1 | // This file is part of OpenCV project. |
2 | // It is subject to the license terms in the LICENSE file found in the top-level directory |
3 | // of this distribution and at http://opencv.org/license.html |
4 | |
5 | #include "precomp.hpp" |
6 | #include "opencv2/core/mat.hpp" |
7 | #include "opencv2/core/types_c.h" |
8 | |
9 | #ifndef OPENCV_EXCLUDE_C_API |
10 | // glue |
11 | |
12 | CvMatND cvMatND(const cv::Mat& m) |
13 | { |
14 | CvMatND self; |
15 | cvInitMatNDHeader(mat: &self, dims: m.dims, sizes: m.size, type: m.type(), data: m.data ); |
16 | int i, d = m.dims; |
17 | for( i = 0; i < d; i++ ) |
18 | self.dim[i].step = (int)m.step[i]; |
19 | self.type |= m.flags & cv::Mat::CONTINUOUS_FLAG; |
20 | return self; |
21 | } |
22 | |
23 | _IplImage cvIplImage(const cv::Mat& m) |
24 | { |
25 | _IplImage self; |
26 | CV_Assert( m.dims <= 2 ); |
27 | cvInitImageHeader(image: &self, size: cvSize(sz: m.size()), depth: cvIplDepth(type: m.flags), channels: m.channels()); |
28 | cvSetData(arr: &self, data: m.data, step: (int)m.step[0]); |
29 | return self; |
30 | } |
31 | |
32 | namespace cv { |
33 | |
34 | static Mat cvMatToMat(const CvMat* m, bool copyData) |
35 | { |
36 | Mat thiz; |
37 | |
38 | if( !m ) |
39 | return thiz; |
40 | |
41 | if( !copyData ) |
42 | { |
43 | thiz.flags = Mat::MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG)); |
44 | thiz.dims = 2; |
45 | thiz.rows = m->rows; |
46 | thiz.cols = m->cols; |
47 | thiz.datastart = thiz.data = m->data.ptr; |
48 | size_t esz = CV_ELEM_SIZE(m->type), minstep = thiz.cols*esz, _step = m->step; |
49 | if( _step == 0 ) |
50 | _step = minstep; |
51 | thiz.datalimit = thiz.datastart + _step*thiz.rows; |
52 | thiz.dataend = thiz.datalimit - _step + minstep; |
53 | thiz.step[0] = _step; thiz.step[1] = esz; |
54 | } |
55 | else |
56 | { |
57 | thiz.datastart = thiz.dataend = thiz.data = 0; |
58 | Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(m: thiz); |
59 | } |
60 | |
61 | return thiz; |
62 | } |
63 | |
64 | static Mat cvMatNDToMat(const CvMatND* m, bool copyData) |
65 | { |
66 | Mat thiz; |
67 | |
68 | if( !m ) |
69 | return thiz; |
70 | thiz.datastart = thiz.data = m->data.ptr; |
71 | thiz.flags |= CV_MAT_TYPE(m->type); |
72 | int _sizes[CV_MAX_DIM]; |
73 | size_t _steps[CV_MAX_DIM]; |
74 | |
75 | int d = m->dims; |
76 | for( int i = 0; i < d; i++ ) |
77 | { |
78 | _sizes[i] = m->dim[i].size; |
79 | _steps[i] = m->dim[i].step; |
80 | } |
81 | |
82 | setSize(m&: thiz, dims: d, sz: _sizes, _steps); |
83 | finalizeHdr(m&: thiz); |
84 | |
85 | if( copyData ) |
86 | { |
87 | Mat temp(thiz); |
88 | thiz.release(); |
89 | temp.copyTo(m: thiz); |
90 | } |
91 | |
92 | return thiz; |
93 | } |
94 | |
95 | static Mat iplImageToMat(const IplImage* img, bool copyData) |
96 | { |
97 | Mat m; |
98 | |
99 | if( !img ) |
100 | return m; |
101 | |
102 | m.dims = 2; |
103 | CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0); |
104 | |
105 | int imgdepth = IPL2CV_DEPTH(img->depth); |
106 | size_t esz; |
107 | m.step[0] = img->widthStep; |
108 | |
109 | if(!img->roi) |
110 | { |
111 | CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL); |
112 | m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, img->nChannels); |
113 | m.rows = img->height; |
114 | m.cols = img->width; |
115 | m.datastart = m.data = (uchar*)img->imageData; |
116 | esz = CV_ELEM_SIZE(m.flags); |
117 | } |
118 | else |
119 | { |
120 | CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0); |
121 | bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE; |
122 | m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, selectedPlane ? 1 : img->nChannels); |
123 | m.rows = img->roi->height; |
124 | m.cols = img->roi->width; |
125 | esz = CV_ELEM_SIZE(m.flags); |
126 | m.datastart = m.data = (uchar*)img->imageData + |
127 | (selectedPlane ? (img->roi->coi - 1)*m.step*img->height : 0) + |
128 | img->roi->yOffset*m.step[0] + img->roi->xOffset*esz; |
129 | } |
130 | m.datalimit = m.datastart + m.step.p[0]*m.rows; |
131 | m.dataend = m.datastart + m.step.p[0]*(m.rows-1) + esz*m.cols; |
132 | m.step[1] = esz; |
133 | m.updateContinuityFlag(); |
134 | |
135 | if( copyData ) |
136 | { |
137 | Mat m2 = m; |
138 | m.release(); |
139 | if( !img->roi || !img->roi->coi || |
140 | img->dataOrder == IPL_DATA_ORDER_PLANE) |
141 | m2.copyTo(m); |
142 | else |
143 | { |
144 | int ch[] = {img->roi->coi - 1, 0}; |
145 | m.create(rows: m2.rows, cols: m2.cols, type: m2.type()); |
146 | mixChannels(src: &m2, nsrcs: 1, dst: &m, ndsts: 1, fromTo: ch, npairs: 1); |
147 | } |
148 | } |
149 | |
150 | return m; |
151 | } |
152 | |
153 | Mat cvarrToMat(const CvArr* arr, bool copyData, |
154 | bool /*allowND*/, int coiMode, AutoBuffer<double>* abuf ) |
155 | { |
156 | if( !arr ) |
157 | return Mat(); |
158 | if( CV_IS_MAT_HDR_Z(arr) ) |
159 | return cvMatToMat(m: (const CvMat*)arr, copyData); |
160 | if( CV_IS_MATND(arr) ) |
161 | return cvMatNDToMat(m: (const CvMatND*)arr, copyData ); |
162 | if( CV_IS_IMAGE(arr) ) |
163 | { |
164 | const IplImage* iplimg = (const IplImage*)arr; |
165 | if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 ) |
166 | CV_Error(cv::Error::BadCOI, "COI is not supported by the function" ); |
167 | return iplImageToMat(img: iplimg, copyData); |
168 | } |
169 | if( CV_IS_SEQ(arr) ) |
170 | { |
171 | CvSeq* seq = (CvSeq*)arr; |
172 | int total = seq->total, type = CV_MAT_TYPE(seq->flags), esz = seq->elem_size; |
173 | if( total == 0 ) |
174 | return Mat(); |
175 | CV_Assert(total > 0 && CV_ELEM_SIZE(seq->flags) == esz); |
176 | if(!copyData && seq->first->next == seq->first) |
177 | return Mat(total, 1, type, seq->first->data); |
178 | if( abuf ) |
179 | { |
180 | abuf->allocate(size: ((size_t)total*esz + sizeof(double)-1)/sizeof(double)); |
181 | double* bufdata = abuf->data(); |
182 | cvCvtSeqToArray(seq, elements: bufdata, CV_WHOLE_SEQ); |
183 | return Mat(total, 1, type, bufdata); |
184 | } |
185 | |
186 | Mat buf(total, 1, type); |
187 | cvCvtSeqToArray(seq, elements: buf.ptr(), CV_WHOLE_SEQ); |
188 | return buf; |
189 | } |
190 | CV_Error(cv::Error::StsBadArg, "Unknown array type" ); |
191 | } |
192 | |
193 | void (const CvArr* arr, OutputArray _ch, int coi) |
194 | { |
195 | Mat mat = cvarrToMat(arr, copyData: false, true, coiMode: 1); |
196 | _ch.create(dims: mat.dims, size: mat.size, type: mat.depth()); |
197 | Mat ch = _ch.getMat(); |
198 | if(coi < 0) |
199 | { |
200 | CV_Assert( CV_IS_IMAGE(arr) ); |
201 | coi = cvGetImageCOI(image: (const IplImage*)arr)-1; |
202 | } |
203 | CV_Assert(0 <= coi && coi < mat.channels()); |
204 | int _pairs[] = { coi, 0 }; |
205 | mixChannels( src: &mat, nsrcs: 1, dst: &ch, ndsts: 1, fromTo: _pairs, npairs: 1 ); |
206 | } |
207 | |
208 | void insertImageCOI(InputArray _ch, CvArr* arr, int coi) |
209 | { |
210 | Mat ch = _ch.getMat(), mat = cvarrToMat(arr, copyData: false, true, coiMode: 1); |
211 | if(coi < 0) |
212 | { |
213 | CV_Assert( CV_IS_IMAGE(arr) ); |
214 | coi = cvGetImageCOI(image: (const IplImage*)arr)-1; |
215 | } |
216 | CV_Assert(ch.size == mat.size && ch.depth() == mat.depth() && 0 <= coi && coi < mat.channels()); |
217 | int _pairs[] = { 0, coi }; |
218 | mixChannels( src: &ch, nsrcs: 1, dst: &mat, ndsts: 1, fromTo: _pairs, npairs: 1 ); |
219 | } |
220 | |
221 | } // cv:: |
222 | |
223 | // operations |
224 | |
225 | CV_IMPL void cvSetIdentity( CvArr* arr, CvScalar value ) |
226 | { |
227 | cv::Mat m = cv::cvarrToMat(arr); |
228 | cv::setIdentity(mtx: m, s: value); |
229 | } |
230 | |
231 | |
232 | CV_IMPL CvScalar cvTrace( const CvArr* arr ) |
233 | { |
234 | return cvScalar(s: cv::trace(mtx: cv::cvarrToMat(arr))); |
235 | } |
236 | |
237 | |
238 | CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr ) |
239 | { |
240 | cv::Mat src = cv::cvarrToMat(arr: srcarr), dst = cv::cvarrToMat(arr: dstarr); |
241 | |
242 | CV_Assert( src.rows == dst.cols && src.cols == dst.rows && src.type() == dst.type() ); |
243 | transpose( src, dst ); |
244 | } |
245 | |
246 | |
247 | CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR ) |
248 | { |
249 | cv::Mat m = cv::cvarrToMat(arr: matrix); |
250 | cv::completeSymm( m, lowerToUpper: LtoR != 0 ); |
251 | } |
252 | |
253 | |
254 | CV_IMPL void cvCrossProduct( const CvArr* srcAarr, const CvArr* srcBarr, CvArr* dstarr ) |
255 | { |
256 | cv::Mat srcA = cv::cvarrToMat(arr: srcAarr), dst = cv::cvarrToMat(arr: dstarr); |
257 | |
258 | CV_Assert( srcA.size() == dst.size() && srcA.type() == dst.type() ); |
259 | srcA.cross(m: cv::cvarrToMat(arr: srcBarr)).copyTo(m: dst); |
260 | } |
261 | |
262 | |
263 | CV_IMPL void |
264 | cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op ) |
265 | { |
266 | cv::Mat src = cv::cvarrToMat(arr: srcarr), dst = cv::cvarrToMat(arr: dstarr); |
267 | |
268 | if( dim < 0 ) |
269 | dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1; |
270 | |
271 | if( dim > 1 ) |
272 | CV_Error( cv::Error::StsOutOfRange, "The reduced dimensionality index is out of range" ); |
273 | |
274 | if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) || |
275 | (dim == 1 && (dst.rows != src.rows || dst.cols != 1)) ) |
276 | CV_Error( cv::Error::StsBadSize, "The output array size is incorrect" ); |
277 | |
278 | if( src.channels() != dst.channels() ) |
279 | CV_Error( cv::Error::StsUnmatchedFormats, "Input and output arrays must have the same number of channels" ); |
280 | |
281 | cv::reduce(src, dst, dim, rtype: op, dtype: dst.type()); |
282 | } |
283 | |
284 | |
285 | CV_IMPL CvArr* |
286 | cvRange( CvArr* arr, double start, double end ) |
287 | { |
288 | CvMat stub, *mat = (CvMat*)arr; |
289 | int step; |
290 | double val = start; |
291 | |
292 | if( !CV_IS_MAT(mat) ) |
293 | mat = cvGetMat( arr: mat, header: &stub); |
294 | |
295 | int rows = mat->rows; |
296 | int cols = mat->cols; |
297 | int type = CV_MAT_TYPE(mat->type); |
298 | double delta = (end-start)/(rows*cols); |
299 | |
300 | if( CV_IS_MAT_CONT(mat->type) ) |
301 | { |
302 | cols *= rows; |
303 | rows = 1; |
304 | step = 1; |
305 | } |
306 | else |
307 | step = mat->step / CV_ELEM_SIZE(type); |
308 | |
309 | if( type == CV_32SC1 ) |
310 | { |
311 | int* idata = mat->data.i; |
312 | int ival = cvRound(value: val), idelta = cvRound(value: delta); |
313 | |
314 | if( fabs(x: val - ival) < DBL_EPSILON && |
315 | fabs(x: delta - idelta) < DBL_EPSILON ) |
316 | { |
317 | for( int i = 0; i < rows; i++, idata += step ) |
318 | for( int j = 0; j < cols; j++, ival += idelta ) |
319 | idata[j] = ival; |
320 | } |
321 | else |
322 | { |
323 | for( int i = 0; i < rows; i++, idata += step ) |
324 | for( int j = 0; j < cols; j++, val += delta ) |
325 | idata[j] = cvRound(value: val); |
326 | } |
327 | } |
328 | else if( type == CV_32FC1 ) |
329 | { |
330 | float* fdata = mat->data.fl; |
331 | for( int i = 0; i < rows; i++, fdata += step ) |
332 | for( int j = 0; j < cols; j++, val += delta ) |
333 | fdata[j] = (float)val; |
334 | } |
335 | else |
336 | CV_Error( cv::Error::StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" ); |
337 | |
338 | return arr; |
339 | } |
340 | |
341 | |
342 | CV_IMPL void |
343 | cvSort( const CvArr* _src, CvArr* _dst, CvArr* _idx, int flags ) |
344 | { |
345 | cv::Mat src = cv::cvarrToMat(arr: _src); |
346 | |
347 | if( _idx ) |
348 | { |
349 | cv::Mat idx0 = cv::cvarrToMat(arr: _idx), idx = idx0; |
350 | CV_Assert( src.size() == idx.size() && idx.type() == CV_32S && src.data != idx.data ); |
351 | cv::sortIdx( src, dst: idx, flags ); |
352 | CV_Assert( idx0.data == idx.data ); |
353 | } |
354 | |
355 | if( _dst ) |
356 | { |
357 | cv::Mat dst0 = cv::cvarrToMat(arr: _dst), dst = dst0; |
358 | CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); |
359 | cv::sort( src, dst, flags ); |
360 | CV_Assert( dst0.data == dst.data ); |
361 | } |
362 | } |
363 | |
364 | CV_IMPL int |
365 | cvKMeans2( const CvArr* _samples, int cluster_count, CvArr* _labels, |
366 | CvTermCriteria termcrit, int attempts, CvRNG*, |
367 | int flags, CvArr* _centers, double* _compactness ) |
368 | { |
369 | cv::Mat data = cv::cvarrToMat(arr: _samples), labels = cv::cvarrToMat(arr: _labels), centers; |
370 | if( _centers ) |
371 | { |
372 | centers = cv::cvarrToMat(arr: _centers); |
373 | |
374 | centers = centers.reshape(cn: 1); |
375 | data = data.reshape(cn: 1); |
376 | |
377 | CV_Assert( !centers.empty() ); |
378 | CV_Assert( centers.rows == cluster_count ); |
379 | CV_Assert( centers.cols == data.cols ); |
380 | CV_Assert( centers.depth() == data.depth() ); |
381 | } |
382 | CV_Assert( labels.isContinuous() && labels.type() == CV_32S && |
383 | (labels.cols == 1 || labels.rows == 1) && |
384 | labels.cols + labels.rows - 1 == data.rows ); |
385 | |
386 | double compactness = cv::kmeans(data, K: cluster_count, bestLabels: labels, criteria: termcrit, attempts, |
387 | flags, centers: _centers ? cv::_OutputArray(centers) : cv::_OutputArray() ); |
388 | if( _compactness ) |
389 | *_compactness = compactness; |
390 | return 1; |
391 | } |
392 | |
393 | #endif // OPENCV_EXCLUDE_C_API |
394 | |