| 1 | //===------ DeLICM.cpp -----------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Undo the effect of Loop Invariant Code Motion (LICM) and |
| 10 | // GVN Partial Redundancy Elimination (PRE) on SCoP-level. |
| 11 | // |
| 12 | // Namely, remove register/scalar dependencies by mapping them back to array |
| 13 | // elements. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "polly/DeLICM.h" |
| 18 | #include "polly/LinkAllPasses.h" |
| 19 | #include "polly/Options.h" |
| 20 | #include "polly/ScopInfo.h" |
| 21 | #include "polly/ScopPass.h" |
| 22 | #include "polly/Support/GICHelper.h" |
| 23 | #include "polly/Support/ISLOStream.h" |
| 24 | #include "polly/Support/ISLTools.h" |
| 25 | #include "polly/ZoneAlgo.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include "llvm/IR/Module.h" |
| 28 | #include "llvm/InitializePasses.h" |
| 29 | |
| 30 | #include "polly/Support/PollyDebug.h" |
| 31 | #define DEBUG_TYPE "polly-delicm" |
| 32 | |
| 33 | using namespace polly; |
| 34 | using namespace llvm; |
| 35 | |
| 36 | namespace { |
| 37 | |
| 38 | cl::opt<int> |
| 39 | DelicmMaxOps("polly-delicm-max-ops" , |
| 40 | cl::desc("Maximum number of isl operations to invest for " |
| 41 | "lifetime analysis; 0=no limit" ), |
| 42 | cl::init(Val: 1000000), cl::cat(PollyCategory)); |
| 43 | |
| 44 | cl::opt<bool> DelicmOverapproximateWrites( |
| 45 | "polly-delicm-overapproximate-writes" , |
| 46 | cl::desc( |
| 47 | "Do more PHI writes than necessary in order to avoid partial accesses" ), |
| 48 | cl::init(Val: false), cl::Hidden, cl::cat(PollyCategory)); |
| 49 | |
| 50 | cl::opt<bool> DelicmPartialWrites("polly-delicm-partial-writes" , |
| 51 | cl::desc("Allow partial writes" ), |
| 52 | cl::init(Val: true), cl::Hidden, |
| 53 | cl::cat(PollyCategory)); |
| 54 | |
| 55 | cl::opt<bool> |
| 56 | DelicmComputeKnown("polly-delicm-compute-known" , |
| 57 | cl::desc("Compute known content of array elements" ), |
| 58 | cl::init(Val: true), cl::Hidden, cl::cat(PollyCategory)); |
| 59 | |
| 60 | STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs" ); |
| 61 | STATISTIC(DeLICMOutOfQuota, |
| 62 | "Analyses aborted because max_operations was reached" ); |
| 63 | STATISTIC(MappedValueScalars, "Number of mapped Value scalars" ); |
| 64 | STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars" ); |
| 65 | STATISTIC(TargetsMapped, "Number of stores used for at least one mapping" ); |
| 66 | STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized" ); |
| 67 | |
| 68 | STATISTIC(NumValueWrites, "Number of scalar value writes after DeLICM" ); |
| 69 | STATISTIC(NumValueWritesInLoops, |
| 70 | "Number of scalar value writes nested in affine loops after DeLICM" ); |
| 71 | STATISTIC(NumPHIWrites, "Number of scalar phi writes after DeLICM" ); |
| 72 | STATISTIC(NumPHIWritesInLoops, |
| 73 | "Number of scalar phi writes nested in affine loops after DeLICM" ); |
| 74 | STATISTIC(NumSingletonWrites, "Number of singleton writes after DeLICM" ); |
| 75 | STATISTIC(NumSingletonWritesInLoops, |
| 76 | "Number of singleton writes nested in affine loops after DeLICM" ); |
| 77 | |
| 78 | isl::union_map computeReachingOverwrite(isl::union_map Schedule, |
| 79 | isl::union_map Writes, |
| 80 | bool InclPrevWrite, |
| 81 | bool InclOverwrite) { |
| 82 | return computeReachingWrite(Schedule, Writes, Reverse: true, InclPrevDef: InclPrevWrite, |
| 83 | InclNextDef: InclOverwrite); |
| 84 | } |
| 85 | |
| 86 | /// Compute the next overwrite for a scalar. |
| 87 | /// |
| 88 | /// @param Schedule { DomainWrite[] -> Scatter[] } |
| 89 | /// Schedule of (at least) all writes. Instances not in @p |
| 90 | /// Writes are ignored. |
| 91 | /// @param Writes { DomainWrite[] } |
| 92 | /// The element instances that write to the scalar. |
| 93 | /// @param InclPrevWrite Whether to extend the timepoints to include |
| 94 | /// the timepoint where the previous write happens. |
| 95 | /// @param InclOverwrite Whether the reaching overwrite includes the timepoint |
| 96 | /// of the overwrite itself. |
| 97 | /// |
| 98 | /// @return { Scatter[] -> DomainDef[] } |
| 99 | isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule, |
| 100 | isl::union_set Writes, |
| 101 | bool InclPrevWrite, |
| 102 | bool InclOverwrite) { |
| 103 | |
| 104 | // { DomainWrite[] } |
| 105 | auto WritesMap = isl::union_map::from_domain(uset: Writes); |
| 106 | |
| 107 | // { [Element[] -> Scatter[]] -> DomainWrite[] } |
| 108 | auto Result = computeReachingOverwrite( |
| 109 | Schedule: std::move(Schedule), Writes: std::move(WritesMap), InclPrevWrite, InclOverwrite); |
| 110 | |
| 111 | return Result.domain_factor_range(); |
| 112 | } |
| 113 | |
| 114 | /// Overload of computeScalarReachingOverwrite, with only one writing statement. |
| 115 | /// Consequently, the result consists of only one map space. |
| 116 | /// |
| 117 | /// @param Schedule { DomainWrite[] -> Scatter[] } |
| 118 | /// @param Writes { DomainWrite[] } |
| 119 | /// @param InclPrevWrite Include the previous write to result. |
| 120 | /// @param InclOverwrite Include the overwrite to the result. |
| 121 | /// |
| 122 | /// @return { Scatter[] -> DomainWrite[] } |
| 123 | isl::map computeScalarReachingOverwrite(isl::union_map Schedule, |
| 124 | isl::set Writes, bool InclPrevWrite, |
| 125 | bool InclOverwrite) { |
| 126 | isl::space ScatterSpace = getScatterSpace(Schedule); |
| 127 | isl::space DomSpace = Writes.get_space(); |
| 128 | |
| 129 | isl::union_map ReachOverwrite = computeScalarReachingOverwrite( |
| 130 | Schedule, Writes: isl::union_set(Writes), InclPrevWrite, InclOverwrite); |
| 131 | |
| 132 | isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(range: DomSpace); |
| 133 | return singleton(UMap: std::move(ReachOverwrite), ExpectedSpace: ResultSpace); |
| 134 | } |
| 135 | |
| 136 | /// Try to find a 'natural' extension of a mapped to elements outside its |
| 137 | /// domain. |
| 138 | /// |
| 139 | /// @param Relevant The map with mapping that may not be modified. |
| 140 | /// @param Universe The domain to which @p Relevant needs to be extended. |
| 141 | /// |
| 142 | /// @return A map with that associates the domain elements of @p Relevant to the |
| 143 | /// same elements and in addition the elements of @p Universe to some |
| 144 | /// undefined elements. The function prefers to return simple maps. |
| 145 | isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) { |
| 146 | Relevant = Relevant.coalesce(); |
| 147 | isl::union_set RelevantDomain = Relevant.domain(); |
| 148 | isl::union_map Simplified = Relevant.gist_domain(uset: RelevantDomain); |
| 149 | Simplified = Simplified.coalesce(); |
| 150 | return Simplified.intersect_domain(uset: Universe); |
| 151 | } |
| 152 | |
| 153 | /// Represent the knowledge of the contents of any array elements in any zone or |
| 154 | /// the knowledge we would add when mapping a scalar to an array element. |
| 155 | /// |
| 156 | /// Every array element at every zone unit has one of two states: |
| 157 | /// |
| 158 | /// - Unused: Not occupied by any value so a transformation can change it to |
| 159 | /// other values. |
| 160 | /// |
| 161 | /// - Occupied: The element contains a value that is still needed. |
| 162 | /// |
| 163 | /// The union of Unused and Unknown zones forms the universe, the set of all |
| 164 | /// elements at every timepoint. The universe can easily be derived from the |
| 165 | /// array elements that are accessed someway. Arrays that are never accessed |
| 166 | /// also never play a role in any computation and can hence be ignored. With a |
| 167 | /// given universe, only one of the sets needs to stored implicitly. Computing |
| 168 | /// the complement is also an expensive operation, hence this class has been |
| 169 | /// designed that only one of sets is needed while the other is assumed to be |
| 170 | /// implicit. It can still be given, but is mostly ignored. |
| 171 | /// |
| 172 | /// There are two use cases for the Knowledge class: |
| 173 | /// |
| 174 | /// 1) To represent the knowledge of the current state of ScopInfo. The unused |
| 175 | /// state means that an element is currently unused: there is no read of it |
| 176 | /// before the next overwrite. Also called 'Existing'. |
| 177 | /// |
| 178 | /// 2) To represent the requirements for mapping a scalar to array elements. The |
| 179 | /// unused state means that there is no change/requirement. Also called |
| 180 | /// 'Proposed'. |
| 181 | /// |
| 182 | /// In addition to these states at unit zones, Knowledge needs to know when |
| 183 | /// values are written. This is because written values may have no lifetime (one |
| 184 | /// reason is that the value is never read). Such writes would therefore never |
| 185 | /// conflict, but overwrite values that might still be required. Another source |
| 186 | /// of problems are multiple writes to the same element at the same timepoint, |
| 187 | /// because their order is undefined. |
| 188 | class Knowledge final { |
| 189 | private: |
| 190 | /// { [Element[] -> Zone[]] } |
| 191 | /// Set of array elements and when they are alive. |
| 192 | /// Can contain a nullptr; in this case the set is implicitly defined as the |
| 193 | /// complement of #Unused. |
| 194 | /// |
| 195 | /// The set of alive array elements is represented as zone, as the set of live |
| 196 | /// values can differ depending on how the elements are interpreted. |
| 197 | /// Assuming a value X is written at timestep [0] and read at timestep [1] |
| 198 | /// without being used at any later point, then the value is alive in the |
| 199 | /// interval ]0,1[. This interval cannot be represented by an integer set, as |
| 200 | /// it does not contain any integer point. Zones allow us to represent this |
| 201 | /// interval and can be converted to sets of timepoints when needed (e.g., in |
| 202 | /// isConflicting when comparing to the write sets). |
| 203 | /// @see convertZoneToTimepoints and this file's comment for more details. |
| 204 | isl::union_set Occupied; |
| 205 | |
| 206 | /// { [Element[] -> Zone[]] } |
| 207 | /// Set of array elements when they are not alive, i.e. their memory can be |
| 208 | /// used for other purposed. Can contain a nullptr; in this case the set is |
| 209 | /// implicitly defined as the complement of #Occupied. |
| 210 | isl::union_set Unused; |
| 211 | |
| 212 | /// { [Element[] -> Zone[]] -> ValInst[] } |
| 213 | /// Maps to the known content for each array element at any interval. |
| 214 | /// |
| 215 | /// Any element/interval can map to multiple known elements. This is due to |
| 216 | /// multiple llvm::Value referring to the same content. Examples are |
| 217 | /// |
| 218 | /// - A value stored and loaded again. The LoadInst represents the same value |
| 219 | /// as the StoreInst's value operand. |
| 220 | /// |
| 221 | /// - A PHINode is equal to any one of the incoming values. In case of |
| 222 | /// LCSSA-form, it is always equal to its single incoming value. |
| 223 | /// |
| 224 | /// Two Knowledges are considered not conflicting if at least one of the known |
| 225 | /// values match. Not known values are not stored as an unnamed tuple (as |
| 226 | /// #Written does), but maps to nothing. |
| 227 | /// |
| 228 | /// Known values are usually just defined for #Occupied elements. Knowing |
| 229 | /// #Unused contents has no advantage as it can be overwritten. |
| 230 | isl::union_map Known; |
| 231 | |
| 232 | /// { [Element[] -> Scatter[]] -> ValInst[] } |
| 233 | /// The write actions currently in the scop or that would be added when |
| 234 | /// mapping a scalar. Maps to the value that is written. |
| 235 | /// |
| 236 | /// Written values that cannot be identified are represented by an unknown |
| 237 | /// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself. |
| 238 | isl::union_map Written; |
| 239 | |
| 240 | /// Check whether this Knowledge object is well-formed. |
| 241 | void checkConsistency() const { |
| 242 | #ifndef NDEBUG |
| 243 | // Default-initialized object |
| 244 | if (Occupied.is_null() && Unused.is_null() && Known.is_null() && |
| 245 | Written.is_null()) |
| 246 | return; |
| 247 | |
| 248 | assert(!Occupied.is_null() || !Unused.is_null()); |
| 249 | assert(!Known.is_null()); |
| 250 | assert(!Written.is_null()); |
| 251 | |
| 252 | // If not all fields are defined, we cannot derived the universe. |
| 253 | if (Occupied.is_null() || Unused.is_null()) |
| 254 | return; |
| 255 | |
| 256 | assert(Occupied.is_disjoint(Unused)); |
| 257 | auto Universe = Occupied.unite(uset2: Unused); |
| 258 | |
| 259 | assert(!Known.domain().is_subset(Universe).is_false()); |
| 260 | assert(!Written.domain().is_subset(Universe).is_false()); |
| 261 | #endif |
| 262 | } |
| 263 | |
| 264 | public: |
| 265 | /// Initialize a nullptr-Knowledge. This is only provided for convenience; do |
| 266 | /// not use such an object. |
| 267 | Knowledge() {} |
| 268 | |
| 269 | /// Create a new object with the given members. |
| 270 | Knowledge(isl::union_set Occupied, isl::union_set Unused, |
| 271 | isl::union_map Known, isl::union_map Written) |
| 272 | : Occupied(std::move(Occupied)), Unused(std::move(Unused)), |
| 273 | Known(std::move(Known)), Written(std::move(Written)) { |
| 274 | checkConsistency(); |
| 275 | } |
| 276 | |
| 277 | /// Return whether this object was not default-constructed. |
| 278 | bool isUsable() const { |
| 279 | return (Occupied.is_null() || Unused.is_null()) && !Known.is_null() && |
| 280 | !Written.is_null(); |
| 281 | } |
| 282 | |
| 283 | /// Print the content of this object to @p OS. |
| 284 | void print(llvm::raw_ostream &OS, unsigned Indent = 0) const { |
| 285 | if (isUsable()) { |
| 286 | if (!Occupied.is_null()) |
| 287 | OS.indent(NumSpaces: Indent) << "Occupied: " << Occupied << "\n" ; |
| 288 | else |
| 289 | OS.indent(NumSpaces: Indent) << "Occupied: <Everything else not in Unused>\n" ; |
| 290 | if (!Unused.is_null()) |
| 291 | OS.indent(NumSpaces: Indent) << "Unused: " << Unused << "\n" ; |
| 292 | else |
| 293 | OS.indent(NumSpaces: Indent) << "Unused: <Everything else not in Occupied>\n" ; |
| 294 | OS.indent(NumSpaces: Indent) << "Known: " << Known << "\n" ; |
| 295 | OS.indent(NumSpaces: Indent) << "Written : " << Written << '\n'; |
| 296 | } else { |
| 297 | OS.indent(NumSpaces: Indent) << "Invalid knowledge\n" ; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | /// Combine two knowledges, this and @p That. |
| 302 | void learnFrom(Knowledge That) { |
| 303 | assert(!isConflicting(*this, That)); |
| 304 | assert(!Unused.is_null() && !That.Occupied.is_null()); |
| 305 | assert( |
| 306 | That.Unused.is_null() && |
| 307 | "This function is only prepared to learn occupied elements from That" ); |
| 308 | assert(Occupied.is_null() && "This function does not implement " |
| 309 | "`this->Occupied = " |
| 310 | "this->Occupied.unite(That.Occupied);`" ); |
| 311 | |
| 312 | Unused = Unused.subtract(uset2: That.Occupied); |
| 313 | Known = Known.unite(umap2: That.Known); |
| 314 | Written = Written.unite(umap2: That.Written); |
| 315 | |
| 316 | checkConsistency(); |
| 317 | } |
| 318 | |
| 319 | /// Determine whether two Knowledges conflict with each other. |
| 320 | /// |
| 321 | /// In theory @p Existing and @p Proposed are symmetric, but the |
| 322 | /// implementation is constrained by the implicit interpretation. That is, @p |
| 323 | /// Existing must have #Unused defined (use case 1) and @p Proposed must have |
| 324 | /// #Occupied defined (use case 1). |
| 325 | /// |
| 326 | /// A conflict is defined as non-preserved semantics when they are merged. For |
| 327 | /// instance, when for the same array and zone they assume different |
| 328 | /// llvm::Values. |
| 329 | /// |
| 330 | /// @param Existing One of the knowledges with #Unused defined. |
| 331 | /// @param Proposed One of the knowledges with #Occupied defined. |
| 332 | /// @param OS Dump the conflict reason to this output stream; use |
| 333 | /// nullptr to not output anything. |
| 334 | /// @param Indent Indention for the conflict reason. |
| 335 | /// |
| 336 | /// @return True, iff the two knowledges are conflicting. |
| 337 | static bool isConflicting(const Knowledge &Existing, |
| 338 | const Knowledge &Proposed, |
| 339 | llvm::raw_ostream *OS = nullptr, |
| 340 | unsigned Indent = 0) { |
| 341 | assert(!Existing.Unused.is_null()); |
| 342 | assert(!Proposed.Occupied.is_null()); |
| 343 | |
| 344 | #ifndef NDEBUG |
| 345 | if (!Existing.Occupied.is_null() && !Proposed.Unused.is_null()) { |
| 346 | auto ExistingUniverse = Existing.Occupied.unite(uset2: Existing.Unused); |
| 347 | auto ProposedUniverse = Proposed.Occupied.unite(uset2: Proposed.Unused); |
| 348 | assert(ExistingUniverse.is_equal(ProposedUniverse) && |
| 349 | "Both inputs' Knowledges must be over the same universe" ); |
| 350 | } |
| 351 | #endif |
| 352 | |
| 353 | // Do the Existing and Proposed lifetimes conflict? |
| 354 | // |
| 355 | // Lifetimes are described as the cross-product of array elements and zone |
| 356 | // intervals in which they are alive (the space { [Element[] -> Zone[]] }). |
| 357 | // In the following we call this "element/lifetime interval". |
| 358 | // |
| 359 | // In order to not conflict, one of the following conditions must apply for |
| 360 | // each element/lifetime interval: |
| 361 | // |
| 362 | // 1. If occupied in one of the knowledges, it is unused in the other. |
| 363 | // |
| 364 | // - or - |
| 365 | // |
| 366 | // 2. Both contain the same value. |
| 367 | // |
| 368 | // Instead of partitioning the element/lifetime intervals into a part that |
| 369 | // both Knowledges occupy (which requires an expensive subtraction) and for |
| 370 | // these to check whether they are known to be the same value, we check only |
| 371 | // the second condition and ensure that it also applies when then first |
| 372 | // condition is true. This is done by adding a wildcard value to |
| 373 | // Proposed.Known and Existing.Unused such that they match as a common known |
| 374 | // value. We use the "unknown ValInst" for this purpose. Every |
| 375 | // Existing.Unused may match with an unknown Proposed.Occupied because these |
| 376 | // never are in conflict with each other. |
| 377 | auto ProposedOccupiedAnyVal = makeUnknownForDomain(Domain: Proposed.Occupied); |
| 378 | auto ProposedValues = Proposed.Known.unite(umap2: ProposedOccupiedAnyVal); |
| 379 | |
| 380 | auto ExistingUnusedAnyVal = makeUnknownForDomain(Domain: Existing.Unused); |
| 381 | auto ExistingValues = Existing.Known.unite(umap2: ExistingUnusedAnyVal); |
| 382 | |
| 383 | auto MatchingVals = ExistingValues.intersect(umap2: ProposedValues); |
| 384 | auto Matches = MatchingVals.domain(); |
| 385 | |
| 386 | // Any Proposed.Occupied must either have a match between the known values |
| 387 | // of Existing and Occupied, or be in Existing.Unused. In the latter case, |
| 388 | // the previously added "AnyVal" will match each other. |
| 389 | if (!Proposed.Occupied.is_subset(uset2: Matches)) { |
| 390 | if (OS) { |
| 391 | auto Conflicting = Proposed.Occupied.subtract(uset2: Matches); |
| 392 | auto ExistingConflictingKnown = |
| 393 | Existing.Known.intersect_domain(uset: Conflicting); |
| 394 | auto ProposedConflictingKnown = |
| 395 | Proposed.Known.intersect_domain(uset: Conflicting); |
| 396 | |
| 397 | OS->indent(NumSpaces: Indent) << "Proposed lifetime conflicting with Existing's\n" ; |
| 398 | OS->indent(NumSpaces: Indent) << "Conflicting occupied: " << Conflicting << "\n" ; |
| 399 | if (!ExistingConflictingKnown.is_empty()) |
| 400 | OS->indent(NumSpaces: Indent) |
| 401 | << "Existing Known: " << ExistingConflictingKnown << "\n" ; |
| 402 | if (!ProposedConflictingKnown.is_empty()) |
| 403 | OS->indent(NumSpaces: Indent) |
| 404 | << "Proposed Known: " << ProposedConflictingKnown << "\n" ; |
| 405 | } |
| 406 | return true; |
| 407 | } |
| 408 | |
| 409 | // Do the writes in Existing conflict with occupied values in Proposed? |
| 410 | // |
| 411 | // In order to not conflict, it must either write to unused lifetime or |
| 412 | // write the same value. To check, we remove the writes that write into |
| 413 | // Proposed.Unused (they never conflict) and then see whether the written |
| 414 | // value is already in Proposed.Known. If there are multiple known values |
| 415 | // and a written value is known under different names, it is enough when one |
| 416 | // of the written values (assuming that they are the same value under |
| 417 | // different names, e.g. a PHINode and one of the incoming values) matches |
| 418 | // one of the known names. |
| 419 | // |
| 420 | // We convert here the set of lifetimes to actual timepoints. A lifetime is |
| 421 | // in conflict with a set of write timepoints, if either a live timepoint is |
| 422 | // clearly within the lifetime or if a write happens at the beginning of the |
| 423 | // lifetime (where it would conflict with the value that actually writes the |
| 424 | // value alive). There is no conflict at the end of a lifetime, as the alive |
| 425 | // value will always be read, before it is overwritten again. The last |
| 426 | // property holds in Polly for all scalar values and we expect all users of |
| 427 | // Knowledge to check this property also for accesses to MemoryKind::Array. |
| 428 | auto ProposedFixedDefs = |
| 429 | convertZoneToTimepoints(Zone: Proposed.Occupied, InclStart: true, InclEnd: false); |
| 430 | auto ProposedFixedKnown = |
| 431 | convertZoneToTimepoints(Zone: Proposed.Known, Dim: isl::dim::in, InclStart: true, InclEnd: false); |
| 432 | |
| 433 | auto ExistingConflictingWrites = |
| 434 | Existing.Written.intersect_domain(uset: ProposedFixedDefs); |
| 435 | auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain(); |
| 436 | |
| 437 | auto CommonWrittenVal = |
| 438 | ProposedFixedKnown.intersect(umap2: ExistingConflictingWrites); |
| 439 | auto CommonWrittenValDomain = CommonWrittenVal.domain(); |
| 440 | |
| 441 | if (!ExistingConflictingWritesDomain.is_subset(uset2: CommonWrittenValDomain)) { |
| 442 | if (OS) { |
| 443 | auto ExistingConflictingWritten = |
| 444 | ExistingConflictingWrites.subtract_domain(dom: CommonWrittenValDomain); |
| 445 | auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain( |
| 446 | dom: ExistingConflictingWritten.domain()); |
| 447 | |
| 448 | OS->indent(NumSpaces: Indent) |
| 449 | << "Proposed a lifetime where there is an Existing write into it\n" ; |
| 450 | OS->indent(NumSpaces: Indent) << "Existing conflicting writes: " |
| 451 | << ExistingConflictingWritten << "\n" ; |
| 452 | if (!ProposedConflictingKnown.is_empty()) |
| 453 | OS->indent(NumSpaces: Indent) |
| 454 | << "Proposed conflicting known: " << ProposedConflictingKnown |
| 455 | << "\n" ; |
| 456 | } |
| 457 | return true; |
| 458 | } |
| 459 | |
| 460 | // Do the writes in Proposed conflict with occupied values in Existing? |
| 461 | auto ExistingAvailableDefs = |
| 462 | convertZoneToTimepoints(Zone: Existing.Unused, InclStart: true, InclEnd: false); |
| 463 | auto ExistingKnownDefs = |
| 464 | convertZoneToTimepoints(Zone: Existing.Known, Dim: isl::dim::in, InclStart: true, InclEnd: false); |
| 465 | |
| 466 | auto ProposedWrittenDomain = Proposed.Written.domain(); |
| 467 | auto KnownIdentical = ExistingKnownDefs.intersect(umap2: Proposed.Written); |
| 468 | auto IdenticalOrUnused = |
| 469 | ExistingAvailableDefs.unite(uset2: KnownIdentical.domain()); |
| 470 | if (!ProposedWrittenDomain.is_subset(uset2: IdenticalOrUnused)) { |
| 471 | if (OS) { |
| 472 | auto Conflicting = ProposedWrittenDomain.subtract(uset2: IdenticalOrUnused); |
| 473 | auto ExistingConflictingKnown = |
| 474 | ExistingKnownDefs.intersect_domain(uset: Conflicting); |
| 475 | auto ProposedConflictingWritten = |
| 476 | Proposed.Written.intersect_domain(uset: Conflicting); |
| 477 | |
| 478 | OS->indent(NumSpaces: Indent) << "Proposed writes into range used by Existing\n" ; |
| 479 | OS->indent(NumSpaces: Indent) << "Proposed conflicting writes: " |
| 480 | << ProposedConflictingWritten << "\n" ; |
| 481 | if (!ExistingConflictingKnown.is_empty()) |
| 482 | OS->indent(NumSpaces: Indent) |
| 483 | << "Existing conflicting known: " << ExistingConflictingKnown |
| 484 | << "\n" ; |
| 485 | } |
| 486 | return true; |
| 487 | } |
| 488 | |
| 489 | // Does Proposed write at the same time as Existing already does (order of |
| 490 | // writes is undefined)? Writing the same value is permitted. |
| 491 | auto ExistingWrittenDomain = Existing.Written.domain(); |
| 492 | auto BothWritten = |
| 493 | Existing.Written.domain().intersect(uset2: Proposed.Written.domain()); |
| 494 | auto ExistingKnownWritten = filterKnownValInst(UMap: Existing.Written); |
| 495 | auto ProposedKnownWritten = filterKnownValInst(UMap: Proposed.Written); |
| 496 | auto CommonWritten = |
| 497 | ExistingKnownWritten.intersect(umap2: ProposedKnownWritten).domain(); |
| 498 | |
| 499 | if (!BothWritten.is_subset(uset2: CommonWritten)) { |
| 500 | if (OS) { |
| 501 | auto Conflicting = BothWritten.subtract(uset2: CommonWritten); |
| 502 | auto ExistingConflictingWritten = |
| 503 | Existing.Written.intersect_domain(uset: Conflicting); |
| 504 | auto ProposedConflictingWritten = |
| 505 | Proposed.Written.intersect_domain(uset: Conflicting); |
| 506 | |
| 507 | OS->indent(NumSpaces: Indent) << "Proposed writes at the same time as an already " |
| 508 | "Existing write\n" ; |
| 509 | OS->indent(NumSpaces: Indent) << "Conflicting writes: " << Conflicting << "\n" ; |
| 510 | if (!ExistingConflictingWritten.is_empty()) |
| 511 | OS->indent(NumSpaces: Indent) |
| 512 | << "Exiting write: " << ExistingConflictingWritten << "\n" ; |
| 513 | if (!ProposedConflictingWritten.is_empty()) |
| 514 | OS->indent(NumSpaces: Indent) |
| 515 | << "Proposed write: " << ProposedConflictingWritten << "\n" ; |
| 516 | } |
| 517 | return true; |
| 518 | } |
| 519 | |
| 520 | return false; |
| 521 | } |
| 522 | }; |
| 523 | |
| 524 | /// Implementation of the DeLICM/DePRE transformation. |
| 525 | class DeLICMImpl final : public ZoneAlgorithm { |
| 526 | private: |
| 527 | /// Knowledge before any transformation took place. |
| 528 | Knowledge OriginalZone; |
| 529 | |
| 530 | /// Current knowledge of the SCoP including all already applied |
| 531 | /// transformations. |
| 532 | Knowledge Zone; |
| 533 | |
| 534 | /// Number of StoreInsts something can be mapped to. |
| 535 | int NumberOfCompatibleTargets = 0; |
| 536 | |
| 537 | /// The number of StoreInsts to which at least one value or PHI has been |
| 538 | /// mapped to. |
| 539 | int NumberOfTargetsMapped = 0; |
| 540 | |
| 541 | /// The number of llvm::Value mapped to some array element. |
| 542 | int NumberOfMappedValueScalars = 0; |
| 543 | |
| 544 | /// The number of PHIs mapped to some array element. |
| 545 | int NumberOfMappedPHIScalars = 0; |
| 546 | |
| 547 | /// Determine whether two knowledges are conflicting with each other. |
| 548 | /// |
| 549 | /// @see Knowledge::isConflicting |
| 550 | bool isConflicting(const Knowledge &Proposed) { |
| 551 | raw_ostream *OS = nullptr; |
| 552 | POLLY_DEBUG(OS = &llvm::dbgs()); |
| 553 | return Knowledge::isConflicting(Existing: Zone, Proposed, OS, Indent: 4); |
| 554 | } |
| 555 | |
| 556 | /// Determine whether @p SAI is a scalar that can be mapped to an array |
| 557 | /// element. |
| 558 | bool isMappable(const ScopArrayInfo *SAI) { |
| 559 | assert(SAI); |
| 560 | |
| 561 | if (SAI->isValueKind()) { |
| 562 | auto *MA = S->getValueDef(SAI); |
| 563 | if (!MA) { |
| 564 | POLLY_DEBUG( |
| 565 | dbgs() |
| 566 | << " Reject because value is read-only within the scop\n" ); |
| 567 | return false; |
| 568 | } |
| 569 | |
| 570 | // Mapping if value is used after scop is not supported. The code |
| 571 | // generator would need to reload the scalar after the scop, but it |
| 572 | // does not have the information to where it is mapped to. Only the |
| 573 | // MemoryAccesses have that information, not the ScopArrayInfo. |
| 574 | auto Inst = MA->getAccessInstruction(); |
| 575 | for (auto User : Inst->users()) { |
| 576 | if (!isa<Instruction>(Val: User)) |
| 577 | return false; |
| 578 | auto UserInst = cast<Instruction>(Val: User); |
| 579 | |
| 580 | if (!S->contains(I: UserInst)) { |
| 581 | POLLY_DEBUG(dbgs() << " Reject because value is escaping\n" ); |
| 582 | return false; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | return true; |
| 587 | } |
| 588 | |
| 589 | if (SAI->isPHIKind()) { |
| 590 | auto *MA = S->getPHIRead(SAI); |
| 591 | assert(MA); |
| 592 | |
| 593 | // Mapping of an incoming block from before the SCoP is not supported by |
| 594 | // the code generator. |
| 595 | auto PHI = cast<PHINode>(Val: MA->getAccessInstruction()); |
| 596 | for (auto Incoming : PHI->blocks()) { |
| 597 | if (!S->contains(BB: Incoming)) { |
| 598 | POLLY_DEBUG(dbgs() |
| 599 | << " Reject because at least one incoming block is " |
| 600 | "not in the scop region\n" ); |
| 601 | return false; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | return true; |
| 606 | } |
| 607 | |
| 608 | POLLY_DEBUG(dbgs() << " Reject ExitPHI or other non-value\n" ); |
| 609 | return false; |
| 610 | } |
| 611 | |
| 612 | /// Compute the uses of a MemoryKind::Value and its lifetime (from its |
| 613 | /// definition to the last use). |
| 614 | /// |
| 615 | /// @param SAI The ScopArrayInfo representing the value's storage. |
| 616 | /// |
| 617 | /// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] } |
| 618 | /// First element is the set of uses for each definition. |
| 619 | /// The second is the lifetime of each definition. |
| 620 | std::tuple<isl::union_map, isl::map> |
| 621 | computeValueUses(const ScopArrayInfo *SAI) { |
| 622 | assert(SAI->isValueKind()); |
| 623 | |
| 624 | // { DomainRead[] } |
| 625 | auto Reads = makeEmptyUnionSet(); |
| 626 | |
| 627 | // Find all uses. |
| 628 | for (auto *MA : S->getValueUses(SAI)) |
| 629 | Reads = Reads.unite(uset2: getDomainFor(MA)); |
| 630 | |
| 631 | // { DomainRead[] -> Scatter[] } |
| 632 | auto ReadSchedule = getScatterFor(Domain: Reads); |
| 633 | |
| 634 | auto *DefMA = S->getValueDef(SAI); |
| 635 | assert(DefMA); |
| 636 | |
| 637 | // { DomainDef[] } |
| 638 | auto Writes = getDomainFor(MA: DefMA); |
| 639 | |
| 640 | // { DomainDef[] -> Scatter[] } |
| 641 | auto WriteScatter = getScatterFor(Domain: Writes); |
| 642 | |
| 643 | // { Scatter[] -> DomainDef[] } |
| 644 | auto ReachDef = getScalarReachingDefinition(Stmt: DefMA->getStatement()); |
| 645 | |
| 646 | // { [DomainDef[] -> Scatter[]] -> DomainUse[] } |
| 647 | auto Uses = isl::union_map(ReachDef.reverse().range_map()) |
| 648 | .apply_range(umap2: ReadSchedule.reverse()); |
| 649 | |
| 650 | // { DomainDef[] -> Scatter[] } |
| 651 | auto UseScatter = |
| 652 | singleton(UMap: Uses.domain().unwrap(), |
| 653 | ExpectedSpace: Writes.get_space().map_from_domain_and_range(range: ScatterSpace)); |
| 654 | |
| 655 | // { DomainDef[] -> Zone[] } |
| 656 | auto Lifetime = betweenScatter(From: WriteScatter, To: UseScatter, InclFrom: false, InclTo: true); |
| 657 | |
| 658 | // { DomainDef[] -> DomainRead[] } |
| 659 | auto DefUses = Uses.domain_factor_domain(); |
| 660 | |
| 661 | return std::make_pair(x&: DefUses, y&: Lifetime); |
| 662 | } |
| 663 | |
| 664 | /// Try to map a MemoryKind::Value to a given array element. |
| 665 | /// |
| 666 | /// @param SAI Representation of the scalar's memory to map. |
| 667 | /// @param TargetElt { Scatter[] -> Element[] } |
| 668 | /// Suggestion where to map a scalar to when at a timepoint. |
| 669 | /// |
| 670 | /// @return true if the scalar was successfully mapped. |
| 671 | bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) { |
| 672 | assert(SAI->isValueKind()); |
| 673 | |
| 674 | auto *DefMA = S->getValueDef(SAI); |
| 675 | assert(DefMA->isValueKind()); |
| 676 | assert(DefMA->isMustWrite()); |
| 677 | auto *V = DefMA->getAccessValue(); |
| 678 | auto *DefInst = DefMA->getAccessInstruction(); |
| 679 | |
| 680 | // Stop if the scalar has already been mapped. |
| 681 | if (!DefMA->getLatestScopArrayInfo()->isValueKind()) |
| 682 | return false; |
| 683 | |
| 684 | // { DomainDef[] -> Scatter[] } |
| 685 | auto DefSched = getScatterFor(MA: DefMA); |
| 686 | |
| 687 | // Where each write is mapped to, according to the suggestion. |
| 688 | // { DomainDef[] -> Element[] } |
| 689 | auto DefTarget = TargetElt.apply_domain(map2: DefSched.reverse()); |
| 690 | simplify(Map&: DefTarget); |
| 691 | POLLY_DEBUG(dbgs() << " Def Mapping: " << DefTarget << '\n'); |
| 692 | |
| 693 | auto OrigDomain = getDomainFor(MA: DefMA); |
| 694 | auto MappedDomain = DefTarget.domain(); |
| 695 | if (!OrigDomain.is_subset(set2: MappedDomain)) { |
| 696 | POLLY_DEBUG( |
| 697 | dbgs() |
| 698 | << " Reject because mapping does not encompass all instances\n" ); |
| 699 | return false; |
| 700 | } |
| 701 | |
| 702 | // { DomainDef[] -> Zone[] } |
| 703 | isl::map Lifetime; |
| 704 | |
| 705 | // { DomainDef[] -> DomainUse[] } |
| 706 | isl::union_map DefUses; |
| 707 | |
| 708 | std::tie(args&: DefUses, args&: Lifetime) = computeValueUses(SAI); |
| 709 | POLLY_DEBUG(dbgs() << " Lifetime: " << Lifetime << '\n'); |
| 710 | |
| 711 | /// { [Element[] -> Zone[]] } |
| 712 | auto EltZone = Lifetime.apply_domain(map2: DefTarget).wrap(); |
| 713 | simplify(Set&: EltZone); |
| 714 | |
| 715 | // When known knowledge is disabled, just return the unknown value. It will |
| 716 | // either get filtered out or conflict with itself. |
| 717 | // { DomainDef[] -> ValInst[] } |
| 718 | isl::map ValInst; |
| 719 | if (DelicmComputeKnown) |
| 720 | ValInst = makeValInst(Val: V, UserStmt: DefMA->getStatement(), |
| 721 | Scope: LI->getLoopFor(BB: DefInst->getParent())); |
| 722 | else |
| 723 | ValInst = makeUnknownForDomain(Stmt: DefMA->getStatement()); |
| 724 | |
| 725 | // { DomainDef[] -> [Element[] -> Zone[]] } |
| 726 | auto EltKnownTranslator = DefTarget.range_product(map2: Lifetime); |
| 727 | |
| 728 | // { [Element[] -> Zone[]] -> ValInst[] } |
| 729 | auto EltKnown = ValInst.apply_domain(map2: EltKnownTranslator); |
| 730 | simplify(Map&: EltKnown); |
| 731 | |
| 732 | // { DomainDef[] -> [Element[] -> Scatter[]] } |
| 733 | auto WrittenTranslator = DefTarget.range_product(map2: DefSched); |
| 734 | |
| 735 | // { [Element[] -> Scatter[]] -> ValInst[] } |
| 736 | auto DefEltSched = ValInst.apply_domain(map2: WrittenTranslator); |
| 737 | simplify(Map&: DefEltSched); |
| 738 | |
| 739 | Knowledge Proposed(EltZone, {}, filterKnownValInst(UMap: EltKnown), DefEltSched); |
| 740 | if (isConflicting(Proposed)) |
| 741 | return false; |
| 742 | |
| 743 | // { DomainUse[] -> Element[] } |
| 744 | auto UseTarget = DefUses.reverse().apply_range(umap2: DefTarget); |
| 745 | |
| 746 | mapValue(SAI, DefTarget: std::move(DefTarget), UseTarget: std::move(UseTarget), |
| 747 | Lifetime: std::move(Lifetime), Proposed: std::move(Proposed)); |
| 748 | return true; |
| 749 | } |
| 750 | |
| 751 | /// After a scalar has been mapped, update the global knowledge. |
| 752 | void applyLifetime(Knowledge Proposed) { |
| 753 | Zone.learnFrom(That: std::move(Proposed)); |
| 754 | } |
| 755 | |
| 756 | /// Map a MemoryKind::Value scalar to an array element. |
| 757 | /// |
| 758 | /// Callers must have ensured that the mapping is valid and not conflicting. |
| 759 | /// |
| 760 | /// @param SAI The ScopArrayInfo representing the scalar's memory to |
| 761 | /// map. |
| 762 | /// @param DefTarget { DomainDef[] -> Element[] } |
| 763 | /// The array element to map the scalar to. |
| 764 | /// @param UseTarget { DomainUse[] -> Element[] } |
| 765 | /// The array elements the uses are mapped to. |
| 766 | /// @param Lifetime { DomainDef[] -> Zone[] } |
| 767 | /// The lifetime of each llvm::Value definition for |
| 768 | /// reporting. |
| 769 | /// @param Proposed Mapping constraints for reporting. |
| 770 | void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget, |
| 771 | isl::union_map UseTarget, isl::map Lifetime, |
| 772 | Knowledge Proposed) { |
| 773 | // Redirect the read accesses. |
| 774 | for (auto *MA : S->getValueUses(SAI)) { |
| 775 | // { DomainUse[] } |
| 776 | auto Domain = getDomainFor(MA); |
| 777 | |
| 778 | // { DomainUse[] -> Element[] } |
| 779 | auto NewAccRel = UseTarget.intersect_domain(uset: Domain); |
| 780 | simplify(UMap&: NewAccRel); |
| 781 | |
| 782 | assert(isl_union_map_n_map(NewAccRel.get()) == 1); |
| 783 | MA->setNewAccessRelation(isl::map::from_union_map(umap: NewAccRel)); |
| 784 | } |
| 785 | |
| 786 | auto *WA = S->getValueDef(SAI); |
| 787 | WA->setNewAccessRelation(DefTarget); |
| 788 | applyLifetime(Proposed); |
| 789 | |
| 790 | MappedValueScalars++; |
| 791 | NumberOfMappedValueScalars += 1; |
| 792 | } |
| 793 | |
| 794 | isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope, |
| 795 | bool IsCertain = true) { |
| 796 | // When known knowledge is disabled, just return the unknown value. It will |
| 797 | // either get filtered out or conflict with itself. |
| 798 | if (!DelicmComputeKnown) |
| 799 | return makeUnknownForDomain(Stmt: UserStmt); |
| 800 | return ZoneAlgorithm::makeValInst(Val, UserStmt, Scope, IsCertain); |
| 801 | } |
| 802 | |
| 803 | /// Express the incoming values of a PHI for each incoming statement in an |
| 804 | /// isl::union_map. |
| 805 | /// |
| 806 | /// @param SAI The PHI scalar represented by a ScopArrayInfo. |
| 807 | /// |
| 808 | /// @return { PHIWriteDomain[] -> ValInst[] } |
| 809 | isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) { |
| 810 | auto Result = makeEmptyUnionMap(); |
| 811 | |
| 812 | // Collect the incoming values. |
| 813 | for (auto *MA : S->getPHIIncomings(SAI)) { |
| 814 | // { DomainWrite[] -> ValInst[] } |
| 815 | isl::union_map ValInst; |
| 816 | auto *WriteStmt = MA->getStatement(); |
| 817 | |
| 818 | auto Incoming = MA->getIncoming(); |
| 819 | assert(!Incoming.empty()); |
| 820 | if (Incoming.size() == 1) { |
| 821 | ValInst = makeValInst(Val: Incoming[0].second, UserStmt: WriteStmt, |
| 822 | Scope: LI->getLoopFor(BB: Incoming[0].first)); |
| 823 | } else { |
| 824 | // If the PHI is in a subregion's exit node it can have multiple |
| 825 | // incoming values (+ maybe another incoming edge from an unrelated |
| 826 | // block). We cannot directly represent it as a single llvm::Value. |
| 827 | // We currently model it as unknown value, but modeling as the PHIInst |
| 828 | // itself could be OK, too. |
| 829 | ValInst = makeUnknownForDomain(Stmt: WriteStmt); |
| 830 | } |
| 831 | |
| 832 | Result = Result.unite(umap2: ValInst); |
| 833 | } |
| 834 | |
| 835 | assert(Result.is_single_valued() && |
| 836 | "Cannot have multiple incoming values for same incoming statement" ); |
| 837 | return Result; |
| 838 | } |
| 839 | |
| 840 | /// Try to map a MemoryKind::PHI scalar to a given array element. |
| 841 | /// |
| 842 | /// @param SAI Representation of the scalar's memory to map. |
| 843 | /// @param TargetElt { Scatter[] -> Element[] } |
| 844 | /// Suggestion where to map the scalar to when at a |
| 845 | /// timepoint. |
| 846 | /// |
| 847 | /// @return true if the PHI scalar has been mapped. |
| 848 | bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) { |
| 849 | auto *PHIRead = S->getPHIRead(SAI); |
| 850 | assert(PHIRead->isPHIKind()); |
| 851 | assert(PHIRead->isRead()); |
| 852 | |
| 853 | // Skip if already been mapped. |
| 854 | if (!PHIRead->getLatestScopArrayInfo()->isPHIKind()) |
| 855 | return false; |
| 856 | |
| 857 | // { DomainRead[] -> Scatter[] } |
| 858 | auto PHISched = getScatterFor(MA: PHIRead); |
| 859 | |
| 860 | // { DomainRead[] -> Element[] } |
| 861 | auto PHITarget = PHISched.apply_range(map2: TargetElt); |
| 862 | simplify(Map&: PHITarget); |
| 863 | POLLY_DEBUG(dbgs() << " Mapping: " << PHITarget << '\n'); |
| 864 | |
| 865 | auto OrigDomain = getDomainFor(MA: PHIRead); |
| 866 | auto MappedDomain = PHITarget.domain(); |
| 867 | if (!OrigDomain.is_subset(set2: MappedDomain)) { |
| 868 | POLLY_DEBUG( |
| 869 | dbgs() |
| 870 | << " Reject because mapping does not encompass all instances\n" ); |
| 871 | return false; |
| 872 | } |
| 873 | |
| 874 | // { DomainRead[] -> DomainWrite[] } |
| 875 | auto PerPHIWrites = computePerPHI(SAI); |
| 876 | if (PerPHIWrites.is_null()) { |
| 877 | POLLY_DEBUG( |
| 878 | dbgs() << " Reject because cannot determine incoming values\n" ); |
| 879 | return false; |
| 880 | } |
| 881 | |
| 882 | // { DomainWrite[] -> Element[] } |
| 883 | auto WritesTarget = PerPHIWrites.apply_domain(umap2: PHITarget).reverse(); |
| 884 | simplify(UMap&: WritesTarget); |
| 885 | |
| 886 | // { DomainWrite[] } |
| 887 | auto UniverseWritesDom = isl::union_set::empty(ctx: ParamSpace.ctx()); |
| 888 | |
| 889 | for (auto *MA : S->getPHIIncomings(SAI)) |
| 890 | UniverseWritesDom = UniverseWritesDom.unite(uset2: getDomainFor(MA)); |
| 891 | |
| 892 | auto RelevantWritesTarget = WritesTarget; |
| 893 | if (DelicmOverapproximateWrites) |
| 894 | WritesTarget = expandMapping(Relevant: WritesTarget, Universe: UniverseWritesDom); |
| 895 | |
| 896 | auto ExpandedWritesDom = WritesTarget.domain(); |
| 897 | if (!DelicmPartialWrites && |
| 898 | !UniverseWritesDom.is_subset(uset2: ExpandedWritesDom)) { |
| 899 | POLLY_DEBUG( |
| 900 | dbgs() << " Reject because did not find PHI write mapping for " |
| 901 | "all instances\n" ); |
| 902 | if (DelicmOverapproximateWrites) |
| 903 | POLLY_DEBUG(dbgs() << " Relevant Mapping: " |
| 904 | << RelevantWritesTarget << '\n'); |
| 905 | POLLY_DEBUG(dbgs() << " Deduced Mapping: " << WritesTarget |
| 906 | << '\n'); |
| 907 | POLLY_DEBUG(dbgs() << " Missing instances: " |
| 908 | << UniverseWritesDom.subtract(ExpandedWritesDom) |
| 909 | << '\n'); |
| 910 | return false; |
| 911 | } |
| 912 | |
| 913 | // { DomainRead[] -> Scatter[] } |
| 914 | isl::union_map PerPHIWriteScatterUmap = PerPHIWrites.apply_range(umap2: Schedule); |
| 915 | isl::map PerPHIWriteScatter = |
| 916 | singleton(UMap: PerPHIWriteScatterUmap, ExpectedSpace: PHISched.get_space()); |
| 917 | |
| 918 | // { DomainRead[] -> Zone[] } |
| 919 | auto Lifetime = betweenScatter(From: PerPHIWriteScatter, To: PHISched, InclFrom: false, InclTo: true); |
| 920 | simplify(Map&: Lifetime); |
| 921 | POLLY_DEBUG(dbgs() << " Lifetime: " << Lifetime << "\n" ); |
| 922 | |
| 923 | // { DomainWrite[] -> Zone[] } |
| 924 | auto WriteLifetime = isl::union_map(Lifetime).apply_domain(umap2: PerPHIWrites); |
| 925 | |
| 926 | // { DomainWrite[] -> ValInst[] } |
| 927 | auto WrittenValue = determinePHIWrittenValues(SAI); |
| 928 | |
| 929 | // { DomainWrite[] -> [Element[] -> Scatter[]] } |
| 930 | auto WrittenTranslator = WritesTarget.range_product(umap2: Schedule); |
| 931 | |
| 932 | // { [Element[] -> Scatter[]] -> ValInst[] } |
| 933 | auto Written = WrittenValue.apply_domain(umap2: WrittenTranslator); |
| 934 | simplify(UMap&: Written); |
| 935 | |
| 936 | // { DomainWrite[] -> [Element[] -> Zone[]] } |
| 937 | auto LifetimeTranslator = WritesTarget.range_product(umap2: WriteLifetime); |
| 938 | |
| 939 | // { DomainWrite[] -> ValInst[] } |
| 940 | auto WrittenKnownValue = filterKnownValInst(UMap: WrittenValue); |
| 941 | |
| 942 | // { [Element[] -> Zone[]] -> ValInst[] } |
| 943 | auto EltLifetimeInst = WrittenKnownValue.apply_domain(umap2: LifetimeTranslator); |
| 944 | simplify(UMap&: EltLifetimeInst); |
| 945 | |
| 946 | // { [Element[] -> Zone[] } |
| 947 | auto Occupied = LifetimeTranslator.range(); |
| 948 | simplify(USet&: Occupied); |
| 949 | |
| 950 | Knowledge Proposed(Occupied, {}, EltLifetimeInst, Written); |
| 951 | if (isConflicting(Proposed)) |
| 952 | return false; |
| 953 | |
| 954 | mapPHI(SAI, ReadTarget: std::move(PHITarget), WriteTarget: std::move(WritesTarget), |
| 955 | Lifetime: std::move(Lifetime), Proposed: std::move(Proposed)); |
| 956 | return true; |
| 957 | } |
| 958 | |
| 959 | /// Map a MemoryKind::PHI scalar to an array element. |
| 960 | /// |
| 961 | /// Callers must have ensured that the mapping is valid and not conflicting |
| 962 | /// with the common knowledge. |
| 963 | /// |
| 964 | /// @param SAI The ScopArrayInfo representing the scalar's memory to |
| 965 | /// map. |
| 966 | /// @param ReadTarget { DomainRead[] -> Element[] } |
| 967 | /// The array element to map the scalar to. |
| 968 | /// @param WriteTarget { DomainWrite[] -> Element[] } |
| 969 | /// New access target for each PHI incoming write. |
| 970 | /// @param Lifetime { DomainRead[] -> Zone[] } |
| 971 | /// The lifetime of each PHI for reporting. |
| 972 | /// @param Proposed Mapping constraints for reporting. |
| 973 | void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget, |
| 974 | isl::union_map WriteTarget, isl::map Lifetime, |
| 975 | Knowledge Proposed) { |
| 976 | // { Element[] } |
| 977 | isl::space ElementSpace = ReadTarget.get_space().range(); |
| 978 | |
| 979 | // Redirect the PHI incoming writes. |
| 980 | for (auto *MA : S->getPHIIncomings(SAI)) { |
| 981 | // { DomainWrite[] } |
| 982 | auto Domain = getDomainFor(MA); |
| 983 | |
| 984 | // { DomainWrite[] -> Element[] } |
| 985 | auto NewAccRel = WriteTarget.intersect_domain(uset: Domain); |
| 986 | simplify(UMap&: NewAccRel); |
| 987 | |
| 988 | isl::space NewAccRelSpace = |
| 989 | Domain.get_space().map_from_domain_and_range(range: ElementSpace); |
| 990 | isl::map NewAccRelMap = singleton(UMap: NewAccRel, ExpectedSpace: NewAccRelSpace); |
| 991 | MA->setNewAccessRelation(NewAccRelMap); |
| 992 | } |
| 993 | |
| 994 | // Redirect the PHI read. |
| 995 | auto *PHIRead = S->getPHIRead(SAI); |
| 996 | PHIRead->setNewAccessRelation(ReadTarget); |
| 997 | applyLifetime(Proposed); |
| 998 | |
| 999 | MappedPHIScalars++; |
| 1000 | NumberOfMappedPHIScalars++; |
| 1001 | } |
| 1002 | |
| 1003 | /// Search and map scalars to memory overwritten by @p TargetStoreMA. |
| 1004 | /// |
| 1005 | /// Start trying to map scalars that are used in the same statement as the |
| 1006 | /// store. For every successful mapping, try to also map scalars of the |
| 1007 | /// statements where those are written. Repeat, until no more mapping |
| 1008 | /// opportunity is found. |
| 1009 | /// |
| 1010 | /// There is currently no preference in which order scalars are tried. |
| 1011 | /// Ideally, we would direct it towards a load instruction of the same array |
| 1012 | /// element. |
| 1013 | bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) { |
| 1014 | assert(TargetStoreMA->isLatestArrayKind()); |
| 1015 | assert(TargetStoreMA->isMustWrite()); |
| 1016 | |
| 1017 | auto TargetStmt = TargetStoreMA->getStatement(); |
| 1018 | |
| 1019 | // { DomTarget[] } |
| 1020 | auto TargetDom = getDomainFor(Stmt: TargetStmt); |
| 1021 | |
| 1022 | // { DomTarget[] -> Element[] } |
| 1023 | auto TargetAccRel = getAccessRelationFor(MA: TargetStoreMA); |
| 1024 | |
| 1025 | // { Zone[] -> DomTarget[] } |
| 1026 | // For each point in time, find the next target store instance. |
| 1027 | auto Target = |
| 1028 | computeScalarReachingOverwrite(Schedule, Writes: TargetDom, InclPrevWrite: false, InclOverwrite: true); |
| 1029 | |
| 1030 | // { Zone[] -> Element[] } |
| 1031 | // Use the target store's write location as a suggestion to map scalars to. |
| 1032 | auto EltTarget = Target.apply_range(map2: TargetAccRel); |
| 1033 | simplify(Map&: EltTarget); |
| 1034 | POLLY_DEBUG(dbgs() << " Target mapping is " << EltTarget << '\n'); |
| 1035 | |
| 1036 | // Stack of elements not yet processed. |
| 1037 | SmallVector<MemoryAccess *, 16> Worklist; |
| 1038 | |
| 1039 | // Set of scalars already tested. |
| 1040 | SmallPtrSet<const ScopArrayInfo *, 16> Closed; |
| 1041 | |
| 1042 | // Lambda to add all scalar reads to the work list. |
| 1043 | auto ProcessAllIncoming = [&](ScopStmt *Stmt) { |
| 1044 | for (auto *MA : *Stmt) { |
| 1045 | if (!MA->isLatestScalarKind()) |
| 1046 | continue; |
| 1047 | if (!MA->isRead()) |
| 1048 | continue; |
| 1049 | |
| 1050 | Worklist.push_back(Elt: MA); |
| 1051 | } |
| 1052 | }; |
| 1053 | |
| 1054 | auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(i: 0); |
| 1055 | if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(Val: WrittenVal)) |
| 1056 | Worklist.push_back(Elt: WrittenValInputMA); |
| 1057 | else |
| 1058 | ProcessAllIncoming(TargetStmt); |
| 1059 | |
| 1060 | auto AnyMapped = false; |
| 1061 | auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout(); |
| 1062 | auto StoreSize = |
| 1063 | DL.getTypeAllocSize(Ty: TargetStoreMA->getAccessValue()->getType()); |
| 1064 | |
| 1065 | while (!Worklist.empty()) { |
| 1066 | auto *MA = Worklist.pop_back_val(); |
| 1067 | |
| 1068 | auto *SAI = MA->getScopArrayInfo(); |
| 1069 | if (Closed.count(Ptr: SAI)) |
| 1070 | continue; |
| 1071 | Closed.insert(Ptr: SAI); |
| 1072 | POLLY_DEBUG(dbgs() << "\n Trying to map " << MA << " (SAI: " << SAI |
| 1073 | << ")\n" ); |
| 1074 | |
| 1075 | // Skip non-mappable scalars. |
| 1076 | if (!isMappable(SAI)) |
| 1077 | continue; |
| 1078 | |
| 1079 | auto MASize = DL.getTypeAllocSize(Ty: MA->getAccessValue()->getType()); |
| 1080 | if (MASize > StoreSize) { |
| 1081 | POLLY_DEBUG( |
| 1082 | dbgs() << " Reject because storage size is insufficient\n" ); |
| 1083 | continue; |
| 1084 | } |
| 1085 | |
| 1086 | // Try to map MemoryKind::Value scalars. |
| 1087 | if (SAI->isValueKind()) { |
| 1088 | if (!tryMapValue(SAI, TargetElt: EltTarget)) |
| 1089 | continue; |
| 1090 | |
| 1091 | auto *DefAcc = S->getValueDef(SAI); |
| 1092 | ProcessAllIncoming(DefAcc->getStatement()); |
| 1093 | |
| 1094 | AnyMapped = true; |
| 1095 | continue; |
| 1096 | } |
| 1097 | |
| 1098 | // Try to map MemoryKind::PHI scalars. |
| 1099 | if (SAI->isPHIKind()) { |
| 1100 | if (!tryMapPHI(SAI, TargetElt: EltTarget)) |
| 1101 | continue; |
| 1102 | // Add inputs of all incoming statements to the worklist. Prefer the |
| 1103 | // input accesses of the incoming blocks. |
| 1104 | for (auto *PHIWrite : S->getPHIIncomings(SAI)) { |
| 1105 | auto *PHIWriteStmt = PHIWrite->getStatement(); |
| 1106 | bool FoundAny = false; |
| 1107 | for (auto Incoming : PHIWrite->getIncoming()) { |
| 1108 | auto *IncomingInputMA = |
| 1109 | PHIWriteStmt->lookupInputAccessOf(Val: Incoming.second); |
| 1110 | if (!IncomingInputMA) |
| 1111 | continue; |
| 1112 | |
| 1113 | Worklist.push_back(Elt: IncomingInputMA); |
| 1114 | FoundAny = true; |
| 1115 | } |
| 1116 | |
| 1117 | if (!FoundAny) |
| 1118 | ProcessAllIncoming(PHIWrite->getStatement()); |
| 1119 | } |
| 1120 | |
| 1121 | AnyMapped = true; |
| 1122 | continue; |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | if (AnyMapped) { |
| 1127 | TargetsMapped++; |
| 1128 | NumberOfTargetsMapped++; |
| 1129 | } |
| 1130 | return AnyMapped; |
| 1131 | } |
| 1132 | |
| 1133 | /// Compute when an array element is unused. |
| 1134 | /// |
| 1135 | /// @return { [Element[] -> Zone[]] } |
| 1136 | isl::union_set computeLifetime() const { |
| 1137 | // { Element[] -> Zone[] } |
| 1138 | auto ArrayUnused = computeArrayUnused(Schedule, Writes: AllMustWrites, Reads: AllReads, |
| 1139 | ReadEltInSameInst: false, InclLastRead: false, InclWrite: true); |
| 1140 | |
| 1141 | auto Result = ArrayUnused.wrap(); |
| 1142 | |
| 1143 | simplify(USet&: Result); |
| 1144 | return Result; |
| 1145 | } |
| 1146 | |
| 1147 | /// Determine when an array element is written to, and which value instance is |
| 1148 | /// written. |
| 1149 | /// |
| 1150 | /// @return { [Element[] -> Scatter[]] -> ValInst[] } |
| 1151 | isl::union_map computeWritten() const { |
| 1152 | // { [Element[] -> Scatter[]] -> ValInst[] } |
| 1153 | auto EltWritten = applyDomainRange(UMap: AllWriteValInst, Func: Schedule); |
| 1154 | |
| 1155 | simplify(UMap&: EltWritten); |
| 1156 | return EltWritten; |
| 1157 | } |
| 1158 | |
| 1159 | /// Determine whether an access touches at most one element. |
| 1160 | /// |
| 1161 | /// The accessed element could be a scalar or accessing an array with constant |
| 1162 | /// subscript, such that all instances access only that element. |
| 1163 | /// |
| 1164 | /// @param MA The access to test. |
| 1165 | /// |
| 1166 | /// @return True, if zero or one elements are accessed; False if at least two |
| 1167 | /// different elements are accessed. |
| 1168 | bool isScalarAccess(MemoryAccess *MA) { |
| 1169 | auto Map = getAccessRelationFor(MA); |
| 1170 | auto Set = Map.range(); |
| 1171 | return Set.is_singleton(); |
| 1172 | } |
| 1173 | |
| 1174 | /// Print mapping statistics to @p OS. |
| 1175 | void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const { |
| 1176 | OS.indent(NumSpaces: Indent) << "Statistics {\n" ; |
| 1177 | OS.indent(NumSpaces: Indent + 4) << "Compatible overwrites: " |
| 1178 | << NumberOfCompatibleTargets << "\n" ; |
| 1179 | OS.indent(NumSpaces: Indent + 4) << "Overwrites mapped to: " << NumberOfTargetsMapped |
| 1180 | << '\n'; |
| 1181 | OS.indent(NumSpaces: Indent + 4) << "Value scalars mapped: " |
| 1182 | << NumberOfMappedValueScalars << '\n'; |
| 1183 | OS.indent(NumSpaces: Indent + 4) << "PHI scalars mapped: " |
| 1184 | << NumberOfMappedPHIScalars << '\n'; |
| 1185 | OS.indent(NumSpaces: Indent) << "}\n" ; |
| 1186 | } |
| 1187 | |
| 1188 | public: |
| 1189 | DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm("polly-delicm" , S, LI) {} |
| 1190 | |
| 1191 | /// Calculate the lifetime (definition to last use) of every array element. |
| 1192 | /// |
| 1193 | /// @return True if the computed lifetimes (#Zone) is usable. |
| 1194 | bool computeZone() { |
| 1195 | // Check that nothing strange occurs. |
| 1196 | collectCompatibleElts(); |
| 1197 | |
| 1198 | isl::union_set EltUnused; |
| 1199 | isl::union_map EltKnown, EltWritten; |
| 1200 | |
| 1201 | { |
| 1202 | IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps); |
| 1203 | |
| 1204 | computeCommon(); |
| 1205 | |
| 1206 | EltUnused = computeLifetime(); |
| 1207 | EltKnown = computeKnown(FromWrite: true, FromRead: false); |
| 1208 | EltWritten = computeWritten(); |
| 1209 | } |
| 1210 | DeLICMAnalyzed++; |
| 1211 | |
| 1212 | if (EltUnused.is_null() || EltKnown.is_null() || EltWritten.is_null()) { |
| 1213 | assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota && |
| 1214 | "The only reason that these things have not been computed should " |
| 1215 | "be if the max-operations limit hit" ); |
| 1216 | DeLICMOutOfQuota++; |
| 1217 | POLLY_DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n" ); |
| 1218 | DebugLoc Begin, End; |
| 1219 | getDebugLocations(P: getBBPairForRegion(R: &S->getRegion()), Begin, End); |
| 1220 | OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota" , Begin, |
| 1221 | S->getEntry()); |
| 1222 | R << "maximal number of operations exceeded during zone analysis" ; |
| 1223 | S->getFunction().getContext().diagnose(DI: R); |
| 1224 | return false; |
| 1225 | } |
| 1226 | |
| 1227 | Zone = OriginalZone = Knowledge({}, EltUnused, EltKnown, EltWritten); |
| 1228 | POLLY_DEBUG(dbgs() << "Computed Zone:\n" ; OriginalZone.print(dbgs(), 4)); |
| 1229 | |
| 1230 | assert(Zone.isUsable() && OriginalZone.isUsable()); |
| 1231 | return true; |
| 1232 | } |
| 1233 | |
| 1234 | /// Try to map as many scalars to unused array elements as possible. |
| 1235 | /// |
| 1236 | /// Multiple scalars might be mappable to intersecting unused array element |
| 1237 | /// zones, but we can only chose one. This is a greedy algorithm, therefore |
| 1238 | /// the first processed element claims it. |
| 1239 | void greedyCollapse() { |
| 1240 | bool Modified = false; |
| 1241 | |
| 1242 | for (auto &Stmt : *S) { |
| 1243 | for (auto *MA : Stmt) { |
| 1244 | if (!MA->isLatestArrayKind()) |
| 1245 | continue; |
| 1246 | if (!MA->isWrite()) |
| 1247 | continue; |
| 1248 | |
| 1249 | if (MA->isMayWrite()) { |
| 1250 | POLLY_DEBUG(dbgs() << "Access " << MA |
| 1251 | << " pruned because it is a MAY_WRITE\n" ); |
| 1252 | OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite" , |
| 1253 | MA->getAccessInstruction()); |
| 1254 | R << "Skipped possible mapping target because it is not an " |
| 1255 | "unconditional overwrite" ; |
| 1256 | S->getFunction().getContext().diagnose(DI: R); |
| 1257 | continue; |
| 1258 | } |
| 1259 | |
| 1260 | if (Stmt.getNumIterators() == 0) { |
| 1261 | POLLY_DEBUG(dbgs() << "Access " << MA |
| 1262 | << " pruned because it is not in a loop\n" ); |
| 1263 | OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop" , |
| 1264 | MA->getAccessInstruction()); |
| 1265 | R << "skipped possible mapping target because it is not in a loop" ; |
| 1266 | S->getFunction().getContext().diagnose(DI: R); |
| 1267 | continue; |
| 1268 | } |
| 1269 | |
| 1270 | if (isScalarAccess(MA)) { |
| 1271 | POLLY_DEBUG(dbgs() |
| 1272 | << "Access " << MA |
| 1273 | << " pruned because it writes only a single element\n" ); |
| 1274 | OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite" , |
| 1275 | MA->getAccessInstruction()); |
| 1276 | R << "skipped possible mapping target because the memory location " |
| 1277 | "written to does not depend on its outer loop" ; |
| 1278 | S->getFunction().getContext().diagnose(DI: R); |
| 1279 | continue; |
| 1280 | } |
| 1281 | |
| 1282 | if (!isa<StoreInst>(Val: MA->getAccessInstruction())) { |
| 1283 | POLLY_DEBUG(dbgs() << "Access " << MA |
| 1284 | << " pruned because it is not a StoreInst\n" ); |
| 1285 | OptimizationRemarkMissed R(DEBUG_TYPE, "NotAStore" , |
| 1286 | MA->getAccessInstruction()); |
| 1287 | R << "skipped possible mapping target because non-store instructions " |
| 1288 | "are not supported" ; |
| 1289 | S->getFunction().getContext().diagnose(DI: R); |
| 1290 | continue; |
| 1291 | } |
| 1292 | |
| 1293 | // Check for more than one element access per statement instance. |
| 1294 | // Currently we expect write accesses to be functional, eg. disallow |
| 1295 | // |
| 1296 | // { Stmt[0] -> [i] : 0 <= i < 2 } |
| 1297 | // |
| 1298 | // This may occur when some accesses to the element write/read only |
| 1299 | // parts of the element, eg. a single byte. Polly then divides each |
| 1300 | // element into subelements of the smallest access length, normal access |
| 1301 | // then touch multiple of such subelements. It is very common when the |
| 1302 | // array is accesses with memset, memcpy or memmove which take i8* |
| 1303 | // arguments. |
| 1304 | isl::union_map AccRel = MA->getLatestAccessRelation(); |
| 1305 | if (!AccRel.is_single_valued().is_true()) { |
| 1306 | POLLY_DEBUG(dbgs() << "Access " << MA |
| 1307 | << " is incompatible because it writes multiple " |
| 1308 | "elements per instance\n" ); |
| 1309 | OptimizationRemarkMissed R(DEBUG_TYPE, "NonFunctionalAccRel" , |
| 1310 | MA->getAccessInstruction()); |
| 1311 | R << "skipped possible mapping target because it writes more than " |
| 1312 | "one element" ; |
| 1313 | S->getFunction().getContext().diagnose(DI: R); |
| 1314 | continue; |
| 1315 | } |
| 1316 | |
| 1317 | isl::union_set TouchedElts = AccRel.range(); |
| 1318 | if (!TouchedElts.is_subset(uset2: CompatibleElts)) { |
| 1319 | POLLY_DEBUG( |
| 1320 | dbgs() |
| 1321 | << "Access " << MA |
| 1322 | << " is incompatible because it touches incompatible elements\n" ); |
| 1323 | OptimizationRemarkMissed R(DEBUG_TYPE, "IncompatibleElts" , |
| 1324 | MA->getAccessInstruction()); |
| 1325 | R << "skipped possible mapping target because a target location " |
| 1326 | "cannot be reliably analyzed" ; |
| 1327 | S->getFunction().getContext().diagnose(DI: R); |
| 1328 | continue; |
| 1329 | } |
| 1330 | |
| 1331 | assert(isCompatibleAccess(MA)); |
| 1332 | NumberOfCompatibleTargets++; |
| 1333 | POLLY_DEBUG(dbgs() << "Analyzing target access " << MA << "\n" ); |
| 1334 | if (collapseScalarsToStore(TargetStoreMA: MA)) |
| 1335 | Modified = true; |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | if (Modified) |
| 1340 | DeLICMScopsModified++; |
| 1341 | } |
| 1342 | |
| 1343 | /// Dump the internal information about a performed DeLICM to @p OS. |
| 1344 | void print(llvm::raw_ostream &OS, int Indent = 0) { |
| 1345 | if (!Zone.isUsable()) { |
| 1346 | OS.indent(NumSpaces: Indent) << "Zone not computed\n" ; |
| 1347 | return; |
| 1348 | } |
| 1349 | |
| 1350 | printStatistics(OS, Indent); |
| 1351 | if (!isModified()) { |
| 1352 | OS.indent(NumSpaces: Indent) << "No modification has been made\n" ; |
| 1353 | return; |
| 1354 | } |
| 1355 | printAccesses(OS, Indent); |
| 1356 | } |
| 1357 | |
| 1358 | /// Return whether at least one transformation been applied. |
| 1359 | bool isModified() const { return NumberOfTargetsMapped > 0; } |
| 1360 | }; |
| 1361 | |
| 1362 | static std::unique_ptr<DeLICMImpl> collapseToUnused(Scop &S, LoopInfo &LI) { |
| 1363 | std::unique_ptr<DeLICMImpl> Impl = std::make_unique<DeLICMImpl>(args: &S, args: &LI); |
| 1364 | |
| 1365 | if (!Impl->computeZone()) { |
| 1366 | POLLY_DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n" ); |
| 1367 | return Impl; |
| 1368 | } |
| 1369 | |
| 1370 | POLLY_DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n" ); |
| 1371 | Impl->greedyCollapse(); |
| 1372 | |
| 1373 | POLLY_DEBUG(dbgs() << "\nFinal Scop:\n" ); |
| 1374 | POLLY_DEBUG(dbgs() << S); |
| 1375 | |
| 1376 | return Impl; |
| 1377 | } |
| 1378 | |
| 1379 | static std::unique_ptr<DeLICMImpl> runDeLICM(Scop &S, LoopInfo &LI) { |
| 1380 | std::unique_ptr<DeLICMImpl> Impl = collapseToUnused(S, LI); |
| 1381 | |
| 1382 | Scop::ScopStatistics ScopStats = S.getStatistics(); |
| 1383 | NumValueWrites += ScopStats.NumValueWrites; |
| 1384 | NumValueWritesInLoops += ScopStats.NumValueWritesInLoops; |
| 1385 | NumPHIWrites += ScopStats.NumPHIWrites; |
| 1386 | NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops; |
| 1387 | NumSingletonWrites += ScopStats.NumSingletonWrites; |
| 1388 | NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops; |
| 1389 | |
| 1390 | return Impl; |
| 1391 | } |
| 1392 | |
| 1393 | static PreservedAnalyses runDeLICMUsingNPM(Scop &S, ScopAnalysisManager &SAM, |
| 1394 | ScopStandardAnalysisResults &SAR, |
| 1395 | SPMUpdater &U, raw_ostream *OS) { |
| 1396 | LoopInfo &LI = SAR.LI; |
| 1397 | std::unique_ptr<DeLICMImpl> Impl = runDeLICM(S, LI); |
| 1398 | |
| 1399 | if (OS) { |
| 1400 | *OS << "Printing analysis 'Polly - DeLICM/DePRE' for region: '" |
| 1401 | << S.getName() << "' in function '" << S.getFunction().getName() |
| 1402 | << "':\n" ; |
| 1403 | if (Impl) { |
| 1404 | assert(Impl->getScop() == &S); |
| 1405 | |
| 1406 | *OS << "DeLICM result:\n" ; |
| 1407 | Impl->print(OS&: *OS); |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | if (!Impl->isModified()) |
| 1412 | return PreservedAnalyses::all(); |
| 1413 | |
| 1414 | PreservedAnalyses PA; |
| 1415 | PA.preserveSet<AllAnalysesOn<Module>>(); |
| 1416 | PA.preserveSet<AllAnalysesOn<Function>>(); |
| 1417 | PA.preserveSet<AllAnalysesOn<Loop>>(); |
| 1418 | return PA; |
| 1419 | } |
| 1420 | |
| 1421 | class DeLICMWrapperPass final : public ScopPass { |
| 1422 | private: |
| 1423 | DeLICMWrapperPass(const DeLICMWrapperPass &) = delete; |
| 1424 | const DeLICMWrapperPass &operator=(const DeLICMWrapperPass &) = delete; |
| 1425 | |
| 1426 | /// The pass implementation, also holding per-scop data. |
| 1427 | std::unique_ptr<DeLICMImpl> Impl; |
| 1428 | |
| 1429 | public: |
| 1430 | static char ID; |
| 1431 | explicit DeLICMWrapperPass() : ScopPass(ID) {} |
| 1432 | |
| 1433 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 1434 | AU.addRequiredTransitive<ScopInfoRegionPass>(); |
| 1435 | AU.addRequired<LoopInfoWrapperPass>(); |
| 1436 | AU.setPreservesAll(); |
| 1437 | } |
| 1438 | |
| 1439 | bool runOnScop(Scop &S) override { |
| 1440 | // Free resources for previous scop's computation, if not yet done. |
| 1441 | releaseMemory(); |
| 1442 | |
| 1443 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 1444 | Impl = runDeLICM(S, LI); |
| 1445 | |
| 1446 | return Impl->isModified(); |
| 1447 | } |
| 1448 | |
| 1449 | void printScop(raw_ostream &OS, Scop &S) const override { |
| 1450 | if (!Impl) |
| 1451 | return; |
| 1452 | assert(Impl->getScop() == &S); |
| 1453 | |
| 1454 | OS << "DeLICM result:\n" ; |
| 1455 | Impl->print(OS); |
| 1456 | } |
| 1457 | |
| 1458 | void releaseMemory() override { Impl.reset(); } |
| 1459 | }; |
| 1460 | |
| 1461 | char DeLICMWrapperPass::ID; |
| 1462 | |
| 1463 | /// Print result from DeLICMWrapperPass. |
| 1464 | class DeLICMPrinterLegacyPass final : public ScopPass { |
| 1465 | public: |
| 1466 | static char ID; |
| 1467 | |
| 1468 | DeLICMPrinterLegacyPass() : DeLICMPrinterLegacyPass(outs()) {} |
| 1469 | explicit DeLICMPrinterLegacyPass(llvm::raw_ostream &OS) |
| 1470 | : ScopPass(ID), OS(OS) {} |
| 1471 | |
| 1472 | bool runOnScop(Scop &S) override { |
| 1473 | DeLICMWrapperPass &P = getAnalysis<DeLICMWrapperPass>(); |
| 1474 | |
| 1475 | OS << "Printing analysis '" << P.getPassName() << "' for region: '" |
| 1476 | << S.getRegion().getNameStr() << "' in function '" |
| 1477 | << S.getFunction().getName() << "':\n" ; |
| 1478 | P.printScop(OS, S); |
| 1479 | |
| 1480 | return false; |
| 1481 | } |
| 1482 | |
| 1483 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 1484 | ScopPass::getAnalysisUsage(AU); |
| 1485 | AU.addRequired<DeLICMWrapperPass>(); |
| 1486 | AU.setPreservesAll(); |
| 1487 | } |
| 1488 | |
| 1489 | private: |
| 1490 | llvm::raw_ostream &OS; |
| 1491 | }; |
| 1492 | |
| 1493 | char DeLICMPrinterLegacyPass::ID = 0; |
| 1494 | } // anonymous namespace |
| 1495 | |
| 1496 | Pass *polly::createDeLICMWrapperPass() { return new DeLICMWrapperPass(); } |
| 1497 | |
| 1498 | llvm::Pass *polly::createDeLICMPrinterLegacyPass(llvm::raw_ostream &OS) { |
| 1499 | return new DeLICMPrinterLegacyPass(OS); |
| 1500 | } |
| 1501 | |
| 1502 | llvm::PreservedAnalyses polly::DeLICMPass::run(Scop &S, |
| 1503 | ScopAnalysisManager &SAM, |
| 1504 | ScopStandardAnalysisResults &SAR, |
| 1505 | SPMUpdater &U) { |
| 1506 | return runDeLICMUsingNPM(S, SAM, SAR, U, OS: nullptr); |
| 1507 | } |
| 1508 | |
| 1509 | llvm::PreservedAnalyses DeLICMPrinterPass::run(Scop &S, |
| 1510 | ScopAnalysisManager &SAM, |
| 1511 | ScopStandardAnalysisResults &SAR, |
| 1512 | SPMUpdater &U) { |
| 1513 | return runDeLICMUsingNPM(S, SAM, SAR, U, OS: &OS); |
| 1514 | } |
| 1515 | |
| 1516 | bool polly::isConflicting( |
| 1517 | isl::union_set ExistingOccupied, isl::union_set ExistingUnused, |
| 1518 | isl::union_map ExistingKnown, isl::union_map ExistingWrites, |
| 1519 | isl::union_set ProposedOccupied, isl::union_set ProposedUnused, |
| 1520 | isl::union_map ProposedKnown, isl::union_map ProposedWrites, |
| 1521 | llvm::raw_ostream *OS, unsigned Indent) { |
| 1522 | Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused), |
| 1523 | std::move(ExistingKnown), std::move(ExistingWrites)); |
| 1524 | Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused), |
| 1525 | std::move(ProposedKnown), std::move(ProposedWrites)); |
| 1526 | |
| 1527 | return Knowledge::isConflicting(Existing, Proposed, OS, Indent); |
| 1528 | } |
| 1529 | |
| 1530 | INITIALIZE_PASS_BEGIN(DeLICMWrapperPass, "polly-delicm" , "Polly - DeLICM/DePRE" , |
| 1531 | false, false) |
| 1532 | INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass) |
| 1533 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 1534 | INITIALIZE_PASS_END(DeLICMWrapperPass, "polly-delicm" , "Polly - DeLICM/DePRE" , |
| 1535 | false, false) |
| 1536 | |
| 1537 | INITIALIZE_PASS_BEGIN(DeLICMPrinterLegacyPass, "polly-print-delicm" , |
| 1538 | "Polly - Print DeLICM/DePRE" , false, false) |
| 1539 | INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass) |
| 1540 | INITIALIZE_PASS_END(DeLICMPrinterLegacyPass, "polly-print-delicm" , |
| 1541 | "Polly - Print DeLICM/DePRE" , false, false) |
| 1542 | |