutex, mutexattr: &mutex_attr);
1986 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1987 status = pthread_mutexattr_destroy(attr: &mutex_attr);
1988 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1989 status = pthread_condattr_init(attr: &cond_attr);
1990 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1991 status = pthread_cond_init(cond: &__kmp_wait_cv.c_cond, cond_attr: &cond_attr);
1992 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1993 status = pthread_condattr_destroy(attr: &cond_attr);
1994 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1995#if USE_ITT_BUILD
1996 __kmp_itt_initialize();
1997#endif /* USE_ITT_BUILD */
1998
1999 __kmp_init_runtime = TRUE;
2000}
2001
2002void __kmp_runtime_destroy(void) {
2003 int status;
2004
2005 if (!__kmp_init_runtime) {
2006 return; // Nothing to do.
2007 }
2008
2009#if USE_ITT_BUILD
2010 __kmp_itt_destroy();
2011#endif /* USE_ITT_BUILD */
2012
2013 status = pthread_key_delete(key: __kmp_gtid_threadprivate_key);
2014 KMP_CHECK_SYSFAIL("pthread_key_delete", status);
2015
2016 status = pthread_mutex_destroy(mutex: &__kmp_wait_mx.m_mutex);
2017 if (status != 0 && status != EBUSY) {
2018 KMP_SYSFAIL("pthread_mutex_destroy", status);
2019 }
2020 status = pthread_cond_destroy(cond: &__kmp_wait_cv.c_cond);
2021 if (status != 0 && status != EBUSY) {
2022 KMP_SYSFAIL("pthread_cond_destroy", status);
2023 }
2024#if KMP_AFFINITY_SUPPORTED
2025 __kmp_affinity_uninitialize();
2026#endif
2027
2028 __kmp_init_runtime = FALSE;
2029}
2030
2031/* Put the thread to sleep for a time period */
2032/* NOTE: not currently used anywhere */
2033void __kmp_thread_sleep(int millis) { sleep(seconds: (millis + 500) / 1000); }
2034
2035/* Calculate the elapsed wall clock time for the user */
2036void __kmp_elapsed(double *t) {
2037 int status;
2038#ifdef FIX_SGI_CLOCK
2039 struct timespec ts;
2040
2041 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
2042 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
2043 *t =
2044 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
2045#else
2046 struct timeval tv;
2047
2048 status = gettimeofday(tv: &tv, NULL);
2049 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
2050 *t =
2051 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
2052#endif
2053}
2054
2055/* Calculate the elapsed wall clock tick for the user */
2056void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
2057
2058/* Return the current time stamp in nsec */
2059kmp_uint64 __kmp_now_nsec() {
2060 struct timeval t;
2061 gettimeofday(tv: &t, NULL);
2062 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
2063 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
2064 return nsec;
2065}
2066
2067#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2068/* Measure clock ticks per millisecond */
2069void __kmp_initialize_system_tick() {
2070 kmp_uint64 now, nsec2, diff;
2071 kmp_uint64 delay = 1000000; // ~450 usec on most machines.
2072 kmp_uint64 nsec = __kmp_now_nsec();
2073 kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2074 while ((now = __kmp_hardware_timestamp()) < goal)
2075 ;
2076 nsec2 = __kmp_now_nsec();
2077 diff = nsec2 - nsec;
2078 if (diff > 0) {
2079 double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff;
2080 if (tpus > 0.0) {
2081 __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0);
2082 __kmp_ticks_per_usec = (kmp_uint64)tpus;
2083 }
2084 }
2085}
2086#endif
2087
2088/* Determine whether the given address is mapped into the current address
2089 space. */
2090
2091int __kmp_is_address_mapped(void *addr) {
2092
2093 int found = 0;
2094 int rc;
2095
2096#if KMP_OS_LINUX || KMP_OS_HURD
2097
2098 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2099 address ranges mapped into the address space. */
2100
2101 char *name = __kmp_str_format(format: "/proc/%d/maps", getpid());
2102 FILE *file = NULL;
2103
2104 file = fopen(filename: name, modes: "r");
2105 KMP_ASSERT(file != NULL);
2106
2107 for (;;) {
2108
2109 void *beginning = NULL;
2110 void *ending = NULL;
2111 char perms[5];
2112
2113 rc = fscanf(stream: file, format: "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2114 if (rc == EOF) {
2115 break;
2116 }
2117 KMP_ASSERT(rc == 3 &&
2118 KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2119
2120 // Ending address is not included in the region, but beginning is.
2121 if ((addr >= beginning) && (addr < ending)) {
2122 perms[2] = 0; // 3th and 4th character does not matter.
2123 if (strcmp(s1: perms, s2: "rw") == 0) {
2124 // Memory we are looking for should be readable and writable.
2125 found = 1;
2126 }
2127 break;
2128 }
2129 }
2130
2131 // Free resources.
2132 fclose(stream: file);
2133 KMP_INTERNAL_FREE(name);
2134#elif KMP_OS_FREEBSD
2135 char *buf;
2136 size_t lstsz;
2137 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2138 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2139 if (rc < 0)
2140 return 0;
2141 // We pass from number of vm entry's semantic
2142 // to size of whole entry map list.
2143 lstsz = lstsz * 4 / 3;
2144 buf = reinterpret_cast<char *>(KMP_INTERNAL_MALLOC(lstsz));
2145 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2146 if (rc < 0) {
2147 KMP_INTERNAL_FREE(buf);
2148 return 0;
2149 }
2150
2151 char *lw = buf;
2152 char *up = buf + lstsz;
2153
2154 while (lw < up) {
2155 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2156 size_t cursz = cur->kve_structsize;
2157 if (cursz == 0)
2158 break;
2159 void *start = reinterpret_cast<void *>(cur->kve_start);
2160 void *end = reinterpret_cast<void *>(cur->kve_end);
2161 // Readable/Writable addresses within current map entry
2162 if ((addr >= start) && (addr < end)) {
2163 if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2164 (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2165 found = 1;
2166 break;
2167 }
2168 }
2169 lw += cursz;
2170 }
2171 KMP_INTERNAL_FREE(buf);
2172#elif KMP_OS_DRAGONFLY
2173 char err[_POSIX2_LINE_MAX];
2174 kinfo_proc *proc;
2175 vmspace sp;
2176 vm_map *cur;
2177 vm_map_entry entry, *c;
2178 struct proc p;
2179 kvm_t *fd;
2180 uintptr_t uaddr;
2181 int num;
2182
2183 fd = kvm_openfiles(nullptr, nullptr, nullptr, O_RDONLY, err);
2184 if (!fd) {
2185 return 0;
2186 }
2187
2188 proc = kvm_getprocs(fd, KERN_PROC_PID, getpid(), &num);
2189
2190 if (kvm_read(fd, static_cast<uintptr_t>(proc->kp_paddr), &p, sizeof(p)) !=
2191 sizeof(p) ||
2192 kvm_read(fd, reinterpret_cast<uintptr_t>(p.p_vmspace), &sp, sizeof(sp)) !=
2193 sizeof(sp)) {
2194 kvm_close(fd);
2195 return 0;
2196 }
2197
2198 (void)rc;
2199 cur = &sp.vm_map;
2200 uaddr = reinterpret_cast<uintptr_t>(addr);
2201 for (c = kvm_vm_map_entry_first(fd, cur, &entry); c;
2202 c = kvm_vm_map_entry_next(fd, c, &entry)) {
2203 if ((uaddr >= entry.ba.start) && (uaddr <= entry.ba.end)) {
2204 if ((entry.protection & VM_PROT_READ) != 0 &&
2205 (entry.protection & VM_PROT_WRITE) != 0) {
2206 found = 1;
2207 break;
2208 }
2209 }
2210 }
2211
2212 kvm_close(fd);
2213#elif KMP_OS_SOLARIS
2214 prmap_t *cur, *map;
2215 void *buf;
2216 uintptr_t uaddr;
2217 ssize_t rd;
2218 int err;
2219 int file;
2220
2221 pid_t pid = getpid();
2222 struct ps_prochandle *fd = Pgrab(pid, PGRAB_RDONLY, &err);
2223 ;
2224
2225 if (!fd) {
2226 return 0;
2227 }
2228
2229 char *name = __kmp_str_format("/proc/%d/map", pid);
2230 size_t sz = (1 << 20);
2231 file = open(name, O_RDONLY);
2232 if (file == -1) {
2233 KMP_INTERNAL_FREE(name);
2234 return 0;
2235 }
2236
2237 buf = KMP_INTERNAL_MALLOC(sz);
2238
2239 while (sz > 0 && (rd = pread(file, buf, sz, 0)) == sz) {
2240 void *newbuf;
2241 sz <<= 1;
2242 newbuf = KMP_INTERNAL_REALLOC(buf, sz);
2243 buf = newbuf;
2244 }
2245
2246 map = reinterpret_cast<prmap_t *>(buf);
2247 uaddr = reinterpret_cast<uintptr_t>(addr);
2248
2249 for (cur = map; rd > 0; cur++, rd = -sizeof(*map)) {
2250 if ((uaddr >= cur->pr_vaddr) && (uaddr < cur->pr_vaddr)) {
2251 if ((cur->pr_mflags & MA_READ) != 0 && (cur->pr_mflags & MA_WRITE) != 0) {
2252 found = 1;
2253 break;
2254 }
2255 }
2256 }
2257
2258 KMP_INTERNAL_FREE(map);
2259 close(file);
2260 KMP_INTERNAL_FREE(name);
2261#elif KMP_OS_DARWIN
2262
2263 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2264 using vm interface. */
2265
2266 int buffer;
2267 vm_size_t count;
2268 rc = vm_read_overwrite(
2269 mach_task_self(), // Task to read memory of.
2270 (vm_address_t)(addr), // Address to read from.
2271 1, // Number of bytes to be read.
2272 (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2273 &count // Address of var to save number of read bytes in.
2274 );
2275 if (rc == 0) {
2276 // Memory successfully read.
2277 found = 1;
2278 }
2279
2280#elif KMP_OS_NETBSD
2281
2282 int mib[5];
2283 mib[0] = CTL_VM;
2284 mib[1] = VM_PROC;
2285 mib[2] = VM_PROC_MAP;
2286 mib[3] = getpid();
2287 mib[4] = sizeof(struct kinfo_vmentry);
2288
2289 size_t size;
2290 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2291 KMP_ASSERT(!rc);
2292 KMP_ASSERT(size);
2293
2294 size = size * 4 / 3;
2295 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2296 KMP_ASSERT(kiv);
2297
2298 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2299 KMP_ASSERT(!rc);
2300 KMP_ASSERT(size);
2301
2302 for (size_t i = 0; i < size; i++) {
2303 if (kiv[i].kve_start >= (uint64_t)addr &&
2304 kiv[i].kve_end <= (uint64_t)addr) {
2305 found = 1;
2306 break;
2307 }
2308 }
2309 KMP_INTERNAL_FREE(kiv);
2310#elif KMP_OS_OPENBSD
2311
2312 int mib[3];
2313 mib[0] = CTL_KERN;
2314 mib[1] = KERN_PROC_VMMAP;
2315 mib[2] = getpid();
2316
2317 size_t size;
2318 uint64_t end;
2319 rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2320 KMP_ASSERT(!rc);
2321 KMP_ASSERT(size);
2322 end = size;
2323
2324 struct kinfo_vmentry kiv = {.kve_start = 0};
2325
2326 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2327 KMP_ASSERT(size);
2328 if (kiv.kve_end == end)
2329 break;
2330
2331 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2332 found = 1;
2333 break;
2334 }
2335 kiv.kve_start += 1;
2336 }
2337#elif KMP_OS_WASI
2338 found = (int)addr < (__builtin_wasm_memory_size(0) * PAGESIZE);
2339#elif KMP_OS_AIX
2340
2341 (void)rc;
2342 // FIXME(AIX): Implement this
2343 found = 1;
2344
2345#else
2346
2347#error "Unknown or unsupported OS"
2348
2349#endif
2350
2351 return found;
2352
2353} // __kmp_is_address_mapped
2354
2355#ifdef USE_LOAD_BALANCE
2356
2357#if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
2358 KMP_OS_OPENBSD || KMP_OS_SOLARIS
2359
2360// The function returns the rounded value of the system load average
2361// during given time interval which depends on the value of
2362// __kmp_load_balance_interval variable (default is 60 sec, other values
2363// may be 300 sec or 900 sec).
2364// It returns -1 in case of error.
2365int __kmp_get_load_balance(int max) {
2366 double averages[3];
2367 int ret_avg = 0;
2368
2369 int res = getloadavg(averages, 3);
2370
2371 // Check __kmp_load_balance_interval to determine which of averages to use.
2372 // getloadavg() may return the number of samples less than requested that is
2373 // less than 3.
2374 if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2375 ret_avg = (int)averages[0]; // 1 min
2376 } else if ((__kmp_load_balance_interval >= 180 &&
2377 __kmp_load_balance_interval < 600) &&
2378 (res >= 2)) {
2379 ret_avg = (int)averages[1]; // 5 min
2380 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2381 ret_avg = (int)averages[2]; // 15 min
2382 } else { // Error occurred
2383 return -1;
2384 }
2385
2386 return ret_avg;
2387}
2388
2389#else // Linux* OS
2390
2391// The function returns number of running (not sleeping) threads, or -1 in case
2392// of error. Error could be reported if Linux* OS kernel too old (without
2393// "/proc" support). Counting running threads stops if max running threads
2394// encountered.
2395int __kmp_get_load_balance(int max) {
2396 static int permanent_error = 0;
2397 static int glb_running_threads = 0; // Saved count of the running threads for
2398 // the thread balance algorithm
2399 static double glb_call_time = 0; /* Thread balance algorithm call time */
2400
2401 int running_threads = 0; // Number of running threads in the system.
2402
2403 DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2404 struct dirent *proc_entry = NULL;
2405
2406 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2407 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2408 struct dirent *task_entry = NULL;
2409 int task_path_fixed_len;
2410
2411 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2412 int stat_file = -1;
2413 int stat_path_fixed_len;
2414
2415#ifdef KMP_DEBUG
2416 int total_processes = 0; // Total number of processes in system.
2417#endif
2418
2419 double call_time = 0.0;
2420
2421 __kmp_str_buf_init(&task_path);
2422 __kmp_str_buf_init(&stat_path);
2423
2424 __kmp_elapsed(t: &call_time);
2425
2426 if (glb_call_time &&
2427 (call_time - glb_call_time < __kmp_load_balance_interval)) {
2428 running_threads = glb_running_threads;
2429 goto finish;
2430 }
2431
2432 glb_call_time = call_time;
2433
2434 // Do not spend time on scanning "/proc/" if we have a permanent error.
2435 if (permanent_error) {
2436 running_threads = -1;
2437 goto finish;
2438 }
2439
2440 if (max <= 0) {
2441 max = INT_MAX;
2442 }
2443
2444 // Open "/proc/" directory.
2445 proc_dir = opendir(name: "/proc");
2446 if (proc_dir == NULL) {
2447 // Cannot open "/proc/". Probably the kernel does not support it. Return an
2448 // error now and in subsequent calls.
2449 running_threads = -1;
2450 permanent_error = 1;
2451 goto finish;
2452 }
2453
2454 // Initialize fixed part of task_path. This part will not change.
2455 __kmp_str_buf_cat(buffer: &task_path, str: "/proc/", len: 6);
2456 task_path_fixed_len = task_path.used; // Remember number of used characters.
2457
2458 proc_entry = readdir(dirp: proc_dir);
2459 while (proc_entry != NULL) {
2460#if KMP_OS_AIX
2461 // Proc entry name starts with a digit. Assume it is a process' directory.
2462 if (isdigit(proc_entry->d_name[0])) {
2463#else
2464 // Proc entry is a directory and name starts with a digit. Assume it is a
2465 // process' directory.
2466 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2467#endif
2468
2469#ifdef KMP_DEBUG
2470 ++total_processes;
2471#endif
2472 // Make sure init process is the very first in "/proc", so we can replace
2473 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2474 // 1. We are going to check that total_processes == 1 => d_name == "1" is
2475 // true (where "=>" is implication). Since C++ does not have => operator,
2476 // let us replace it with its equivalent: a => b == ! a || b.
2477 KMP_DEBUG_ASSERT(total_processes != 1 ||
2478 strcmp(proc_entry->d_name, "1") == 0);
2479
2480 // Construct task_path.
2481 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2482 __kmp_str_buf_cat(buffer: &task_path, str: proc_entry->d_name,
2483 KMP_STRLEN(s: proc_entry->d_name));
2484 __kmp_str_buf_cat(buffer: &task_path, str: "/task", len: 5);
2485
2486 task_dir = opendir(name: task_path.str);
2487 if (task_dir == NULL) {
2488 // Process can finish between reading "/proc/" directory entry and
2489 // opening process' "task/" directory. So, in general case we should not
2490 // complain, but have to skip this process and read the next one. But on
2491 // systems with no "task/" support we will spend lot of time to scan
2492 // "/proc/" tree again and again without any benefit. "init" process
2493 // (its pid is 1) should exist always, so, if we cannot open
2494 // "/proc/1/task/" directory, it means "task/" is not supported by
2495 // kernel. Report an error now and in the future.
2496 if (strcmp(s1: proc_entry->d_name, s2: "1") == 0) {
2497 running_threads = -1;
2498 permanent_error = 1;
2499 goto finish;
2500 }
2501 } else {
2502 // Construct fixed part of stat file path.
2503 __kmp_str_buf_clear(buffer: &stat_path);
2504 __kmp_str_buf_cat(buffer: &stat_path, str: task_path.str, len: task_path.used);
2505 __kmp_str_buf_cat(buffer: &stat_path, str: "/", len: 1);
2506 stat_path_fixed_len = stat_path.used;
2507
2508 task_entry = readdir(dirp: task_dir);
2509 while (task_entry != NULL) {
2510 // It is a directory and name starts with a digit.
2511#if KMP_OS_AIX
2512 if (isdigit(task_entry->d_name[0])) {
2513#else
2514 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2515#endif
2516
2517 // Construct complete stat file path. Easiest way would be:
2518 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2519 // task_entry->d_name );
2520 // but seriae of __kmp_str_buf_cat works a bit faster.
2521 stat_path.used =
2522 stat_path_fixed_len; // Reset stat path to its fixed part.
2523 __kmp_str_buf_cat(buffer: &stat_path, str: task_entry->d_name,
2524 KMP_STRLEN(s: task_entry->d_name));
2525 __kmp_str_buf_cat(buffer: &stat_path, str: "/stat", len: 5);
2526
2527 // Note: Low-level API (open/read/close) is used. High-level API
2528 // (fopen/fclose) works ~ 30 % slower.
2529 stat_file = open(file: stat_path.str, O_RDONLY);
2530 if (stat_file == -1) {
2531 // We cannot report an error because task (thread) can terminate
2532 // just before reading this file.
2533 } else {
2534 /* Content of "stat" file looks like:
2535 24285 (program) S ...
2536
2537 It is a single line (if program name does not include funny
2538 symbols). First number is a thread id, then name of executable
2539 file name in paretheses, then state of the thread. We need just
2540 thread state.
2541
2542 Good news: Length of program name is 15 characters max. Longer
2543 names are truncated.
2544
2545 Thus, we need rather short buffer: 15 chars for program name +
2546 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2547
2548 Bad news: Program name may contain special symbols like space,
2549 closing parenthesis, or even new line. This makes parsing
2550 "stat" file not 100 % reliable. In case of fanny program names
2551 parsing may fail (report incorrect thread state).
2552
2553 Parsing "status" file looks more promissing (due to different
2554 file structure and escaping special symbols) but reading and
2555 parsing of "status" file works slower.
2556 -- ln
2557 */
2558 char buffer[65];
2559 ssize_t len;
2560 len = read(fd: stat_file, buf: buffer, nbytes: sizeof(buffer) - 1);
2561 if (len >= 0) {
2562 buffer[len] = 0;
2563 // Using scanf:
2564 // sscanf( buffer, "%*d (%*s) %c ", & state );
2565 // looks very nice, but searching for a closing parenthesis
2566 // works a bit faster.
2567 char *close_parent = strstr(haystack: buffer, needle: ") ");
2568 if (close_parent != NULL) {
2569 char state = *(close_parent + 2);
2570 if (state == 'R') {
2571 ++running_threads;
2572 if (running_threads >= max) {
2573 goto finish;
2574 }
2575 }
2576 }
2577 }
2578 close(fd: stat_file);
2579 stat_file = -1;
2580 }
2581 }
2582 task_entry = readdir(dirp: task_dir);
2583 }
2584 closedir(dirp: task_dir);
2585 task_dir = NULL;
2586 }
2587 }
2588 proc_entry = readdir(dirp: proc_dir);
2589 }
2590
2591 // There _might_ be a timing hole where the thread executing this
2592 // code get skipped in the load balance, and running_threads is 0.
2593 // Assert in the debug builds only!!!
2594 KMP_DEBUG_ASSERT(running_threads > 0);
2595 if (running_threads <= 0) {
2596 running_threads = 1;
2597 }
2598
2599finish: // Clean up and exit.
2600 if (proc_dir != NULL) {
2601 closedir(dirp: proc_dir);
2602 }
2603 __kmp_str_buf_free(buffer: &task_path);
2604 if (task_dir != NULL) {
2605 closedir(dirp: task_dir);
2606 }
2607 __kmp_str_buf_free(buffer: &stat_path);
2608 if (stat_file != -1) {
2609 close(fd: stat_file);
2610 }
2611
2612 glb_running_threads = running_threads;
2613
2614 return running_threads;
2615
2616} // __kmp_get_load_balance
2617
2618#endif // KMP_OS_DARWIN
2619
2620#endif // USE_LOAD_BALANCE
2621
2622#if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2623 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2624 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \
2625 KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_PPC_XCOFF || \
2626 KMP_ARCH_AARCH64_32)
2627
2628// Because WebAssembly will use `call_indirect` to invoke the microtask and
2629// WebAssembly indirect calls check that the called signature is a precise
2630// match, we need to cast each microtask function pointer back from `void *` to
2631// its original type.
2632typedef void (*microtask_t0)(int *, int *);
2633typedef void (*microtask_t1)(int *, int *, void *);
2634typedef void (*microtask_t2)(int *, int *, void *, void *);
2635typedef void (*microtask_t3)(int *, int *, void *, void *, void *);
2636typedef void (*microtask_t4)(int *, int *, void *, void *, void *, void *);
2637typedef void (*microtask_t5)(int *, int *, void *, void *, void *, void *,
2638 void *);
2639typedef void (*microtask_t6)(int *, int *, void *, void *, void *, void *,
2640 void *, void *);
2641typedef void (*microtask_t7)(int *, int *, void *, void *, void *, void *,
2642 void *, void *, void *);
2643typedef void (*microtask_t8)(int *, int *, void *, void *, void *, void *,
2644 void *, void *, void *, void *);
2645typedef void (*microtask_t9)(int *, int *, void *, void *, void *, void *,
2646 void *, void *, void *, void *, void *);
2647typedef void (*microtask_t10)(int *, int *, void *, void *, void *, void *,
2648 void *, void *, void *, void *, void *, void *);
2649typedef void (*microtask_t11)(int *, int *, void *, void *, void *, void *,
2650 void *, void *, void *, void *, void *, void *,
2651 void *);
2652typedef void (*microtask_t12)(int *, int *, void *, void *, void *, void *,
2653 void *, void *, void *, void *, void *, void *,
2654 void *, void *);
2655typedef void (*microtask_t13)(int *, int *, void *, void *, void *, void *,
2656 void *, void *, void *, void *, void *, void *,
2657 void *, void *, void *);
2658typedef void (*microtask_t14)(int *, int *, void *, void *, void *, void *,
2659 void *, void *, void *, void *, void *, void *,
2660 void *, void *, void *, void *);
2661typedef void (*microtask_t15)(int *, int *, void *, void *, void *, void *,
2662 void *, void *, void *, void *, void *, void *,
2663 void *, void *, void *, void *, void *);
2664
2665// we really only need the case with 1 argument, because CLANG always build
2666// a struct of pointers to shared variables referenced in the outlined function
2667int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2668 void *p_argv[]
2669#if OMPT_SUPPORT
2670 ,
2671 void **exit_frame_ptr
2672#endif
2673) {
2674#if OMPT_SUPPORT
2675 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2676#endif
2677
2678 switch (argc) {
2679 default:
2680 fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2681 fflush(stderr);
2682 exit(-1);
2683 case 0:
2684 (*(microtask_t0)pkfn)(&gtid, &tid);
2685 break;
2686 case 1:
2687 (*(microtask_t1)pkfn)(&gtid, &tid, p_argv[0]);
2688 break;
2689 case 2:
2690 (*(microtask_t2)pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2691 break;
2692 case 3:
2693 (*(microtask_t3)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2694 break;
2695 case 4:
2696 (*(microtask_t4)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2697 p_argv[3]);
2698 break;
2699 case 5:
2700 (*(microtask_t5)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2701 p_argv[3], p_argv[4]);
2702 break;
2703 case 6:
2704 (*(microtask_t6)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2705 p_argv[3], p_argv[4], p_argv[5]);
2706 break;
2707 case 7:
2708 (*(microtask_t7)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2709 p_argv[3], p_argv[4], p_argv[5], p_argv[6]);
2710 break;
2711 case 8:
2712 (*(microtask_t8)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2713 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2714 p_argv[7]);
2715 break;
2716 case 9:
2717 (*(microtask_t9)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2718 p_argv[3], p_argv[4], p_argv[5], p_argv[6], p_argv[7],
2719 p_argv[8]);
2720 break;
2721 case 10:
2722 (*(microtask_t10)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2723 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2724 p_argv[7], p_argv[8], p_argv[9]);
2725 break;
2726 case 11:
2727 (*(microtask_t11)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2728 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2729 p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2730 break;
2731 case 12:
2732 (*(microtask_t12)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2733 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2734 p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2735 p_argv[11]);
2736 break;
2737 case 13:
2738 (*(microtask_t13)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2739 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2740 p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2741 p_argv[11], p_argv[12]);
2742 break;
2743 case 14:
2744 (*(microtask_t14)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2745 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2746 p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2747 p_argv[11], p_argv[12], p_argv[13]);
2748 break;
2749 case 15:
2750 (*(microtask_t15)pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2],
2751 p_argv[3], p_argv[4], p_argv[5], p_argv[6],
2752 p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2753 p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2754 break;
2755 }
2756
2757 return 1;
2758}
2759
2760#endif
2761
2762#if KMP_OS_LINUX
2763// Functions for hidden helper task
2764namespace {
2765// Condition variable for initializing hidden helper team
2766pthread_cond_t hidden_helper_threads_initz_cond_var;
2767pthread_mutex_t hidden_helper_threads_initz_lock;
2768volatile int hidden_helper_initz_signaled = FALSE;
2769
2770// Condition variable for deinitializing hidden helper team
2771pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2772pthread_mutex_t hidden_helper_threads_deinitz_lock;
2773volatile int hidden_helper_deinitz_signaled = FALSE;
2774
2775// Condition variable for the wrapper function of main thread
2776pthread_cond_t hidden_helper_main_thread_cond_var;
2777pthread_mutex_t hidden_helper_main_thread_lock;
2778volatile int hidden_helper_main_thread_signaled = FALSE;
2779
2780// Semaphore for worker threads. We don't use condition variable here in case
2781// that when multiple signals are sent at the same time, only one thread might
2782// be waken.
2783sem_t hidden_helper_task_sem;
2784} // namespace
2785
2786void __kmp_hidden_helper_worker_thread_wait() {
2787 int status = sem_wait(sem: &hidden_helper_task_sem);
2788 KMP_CHECK_SYSFAIL("sem_wait", status);
2789}
2790
2791void __kmp_do_initialize_hidden_helper_threads() {
2792 // Initialize condition variable
2793 int status =
2794 pthread_cond_init(cond: &hidden_helper_threads_initz_cond_var, cond_attr: nullptr);
2795 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2796
2797 status = pthread_cond_init(cond: &hidden_helper_threads_deinitz_cond_var, cond_attr: nullptr);
2798 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2799
2800 status = pthread_cond_init(cond: &hidden_helper_main_thread_cond_var, cond_attr: nullptr);
2801 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2802
2803 status = pthread_mutex_init(mutex: &hidden_helper_threads_initz_lock, mutexattr: nullptr);
2804 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2805
2806 status = pthread_mutex_init(mutex: &hidden_helper_threads_deinitz_lock, mutexattr: nullptr);
2807 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2808
2809 status = pthread_mutex_init(mutex: &hidden_helper_main_thread_lock, mutexattr: nullptr);
2810 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2811
2812 // Initialize the semaphore
2813 status = sem_init(sem: &hidden_helper_task_sem, pshared: 0, value: 0);
2814 KMP_CHECK_SYSFAIL("sem_init", status);
2815
2816 // Create a new thread to finish initialization
2817 pthread_t handle;
2818 status = pthread_create(
2819 newthread: &handle, attr: nullptr,
2820 start_routine: [](void *) -> void * {
2821 __kmp_hidden_helper_threads_initz_routine();
2822 return nullptr;
2823 },
2824 arg: nullptr);
2825 KMP_CHECK_SYSFAIL("pthread_create", status);
2826}
2827
2828void __kmp_hidden_helper_threads_initz_wait() {
2829 // Initial thread waits here for the completion of the initialization. The
2830 // condition variable will be notified by main thread of hidden helper teams.
2831 int status = pthread_mutex_lock(mutex: &hidden_helper_threads_initz_lock);
2832 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2833
2834 if (!TCR_4(hidden_helper_initz_signaled)) {
2835 status = pthread_cond_wait(cond: &hidden_helper_threads_initz_cond_var,
2836 mutex: &hidden_helper_threads_initz_lock);
2837 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2838 }
2839
2840 status = pthread_mutex_unlock(mutex: &hidden_helper_threads_initz_lock);
2841 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2842}
2843
2844void __kmp_hidden_helper_initz_release() {
2845 // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2846 int status = pthread_mutex_lock(mutex: &hidden_helper_threads_initz_lock);
2847 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2848
2849 status = pthread_cond_signal(cond: &hidden_helper_threads_initz_cond_var);
2850 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2851
2852 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2853
2854 status = pthread_mutex_unlock(mutex: &hidden_helper_threads_initz_lock);
2855 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2856}
2857
2858void __kmp_hidden_helper_main_thread_wait() {
2859 // The main thread of hidden helper team will be blocked here. The
2860 // condition variable can only be signal in the destructor of RTL.
2861 int status = pthread_mutex_lock(mutex: &hidden_helper_main_thread_lock);
2862 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2863
2864 if (!TCR_4(hidden_helper_main_thread_signaled)) {
2865 status = pthread_cond_wait(cond: &hidden_helper_main_thread_cond_var,
2866 mutex: &hidden_helper_main_thread_lock);
2867 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2868 }
2869
2870 status = pthread_mutex_unlock(mutex: &hidden_helper_main_thread_lock);
2871 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2872}
2873
2874void __kmp_hidden_helper_main_thread_release() {
2875 // The initial thread of OpenMP RTL should call this function to wake up the
2876 // main thread of hidden helper team.
2877 int status = pthread_mutex_lock(mutex: &hidden_helper_main_thread_lock);
2878 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2879
2880 status = pthread_cond_signal(cond: &hidden_helper_main_thread_cond_var);
2881 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2882
2883 // The hidden helper team is done here
2884 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2885
2886 status = pthread_mutex_unlock(mutex: &hidden_helper_main_thread_lock);
2887 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2888}
2889
2890void __kmp_hidden_helper_worker_thread_signal() {
2891 int status = sem_post(sem: &hidden_helper_task_sem);
2892 KMP_CHECK_SYSFAIL("sem_post", status);
2893}
2894
2895void __kmp_hidden_helper_threads_deinitz_wait() {
2896 // Initial thread waits here for the completion of the deinitialization. The
2897 // condition variable will be notified by main thread of hidden helper teams.
2898 int status = pthread_mutex_lock(mutex: &hidden_helper_threads_deinitz_lock);
2899 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2900
2901 if (!TCR_4(hidden_helper_deinitz_signaled)) {
2902 status = pthread_cond_wait(cond: &hidden_helper_threads_deinitz_cond_var,
2903 mutex: &hidden_helper_threads_deinitz_lock);
2904 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2905 }
2906
2907 status = pthread_mutex_unlock(mutex: &hidden_helper_threads_deinitz_lock);
2908 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2909}
2910
2911void __kmp_hidden_helper_threads_deinitz_release() {
2912 int status = pthread_mutex_lock(mutex: &hidden_helper_threads_deinitz_lock);
2913 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2914
2915 status = pthread_cond_signal(cond: &hidden_helper_threads_deinitz_cond_var);
2916 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2917
2918 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2919
2920 status = pthread_mutex_unlock(mutex: &hidden_helper_threads_deinitz_lock);
2921 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2922}
2923#else // KMP_OS_LINUX
2924void __kmp_hidden_helper_worker_thread_wait() {
2925 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2926}
2927
2928void __kmp_do_initialize_hidden_helper_threads() {
2929 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2930}
2931
2932void __kmp_hidden_helper_threads_initz_wait() {
2933 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2934}
2935
2936void __kmp_hidden_helper_initz_release() {
2937 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2938}
2939
2940void __kmp_hidden_helper_main_thread_wait() {
2941 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2942}
2943
2944void __kmp_hidden_helper_main_thread_release() {
2945 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2946}
2947
2948void __kmp_hidden_helper_worker_thread_signal() {
2949 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2950}
2951
2952void __kmp_hidden_helper_threads_deinitz_wait() {
2953 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2954}
2955
2956void __kmp_hidden_helper_threads_deinitz_release() {
2957 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2958}
2959#endif // KMP_OS_LINUX
2960
2961bool __kmp_detect_shm() {
2962 DIR *dir = opendir(name: "/dev/shm");
2963 if (dir) { // /dev/shm exists
2964 closedir(dirp: dir);
2965 return true;
2966 } else if (ENOENT == errno) { // /dev/shm does not exist
2967 return false;
2968 } else { // opendir() failed
2969 return false;
2970 }
2971}
2972
2973bool __kmp_detect_tmp() {
2974 DIR *dir = opendir(name: "/tmp");
2975 if (dir) { // /tmp exists
2976 closedir(dirp: dir);
2977 return true;
2978 } else if (ENOENT == errno) { // /tmp does not exist
2979 return false;
2980 } else { // opendir() failed
2981 return false;
2982 }
2983}
2984
2985// end of file //
2986

source code of openmp/runtime/src/z_Linux_util.cpp