1 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
---|---|
2 | // |
3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
4 | // |
5 | // By downloading, copying, installing or using the software you agree to this license. |
6 | // If you do not agree to this license, do not download, install, |
7 | // copy or use the software. |
8 | // |
9 | // |
10 | // License Agreement |
11 | // For Open Source Computer Vision Library |
12 | // |
13 | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
14 | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
15 | // Third party copyrights are property of their respective owners. |
16 | // |
17 | // Redistribution and use in source and binary forms, with or without modification, |
18 | // are permitted provided that the following conditions are met: |
19 | // |
20 | // * Redistribution's of source code must retain the above copyright notice, |
21 | // this list of conditions and the following disclaimer. |
22 | // |
23 | // * Redistribution's in binary form must reproduce the above copyright notice, |
24 | // this list of conditions and the following disclaimer in the documentation |
25 | // and/or other materials provided with the distribution. |
26 | // |
27 | // * The name of the copyright holders may not be used to endorse or promote products |
28 | // derived from this software without specific prior written permission. |
29 | // |
30 | // This software is provided by the copyright holders and contributors "as is" and |
31 | // any express or implied warranties, including, but not limited to, the implied |
32 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
33 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
34 | // indirect, incidental, special, exemplary, or consequential damages |
35 | // (including, but not limited to, procurement of substitute goods or services; |
36 | // loss of use, data, or profits; or business interruption) however caused |
37 | // and on any theory of liability, whether in contract, strict liability, |
38 | // or tort (including negligence or otherwise) arising in any way out of |
39 | // the use of this software, even if advised of the possibility of such damage. |
40 | // |
41 | //M*/ |
42 | |
43 | #ifndef OPENCV_IMGPROC_HPP |
44 | #define OPENCV_IMGPROC_HPP |
45 | |
46 | #include "opencv2/core.hpp" |
47 | |
48 | /** |
49 | @defgroup imgproc Image Processing |
50 | |
51 | This module offers a comprehensive suite of image processing functions, enabling tasks such as those listed above. |
52 | |
53 | @{ |
54 | @defgroup imgproc_filter Image Filtering |
55 | |
56 | Functions and classes described in this section are used to perform various linear or non-linear |
57 | filtering operations on 2D images (represented as Mat's). It means that for each pixel location |
58 | \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to |
59 | compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of |
60 | morphological operations, it is the minimum or maximum values, and so on. The computed response is |
61 | stored in the destination image at the same location \f$(x,y)\f$. It means that the output image |
62 | will be of the same size as the input image. Normally, the functions support multi-channel arrays, |
63 | in which case every channel is processed independently. Therefore, the output image will also have |
64 | the same number of channels as the input one. |
65 | |
66 | Another common feature of the functions and classes described in this section is that, unlike |
67 | simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For |
68 | example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when |
69 | processing the left-most pixels in each row, you need pixels to the left of them, that is, outside |
70 | of the image. You can let these pixels be the same as the left-most image pixels ("replicated |
71 | border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant |
72 | border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method. |
73 | For details, see #BorderTypes |
74 | |
75 | @anchor filter_depths |
76 | ### Depth combinations |
77 | Input depth (src.depth()) | Output depth (ddepth) |
78 | --------------------------|---------------------- |
79 | CV_8U | -1/CV_16S/CV_32F/CV_64F |
80 | CV_16U/CV_16S | -1/CV_32F/CV_64F |
81 | CV_32F | -1/CV_32F |
82 | CV_64F | -1/CV_64F |
83 | |
84 | @note when ddepth=-1, the output image will have the same depth as the source. |
85 | |
86 | @note if you need double floating-point accuracy and using single floating-point input data |
87 | (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert |
88 | the input data to the desired precision. |
89 | |
90 | @defgroup imgproc_transform Geometric Image Transformations |
91 | |
92 | The functions in this section perform various geometrical transformations of 2D images. They do not |
93 | change the image content but deform the pixel grid and map this deformed grid to the destination |
94 | image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from |
95 | destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the |
96 | functions compute coordinates of the corresponding "donor" pixel in the source image and copy the |
97 | pixel value: |
98 | |
99 | \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f] |
100 | |
101 | In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow |
102 | \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping |
103 | \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula. |
104 | |
105 | The actual implementations of the geometrical transformations, from the most generic remap and to |
106 | the simplest and the fastest resize, need to solve two main problems with the above formula: |
107 | |
108 | - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the |
109 | previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both |
110 | of them may fall outside of the image. In this case, an extrapolation method needs to be used. |
111 | OpenCV provides the same selection of extrapolation methods as in the filtering functions. In |
112 | addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in |
113 | the destination image will not be modified at all. |
114 | |
115 | - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point |
116 | numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective |
117 | transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional |
118 | coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the |
119 | nearest integer coordinates and the corresponding pixel can be used. This is called a |
120 | nearest-neighbor interpolation. However, a better result can be achieved by using more |
121 | sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) , |
122 | where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y), |
123 | f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the |
124 | interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See |
125 | #resize for details. |
126 | |
127 | @note The geometrical transformations do not work with `CV_8S` or `CV_32S` images. |
128 | |
129 | @defgroup imgproc_misc Miscellaneous Image Transformations |
130 | @defgroup imgproc_draw Drawing Functions |
131 | |
132 | Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be |
133 | rendered with antialiasing (implemented only for 8-bit images for now). All the functions include |
134 | the parameter color that uses an RGB value (that may be constructed with the Scalar constructor ) |
135 | for color images and brightness for grayscale images. For color images, the channel ordering is |
136 | normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a |
137 | color using the Scalar constructor, it should look like: |
138 | |
139 | \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f] |
140 | |
141 | If you are using your own image rendering and I/O functions, you can use any channel ordering. The |
142 | drawing functions process each channel independently and do not depend on the channel order or even |
143 | on the used color space. The whole image can be converted from BGR to RGB or to a different color |
144 | space using cvtColor . |
145 | |
146 | If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, |
147 | many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means |
148 | that the coordinates can be passed as fixed-point numbers encoded as integers. The number of |
149 | fractional bits is specified by the shift parameter and the real point coordinates are calculated as |
150 | \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is |
151 | especially effective when rendering antialiased shapes. |
152 | |
153 | @note The functions do not support alpha-transparency when the target image is 4-channel. In this |
154 | case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint |
155 | semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main |
156 | image. |
157 | |
158 | @defgroup imgproc_color_conversions Color Space Conversions |
159 | @defgroup imgproc_colormap ColorMaps in OpenCV |
160 | |
161 | The human perception isn't built for observing fine changes in grayscale images. Human eyes are more |
162 | sensitive to observing changes between colors, so you often need to recolor your grayscale images to |
163 | get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your |
164 | computer vision application. |
165 | |
166 | In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample |
167 | code reads the path to an image from command line, applies a Jet colormap on it and shows the |
168 | result: |
169 | |
170 | @include snippets/imgproc_applyColorMap.cpp |
171 | |
172 | @see #ColormapTypes |
173 | |
174 | @defgroup imgproc_subdiv2d Planar Subdivision |
175 | |
176 | The Subdiv2D class described in this section is used to perform various planar subdivision on |
177 | a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles |
178 | using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram. |
179 | In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi |
180 | diagram with red lines. |
181 | |
182 |  |
183 | |
184 | The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast |
185 | location of points on the plane, building special graphs (such as NNG,RNG), and so forth. |
186 | |
187 | @defgroup imgproc_hist Histograms |
188 | @defgroup imgproc_shape Structural Analysis and Shape Descriptors |
189 | @defgroup imgproc_motion Motion Analysis and Object Tracking |
190 | @defgroup imgproc_feature Feature Detection |
191 | @defgroup imgproc_object Object Detection |
192 | @defgroup imgproc_segmentation Image Segmentation |
193 | @defgroup imgproc_hal Hardware Acceleration Layer |
194 | @{ |
195 | @defgroup imgproc_hal_functions Functions |
196 | @defgroup imgproc_hal_interface Interface |
197 | @} |
198 | @} |
199 | */ |
200 | |
201 | namespace cv |
202 | { |
203 | |
204 | /** @addtogroup imgproc |
205 | @{ |
206 | */ |
207 | |
208 | //! @addtogroup imgproc_filter |
209 | //! @{ |
210 | |
211 | enum SpecialFilter { |
212 | FILTER_SCHARR = -1 |
213 | }; |
214 | |
215 | //! type of morphological operation |
216 | enum MorphTypes{ |
217 | MORPH_ERODE = 0, //!< see #erode |
218 | MORPH_DILATE = 1, //!< see #dilate |
219 | MORPH_OPEN = 2, //!< an opening operation |
220 | //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f] |
221 | MORPH_CLOSE = 3, //!< a closing operation |
222 | //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f] |
223 | MORPH_GRADIENT = 4, //!< a morphological gradient |
224 | //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f] |
225 | MORPH_TOPHAT = 5, //!< "top hat" |
226 | //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f] |
227 | MORPH_BLACKHAT = 6, //!< "black hat" |
228 | //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f] |
229 | MORPH_HITMISS = 7 //!< "hit or miss" |
230 | //!< .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation |
231 | }; |
232 | |
233 | //! shape of the structuring element |
234 | enum MorphShapes { |
235 | MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f] |
236 | MORPH_CROSS = 1, //!< a cross-shaped structuring element: |
237 | //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f] |
238 | MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed |
239 | //!< into the rectangle Rect(0, 0, esize.width, esize.height) |
240 | }; |
241 | |
242 | //! @} imgproc_filter |
243 | |
244 | //! @addtogroup imgproc_transform |
245 | //! @{ |
246 | |
247 | //! interpolation algorithm |
248 | enum InterpolationFlags{ |
249 | /** nearest neighbor interpolation */ |
250 | INTER_NEAREST = 0, |
251 | /** bilinear interpolation */ |
252 | INTER_LINEAR = 1, |
253 | /** bicubic interpolation */ |
254 | INTER_CUBIC = 2, |
255 | /** resampling using pixel area relation. It may be a preferred method for image decimation, as |
256 | it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST |
257 | method. */ |
258 | INTER_AREA = 3, |
259 | /** Lanczos interpolation over 8x8 neighborhood */ |
260 | INTER_LANCZOS4 = 4, |
261 | /** Bit exact bilinear interpolation */ |
262 | INTER_LINEAR_EXACT = 5, |
263 | /** Bit exact nearest neighbor interpolation. This will produce same results as |
264 | the nearest neighbor method in PIL, scikit-image or Matlab. */ |
265 | INTER_NEAREST_EXACT = 6, |
266 | /** mask for interpolation codes */ |
267 | INTER_MAX = 7, |
268 | /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the |
269 | source image, they are set to zero */ |
270 | WARP_FILL_OUTLIERS = 8, |
271 | /** flag, inverse transformation |
272 | |
273 | For example, #linearPolar or #logPolar transforms: |
274 | - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$ |
275 | - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$ |
276 | */ |
277 | WARP_INVERSE_MAP = 16, |
278 | WARP_RELATIVE_MAP = 32 |
279 | }; |
280 | |
281 | /** \brief Specify the polar mapping mode |
282 | @sa warpPolar |
283 | */ |
284 | enum WarpPolarMode |
285 | { |
286 | WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space. |
287 | WARP_POLAR_LOG = 256 ///< Remaps an image to/from semilog-polar space. |
288 | }; |
289 | |
290 | enum InterpolationMasks { |
291 | INTER_BITS = 5, |
292 | INTER_BITS2 = INTER_BITS * 2, |
293 | INTER_TAB_SIZE = 1 << INTER_BITS, |
294 | INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE |
295 | }; |
296 | |
297 | //! @} imgproc_transform |
298 | |
299 | //! @addtogroup imgproc_misc |
300 | //! @{ |
301 | |
302 | //! Distance types for Distance Transform and M-estimators |
303 | //! @see distanceTransform, fitLine |
304 | enum DistanceTypes { |
305 | DIST_USER = -1, //!< User defined distance |
306 | DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2| |
307 | DIST_L2 = 2, //!< the simple euclidean distance |
308 | DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|) |
309 | DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) |
310 | DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 |
311 | DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 |
312 | DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 |
313 | }; |
314 | |
315 | //! Mask size for distance transform |
316 | enum DistanceTransformMasks { |
317 | DIST_MASK_3 = 3, //!< mask=3 |
318 | DIST_MASK_5 = 5, //!< mask=5 |
319 | DIST_MASK_PRECISE = 0 //!< |
320 | }; |
321 | |
322 | //! type of the threshold operation |
323 | //!  |
324 | enum ThresholdTypes { |
325 | THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] |
326 | THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f] |
327 | THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] |
328 | THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] |
329 | THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] |
330 | THRESH_MASK = 7, |
331 | THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value |
332 | THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value |
333 | }; |
334 | |
335 | //! adaptive threshold algorithm |
336 | //! @see adaptiveThreshold |
337 | enum AdaptiveThresholdTypes { |
338 | /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times |
339 | \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */ |
340 | ADAPTIVE_THRESH_MEAN_C = 0, |
341 | /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian |
342 | window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ |
343 | minus C . The default sigma (standard deviation) is used for the specified blockSize . See |
344 | #getGaussianKernel*/ |
345 | ADAPTIVE_THRESH_GAUSSIAN_C = 1 |
346 | }; |
347 | |
348 | //! class of the pixel in GrabCut algorithm |
349 | enum GrabCutClasses { |
350 | GC_BGD = 0, //!< an obvious background pixels |
351 | GC_FGD = 1, //!< an obvious foreground (object) pixel |
352 | GC_PR_BGD = 2, //!< a possible background pixel |
353 | GC_PR_FGD = 3 //!< a possible foreground pixel |
354 | }; |
355 | |
356 | //! GrabCut algorithm flags |
357 | enum GrabCutModes { |
358 | /** The function initializes the state and the mask using the provided rectangle. After that it |
359 | runs iterCount iterations of the algorithm. */ |
360 | GC_INIT_WITH_RECT = 0, |
361 | /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT |
362 | and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are |
363 | automatically initialized with GC_BGD .*/ |
364 | GC_INIT_WITH_MASK = 1, |
365 | /** The value means that the algorithm should just resume. */ |
366 | GC_EVAL = 2, |
367 | /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */ |
368 | GC_EVAL_FREEZE_MODEL = 3 |
369 | }; |
370 | |
371 | //! distanceTransform algorithm flags |
372 | enum DistanceTransformLabelTypes { |
373 | /** each connected component of zeros in src (as well as all the non-zero pixels closest to the |
374 | connected component) will be assigned the same label */ |
375 | DIST_LABEL_CCOMP = 0, |
376 | /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */ |
377 | DIST_LABEL_PIXEL = 1 |
378 | }; |
379 | |
380 | //! floodfill algorithm flags |
381 | enum FloodFillFlags { |
382 | /** If set, the difference between the current pixel and seed pixel is considered. Otherwise, |
383 | the difference between neighbor pixels is considered (that is, the range is floating). */ |
384 | FLOODFILL_FIXED_RANGE = 1 << 16, |
385 | /** If set, the function does not change the image ( newVal is ignored), and only fills the |
386 | mask with the value specified in bits 8-16 of flags as described above. This option only make |
387 | sense in function variants that have the mask parameter. */ |
388 | FLOODFILL_MASK_ONLY = 1 << 17 |
389 | }; |
390 | |
391 | //! @} imgproc_misc |
392 | |
393 | //! @addtogroup imgproc_shape |
394 | //! @{ |
395 | |
396 | //! connected components statistics |
397 | enum ConnectedComponentsTypes { |
398 | CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding |
399 | //!< box in the horizontal direction. |
400 | CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding |
401 | //!< box in the vertical direction. |
402 | CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box |
403 | CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box |
404 | CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component |
405 | #ifndef CV_DOXYGEN |
406 | CC_STAT_MAX = 5 //!< Max enumeration value. Used internally only for memory allocation |
407 | #endif |
408 | }; |
409 | |
410 | //! connected components algorithm |
411 | enum ConnectedComponentsAlgorithmsTypes { |
412 | CCL_DEFAULT = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. |
413 | CCL_WU = 0, //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF. |
414 | CCL_GRANA = 1, //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF. |
415 | CCL_BOLELLI = 2, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C. |
416 | CCL_SAUF = 3, //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU). |
417 | CCL_BBDT = 4, //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA). |
418 | CCL_SPAGHETTI = 5, //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI). |
419 | }; |
420 | |
421 | //! mode of the contour retrieval algorithm |
422 | enum RetrievalModes { |
423 | /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for |
424 | all the contours. */ |
425 | RETR_EXTERNAL = 0, |
426 | /** retrieves all of the contours without establishing any hierarchical relationships. */ |
427 | RETR_LIST = 1, |
428 | /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top |
429 | level, there are external boundaries of the components. At the second level, there are |
430 | boundaries of the holes. If there is another contour inside a hole of a connected component, it |
431 | is still put at the top level. */ |
432 | RETR_CCOMP = 2, |
433 | /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/ |
434 | RETR_TREE = 3, |
435 | RETR_FLOODFILL = 4 //!< |
436 | }; |
437 | |
438 | //! the contour approximation algorithm |
439 | enum ContourApproximationModes { |
440 | /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and |
441 | (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is, |
442 | max(abs(x1-x2),abs(y2-y1))==1. */ |
443 | CHAIN_APPROX_NONE = 1, |
444 | /** compresses horizontal, vertical, and diagonal segments and leaves only their end points. |
445 | For example, an up-right rectangular contour is encoded with 4 points. */ |
446 | CHAIN_APPROX_SIMPLE = 2, |
447 | /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ |
448 | CHAIN_APPROX_TC89_L1 = 3, |
449 | /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ |
450 | CHAIN_APPROX_TC89_KCOS = 4 |
451 | }; |
452 | |
453 | /** @brief Shape matching methods |
454 | |
455 | \f$A\f$ denotes object1,\f$B\f$ denotes object2 |
456 | |
457 | \f$\begin{array}{l} m^A_i = \mathrm{sign} (h^A_i) \cdot \log{h^A_i} \\ m^B_i = \mathrm{sign} (h^B_i) \cdot \log{h^B_i} \end{array}\f$ |
458 | |
459 | and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively. |
460 | */ |
461 | enum ShapeMatchModes { |
462 | CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f] |
463 | CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f] |
464 | CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f] |
465 | }; |
466 | |
467 | //! @} imgproc_shape |
468 | |
469 | //! @addtogroup imgproc_feature |
470 | //! @{ |
471 | |
472 | //! Variants of a Hough transform |
473 | enum HoughModes { |
474 | |
475 | /** classical or standard Hough transform. Every line is represented by two floating-point |
476 | numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line, |
477 | and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must |
478 | be (the created sequence will be) of CV_32FC2 type */ |
479 | HOUGH_STANDARD = 0, |
480 | /** probabilistic Hough transform (more efficient in case if the picture contains a few long |
481 | linear segments). It returns line segments rather than the whole line. Each segment is |
482 | represented by starting and ending points, and the matrix must be (the created sequence will |
483 | be) of the CV_32SC4 type. */ |
484 | HOUGH_PROBABILISTIC = 1, |
485 | /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as |
486 | HOUGH_STANDARD. */ |
487 | HOUGH_MULTI_SCALE = 2, |
488 | HOUGH_GRADIENT = 3, //!< basically *21HT*, described in @cite Yuen90 |
489 | HOUGH_GRADIENT_ALT = 4, //!< variation of HOUGH_GRADIENT to get better accuracy |
490 | }; |
491 | |
492 | //! Variants of Line Segment %Detector |
493 | enum LineSegmentDetectorModes { |
494 | LSD_REFINE_NONE = 0, //!< No refinement applied |
495 | LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations. |
496 | LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are |
497 | //!< refined through increase of precision, decrement in size, etc. |
498 | }; |
499 | |
500 | //! @} imgproc_feature |
501 | |
502 | /** Histogram comparison methods |
503 | @ingroup imgproc_hist |
504 | */ |
505 | enum HistCompMethods { |
506 | /** Correlation |
507 | \f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f] |
508 | where |
509 | \f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f] |
510 | and \f$N\f$ is a total number of histogram bins. */ |
511 | HISTCMP_CORREL = 0, |
512 | /** Chi-Square |
513 | \f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */ |
514 | HISTCMP_CHISQR = 1, |
515 | /** Intersection |
516 | \f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */ |
517 | HISTCMP_INTERSECT = 2, |
518 | /** Bhattacharyya distance |
519 | (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.) |
520 | \f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */ |
521 | HISTCMP_BHATTACHARYYA = 3, |
522 | HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA |
523 | /** Alternative Chi-Square |
524 | \f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f] |
525 | This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */ |
526 | HISTCMP_CHISQR_ALT = 4, |
527 | /** Kullback-Leibler divergence |
528 | \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */ |
529 | HISTCMP_KL_DIV = 5 |
530 | }; |
531 | |
532 | /** the color conversion codes |
533 | @see @ref imgproc_color_conversions |
534 | @ingroup imgproc_color_conversions |
535 | */ |
536 | enum ColorConversionCodes { |
537 | COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image |
538 | COLOR_RGB2RGBA = COLOR_BGR2BGRA, |
539 | |
540 | COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image |
541 | COLOR_RGBA2RGB = COLOR_BGRA2BGR, |
542 | |
543 | COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel) |
544 | COLOR_RGB2BGRA = COLOR_BGR2RGBA, |
545 | |
546 | COLOR_RGBA2BGR = 3, |
547 | COLOR_BGRA2RGB = COLOR_RGBA2BGR, |
548 | |
549 | COLOR_BGR2RGB = 4, |
550 | COLOR_RGB2BGR = COLOR_BGR2RGB, |
551 | |
552 | COLOR_BGRA2RGBA = 5, |
553 | COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, |
554 | |
555 | COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions" |
556 | COLOR_RGB2GRAY = 7, |
557 | COLOR_GRAY2BGR = 8, |
558 | COLOR_GRAY2RGB = COLOR_GRAY2BGR, |
559 | COLOR_GRAY2BGRA = 9, |
560 | COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, |
561 | COLOR_BGRA2GRAY = 10, |
562 | COLOR_RGBA2GRAY = 11, |
563 | |
564 | COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images) |
565 | COLOR_RGB2BGR565 = 13, |
566 | COLOR_BGR5652BGR = 14, |
567 | COLOR_BGR5652RGB = 15, |
568 | COLOR_BGRA2BGR565 = 16, |
569 | COLOR_RGBA2BGR565 = 17, |
570 | COLOR_BGR5652BGRA = 18, |
571 | COLOR_BGR5652RGBA = 19, |
572 | |
573 | COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images) |
574 | COLOR_BGR5652GRAY = 21, |
575 | |
576 | COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images) |
577 | COLOR_RGB2BGR555 = 23, |
578 | COLOR_BGR5552BGR = 24, |
579 | COLOR_BGR5552RGB = 25, |
580 | COLOR_BGRA2BGR555 = 26, |
581 | COLOR_RGBA2BGR555 = 27, |
582 | COLOR_BGR5552BGRA = 28, |
583 | COLOR_BGR5552RGBA = 29, |
584 | |
585 | COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images) |
586 | COLOR_BGR5552GRAY = 31, |
587 | |
588 | COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions" |
589 | COLOR_RGB2XYZ = 33, |
590 | COLOR_XYZ2BGR = 34, |
591 | COLOR_XYZ2RGB = 35, |
592 | |
593 | COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions" |
594 | COLOR_RGB2YCrCb = 37, |
595 | COLOR_YCrCb2BGR = 38, |
596 | COLOR_YCrCb2RGB = 39, |
597 | |
598 | COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions" |
599 | COLOR_RGB2HSV = 41, |
600 | |
601 | COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions" |
602 | COLOR_RGB2Lab = 45, |
603 | |
604 | COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions" |
605 | COLOR_RGB2Luv = 51, |
606 | COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions" |
607 | COLOR_RGB2HLS = 53, |
608 | |
609 | COLOR_HSV2BGR = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image |
610 | COLOR_HSV2RGB = 55, |
611 | |
612 | COLOR_Lab2BGR = 56, |
613 | COLOR_Lab2RGB = 57, |
614 | COLOR_Luv2BGR = 58, |
615 | COLOR_Luv2RGB = 59, |
616 | COLOR_HLS2BGR = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image |
617 | COLOR_HLS2RGB = 61, |
618 | |
619 | COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions" |
620 | COLOR_RGB2HSV_FULL = 67, |
621 | COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions" |
622 | COLOR_RGB2HLS_FULL = 69, |
623 | |
624 | COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image |
625 | COLOR_HSV2RGB_FULL = 71, |
626 | COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image |
627 | COLOR_HLS2RGB_FULL = 73, |
628 | |
629 | COLOR_LBGR2Lab = 74, |
630 | COLOR_LRGB2Lab = 75, |
631 | COLOR_LBGR2Luv = 76, |
632 | COLOR_LRGB2Luv = 77, |
633 | |
634 | COLOR_Lab2LBGR = 78, |
635 | COLOR_Lab2LRGB = 79, |
636 | COLOR_Luv2LBGR = 80, |
637 | COLOR_Luv2LRGB = 81, |
638 | |
639 | COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV |
640 | COLOR_RGB2YUV = 83, |
641 | COLOR_YUV2BGR = 84, |
642 | COLOR_YUV2RGB = 85, |
643 | |
644 | COLOR_YUV2RGB_NV12 = 90, //!< convert between 4:2:0-subsampled YUV NV12 and RGB, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x |
645 | COLOR_YUV2BGR_NV12 = 91, //!< convert between 4:2:0-subsampled YUV NV12 and BGR, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x |
646 | COLOR_YUV2RGB_NV21 = 92, //!< convert between 4:2:0-subsampled YUV NV21 and RGB, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x |
647 | COLOR_YUV2BGR_NV21 = 93, //!< convert between 4:2:0-subsampled YUV NV21 and BGR, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x |
648 | COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, //!< synonym to NV21 |
649 | COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, //!< synonym to NV21 |
650 | |
651 | COLOR_YUV2RGBA_NV12 = 94, //!< convert between 4:2:0-subsampled YUV NV12 and RGBA, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x |
652 | COLOR_YUV2BGRA_NV12 = 95, //!< convert between 4:2:0-subsampled YUV NV12 and BGRA, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x |
653 | COLOR_YUV2RGBA_NV21 = 96, //!< convert between 4:2:0-subsampled YUV NV21 and RGBA, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x |
654 | COLOR_YUV2BGRA_NV21 = 97, //!< convert between 4:2:0-subsampled YUV NV21 and BGRA, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x |
655 | COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, //!< synonym to NV21 |
656 | COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, //!< synonym to NV21 |
657 | |
658 | COLOR_YUV2RGB_YV12 = 98, //!< convert between 4:2:0-subsampled YUV YV12 and RGB, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
659 | COLOR_YUV2BGR_YV12 = 99, //!< convert between 4:2:0-subsampled YUV YV12 and BGR, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
660 | COLOR_YUV2RGB_IYUV = 100, //!< convert between 4:2:0-subsampled YUV IYUV and RGB, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
661 | COLOR_YUV2BGR_IYUV = 101, //!< convert between 4:2:0-subsampled YUV IYUV and BGR, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
662 | COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, //!< synonym to IYUV |
663 | COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, //!< synonym to IYUV |
664 | COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, //!< synonym to YV12 |
665 | COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, //!< synonym to YV12 |
666 | |
667 | COLOR_YUV2RGBA_YV12 = 102, //!< convert between 4:2:0-subsampled YUV YV12 and RGBA, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
668 | COLOR_YUV2BGRA_YV12 = 103, //!< convert between 4:2:0-subsampled YUV YV12 and BGRA, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
669 | COLOR_YUV2RGBA_IYUV = 104, //!< convert between 4:2:0-subsampled YUV YV12 and RGBA, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
670 | COLOR_YUV2BGRA_IYUV = 105, //!< convert between 4:2:0-subsampled YUV YV12 and BGRA, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
671 | COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, //!< synonym to IYUV |
672 | COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, //!< synonym to IYUV |
673 | COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, //!< synonym to YV12 |
674 | COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, //!< synonym to YV12 |
675 | |
676 | COLOR_YUV2GRAY_420 = 106, //!< extract Y channel from YUV 4:2:0 image |
677 | COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
678 | COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
679 | COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
680 | COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
681 | COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
682 | COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
683 | COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420 |
684 | |
685 | COLOR_YUV2RGB_UYVY = 107, //!< convert between YUV UYVY and RGB, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
686 | COLOR_YUV2BGR_UYVY = 108, //!< convert between YUV UYVY and BGR, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
687 | //COLOR_YUV2RGB_VYUY = 109, //!< convert between YUV VYUY and RGB, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x |
688 | //COLOR_YUV2BGR_VYUY = 110, //!< convert between YUV VYUY and BGR, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x |
689 | COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, //!< synonym to UYVY |
690 | COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, //!< synonym to UYVY |
691 | COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, //!< synonym to UYVY |
692 | COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, //!< synonym to UYVY |
693 | |
694 | COLOR_YUV2RGBA_UYVY = 111, //!< convert between YUV UYVY and RGBA, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
695 | COLOR_YUV2BGRA_UYVY = 112, //!< convert between YUV UYVY and BGRA, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
696 | //COLOR_YUV2RGBA_VYUY = 113, //!< convert between YUV VYUY and RGBA, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x |
697 | //COLOR_YUV2BGRA_VYUY = 114, //!< convert between YUV VYUY and BGRA, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x |
698 | COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, //!< synonym to UYVY |
699 | COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, //!< synonym to UYVY |
700 | COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, //!< synonym to UYVY |
701 | COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, //!< synonym to UYVY |
702 | |
703 | COLOR_YUV2RGB_YUY2 = 115, //!< convert between YUV YUY2 and RGB, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
704 | COLOR_YUV2BGR_YUY2 = 116, //!< convert between YUV YUY2 and BGR, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
705 | COLOR_YUV2RGB_YVYU = 117, //!< convert between YUV YVYU and RGB, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
706 | COLOR_YUV2BGR_YVYU = 118, //!< convert between YUV YVYU and BGR, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
707 | COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, //!< synonym to YUY2 |
708 | COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, //!< synonym to YUY2 |
709 | COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, //!< synonym to YUY2 |
710 | COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, //!< synonym to YUY2 |
711 | |
712 | COLOR_YUV2RGBA_YUY2 = 119, //!< convert between YUV YUY2 and RGBA, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
713 | COLOR_YUV2BGRA_YUY2 = 120, //!< convert between YUV YUY2 and BGRA, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
714 | COLOR_YUV2RGBA_YVYU = 121, //!< convert between YUV YVYU and RGBA, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
715 | COLOR_YUV2BGRA_YVYU = 122, //!< convert between YUV YVYU and BGRA, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
716 | COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, //!< synonym to YUY2 |
717 | COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, //!< synonym to YUY2 |
718 | COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, //!< synonym to YUY2 |
719 | COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, //!< synonym to YUY2 |
720 | |
721 | COLOR_YUV2GRAY_UYVY = 123, //!< extract Y channel from YUV 4:2:2 image |
722 | COLOR_YUV2GRAY_YUY2 = 124, //!< extract Y channel from YUV 4:2:2 image |
723 | //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY |
724 | COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY |
725 | COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY |
726 | COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2 |
727 | COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2 |
728 | COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2 |
729 | |
730 | //! alpha premultiplication |
731 | COLOR_RGBA2mRGBA = 125, |
732 | COLOR_mRGBA2RGBA = 126, |
733 | |
734 | COLOR_RGB2YUV_I420 = 127, //!< convert between RGB and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
735 | COLOR_BGR2YUV_I420 = 128, //!< convert between BGR and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
736 | COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, //!< synonym to I420 |
737 | COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, //!< synonym to I420 |
738 | |
739 | COLOR_RGBA2YUV_I420 = 129, //!< convert between RGBA and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
740 | COLOR_BGRA2YUV_I420 = 130, //!< convert between BGRA and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x |
741 | COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, //!< synonym to I420 |
742 | COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, //!< synonym to I420 |
743 | COLOR_RGB2YUV_YV12 = 131, //!< convert between RGB and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
744 | COLOR_BGR2YUV_YV12 = 132, //!< convert between BGR and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
745 | COLOR_RGBA2YUV_YV12 = 133, //!< convert between RGBA and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
746 | COLOR_BGRA2YUV_YV12 = 134, //!< convert between BGRA and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x |
747 | |
748 | //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information |
749 | COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern |
750 | COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern |
751 | COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern |
752 | COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern |
753 | |
754 | COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR, |
755 | COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR, |
756 | COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR, |
757 | COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR, |
758 | |
759 | COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR, |
760 | COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR, |
761 | COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR, |
762 | COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR, |
763 | |
764 | COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern |
765 | COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern |
766 | COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern |
767 | COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern |
768 | |
769 | COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern |
770 | COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern |
771 | COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern |
772 | COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern |
773 | |
774 | COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY, |
775 | COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY, |
776 | COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY, |
777 | COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY, |
778 | |
779 | //! Demosaicing using Variable Number of Gradients |
780 | COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern |
781 | COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern |
782 | COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern |
783 | COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern |
784 | |
785 | COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG, |
786 | COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG, |
787 | COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG, |
788 | COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG, |
789 | |
790 | COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG, |
791 | COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG, |
792 | COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG, |
793 | COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG, |
794 | |
795 | COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern |
796 | COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern |
797 | COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern |
798 | COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern |
799 | |
800 | //! Edge-Aware Demosaicing |
801 | COLOR_BayerBG2BGR_EA = 135, //!< equivalent to RGGB Bayer pattern |
802 | COLOR_BayerGB2BGR_EA = 136, //!< equivalent to GRBG Bayer pattern |
803 | COLOR_BayerRG2BGR_EA = 137, //!< equivalent to BGGR Bayer pattern |
804 | COLOR_BayerGR2BGR_EA = 138, //!< equivalent to GBRG Bayer pattern |
805 | |
806 | COLOR_BayerRGGB2BGR_EA = COLOR_BayerBG2BGR_EA, |
807 | COLOR_BayerGRBG2BGR_EA = COLOR_BayerGB2BGR_EA, |
808 | COLOR_BayerBGGR2BGR_EA = COLOR_BayerRG2BGR_EA, |
809 | COLOR_BayerGBRG2BGR_EA = COLOR_BayerGR2BGR_EA, |
810 | |
811 | COLOR_BayerRGGB2RGB_EA = COLOR_BayerBGGR2BGR_EA, |
812 | COLOR_BayerGRBG2RGB_EA = COLOR_BayerGBRG2BGR_EA, |
813 | COLOR_BayerBGGR2RGB_EA = COLOR_BayerRGGB2BGR_EA, |
814 | COLOR_BayerGBRG2RGB_EA = COLOR_BayerGRBG2BGR_EA, |
815 | |
816 | COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern |
817 | COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern |
818 | COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern |
819 | COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern |
820 | |
821 | //! Demosaicing with alpha channel |
822 | COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern |
823 | COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern |
824 | COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern |
825 | COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern |
826 | |
827 | COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA, |
828 | COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA, |
829 | COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA, |
830 | COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA, |
831 | |
832 | COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA, |
833 | COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA, |
834 | COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA, |
835 | COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA, |
836 | |
837 | COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern |
838 | COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern |
839 | COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern |
840 | COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern |
841 | |
842 | COLOR_RGB2YUV_UYVY = 143, //!< convert between RGB and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
843 | COLOR_BGR2YUV_UYVY = 144, //!< convert between BGR and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
844 | COLOR_RGB2YUV_Y422 = COLOR_RGB2YUV_UYVY, //!< synonym to UYVY |
845 | COLOR_BGR2YUV_Y422 = COLOR_BGR2YUV_UYVY, //!< synonym to UYVY |
846 | COLOR_RGB2YUV_UYNV = COLOR_RGB2YUV_UYVY, //!< synonym to UYVY |
847 | COLOR_BGR2YUV_UYNV = COLOR_BGR2YUV_UYVY, //!< synonym to UYVY |
848 | |
849 | COLOR_RGBA2YUV_UYVY = 145, //!< convert between RGBA and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
850 | COLOR_BGRA2YUV_UYVY = 146, //!< convert between BGRA and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x |
851 | COLOR_RGBA2YUV_Y422 = COLOR_RGBA2YUV_UYVY, //!< synonym to UYVY |
852 | COLOR_BGRA2YUV_Y422 = COLOR_BGRA2YUV_UYVY, //!< synonym to UYVY |
853 | COLOR_RGBA2YUV_UYNV = COLOR_RGBA2YUV_UYVY, //!< synonym to UYVY |
854 | COLOR_BGRA2YUV_UYNV = COLOR_BGRA2YUV_UYVY, //!< synonym to UYVY |
855 | |
856 | COLOR_RGB2YUV_YUY2 = 147, //!< convert between RGB and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
857 | COLOR_BGR2YUV_YUY2 = 148, //!< convert between BGR and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
858 | COLOR_RGB2YUV_YVYU = 149, //!< convert between RGB and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
859 | COLOR_BGR2YUV_YVYU = 150, //!< convert between BGR and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
860 | COLOR_RGB2YUV_YUYV = COLOR_RGB2YUV_YUY2, //!< synonym to YUY2 |
861 | COLOR_BGR2YUV_YUYV = COLOR_BGR2YUV_YUY2, //!< synonym to YUY2 |
862 | COLOR_RGB2YUV_YUNV = COLOR_RGB2YUV_YUY2, //!< synonym to YUY2 |
863 | COLOR_BGR2YUV_YUNV = COLOR_BGR2YUV_YUY2, //!< synonym to YUY2 |
864 | |
865 | COLOR_RGBA2YUV_YUY2 = 151, //!< convert between RGBA and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
866 | COLOR_BGRA2YUV_YUY2 = 152, //!< convert between BGRA and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x |
867 | COLOR_RGBA2YUV_YVYU = 153, //!< convert between RGBA and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
868 | COLOR_BGRA2YUV_YVYU = 154, //!< convert between BGRA and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x |
869 | COLOR_RGBA2YUV_YUYV = COLOR_RGBA2YUV_YUY2, //!< synonym to YUY2 |
870 | COLOR_BGRA2YUV_YUYV = COLOR_BGRA2YUV_YUY2, //!< synonym to YUY2 |
871 | COLOR_RGBA2YUV_YUNV = COLOR_RGBA2YUV_YUY2, //!< synonym to YUY2 |
872 | COLOR_BGRA2YUV_YUNV = COLOR_BGRA2YUV_YUY2, //!< synonym to YUY2 |
873 | |
874 | COLOR_COLORCVT_MAX = 155 |
875 | }; |
876 | |
877 | //! @addtogroup imgproc_shape |
878 | //! @{ |
879 | |
880 | //! types of intersection between rectangles |
881 | enum RectanglesIntersectTypes { |
882 | INTERSECT_NONE = 0, //!< No intersection |
883 | INTERSECT_PARTIAL = 1, //!< There is a partial intersection |
884 | INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other |
885 | }; |
886 | |
887 | /** types of line |
888 | @ingroup imgproc_draw |
889 | */ |
890 | enum LineTypes { |
891 | FILLED = -1, |
892 | LINE_4 = 4, //!< 4-connected line |
893 | LINE_8 = 8, //!< 8-connected line |
894 | LINE_AA = 16 //!< antialiased line |
895 | }; |
896 | |
897 | /** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported |
898 | @ingroup imgproc_draw |
899 | */ |
900 | enum HersheyFonts { |
901 | FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font |
902 | FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font |
903 | FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX) |
904 | FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font |
905 | FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX) |
906 | FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX |
907 | FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font |
908 | FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX |
909 | FONT_ITALIC = 16 //!< flag for italic font |
910 | }; |
911 | |
912 | /** Possible set of marker types used for the cv::drawMarker function |
913 | @ingroup imgproc_draw |
914 | */ |
915 | enum MarkerTypes |
916 | { |
917 | MARKER_CROSS = 0, //!< A crosshair marker shape |
918 | MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape |
919 | MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross |
920 | MARKER_DIAMOND = 3, //!< A diamond marker shape |
921 | MARKER_SQUARE = 4, //!< A square marker shape |
922 | MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape |
923 | MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape |
924 | }; |
925 | |
926 | /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform |
927 | */ |
928 | class CV_EXPORTS_W GeneralizedHough : public Algorithm |
929 | { |
930 | public: |
931 | //! set template to search |
932 | CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0; |
933 | CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0; |
934 | |
935 | //! find template on image |
936 | CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0; |
937 | CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0; |
938 | |
939 | //! Canny low threshold. |
940 | CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0; |
941 | CV_WRAP virtual int getCannyLowThresh() const = 0; |
942 | |
943 | //! Canny high threshold. |
944 | CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0; |
945 | CV_WRAP virtual int getCannyHighThresh() const = 0; |
946 | |
947 | //! Minimum distance between the centers of the detected objects. |
948 | CV_WRAP virtual void setMinDist(double minDist) = 0; |
949 | CV_WRAP virtual double getMinDist() const = 0; |
950 | |
951 | //! Inverse ratio of the accumulator resolution to the image resolution. |
952 | CV_WRAP virtual void setDp(double dp) = 0; |
953 | CV_WRAP virtual double getDp() const = 0; |
954 | |
955 | //! Maximal size of inner buffers. |
956 | CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0; |
957 | CV_WRAP virtual int getMaxBufferSize() const = 0; |
958 | }; |
959 | |
960 | /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform |
961 | |
962 | Detects position only without translation and rotation @cite Ballard1981 . |
963 | */ |
964 | class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough |
965 | { |
966 | public: |
967 | //! R-Table levels. |
968 | CV_WRAP virtual void setLevels(int levels) = 0; |
969 | CV_WRAP virtual int getLevels() const = 0; |
970 | |
971 | //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected. |
972 | CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0; |
973 | CV_WRAP virtual int getVotesThreshold() const = 0; |
974 | }; |
975 | |
976 | /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform |
977 | |
978 | Detects position, translation and rotation @cite Guil1999 . |
979 | */ |
980 | class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough |
981 | { |
982 | public: |
983 | //! Angle difference in degrees between two points in feature. |
984 | CV_WRAP virtual void setXi(double xi) = 0; |
985 | CV_WRAP virtual double getXi() const = 0; |
986 | |
987 | //! Feature table levels. |
988 | CV_WRAP virtual void setLevels(int levels) = 0; |
989 | CV_WRAP virtual int getLevels() const = 0; |
990 | |
991 | //! Maximal difference between angles that treated as equal. |
992 | CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0; |
993 | CV_WRAP virtual double getAngleEpsilon() const = 0; |
994 | |
995 | //! Minimal rotation angle to detect in degrees. |
996 | CV_WRAP virtual void setMinAngle(double minAngle) = 0; |
997 | CV_WRAP virtual double getMinAngle() const = 0; |
998 | |
999 | //! Maximal rotation angle to detect in degrees. |
1000 | CV_WRAP virtual void setMaxAngle(double maxAngle) = 0; |
1001 | CV_WRAP virtual double getMaxAngle() const = 0; |
1002 | |
1003 | //! Angle step in degrees. |
1004 | CV_WRAP virtual void setAngleStep(double angleStep) = 0; |
1005 | CV_WRAP virtual double getAngleStep() const = 0; |
1006 | |
1007 | //! Angle votes threshold. |
1008 | CV_WRAP virtual void setAngleThresh(int angleThresh) = 0; |
1009 | CV_WRAP virtual int getAngleThresh() const = 0; |
1010 | |
1011 | //! Minimal scale to detect. |
1012 | CV_WRAP virtual void setMinScale(double minScale) = 0; |
1013 | CV_WRAP virtual double getMinScale() const = 0; |
1014 | |
1015 | //! Maximal scale to detect. |
1016 | CV_WRAP virtual void setMaxScale(double maxScale) = 0; |
1017 | CV_WRAP virtual double getMaxScale() const = 0; |
1018 | |
1019 | //! Scale step. |
1020 | CV_WRAP virtual void setScaleStep(double scaleStep) = 0; |
1021 | CV_WRAP virtual double getScaleStep() const = 0; |
1022 | |
1023 | //! Scale votes threshold. |
1024 | CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0; |
1025 | CV_WRAP virtual int getScaleThresh() const = 0; |
1026 | |
1027 | //! Position votes threshold. |
1028 | CV_WRAP virtual void setPosThresh(int posThresh) = 0; |
1029 | CV_WRAP virtual int getPosThresh() const = 0; |
1030 | }; |
1031 | |
1032 | //! @} imgproc_shape |
1033 | |
1034 | //! @addtogroup imgproc_hist |
1035 | //! @{ |
1036 | |
1037 | /** @brief Base class for Contrast Limited Adaptive Histogram Equalization. |
1038 | */ |
1039 | class CV_EXPORTS_W CLAHE : public Algorithm |
1040 | { |
1041 | public: |
1042 | /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization. |
1043 | |
1044 | @param src Source image of type CV_8UC1 or CV_16UC1. |
1045 | @param dst Destination image. |
1046 | */ |
1047 | CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0; |
1048 | |
1049 | /** @brief Sets threshold for contrast limiting. |
1050 | |
1051 | @param clipLimit threshold value. |
1052 | */ |
1053 | CV_WRAP virtual void setClipLimit(double clipLimit) = 0; |
1054 | |
1055 | //! Returns threshold value for contrast limiting. |
1056 | CV_WRAP virtual double getClipLimit() const = 0; |
1057 | |
1058 | /** @brief Sets size of grid for histogram equalization. Input image will be divided into |
1059 | equally sized rectangular tiles. |
1060 | |
1061 | @param tileGridSize defines the number of tiles in row and column. |
1062 | */ |
1063 | CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0; |
1064 | |
1065 | //!@brief Returns Size defines the number of tiles in row and column. |
1066 | CV_WRAP virtual Size getTilesGridSize() const = 0; |
1067 | |
1068 | CV_WRAP virtual void collectGarbage() = 0; |
1069 | }; |
1070 | |
1071 | //! @} imgproc_hist |
1072 | |
1073 | //! @addtogroup imgproc_subdiv2d |
1074 | //! @{ |
1075 | |
1076 | class CV_EXPORTS_W Subdiv2D |
1077 | { |
1078 | public: |
1079 | /** Subdiv2D point location cases */ |
1080 | enum { PTLOC_ERROR = -2, //!< Point location error |
1081 | PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect |
1082 | PTLOC_INSIDE = 0, //!< Point inside some facet |
1083 | PTLOC_VERTEX = 1, //!< Point coincides with one of the subdivision vertices |
1084 | PTLOC_ON_EDGE = 2 //!< Point on some edge |
1085 | }; |
1086 | |
1087 | /** Subdiv2D edge type navigation (see: getEdge()) */ |
1088 | enum { NEXT_AROUND_ORG = 0x00, |
1089 | NEXT_AROUND_DST = 0x22, |
1090 | PREV_AROUND_ORG = 0x11, |
1091 | PREV_AROUND_DST = 0x33, |
1092 | NEXT_AROUND_LEFT = 0x13, |
1093 | NEXT_AROUND_RIGHT = 0x31, |
1094 | PREV_AROUND_LEFT = 0x20, |
1095 | PREV_AROUND_RIGHT = 0x02 |
1096 | }; |
1097 | |
1098 | /** creates an empty Subdiv2D object. |
1099 | To create a new empty Delaunay subdivision you need to use the #initDelaunay function. |
1100 | */ |
1101 | CV_WRAP Subdiv2D(); |
1102 | |
1103 | /** @overload |
1104 | |
1105 | @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision. |
1106 | |
1107 | The function creates an empty Delaunay subdivision where 2D points can be added using the function |
1108 | insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime |
1109 | error is raised. |
1110 | */ |
1111 | CV_WRAP Subdiv2D(Rect rect); |
1112 | |
1113 | /** @brief Creates a new empty Delaunay subdivision |
1114 | |
1115 | @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision. |
1116 | |
1117 | */ |
1118 | CV_WRAP void initDelaunay(Rect rect); |
1119 | |
1120 | /** @brief Insert a single point into a Delaunay triangulation. |
1121 | |
1122 | @param pt Point to insert. |
1123 | |
1124 | The function inserts a single point into a subdivision and modifies the subdivision topology |
1125 | appropriately. If a point with the same coordinates exists already, no new point is added. |
1126 | @returns the ID of the point. |
1127 | |
1128 | @note If the point is outside of the triangulation specified rect a runtime error is raised. |
1129 | */ |
1130 | CV_WRAP int insert(Point2f pt); |
1131 | |
1132 | /** @brief Insert multiple points into a Delaunay triangulation. |
1133 | |
1134 | @param ptvec Points to insert. |
1135 | |
1136 | The function inserts a vector of points into a subdivision and modifies the subdivision topology |
1137 | appropriately. |
1138 | */ |
1139 | CV_WRAP void insert(const std::vector<Point2f>& ptvec); |
1140 | |
1141 | /** @brief Returns the location of a point within a Delaunay triangulation. |
1142 | |
1143 | @param pt Point to locate. |
1144 | @param edge Output edge that the point belongs to or is located to the right of it. |
1145 | @param vertex Optional output vertex the input point coincides with. |
1146 | |
1147 | The function locates the input point within the subdivision and gives one of the triangle edges |
1148 | or vertices. |
1149 | |
1150 | @returns an integer which specify one of the following five cases for point location: |
1151 | - The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of |
1152 | edges of the facet. |
1153 | - The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge. |
1154 | - The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and |
1155 | vertex will contain a pointer to the vertex. |
1156 | - The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT |
1157 | and no pointers are filled. |
1158 | - One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error |
1159 | processing mode is selected, #PTLOC_ERROR is returned. |
1160 | */ |
1161 | CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); |
1162 | |
1163 | /** @brief Finds the subdivision vertex closest to the given point. |
1164 | |
1165 | @param pt Input point. |
1166 | @param nearestPt Output subdivision vertex point. |
1167 | |
1168 | The function is another function that locates the input point within the subdivision. It finds the |
1169 | subdivision vertex that is the closest to the input point. It is not necessarily one of vertices |
1170 | of the facet containing the input point, though the facet (located using locate() ) is used as a |
1171 | starting point. |
1172 | |
1173 | @returns vertex ID. |
1174 | */ |
1175 | CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0); |
1176 | |
1177 | /** @brief Returns a list of all edges. |
1178 | |
1179 | @param edgeList Output vector. |
1180 | |
1181 | The function gives each edge as a 4 numbers vector, where each two are one of the edge |
1182 | vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3]. |
1183 | */ |
1184 | CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const; |
1185 | |
1186 | /** @brief Returns a list of the leading edge ID connected to each triangle. |
1187 | |
1188 | @param leadingEdgeList Output vector. |
1189 | |
1190 | The function gives one edge ID for each triangle. |
1191 | */ |
1192 | CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const; |
1193 | |
1194 | /** @brief Returns a list of all triangles. |
1195 | |
1196 | @param triangleList Output vector. |
1197 | |
1198 | The function gives each triangle as a 6 numbers vector, where each two are one of the triangle |
1199 | vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5]. |
1200 | */ |
1201 | CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const; |
1202 | |
1203 | /** @brief Returns a list of all Voronoi facets. |
1204 | |
1205 | @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector. |
1206 | @param facetList Output vector of the Voronoi facets. |
1207 | @param facetCenters Output vector of the Voronoi facets center points. |
1208 | |
1209 | */ |
1210 | CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList, |
1211 | CV_OUT std::vector<Point2f>& facetCenters); |
1212 | |
1213 | /** @brief Returns vertex location from vertex ID. |
1214 | |
1215 | @param vertex vertex ID. |
1216 | @param firstEdge Optional. The first edge ID which is connected to the vertex. |
1217 | @returns vertex (x,y) |
1218 | |
1219 | */ |
1220 | CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const; |
1221 | |
1222 | /** @brief Returns one of the edges related to the given edge. |
1223 | |
1224 | @param edge Subdivision edge ID. |
1225 | @param nextEdgeType Parameter specifying which of the related edges to return. |
1226 | The following values are possible: |
1227 | - NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge) |
1228 | - NEXT_AROUND_DST next around the edge vertex ( eDnext ) |
1229 | - PREV_AROUND_ORG previous around the edge origin (reversed eRnext ) |
1230 | - PREV_AROUND_DST previous around the edge destination (reversed eLnext ) |
1231 | - NEXT_AROUND_LEFT next around the left facet ( eLnext ) |
1232 | - NEXT_AROUND_RIGHT next around the right facet ( eRnext ) |
1233 | - PREV_AROUND_LEFT previous around the left facet (reversed eOnext ) |
1234 | - PREV_AROUND_RIGHT previous around the right facet (reversed eDnext ) |
1235 | |
1236 |  |
1237 | |
1238 | @returns edge ID related to the input edge. |
1239 | */ |
1240 | CV_WRAP int getEdge( int edge, int nextEdgeType ) const; |
1241 | |
1242 | /** @brief Returns next edge around the edge origin. |
1243 | |
1244 | @param edge Subdivision edge ID. |
1245 | |
1246 | @returns an integer which is next edge ID around the edge origin: eOnext on the |
1247 | picture above if e is the input edge). |
1248 | */ |
1249 | CV_WRAP int nextEdge(int edge) const; |
1250 | |
1251 | /** @brief Returns another edge of the same quad-edge. |
1252 | |
1253 | @param edge Subdivision edge ID. |
1254 | @param rotate Parameter specifying which of the edges of the same quad-edge as the input |
1255 | one to return. The following values are possible: |
1256 | - 0 - the input edge ( e on the picture below if e is the input edge) |
1257 | - 1 - the rotated edge ( eRot ) |
1258 | - 2 - the reversed edge (reversed e (in green)) |
1259 | - 3 - the reversed rotated edge (reversed eRot (in green)) |
1260 | |
1261 | @returns one of the edges ID of the same quad-edge as the input edge. |
1262 | */ |
1263 | CV_WRAP int rotateEdge(int edge, int rotate) const; |
1264 | CV_WRAP int symEdge(int edge) const; |
1265 | |
1266 | /** @brief Returns the edge origin. |
1267 | |
1268 | @param edge Subdivision edge ID. |
1269 | @param orgpt Output vertex location. |
1270 | |
1271 | @returns vertex ID. |
1272 | */ |
1273 | CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const; |
1274 | |
1275 | /** @brief Returns the edge destination. |
1276 | |
1277 | @param edge Subdivision edge ID. |
1278 | @param dstpt Output vertex location. |
1279 | |
1280 | @returns vertex ID. |
1281 | */ |
1282 | CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const; |
1283 | |
1284 | protected: |
1285 | int newEdge(); |
1286 | void deleteEdge(int edge); |
1287 | int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0); |
1288 | void deletePoint(int vtx); |
1289 | void setEdgePoints( int edge, int orgPt, int dstPt ); |
1290 | void splice( int edgeA, int edgeB ); |
1291 | int connectEdges( int edgeA, int edgeB ); |
1292 | void swapEdges( int edge ); |
1293 | int isRightOf(Point2f pt, int edge) const; |
1294 | void calcVoronoi(); |
1295 | void clearVoronoi(); |
1296 | void checkSubdiv() const; |
1297 | |
1298 | struct CV_EXPORTS Vertex |
1299 | { |
1300 | Vertex(); |
1301 | Vertex(Point2f pt, bool isvirtual, int firstEdge=0); |
1302 | bool isvirtual() const; |
1303 | bool isfree() const; |
1304 | |
1305 | int firstEdge; |
1306 | int type; |
1307 | Point2f pt; |
1308 | }; |
1309 | |
1310 | struct CV_EXPORTS QuadEdge |
1311 | { |
1312 | QuadEdge(); |
1313 | QuadEdge(int edgeidx); |
1314 | bool isfree() const; |
1315 | |
1316 | int next[4]; |
1317 | int pt[4]; |
1318 | }; |
1319 | |
1320 | //! All of the vertices |
1321 | std::vector<Vertex> vtx; |
1322 | //! All of the edges |
1323 | std::vector<QuadEdge> qedges; |
1324 | int freeQEdge; |
1325 | int freePoint; |
1326 | bool validGeometry; |
1327 | |
1328 | int recentEdge; |
1329 | //! Top left corner of the bounding rect |
1330 | Point2f topLeft; |
1331 | //! Bottom right corner of the bounding rect |
1332 | Point2f bottomRight; |
1333 | }; |
1334 | |
1335 | //! @} imgproc_subdiv2d |
1336 | |
1337 | //! @addtogroup imgproc_feature |
1338 | //! @{ |
1339 | |
1340 | /** @example samples/cpp/lsd_lines.cpp |
1341 | An example using the LineSegmentDetector |
1342 | \image html building_lsd.png "Sample output image" width=434 height=300 |
1343 | */ |
1344 | |
1345 | /** @brief Line segment detector class |
1346 | |
1347 | following the algorithm described at @cite Rafael12 . |
1348 | |
1349 | @note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict. |
1350 | restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license. |
1351 | */ |
1352 | class CV_EXPORTS_W LineSegmentDetector : public Algorithm |
1353 | { |
1354 | public: |
1355 | |
1356 | /** @brief Finds lines in the input image. |
1357 | |
1358 | This is the output of the default parameters of the algorithm on the above shown image. |
1359 | |
1360 |  |
1361 | |
1362 | @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: |
1363 | `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);` |
1364 | @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where |
1365 | Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly |
1366 | oriented depending on the gradient. |
1367 | @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. |
1368 | @param prec Vector of precisions with which the lines are found. |
1369 | @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The |
1370 | bigger the value, logarithmically better the detection. |
1371 | - -1 corresponds to 10 mean false alarms |
1372 | - 0 corresponds to 1 mean false alarm |
1373 | - 1 corresponds to 0.1 mean false alarms |
1374 | This vector will be calculated only when the objects type is #LSD_REFINE_ADV. |
1375 | */ |
1376 | CV_WRAP virtual void detect(InputArray image, OutputArray lines, |
1377 | OutputArray width = noArray(), OutputArray prec = noArray(), |
1378 | OutputArray nfa = noArray()) = 0; |
1379 | |
1380 | /** @brief Draws the line segments on a given image. |
1381 | @param image The image, where the lines will be drawn. Should be bigger or equal to the image, |
1382 | where the lines were found. |
1383 | @param lines A vector of the lines that needed to be drawn. |
1384 | */ |
1385 | CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0; |
1386 | |
1387 | /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. |
1388 | |
1389 | @param size The size of the image, where lines1 and lines2 were found. |
1390 | @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. |
1391 | @param lines2 The second group of lines. They visualized in red color. |
1392 | @param image Optional image, where the lines will be drawn. The image should be color(3-channel) |
1393 | in order for lines1 and lines2 to be drawn in the above mentioned colors. |
1394 | */ |
1395 | CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0; |
1396 | |
1397 | virtual ~LineSegmentDetector() { } |
1398 | }; |
1399 | |
1400 | /** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it. |
1401 | |
1402 | The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want |
1403 | to edit those, as to tailor it for their own application. |
1404 | |
1405 | @param refine The way found lines will be refined, see #LineSegmentDetectorModes |
1406 | @param scale The scale of the image that will be used to find the lines. Range (0..1]. |
1407 | @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. |
1408 | @param quant Bound to the quantization error on the gradient norm. |
1409 | @param ang_th Gradient angle tolerance in degrees. |
1410 | @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen. |
1411 | @param density_th Minimal density of aligned region points in the enclosing rectangle. |
1412 | @param n_bins Number of bins in pseudo-ordering of gradient modulus. |
1413 | */ |
1414 | CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector( |
1415 | int refine = LSD_REFINE_STD, double scale = 0.8, |
1416 | double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, |
1417 | double log_eps = 0, double density_th = 0.7, int n_bins = 1024); |
1418 | |
1419 | //! @} imgproc_feature |
1420 | |
1421 | //! @addtogroup imgproc_filter |
1422 | //! @{ |
1423 | |
1424 | /** @brief Returns Gaussian filter coefficients. |
1425 | |
1426 | The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter |
1427 | coefficients: |
1428 | |
1429 | \f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f] |
1430 | |
1431 | where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$. |
1432 | |
1433 | Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize |
1434 | smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. |
1435 | You may also use the higher-level GaussianBlur. |
1436 | @param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive. |
1437 | @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as |
1438 | `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. |
1439 | @param ktype Type of filter coefficients. It can be CV_32F or CV_64F . |
1440 | @sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur |
1441 | */ |
1442 | CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F ); |
1443 | |
1444 | /** @brief Returns filter coefficients for computing spatial image derivatives. |
1445 | |
1446 | The function computes and returns the filter coefficients for spatial image derivatives. When |
1447 | `ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel |
1448 | kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to |
1449 | |
1450 | @param kx Output matrix of row filter coefficients. It has the type ktype . |
1451 | @param ky Output matrix of column filter coefficients. It has the type ktype . |
1452 | @param dx Derivative order in respect of x. |
1453 | @param dy Derivative order in respect of y. |
1454 | @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7. |
1455 | @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. |
1456 | Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are |
1457 | going to filter floating-point images, you are likely to use the normalized kernels. But if you |
1458 | compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve |
1459 | all the fractional bits, you may want to set normalize=false . |
1460 | @param ktype Type of filter coefficients. It can be CV_32f or CV_64F . |
1461 | */ |
1462 | CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, |
1463 | int dx, int dy, int ksize, |
1464 | bool normalize = false, int ktype = CV_32F ); |
1465 | |
1466 | /** @brief Returns Gabor filter coefficients. |
1467 | |
1468 | For more details about gabor filter equations and parameters, see: [Gabor |
1469 | Filter](http://en.wikipedia.org/wiki/Gabor_filter). |
1470 | |
1471 | @param ksize Size of the filter returned. |
1472 | @param sigma Standard deviation of the gaussian envelope. |
1473 | @param theta Orientation of the normal to the parallel stripes of a Gabor function. |
1474 | @param lambd Wavelength of the sinusoidal factor. |
1475 | @param gamma Spatial aspect ratio. |
1476 | @param psi Phase offset. |
1477 | @param ktype Type of filter coefficients. It can be CV_32F or CV_64F . |
1478 | */ |
1479 | CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, |
1480 | double gamma, double psi = CV_PI*0.5, int ktype = CV_64F ); |
1481 | |
1482 | //! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. |
1483 | static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } |
1484 | |
1485 | /** @brief Returns a structuring element of the specified size and shape for morphological operations. |
1486 | |
1487 | The function constructs and returns the structuring element that can be further passed to #erode, |
1488 | #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as |
1489 | the structuring element. |
1490 | |
1491 | @param shape Element shape that could be one of #MorphShapes |
1492 | @param ksize Size of the structuring element. |
1493 | @param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the |
1494 | anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor |
1495 | position. In other cases the anchor just regulates how much the result of the morphological |
1496 | operation is shifted. |
1497 | */ |
1498 | CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)); |
1499 | |
1500 | /** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp |
1501 | Sample code for simple filters |
1502 |  |
1503 | Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details |
1504 | */ |
1505 | |
1506 | /** @brief Blurs an image using the median filter. |
1507 | |
1508 | The function smoothes an image using the median filter with the \f$\texttt{ksize} \times |
1509 | \texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently. |
1510 | In-place operation is supported. |
1511 | |
1512 | @note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes |
1513 | |
1514 | @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be |
1515 | CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U. |
1516 | @param dst destination array of the same size and type as src. |
1517 | @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ... |
1518 | @sa bilateralFilter, blur, boxFilter, GaussianBlur |
1519 | */ |
1520 | CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); |
1521 | |
1522 | /** @brief Blurs an image using a Gaussian filter. |
1523 | |
1524 | The function convolves the source image with the specified Gaussian kernel. In-place filtering is |
1525 | supported. |
1526 | |
1527 | @param src input image; the image can have any number of channels, which are processed |
1528 | independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
1529 | @param dst output image of the same size and type as src. |
1530 | @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be |
1531 | positive and odd. Or, they can be zero's and then they are computed from sigma. |
1532 | @param sigmaX Gaussian kernel standard deviation in X direction. |
1533 | @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be |
1534 | equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, |
1535 | respectively (see #getGaussianKernel for details); to fully control the result regardless of |
1536 | possible future modifications of all this semantics, it is recommended to specify all of ksize, |
1537 | sigmaX, and sigmaY. |
1538 | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1539 | @param hint Implementation modfication flags. See #AlgorithmHint |
1540 | |
1541 | @sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur |
1542 | */ |
1543 | CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, |
1544 | double sigmaX, double sigmaY = 0, |
1545 | int borderType = BORDER_DEFAULT, |
1546 | AlgorithmHint hint = cv::ALGO_HINT_DEFAULT ); |
1547 | |
1548 | /** @brief Applies the bilateral filter to an image. |
1549 | |
1550 | The function applies bilateral filtering to the input image, as described in |
1551 | http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html |
1552 | bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is |
1553 | very slow compared to most filters. |
1554 | |
1555 | _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\< |
1556 | 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very |
1557 | strong effect, making the image look "cartoonish". |
1558 | |
1559 | _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time |
1560 | applications, and perhaps d=9 for offline applications that need heavy noise filtering. |
1561 | |
1562 | This filter does not work inplace. |
1563 | @param src Source 8-bit or floating-point, 1-channel or 3-channel image. |
1564 | @param dst Destination image of the same size and type as src . |
1565 | @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, |
1566 | it is computed from sigmaSpace. |
1567 | @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that |
1568 | farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting |
1569 | in larger areas of semi-equal color. |
1570 | @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that |
1571 | farther pixels will influence each other as long as their colors are close enough (see sigmaColor |
1572 | ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is |
1573 | proportional to sigmaSpace. |
1574 | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes |
1575 | */ |
1576 | CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, |
1577 | double sigmaColor, double sigmaSpace, |
1578 | int borderType = BORDER_DEFAULT ); |
1579 | |
1580 | /** @brief Blurs an image using the box filter. |
1581 | |
1582 | The function smooths an image using the kernel: |
1583 | |
1584 | \f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f] |
1585 | |
1586 | where |
1587 | |
1588 | \f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\f] |
1589 | |
1590 | Unnormalized box filter is useful for computing various integral characteristics over each pixel |
1591 | neighborhood, such as covariance matrices of image derivatives (used in dense optical flow |
1592 | algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. |
1593 | |
1594 | @param src input image. |
1595 | @param dst output image of the same size and type as src. |
1596 | @param ddepth the output image depth (-1 to use src.depth()). |
1597 | @param ksize blurring kernel size. |
1598 | @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel |
1599 | center. |
1600 | @param normalize flag, specifying whether the kernel is normalized by its area or not. |
1601 | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. |
1602 | @sa blur, bilateralFilter, GaussianBlur, medianBlur, integral |
1603 | */ |
1604 | CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, |
1605 | Size ksize, Point anchor = Point(-1,-1), |
1606 | bool normalize = true, |
1607 | int borderType = BORDER_DEFAULT ); |
1608 | |
1609 | /** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter. |
1610 | |
1611 | For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring |
1612 | pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$. |
1613 | |
1614 | The unnormalized square box filter can be useful in computing local image statistics such as the local |
1615 | variance and standard deviation around the neighborhood of a pixel. |
1616 | |
1617 | @param src input image |
1618 | @param dst output image of the same size and type as src |
1619 | @param ddepth the output image depth (-1 to use src.depth()) |
1620 | @param ksize kernel size |
1621 | @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel |
1622 | center. |
1623 | @param normalize flag, specifying whether the kernel is to be normalized by it's area or not. |
1624 | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. |
1625 | @sa boxFilter |
1626 | */ |
1627 | CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth, |
1628 | Size ksize, Point anchor = Point(-1, -1), |
1629 | bool normalize = true, |
1630 | int borderType = BORDER_DEFAULT ); |
1631 | |
1632 | /** @brief Blurs an image using the normalized box filter. |
1633 | |
1634 | The function smooths an image using the kernel: |
1635 | |
1636 | \f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f] |
1637 | |
1638 | The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize, |
1639 | anchor, true, borderType)`. |
1640 | |
1641 | @param src input image; it can have any number of channels, which are processed independently, but |
1642 | the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
1643 | @param dst output image of the same size and type as src. |
1644 | @param ksize blurring kernel size. |
1645 | @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel |
1646 | center. |
1647 | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. |
1648 | @sa boxFilter, bilateralFilter, GaussianBlur, medianBlur |
1649 | */ |
1650 | CV_EXPORTS_W void blur( InputArray src, OutputArray dst, |
1651 | Size ksize, Point anchor = Point(-1,-1), |
1652 | int borderType = BORDER_DEFAULT ); |
1653 | |
1654 | /** @brief Blurs an image using the stackBlur. |
1655 | |
1656 | The function applies and stackBlur to an image. |
1657 | stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size. |
1658 | It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side |
1659 | of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one, |
1660 | depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE. |
1661 | Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004. |
1662 | |
1663 | @param src input image. The number of channels can be arbitrary, but the depth should be one of |
1664 | CV_8U, CV_16U, CV_16S or CV_32F. |
1665 | @param dst output image of the same size and type as src. |
1666 | @param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be |
1667 | positive and odd. |
1668 | */ |
1669 | CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize); |
1670 | |
1671 | /** @brief Convolves an image with the kernel. |
1672 | |
1673 | The function applies an arbitrary linear filter to an image. In-place operation is supported. When |
1674 | the aperture is partially outside the image, the function interpolates outlier pixel values |
1675 | according to the specified border mode. |
1676 | |
1677 | The function does actually compute correlation, not the convolution: |
1678 | |
1679 | \f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] |
1680 | |
1681 | That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip |
1682 | the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - |
1683 | anchor.y - 1)`. |
1684 | |
1685 | The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or |
1686 | larger) and the direct algorithm for small kernels. |
1687 | |
1688 | @param src input image. |
1689 | @param dst output image of the same size and the same number of channels as src. |
1690 | @param ddepth desired depth of the destination image, see @ref filter_depths "combinations" |
1691 | @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point |
1692 | matrix; if you want to apply different kernels to different channels, split the image into |
1693 | separate color planes using split and process them individually. |
1694 | @param anchor anchor of the kernel that indicates the relative position of a filtered point within |
1695 | the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor |
1696 | is at the kernel center. |
1697 | @param delta optional value added to the filtered pixels before storing them in dst. |
1698 | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1699 | @sa sepFilter2D, dft, matchTemplate |
1700 | */ |
1701 | CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, |
1702 | InputArray kernel, Point anchor = Point(-1,-1), |
1703 | double delta = 0, int borderType = BORDER_DEFAULT ); |
1704 | |
1705 | /** @brief Applies a separable linear filter to an image. |
1706 | |
1707 | The function applies a separable linear filter to the image. That is, first, every row of src is |
1708 | filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D |
1709 | kernel kernelY. The final result shifted by delta is stored in dst . |
1710 | |
1711 | @param src Source image. |
1712 | @param dst Destination image of the same size and the same number of channels as src . |
1713 | @param ddepth Destination image depth, see @ref filter_depths "combinations" |
1714 | @param kernelX Coefficients for filtering each row. |
1715 | @param kernelY Coefficients for filtering each column. |
1716 | @param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor |
1717 | is at the kernel center. |
1718 | @param delta Value added to the filtered results before storing them. |
1719 | @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1720 | @sa filter2D, Sobel, GaussianBlur, boxFilter, blur |
1721 | */ |
1722 | CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, |
1723 | InputArray kernelX, InputArray kernelY, |
1724 | Point anchor = Point(-1,-1), |
1725 | double delta = 0, int borderType = BORDER_DEFAULT ); |
1726 | |
1727 | /** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp |
1728 | Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector |
1729 |  |
1730 | Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details |
1731 | */ |
1732 | |
1733 | /** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. |
1734 | |
1735 | In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to |
1736 | calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$ |
1737 | kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first |
1738 | or the second x- or y- derivatives. |
1739 | |
1740 | There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr |
1741 | filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is |
1742 | |
1743 | \f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f] |
1744 | |
1745 | for the x-derivative, or transposed for the y-derivative. |
1746 | |
1747 | The function calculates an image derivative by convolving the image with the appropriate kernel: |
1748 | |
1749 | \f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f] |
1750 | |
1751 | The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less |
1752 | resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) |
1753 | or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first |
1754 | case corresponds to a kernel of: |
1755 | |
1756 | \f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f] |
1757 | |
1758 | The second case corresponds to a kernel of: |
1759 | |
1760 | \f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f] |
1761 | |
1762 | @param src input image. |
1763 | @param dst output image of the same size and the same number of channels as src . |
1764 | @param ddepth output image depth, see @ref filter_depths "combinations"; in the case of |
1765 | 8-bit input images it will result in truncated derivatives. |
1766 | @param dx order of the derivative x. |
1767 | @param dy order of the derivative y. |
1768 | @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. |
1769 | @param scale optional scale factor for the computed derivative values; by default, no scaling is |
1770 | applied (see #getDerivKernels for details). |
1771 | @param delta optional delta value that is added to the results prior to storing them in dst. |
1772 | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1773 | @sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar |
1774 | */ |
1775 | CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, |
1776 | int dx, int dy, int ksize = 3, |
1777 | double scale = 1, double delta = 0, |
1778 | int borderType = BORDER_DEFAULT ); |
1779 | |
1780 | /** @brief Calculates the first order image derivative in both x and y using a Sobel operator |
1781 | |
1782 | Equivalent to calling: |
1783 | |
1784 | @code |
1785 | Sobel( src, dx, CV_16SC1, 1, 0, 3 ); |
1786 | Sobel( src, dy, CV_16SC1, 0, 1, 3 ); |
1787 | @endcode |
1788 | |
1789 | @param src input image. |
1790 | @param dx output image with first-order derivative in x. |
1791 | @param dy output image with first-order derivative in y. |
1792 | @param ksize size of Sobel kernel. It must be 3. |
1793 | @param borderType pixel extrapolation method, see #BorderTypes. |
1794 | Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported. |
1795 | |
1796 | @sa Sobel |
1797 | */ |
1798 | |
1799 | CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx, |
1800 | OutputArray dy, int ksize = 3, |
1801 | int borderType = BORDER_DEFAULT ); |
1802 | |
1803 | /** @brief Calculates the first x- or y- image derivative using Scharr operator. |
1804 | |
1805 | The function computes the first x- or y- spatial image derivative using the Scharr operator. The |
1806 | call |
1807 | |
1808 | \f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f] |
1809 | |
1810 | is equivalent to |
1811 | |
1812 | \f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f] |
1813 | |
1814 | @param src input image. |
1815 | @param dst output image of the same size and the same number of channels as src. |
1816 | @param ddepth output image depth, see @ref filter_depths "combinations" |
1817 | @param dx order of the derivative x. |
1818 | @param dy order of the derivative y. |
1819 | @param scale optional scale factor for the computed derivative values; by default, no scaling is |
1820 | applied (see #getDerivKernels for details). |
1821 | @param delta optional delta value that is added to the results prior to storing them in dst. |
1822 | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1823 | @sa cartToPolar |
1824 | */ |
1825 | CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, |
1826 | int dx, int dy, double scale = 1, double delta = 0, |
1827 | int borderType = BORDER_DEFAULT ); |
1828 | |
1829 | /** @example samples/cpp/laplace.cpp |
1830 | An example using Laplace transformations for edge detection |
1831 | */ |
1832 | |
1833 | /** @brief Calculates the Laplacian of an image. |
1834 | |
1835 | The function calculates the Laplacian of the source image by adding up the second x and y |
1836 | derivatives calculated using the Sobel operator: |
1837 | |
1838 | \f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f] |
1839 | |
1840 | This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image |
1841 | with the following \f$3 \times 3\f$ aperture: |
1842 | |
1843 | \f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f] |
1844 | |
1845 | @param src Source image. |
1846 | @param dst Destination image of the same size and the same number of channels as src . |
1847 | @param ddepth Desired depth of the destination image, see @ref filter_depths "combinations". |
1848 | @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for |
1849 | details. The size must be positive and odd. |
1850 | @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is |
1851 | applied. See #getDerivKernels for details. |
1852 | @param delta Optional delta value that is added to the results prior to storing them in dst . |
1853 | @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1854 | @sa Sobel, Scharr |
1855 | */ |
1856 | CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, |
1857 | int ksize = 1, double scale = 1, double delta = 0, |
1858 | int borderType = BORDER_DEFAULT ); |
1859 | |
1860 | //! @} imgproc_filter |
1861 | |
1862 | //! @addtogroup imgproc_feature |
1863 | //! @{ |
1864 | |
1865 | /** @example samples/cpp/edge.cpp |
1866 | This program demonstrates usage of the Canny edge detector |
1867 | |
1868 | Check @ref tutorial_canny_detector "the corresponding tutorial" for more details |
1869 | */ |
1870 | |
1871 | /** @brief Finds edges in an image using the Canny algorithm @cite Canny86 . |
1872 | |
1873 | The function finds edges in the input image and marks them in the output map edges using the |
1874 | Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The |
1875 | largest value is used to find initial segments of strong edges. See |
1876 | <http://en.wikipedia.org/wiki/Canny_edge_detector> |
1877 | |
1878 | @param image 8-bit input image. |
1879 | @param edges output edge map; single channels 8-bit image, which has the same size as image . |
1880 | @param threshold1 first threshold for the hysteresis procedure. |
1881 | @param threshold2 second threshold for the hysteresis procedure. |
1882 | @param apertureSize aperture size for the Sobel operator. |
1883 | @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm |
1884 | \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( |
1885 | L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( |
1886 | L2gradient=false ). |
1887 | */ |
1888 | CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, |
1889 | double threshold1, double threshold2, |
1890 | int apertureSize = 3, bool L2gradient = false ); |
1891 | |
1892 | /** \overload |
1893 | |
1894 | Finds edges in an image using the Canny algorithm with custom image gradient. |
1895 | |
1896 | @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). |
1897 | @param dy 16-bit y derivative of input image (same type as dx). |
1898 | @param edges output edge map; single channels 8-bit image, which has the same size as image . |
1899 | @param threshold1 first threshold for the hysteresis procedure. |
1900 | @param threshold2 second threshold for the hysteresis procedure. |
1901 | @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm |
1902 | \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( |
1903 | L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( |
1904 | L2gradient=false ). |
1905 | */ |
1906 | CV_EXPORTS_W void Canny( InputArray dx, InputArray dy, |
1907 | OutputArray edges, |
1908 | double threshold1, double threshold2, |
1909 | bool L2gradient = false ); |
1910 | |
1911 | /** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection. |
1912 | |
1913 | The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal |
1914 | eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms |
1915 | of the formulae in the cornerEigenValsAndVecs description. |
1916 | |
1917 | @param src Input single-channel 8-bit or floating-point image. |
1918 | @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as |
1919 | src . |
1920 | @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). |
1921 | @param ksize Aperture parameter for the Sobel operator. |
1922 | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1923 | */ |
1924 | CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, |
1925 | int blockSize, int ksize = 3, |
1926 | int borderType = BORDER_DEFAULT ); |
1927 | |
1928 | /** @brief Harris corner detector. |
1929 | |
1930 | The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and |
1931 | cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance |
1932 | matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it |
1933 | computes the following characteristic: |
1934 | |
1935 | \f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f] |
1936 | |
1937 | Corners in the image can be found as the local maxima of this response map. |
1938 | |
1939 | @param src Input single-channel 8-bit or floating-point image. |
1940 | @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same |
1941 | size as src . |
1942 | @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). |
1943 | @param ksize Aperture parameter for the Sobel operator. |
1944 | @param k Harris detector free parameter. See the formula above. |
1945 | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1946 | */ |
1947 | CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, |
1948 | int ksize, double k, |
1949 | int borderType = BORDER_DEFAULT ); |
1950 | |
1951 | /** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection. |
1952 | |
1953 | For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize |
1954 | neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as: |
1955 | |
1956 | \f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f] |
1957 | |
1958 | where the derivatives are computed using the Sobel operator. |
1959 | |
1960 | After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as |
1961 | \f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where |
1962 | |
1963 | - \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$ |
1964 | - \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$ |
1965 | - \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$ |
1966 | |
1967 | The output of the function can be used for robust edge or corner detection. |
1968 | |
1969 | @param src Input single-channel 8-bit or floating-point image. |
1970 | @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . |
1971 | @param blockSize Neighborhood size (see details below). |
1972 | @param ksize Aperture parameter for the Sobel operator. |
1973 | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1974 | |
1975 | @sa cornerMinEigenVal, cornerHarris, preCornerDetect |
1976 | */ |
1977 | CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, |
1978 | int blockSize, int ksize, |
1979 | int borderType = BORDER_DEFAULT ); |
1980 | |
1981 | /** @brief Calculates a feature map for corner detection. |
1982 | |
1983 | The function calculates the complex spatial derivative-based function of the source image |
1984 | |
1985 | \f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f] |
1986 | |
1987 | where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image |
1988 | derivatives, and \f$D_{xy}\f$ is the mixed derivative. |
1989 | |
1990 | The corners can be found as local maximums of the functions, as shown below: |
1991 | @code |
1992 | Mat corners, dilated_corners; |
1993 | preCornerDetect(image, corners, 3); |
1994 | // dilation with 3x3 rectangular structuring element |
1995 | dilate(corners, dilated_corners, Mat(), 1); |
1996 | Mat corner_mask = corners == dilated_corners; |
1997 | @endcode |
1998 | |
1999 | @param src Source single-channel 8-bit of floating-point image. |
2000 | @param dst Output image that has the type CV_32F and the same size as src . |
2001 | @param ksize %Aperture size of the Sobel . |
2002 | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
2003 | */ |
2004 | CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, |
2005 | int borderType = BORDER_DEFAULT ); |
2006 | |
2007 | /** @brief Refines the corner locations. |
2008 | |
2009 | The function iterates to find the sub-pixel accurate location of corners or radial saddle |
2010 | points as described in @cite forstner1987fast, and as shown on the figure below. |
2011 | |
2012 |  |
2013 | |
2014 | Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$ |
2015 | to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$ |
2016 | subject to image and measurement noise. Consider the expression: |
2017 | |
2018 | \f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f] |
2019 | |
2020 | where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The |
2021 | value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up |
2022 | with \f$\epsilon_i\f$ set to zero: |
2023 | |
2024 | \f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) \cdot q - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f] |
2025 | |
2026 | where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first |
2027 | gradient term \f$G\f$ and the second gradient term \f$b\f$ gives: |
2028 | |
2029 | \f[q = G^{-1} \cdot b\f] |
2030 | |
2031 | The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates |
2032 | until the center stays within a set threshold. |
2033 | |
2034 | @param image Input single-channel, 8-bit or float image. |
2035 | @param corners Initial coordinates of the input corners and refined coordinates provided for |
2036 | output. |
2037 | @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) , |
2038 | then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used. |
2039 | @param zeroZone Half of the size of the dead region in the middle of the search zone over which |
2040 | the summation in the formula below is not done. It is used sometimes to avoid possible |
2041 | singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such |
2042 | a size. |
2043 | @param criteria Criteria for termination of the iterative process of corner refinement. That is, |
2044 | the process of corner position refinement stops either after criteria.maxCount iterations or when |
2045 | the corner position moves by less than criteria.epsilon on some iteration. |
2046 | */ |
2047 | CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, |
2048 | Size winSize, Size zeroZone, |
2049 | TermCriteria criteria ); |
2050 | |
2051 | /** @brief Determines strong corners on an image. |
2052 | |
2053 | The function finds the most prominent corners in the image or in the specified image region, as |
2054 | described in @cite Shi94 |
2055 | |
2056 | - Function calculates the corner quality measure at every source image pixel using the |
2057 | #cornerMinEigenVal or #cornerHarris . |
2058 | - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are |
2059 | retained). |
2060 | - The corners with the minimal eigenvalue less than |
2061 | \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected. |
2062 | - The remaining corners are sorted by the quality measure in the descending order. |
2063 | - Function throws away each corner for which there is a stronger corner at a distance less than |
2064 | maxDistance. |
2065 | |
2066 | The function can be used to initialize a point-based tracker of an object. |
2067 | |
2068 | @note If the function is called with different values A and B of the parameter qualityLevel , and |
2069 | A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector |
2070 | with qualityLevel=B . |
2071 | |
2072 | @param image Input 8-bit or floating-point 32-bit, single-channel image. |
2073 | @param corners Output vector of detected corners. |
2074 | @param maxCorners Maximum number of corners to return. If there are more corners than are found, |
2075 | the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set |
2076 | and all detected corners are returned. |
2077 | @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The |
2078 | parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue |
2079 | (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the |
2080 | quality measure less than the product are rejected. For example, if the best corner has the |
2081 | quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure |
2082 | less than 15 are rejected. |
2083 | @param minDistance Minimum possible Euclidean distance between the returned corners. |
2084 | @param mask Optional region of interest. If the image is not empty (it needs to have the type |
2085 | CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. |
2086 | @param blockSize Size of an average block for computing a derivative covariation matrix over each |
2087 | pixel neighborhood. See cornerEigenValsAndVecs . |
2088 | @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) |
2089 | or #cornerMinEigenVal. |
2090 | @param k Free parameter of the Harris detector. |
2091 | |
2092 | @sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, |
2093 | */ |
2094 | |
2095 | CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, |
2096 | int maxCorners, double qualityLevel, double minDistance, |
2097 | InputArray mask = noArray(), int blockSize = 3, |
2098 | bool useHarrisDetector = false, double k = 0.04 ); |
2099 | |
2100 | CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, |
2101 | int maxCorners, double qualityLevel, double minDistance, |
2102 | InputArray mask, int blockSize, |
2103 | int gradientSize, bool useHarrisDetector = false, |
2104 | double k = 0.04 ); |
2105 | |
2106 | /** @brief Same as above, but returns also quality measure of the detected corners. |
2107 | |
2108 | @param image Input 8-bit or floating-point 32-bit, single-channel image. |
2109 | @param corners Output vector of detected corners. |
2110 | @param maxCorners Maximum number of corners to return. If there are more corners than are found, |
2111 | the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set |
2112 | and all detected corners are returned. |
2113 | @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The |
2114 | parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue |
2115 | (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the |
2116 | quality measure less than the product are rejected. For example, if the best corner has the |
2117 | quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure |
2118 | less than 15 are rejected. |
2119 | @param minDistance Minimum possible Euclidean distance between the returned corners. |
2120 | @param mask Region of interest. If the image is not empty (it needs to have the type |
2121 | CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. |
2122 | @param cornersQuality Output vector of quality measure of the detected corners. |
2123 | @param blockSize Size of an average block for computing a derivative covariation matrix over each |
2124 | pixel neighborhood. See cornerEigenValsAndVecs . |
2125 | @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation. |
2126 | See cornerEigenValsAndVecs . |
2127 | @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) |
2128 | or #cornerMinEigenVal. |
2129 | @param k Free parameter of the Harris detector. |
2130 | */ |
2131 | CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack( |
2132 | InputArray image, OutputArray corners, |
2133 | int maxCorners, double qualityLevel, double minDistance, |
2134 | InputArray mask, OutputArray cornersQuality, int blockSize = 3, |
2135 | int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04); |
2136 | |
2137 | /** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp |
2138 | An example using the Hough line detector |
2139 |   |
2140 | */ |
2141 | |
2142 | /** @brief Finds lines in a binary image using the standard Hough transform. |
2143 | |
2144 | The function implements the standard or standard multi-scale Hough transform algorithm for line |
2145 | detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough |
2146 | transform. |
2147 | |
2148 | @param image 8-bit, single-channel binary source image. The image may be modified by the function. |
2149 | @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector |
2150 | \f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from |
2151 | the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation |
2152 | angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and |
2153 | \f$\textrm{votes}\f$ is the value of accumulator. |
2154 | @param rho Distance resolution of the accumulator in pixels. |
2155 | @param theta Angle resolution of the accumulator in radians. |
2156 | @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough |
2157 | votes ( \f$>\texttt{threshold}\f$ ). |
2158 | @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho. |
2159 | The coarse accumulator distance resolution is rho and the accurate accumulator resolution is |
2160 | rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these |
2161 | parameters should be positive. |
2162 | @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. |
2163 | @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. |
2164 | Must fall between 0 and max_theta. |
2165 | @param max_theta For standard and multi-scale Hough transform, an upper bound for the angle. |
2166 | Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly |
2167 | less than max_theta, depending on the parameters min_theta and theta. |
2168 | @param use_edgeval True if you want to use weighted Hough transform. |
2169 | */ |
2170 | CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, |
2171 | double rho, double theta, int threshold, |
2172 | double srn = 0, double stn = 0, |
2173 | double min_theta = 0, double max_theta = CV_PI, |
2174 | bool use_edgeval = false ); |
2175 | |
2176 | /** @brief Finds line segments in a binary image using the probabilistic Hough transform. |
2177 | |
2178 | The function implements the probabilistic Hough transform algorithm for line detection, described |
2179 | in @cite Matas00 |
2180 | |
2181 | See the line detection example below: |
2182 | @include snippets/imgproc_HoughLinesP.cpp |
2183 | This is a sample picture the function parameters have been tuned for: |
2184 | |
2185 |  |
2186 | |
2187 | And this is the output of the above program in case of the probabilistic Hough transform: |
2188 | |
2189 |  |
2190 | |
2191 | @param image 8-bit, single-channel binary source image. The image may be modified by the function. |
2192 | @param lines Output vector of lines. Each line is represented by a 4-element vector |
2193 | \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected |
2194 | line segment. |
2195 | @param rho Distance resolution of the accumulator in pixels. |
2196 | @param theta Angle resolution of the accumulator in radians. |
2197 | @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough |
2198 | votes ( \f$>\texttt{threshold}\f$ ). |
2199 | @param minLineLength Minimum line length. Line segments shorter than that are rejected. |
2200 | @param maxLineGap Maximum allowed gap between points on the same line to link them. |
2201 | |
2202 | @sa LineSegmentDetector |
2203 | */ |
2204 | CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, |
2205 | double rho, double theta, int threshold, |
2206 | double minLineLength = 0, double maxLineGap = 0 ); |
2207 | |
2208 | /** @brief Finds lines in a set of points using the standard Hough transform. |
2209 | |
2210 | The function finds lines in a set of points using a modification of the Hough transform. |
2211 | @include snippets/imgproc_HoughLinesPointSet.cpp |
2212 | @param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2. |
2213 | @param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$. |
2214 | The larger the value of 'votes', the higher the reliability of the Hough line. |
2215 | @param lines_max Max count of Hough lines. |
2216 | @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough |
2217 | votes ( \f$>\texttt{threshold}\f$ ). |
2218 | @param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.). |
2219 | @param max_rho Maximum value for \f$\rho\f$ for the accumulator. |
2220 | @param rho_step Distance resolution of the accumulator. |
2221 | @param min_theta Minimum angle value of the accumulator in radians. |
2222 | @param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum |
2223 | angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step. |
2224 | @param theta_step Angle resolution of the accumulator in radians. |
2225 | */ |
2226 | CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold, |
2227 | double min_rho, double max_rho, double rho_step, |
2228 | double min_theta, double max_theta, double theta_step ); |
2229 | |
2230 | /** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp |
2231 | An example using the Hough circle detector |
2232 | */ |
2233 | |
2234 | /** @brief Finds circles in a grayscale image using the Hough transform. |
2235 | |
2236 | The function finds circles in a grayscale image using a modification of the Hough transform. |
2237 | |
2238 | Example: : |
2239 | @include snippets/imgproc_HoughLinesCircles.cpp |
2240 | |
2241 | @note Usually the function detects the centers of circles well. However, it may fail to find correct |
2242 | radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if |
2243 | you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number |
2244 | to return centers only without radius search, and find the correct radius using an additional procedure. |
2245 | |
2246 | It also helps to smooth image a bit unless it's already soft. For example, |
2247 | GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. |
2248 | |
2249 | @param image 8-bit, single-channel, grayscale input image. |
2250 | @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element |
2251 | floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ . |
2252 | @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. |
2253 | @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if |
2254 | dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has |
2255 | half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, |
2256 | unless some small very circles need to be detected. |
2257 | @param minDist Minimum distance between the centers of the detected circles. If the parameter is |
2258 | too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is |
2259 | too large, some circles may be missed. |
2260 | @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT, |
2261 | it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). |
2262 | Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value |
2263 | should normally be higher, such as 300 or normally exposed and contrasty images. |
2264 | @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the |
2265 | accumulator threshold for the circle centers at the detection stage. The smaller it is, the more |
2266 | false circles may be detected. Circles, corresponding to the larger accumulator values, will be |
2267 | returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. |
2268 | The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. |
2269 | If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. |
2270 | But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. |
2271 | @param minRadius Minimum circle radius. |
2272 | @param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns |
2273 | centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. |
2274 | |
2275 | @sa fitEllipse, minEnclosingCircle |
2276 | */ |
2277 | CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, |
2278 | int method, double dp, double minDist, |
2279 | double param1 = 100, double param2 = 100, |
2280 | int minRadius = 0, int maxRadius = 0 ); |
2281 | |
2282 | //! @} imgproc_feature |
2283 | |
2284 | //! @addtogroup imgproc_filter |
2285 | //! @{ |
2286 | |
2287 | /** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp |
2288 | Advanced morphology Transformations sample code |
2289 |  |
2290 | Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details |
2291 | */ |
2292 | |
2293 | /** @brief Erodes an image by using a specific structuring element. |
2294 | |
2295 | The function erodes the source image using the specified structuring element that determines the |
2296 | shape of a pixel neighborhood over which the minimum is taken: |
2297 | |
2298 | \f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] |
2299 | |
2300 | The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In |
2301 | case of multi-channel images, each channel is processed independently. |
2302 | |
2303 | @param src input image; the number of channels can be arbitrary, but the depth should be one of |
2304 | CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
2305 | @param dst output image of the same size and type as src. |
2306 | @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular |
2307 | structuring element is used. Kernel can be created using #getStructuringElement. |
2308 | @param anchor position of the anchor within the element; default value (-1, -1) means that the |
2309 | anchor is at the element center. |
2310 | @param iterations number of times erosion is applied. |
2311 | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
2312 | @param borderValue border value in case of a constant border |
2313 | @sa dilate, morphologyEx, getStructuringElement |
2314 | */ |
2315 | CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, |
2316 | Point anchor = Point(-1,-1), int iterations = 1, |
2317 | int borderType = BORDER_CONSTANT, |
2318 | const Scalar& borderValue = morphologyDefaultBorderValue() ); |
2319 | |
2320 | /** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp |
2321 | Erosion and Dilation sample code |
2322 |  |
2323 | Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details |
2324 | */ |
2325 | |
2326 | /** @brief Dilates an image by using a specific structuring element. |
2327 | |
2328 | The function dilates the source image using the specified structuring element that determines the |
2329 | shape of a pixel neighborhood over which the maximum is taken: |
2330 | \f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] |
2331 | |
2332 | The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In |
2333 | case of multi-channel images, each channel is processed independently. |
2334 | |
2335 | @param src input image; the number of channels can be arbitrary, but the depth should be one of |
2336 | CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
2337 | @param dst output image of the same size and type as src. |
2338 | @param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular |
2339 | structuring element is used. Kernel can be created using #getStructuringElement |
2340 | @param anchor position of the anchor within the element; default value (-1, -1) means that the |
2341 | anchor is at the element center. |
2342 | @param iterations number of times dilation is applied. |
2343 | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported. |
2344 | @param borderValue border value in case of a constant border |
2345 | @sa erode, morphologyEx, getStructuringElement |
2346 | */ |
2347 | CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, |
2348 | Point anchor = Point(-1,-1), int iterations = 1, |
2349 | int borderType = BORDER_CONSTANT, |
2350 | const Scalar& borderValue = morphologyDefaultBorderValue() ); |
2351 | |
2352 | /** @brief Performs advanced morphological transformations. |
2353 | |
2354 | The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as |
2355 | basic operations. |
2356 | |
2357 | Any of the operations can be done in-place. In case of multi-channel images, each channel is |
2358 | processed independently. |
2359 | |
2360 | @param src Source image. The number of channels can be arbitrary. The depth should be one of |
2361 | CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
2362 | @param dst Destination image of the same size and type as source image. |
2363 | @param op Type of a morphological operation, see #MorphTypes |
2364 | @param kernel Structuring element. It can be created using #getStructuringElement. |
2365 | @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the |
2366 | kernel center. |
2367 | @param iterations Number of times erosion and dilation are applied. |
2368 | @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
2369 | @param borderValue Border value in case of a constant border. The default value has a special |
2370 | meaning. |
2371 | @sa dilate, erode, getStructuringElement |
2372 | @note The number of iterations is the number of times erosion or dilatation operation will be applied. |
2373 | For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply |
2374 | successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). |
2375 | */ |
2376 | CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, |
2377 | int op, InputArray kernel, |
2378 | Point anchor = Point(-1,-1), int iterations = 1, |
2379 | int borderType = BORDER_CONSTANT, |
2380 | const Scalar& borderValue = morphologyDefaultBorderValue() ); |
2381 | |
2382 | //! @} imgproc_filter |
2383 | |
2384 | //! @addtogroup imgproc_transform |
2385 | //! @{ |
2386 | |
2387 | /** @brief Resizes an image. |
2388 | |
2389 | The function resize resizes the image src down to or up to the specified size. Note that the |
2390 | initial dst type or size are not taken into account. Instead, the size and type are derived from |
2391 | the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst, |
2392 | you may call the function as follows: |
2393 | @code |
2394 | // explicitly specify dsize=dst.size(); fx and fy will be computed from that. |
2395 | resize(src, dst, dst.size(), 0, 0, interpolation); |
2396 | @endcode |
2397 | If you want to decimate the image by factor of 2 in each direction, you can call the function this |
2398 | way: |
2399 | @code |
2400 | // specify fx and fy and let the function compute the destination image size. |
2401 | resize(src, dst, Size(), 0.5, 0.5, interpolation); |
2402 | @endcode |
2403 | To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to |
2404 | enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR |
2405 | (faster but still looks OK). |
2406 | |
2407 | @param src input image. |
2408 | @param dst output image; it has the size dsize (when it is non-zero) or the size computed from |
2409 | src.size(), fx, and fy; the type of dst is the same as of src. |
2410 | @param dsize output image size; if it equals zero (`None` in Python), it is computed as: |
2411 | \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] |
2412 | Either dsize or both fx and fy must be non-zero. |
2413 | @param fx scale factor along the horizontal axis; when it equals 0, it is computed as |
2414 | \f[\texttt{(double)dsize.width/src.cols}\f] |
2415 | @param fy scale factor along the vertical axis; when it equals 0, it is computed as |
2416 | \f[\texttt{(double)dsize.height/src.rows}\f] |
2417 | @param interpolation interpolation method, see #InterpolationFlags |
2418 | |
2419 | @sa warpAffine, warpPerspective, remap |
2420 | */ |
2421 | CV_EXPORTS_W void resize( InputArray src, OutputArray dst, |
2422 | Size dsize, double fx = 0, double fy = 0, |
2423 | int interpolation = INTER_LINEAR ); |
2424 | |
2425 | /** @brief Applies an affine transformation to an image. |
2426 | |
2427 | The function warpAffine transforms the source image using the specified matrix: |
2428 | |
2429 | \f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f] |
2430 | |
2431 | when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted |
2432 | with #invertAffineTransform and then put in the formula above instead of M. The function cannot |
2433 | operate in-place. |
2434 | |
2435 | @param src input image. |
2436 | @param dst output image that has the size dsize and the same type as src . |
2437 | @param M \f$2\times 3\f$ transformation matrix. |
2438 | @param dsize size of the output image. |
2439 | @param flags combination of interpolation methods (see #InterpolationFlags) and the optional |
2440 | flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( |
2441 | \f$\texttt{dst}\rightarrow\texttt{src}\f$ ). |
2442 | @param borderMode pixel extrapolation method (see #BorderTypes); when |
2443 | borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to |
2444 | the "outliers" in the source image are not modified by the function. |
2445 | @param borderValue value used in case of a constant border; by default, it is 0. |
2446 | |
2447 | @sa warpPerspective, resize, remap, getRectSubPix, transform |
2448 | */ |
2449 | CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, |
2450 | InputArray M, Size dsize, |
2451 | int flags = INTER_LINEAR, |
2452 | int borderMode = BORDER_CONSTANT, |
2453 | const Scalar& borderValue = Scalar()); |
2454 | |
2455 | /** @example samples/cpp/warpPerspective_demo.cpp |
2456 | An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping |
2457 | */ |
2458 | |
2459 | /** @brief Applies a perspective transformation to an image. |
2460 | |
2461 | The function warpPerspective transforms the source image using the specified matrix: |
2462 | |
2463 | \f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , |
2464 | \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f] |
2465 | |
2466 | when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert |
2467 | and then put in the formula above instead of M. The function cannot operate in-place. |
2468 | |
2469 | @param src input image. |
2470 | @param dst output image that has the size dsize and the same type as src . |
2471 | @param M \f$3\times 3\f$ transformation matrix. |
2472 | @param dsize size of the output image. |
2473 | @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the |
2474 | optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( |
2475 | \f$\texttt{dst}\rightarrow\texttt{src}\f$ ). |
2476 | @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE). |
2477 | @param borderValue value used in case of a constant border; by default, it equals 0. |
2478 | |
2479 | @sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform |
2480 | */ |
2481 | CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, |
2482 | InputArray M, Size dsize, |
2483 | int flags = INTER_LINEAR, |
2484 | int borderMode = BORDER_CONSTANT, |
2485 | const Scalar& borderValue = Scalar()); |
2486 | |
2487 | /** @brief Applies a generic geometrical transformation to an image. |
2488 | |
2489 | The function remap transforms the source image using the specified map: |
2490 | |
2491 | \f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f] |
2492 | |
2493 | with the WARP_RELATIVE_MAP flag : |
2494 | |
2495 | \f[\texttt{dst} (x,y) = \texttt{src} (x+map_x(x,y),y+map_y(x,y))\f] |
2496 | |
2497 | where values of pixels with non-integer coordinates are computed using one of available |
2498 | interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps |
2499 | in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in |
2500 | \f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to |
2501 | convert from floating to fixed-point representations of a map is that they can yield much faster |
2502 | (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x), |
2503 | cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients. |
2504 | |
2505 | This function cannot operate in-place. |
2506 | |
2507 | @param src Source image. |
2508 | @param dst Destination image. It has the same size as map1 and the same type as src . |
2509 | @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , |
2510 | CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point |
2511 | representation to fixed-point for speed. |
2512 | @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map |
2513 | if map1 is (x,y) points), respectively. |
2514 | @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA |
2515 | #INTER_LINEAR_EXACT and #INTER_NEAREST_EXACT are not supported by this function. |
2516 | The extra flag WARP_RELATIVE_MAP can be ORed to the interpolation method |
2517 | (e.g. INTER_LINEAR | WARP_RELATIVE_MAP) |
2518 | @param borderMode Pixel extrapolation method (see #BorderTypes). When |
2519 | borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that |
2520 | corresponds to the "outliers" in the source image are not modified by the function. |
2521 | @param borderValue Value used in case of a constant border. By default, it is 0. |
2522 | @note |
2523 | Due to current implementation limitations the size of an input and output images should be less than 32767x32767. |
2524 | */ |
2525 | CV_EXPORTS_W void remap( InputArray src, OutputArray dst, |
2526 | InputArray map1, InputArray map2, |
2527 | int interpolation, int borderMode = BORDER_CONSTANT, |
2528 | const Scalar& borderValue = Scalar()); |
2529 | |
2530 | /** @brief Converts image transformation maps from one representation to another. |
2531 | |
2532 | The function converts a pair of maps for remap from one representation to another. The following |
2533 | options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are |
2534 | supported: |
2535 | |
2536 | - \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the |
2537 | most frequently used conversion operation, in which the original floating-point maps (see #remap) |
2538 | are converted to a more compact and much faster fixed-point representation. The first output array |
2539 | contains the rounded coordinates and the second array (created only when nninterpolation=false ) |
2540 | contains indices in the interpolation tables. |
2541 | |
2542 | - \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but |
2543 | the original maps are stored in one 2-channel matrix. |
2544 | |
2545 | - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same |
2546 | as the originals. |
2547 | |
2548 | @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . |
2549 | @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), |
2550 | respectively. |
2551 | @param dstmap1 The first output map that has the type dstmap1type and the same size as src . |
2552 | @param dstmap2 The second output map. |
2553 | @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or |
2554 | CV_32FC2 . |
2555 | @param nninterpolation Flag indicating whether the fixed-point maps are used for the |
2556 | nearest-neighbor or for a more complex interpolation. |
2557 | |
2558 | @sa remap, undistort, initUndistortRectifyMap |
2559 | */ |
2560 | CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, |
2561 | OutputArray dstmap1, OutputArray dstmap2, |
2562 | int dstmap1type, bool nninterpolation = false ); |
2563 | |
2564 | /** @brief Calculates an affine matrix of 2D rotation. |
2565 | |
2566 | The function calculates the following matrix: |
2567 | |
2568 | \f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f] |
2569 | |
2570 | where |
2571 | |
2572 | \f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f] |
2573 | |
2574 | The transformation maps the rotation center to itself. If this is not the target, adjust the shift. |
2575 | |
2576 | @param center Center of the rotation in the source image. |
2577 | @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the |
2578 | coordinate origin is assumed to be the top-left corner). |
2579 | @param scale Isotropic scale factor. |
2580 | |
2581 | @sa getAffineTransform, warpAffine, transform |
2582 | */ |
2583 | CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale); |
2584 | |
2585 | /** @sa getRotationMatrix2D */ |
2586 | CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale); |
2587 | |
2588 | inline |
2589 | Mat getRotationMatrix2D(Point2f center, double angle, double scale) |
2590 | { |
2591 | return Mat(getRotationMatrix2D_(center, angle, scale), true); |
2592 | } |
2593 | |
2594 | /** @brief Calculates an affine transform from three pairs of the corresponding points. |
2595 | |
2596 | The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that: |
2597 | |
2598 | \f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] |
2599 | |
2600 | where |
2601 | |
2602 | \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f] |
2603 | |
2604 | @param src Coordinates of triangle vertices in the source image. |
2605 | @param dst Coordinates of the corresponding triangle vertices in the destination image. |
2606 | |
2607 | @sa warpAffine, transform |
2608 | */ |
2609 | CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); |
2610 | |
2611 | /** @brief Inverts an affine transformation. |
2612 | |
2613 | The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M: |
2614 | |
2615 | \f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f] |
2616 | |
2617 | The result is also a \f$2 \times 3\f$ matrix of the same type as M. |
2618 | |
2619 | @param M Original affine transformation. |
2620 | @param iM Output reverse affine transformation. |
2621 | */ |
2622 | CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); |
2623 | |
2624 | /** @brief Calculates a perspective transform from four pairs of the corresponding points. |
2625 | |
2626 | The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that: |
2627 | |
2628 | \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] |
2629 | |
2630 | where |
2631 | |
2632 | \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f] |
2633 | |
2634 | @param src Coordinates of quadrangle vertices in the source image. |
2635 | @param dst Coordinates of the corresponding quadrangle vertices in the destination image. |
2636 | @param solveMethod method passed to cv::solve (#DecompTypes) |
2637 | |
2638 | @sa findHomography, warpPerspective, perspectiveTransform |
2639 | */ |
2640 | CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU); |
2641 | |
2642 | /** @overload */ |
2643 | CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU); |
2644 | |
2645 | |
2646 | CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); |
2647 | |
2648 | /** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy. |
2649 | |
2650 | The function getRectSubPix extracts pixels from src: |
2651 | |
2652 | \f[patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f] |
2653 | |
2654 | where the values of the pixels at non-integer coordinates are retrieved using bilinear |
2655 | interpolation. Every channel of multi-channel images is processed independently. Also |
2656 | the image should be a single channel or three channel image. While the center of the |
2657 | rectangle must be inside the image, parts of the rectangle may be outside. |
2658 | |
2659 | @param image Source image. |
2660 | @param patchSize Size of the extracted patch. |
2661 | @param center Floating point coordinates of the center of the extracted rectangle within the |
2662 | source image. The center must be inside the image. |
2663 | @param patch Extracted patch that has the size patchSize and the same number of channels as src . |
2664 | @param patchType Depth of the extracted pixels. By default, they have the same depth as src . |
2665 | |
2666 | @sa warpAffine, warpPerspective |
2667 | */ |
2668 | CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, |
2669 | Point2f center, OutputArray patch, int patchType = -1 ); |
2670 | |
2671 | /** @example samples/cpp/polar_transforms.cpp |
2672 | An example using the cv::linearPolar and cv::logPolar operations |
2673 | */ |
2674 | |
2675 | /** @brief Remaps an image to semilog-polar coordinates space. |
2676 | |
2677 | @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG); |
2678 | |
2679 | @internal |
2680 | Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"): |
2681 | \f[\begin{array}{l} |
2682 | dst( \rho , \phi ) = src(x,y) \\ |
2683 | dst.size() \leftarrow src.size() |
2684 | \end{array}\f] |
2685 | |
2686 | where |
2687 | \f[\begin{array}{l} |
2688 | I = (dx,dy) = (x - center.x,y - center.y) \\ |
2689 | \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\ |
2690 | \phi = Kangle \cdot \texttt{angle} (I) \\ |
2691 | \end{array}\f] |
2692 | |
2693 | and |
2694 | \f[\begin{array}{l} |
2695 | M = src.cols / log_e(maxRadius) \\ |
2696 | Kangle = src.rows / 2\Pi \\ |
2697 | \end{array}\f] |
2698 | |
2699 | The function emulates the human "foveal" vision and can be used for fast scale and |
2700 | rotation-invariant template matching, for object tracking and so forth. |
2701 | @param src Source image |
2702 | @param dst Destination image. It will have same size and type as src. |
2703 | @param center The transformation center; where the output precision is maximal |
2704 | @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too. |
2705 | @param flags A combination of interpolation methods, see #InterpolationFlags |
2706 | |
2707 | @note |
2708 | - The function can not operate in-place. |
2709 | - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. |
2710 | |
2711 | @sa cv::linearPolar |
2712 | @endinternal |
2713 | */ |
2714 | CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst, |
2715 | Point2f center, double M, int flags ); |
2716 | |
2717 | /** @brief Remaps an image to polar coordinates space. |
2718 | |
2719 | @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags) |
2720 | |
2721 | @internal |
2722 | Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"): |
2723 | \f[\begin{array}{l} |
2724 | dst( \rho , \phi ) = src(x,y) \\ |
2725 | dst.size() \leftarrow src.size() |
2726 | \end{array}\f] |
2727 | |
2728 | where |
2729 | \f[\begin{array}{l} |
2730 | I = (dx,dy) = (x - center.x,y - center.y) \\ |
2731 | \rho = Kmag \cdot \texttt{magnitude} (I) ,\\ |
2732 | \phi = angle \cdot \texttt{angle} (I) |
2733 | \end{array}\f] |
2734 | |
2735 | and |
2736 | \f[\begin{array}{l} |
2737 | Kx = src.cols / maxRadius \\ |
2738 | Ky = src.rows / 2\Pi |
2739 | \end{array}\f] |
2740 | |
2741 | |
2742 | @param src Source image |
2743 | @param dst Destination image. It will have same size and type as src. |
2744 | @param center The transformation center; |
2745 | @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. |
2746 | @param flags A combination of interpolation methods, see #InterpolationFlags |
2747 | |
2748 | @note |
2749 | - The function can not operate in-place. |
2750 | - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. |
2751 | |
2752 | @sa cv::logPolar |
2753 | @endinternal |
2754 | */ |
2755 | CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst, |
2756 | Point2f center, double maxRadius, int flags ); |
2757 | |
2758 | |
2759 | /** \brief Remaps an image to polar or semilog-polar coordinates space |
2760 | |
2761 | @anchor polar_remaps_reference_image |
2762 |  |
2763 | |
2764 | Transform the source image using the following transformation: |
2765 | \f[ |
2766 | dst(\rho , \phi ) = src(x,y) |
2767 | \f] |
2768 | |
2769 | where |
2770 | \f[ |
2771 | \begin{array}{l} |
2772 | \vec{I} = (x - center.x, \;y - center.y) \\ |
2773 | \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ |
2774 | \rho = \left\{\begin{matrix} |
2775 | Klin \cdot \texttt{magnitude} (\vec{I}) & default \\ |
2776 | Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\ |
2777 | \end{matrix}\right. |
2778 | \end{array} |
2779 | \f] |
2780 | |
2781 | and |
2782 | \f[ |
2783 | \begin{array}{l} |
2784 | Kangle = dsize.height / 2\Pi \\ |
2785 | Klin = dsize.width / maxRadius \\ |
2786 | Klog = dsize.width / log_e(maxRadius) \\ |
2787 | \end{array} |
2788 | \f] |
2789 | |
2790 | |
2791 | \par Linear vs semilog mapping |
2792 | |
2793 | Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode. |
2794 | |
2795 | Linear is the default mode. |
2796 | |
2797 | The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision) |
2798 | in contrast to peripheral vision where acuity is minor. |
2799 | |
2800 | \par Option on `dsize`: |
2801 | |
2802 | - if both values in `dsize <=0 ` (default), |
2803 | the destination image will have (almost) same area of source bounding circle: |
2804 | \f[\begin{array}{l} |
2805 | dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\ |
2806 | dsize.width = \texttt{cvRound}(maxRadius) \\ |
2807 | dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ |
2808 | \end{array}\f] |
2809 | |
2810 | |
2811 | - if only `dsize.height <= 0`, |
2812 | the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`: |
2813 | \f[\begin{array}{l} |
2814 | dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ |
2815 | \end{array} |
2816 | \f] |
2817 | |
2818 | - if both values in `dsize > 0 `, |
2819 | the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`. |
2820 | |
2821 | |
2822 | \par Reverse mapping |
2823 | |
2824 | You can get reverse mapping adding #WARP_INVERSE_MAP to `flags` |
2825 | \snippet polar_transforms.cpp InverseMap |
2826 | |
2827 | In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$: |
2828 | \snippet polar_transforms.cpp InverseCoordinate |
2829 | |
2830 | @param src Source image. |
2831 | @param dst Destination image. It will have same type as src. |
2832 | @param dsize The destination image size (see description for valid options). |
2833 | @param center The transformation center. |
2834 | @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. |
2835 | @param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode. |
2836 | - Add #WARP_POLAR_LINEAR to select linear polar mapping (default) |
2837 | - Add #WARP_POLAR_LOG to select semilog polar mapping |
2838 | - Add #WARP_INVERSE_MAP for reverse mapping. |
2839 | @note |
2840 | - The function can not operate in-place. |
2841 | - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. |
2842 | - This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767. |
2843 | |
2844 | @sa cv::remap |
2845 | */ |
2846 | CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize, |
2847 | Point2f center, double maxRadius, int flags); |
2848 | |
2849 | |
2850 | //! @} imgproc_transform |
2851 | |
2852 | //! @addtogroup imgproc_misc |
2853 | //! @{ |
2854 | |
2855 | /** @brief Calculates the integral of an image. |
2856 | |
2857 | The function calculates one or more integral images for the source image as follows: |
2858 | |
2859 | \f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f] |
2860 | |
2861 | \f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f] |
2862 | |
2863 | \f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f] |
2864 | |
2865 | Using these integral images, you can calculate sum, mean, and standard deviation over a specific |
2866 | up-right or rotated rectangular region of the image in a constant time, for example: |
2867 | |
2868 | \f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f] |
2869 | |
2870 | It makes possible to do a fast blurring or fast block correlation with a variable window size, for |
2871 | example. In case of multi-channel images, sums for each channel are accumulated independently. |
2872 | |
2873 | As a practical example, the next figure shows the calculation of the integral of a straight |
2874 | rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the |
2875 | original image are shown, as well as the relative pixels in the integral images sum and tilted . |
2876 | |
2877 |  |
2878 | |
2879 | @param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f). |
2880 | @param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f). |
2881 | @param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision |
2882 | floating-point (64f) array. |
2883 | @param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with |
2884 | the same data type as sum. |
2885 | @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or |
2886 | CV_64F. |
2887 | @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F. |
2888 | */ |
2889 | CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum, |
2890 | OutputArray sqsum, OutputArray tilted, |
2891 | int sdepth = -1, int sqdepth = -1 ); |
2892 | |
2893 | /** @overload */ |
2894 | CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 ); |
2895 | |
2896 | /** @overload */ |
2897 | CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, |
2898 | OutputArray sqsum, int sdepth = -1, int sqdepth = -1 ); |
2899 | |
2900 | //! @} imgproc_misc |
2901 | |
2902 | //! @addtogroup imgproc_motion |
2903 | //! @{ |
2904 | |
2905 | /** @brief Adds an image to the accumulator image. |
2906 | |
2907 | The function adds src or some of its elements to dst : |
2908 | |
2909 | \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2910 | |
2911 | The function supports multi-channel images. Each channel is processed independently. |
2912 | |
2913 | The function cv::accumulate can be used, for example, to collect statistics of a scene background |
2914 | viewed by a still camera and for the further foreground-background segmentation. |
2915 | |
2916 | @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer. |
2917 | @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F. |
2918 | @param mask Optional operation mask. |
2919 | |
2920 | @sa accumulateSquare, accumulateProduct, accumulateWeighted |
2921 | */ |
2922 | CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst, |
2923 | InputArray mask = noArray() ); |
2924 | |
2925 | /** @brief Adds the square of a source image to the accumulator image. |
2926 | |
2927 | The function adds the input image src or its selected region, raised to a power of 2, to the |
2928 | accumulator dst : |
2929 | |
2930 | \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2931 | |
2932 | The function supports multi-channel images. Each channel is processed independently. |
2933 | |
2934 | @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. |
2935 | @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit |
2936 | floating-point. |
2937 | @param mask Optional operation mask. |
2938 | |
2939 | @sa accumulateSquare, accumulateProduct, accumulateWeighted |
2940 | */ |
2941 | CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst, |
2942 | InputArray mask = noArray() ); |
2943 | |
2944 | /** @brief Adds the per-element product of two input images to the accumulator image. |
2945 | |
2946 | The function adds the product of two images or their selected regions to the accumulator dst : |
2947 | |
2948 | \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2949 | |
2950 | The function supports multi-channel images. Each channel is processed independently. |
2951 | |
2952 | @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point. |
2953 | @param src2 Second input image of the same type and the same size as src1 . |
2954 | @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit |
2955 | floating-point. |
2956 | @param mask Optional operation mask. |
2957 | |
2958 | @sa accumulate, accumulateSquare, accumulateWeighted |
2959 | */ |
2960 | CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2, |
2961 | InputOutputArray dst, InputArray mask=noArray() ); |
2962 | |
2963 | /** @brief Updates a running average. |
2964 | |
2965 | The function calculates the weighted sum of the input image src and the accumulator dst so that dst |
2966 | becomes a running average of a frame sequence: |
2967 | |
2968 | \f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2969 | |
2970 | That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images). |
2971 | The function supports multi-channel images. Each channel is processed independently. |
2972 | |
2973 | @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. |
2974 | @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit |
2975 | floating-point. |
2976 | @param alpha Weight of the input image. |
2977 | @param mask Optional operation mask. |
2978 | |
2979 | @sa accumulate, accumulateSquare, accumulateProduct |
2980 | */ |
2981 | CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst, |
2982 | double alpha, InputArray mask = noArray() ); |
2983 | |
2984 | /** @brief The function is used to detect translational shifts that occur between two images. |
2985 | |
2986 | The operation takes advantage of the Fourier shift theorem for detecting the translational shift in |
2987 | the frequency domain. It can be used for fast image registration as well as motion estimation. For |
2988 | more information please see <http://en.wikipedia.org/wiki/Phase_correlation> |
2989 | |
2990 | Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed |
2991 | with getOptimalDFTSize. |
2992 | |
2993 | The function performs the following equations: |
2994 | - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each |
2995 | image to remove possible edge effects. This window is cached until the array size changes to speed |
2996 | up processing time. |
2997 | - Next it computes the forward DFTs of each source array: |
2998 | \f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f] |
2999 | where \f$\mathcal{F}\f$ is the forward DFT. |
3000 | - It then computes the cross-power spectrum of each frequency domain array: |
3001 | \f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f] |
3002 | - Next the cross-correlation is converted back into the time domain via the inverse DFT: |
3003 | \f[r = \mathcal{F}^{-1}\{R\}\f] |
3004 | - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to |
3005 | achieve sub-pixel accuracy. |
3006 | \f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f] |
3007 | - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5 |
3008 | centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single |
3009 | peak) and will be smaller when there are multiple peaks. |
3010 | |
3011 | @param src1 Source floating point array (CV_32FC1 or CV_64FC1) |
3012 | @param src2 Source floating point array (CV_32FC1 or CV_64FC1) |
3013 | @param window Floating point array with windowing coefficients to reduce edge effects (optional). |
3014 | @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional). |
3015 | @returns detected phase shift (sub-pixel) between the two arrays. |
3016 | |
3017 | @sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow |
3018 | */ |
3019 | CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, |
3020 | InputArray window = noArray(), CV_OUT double* response = 0); |
3021 | |
3022 | /** @brief This function computes a Hanning window coefficients in two dimensions. |
3023 | |
3024 | See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function) |
3025 | for more information. |
3026 | |
3027 | An example is shown below: |
3028 | @code |
3029 | // create hanning window of size 100x100 and type CV_32F |
3030 | Mat hann; |
3031 | createHanningWindow(hann, Size(100, 100), CV_32F); |
3032 | @endcode |
3033 | @param dst Destination array to place Hann coefficients in |
3034 | @param winSize The window size specifications (both width and height must be > 1) |
3035 | @param type Created array type |
3036 | */ |
3037 | CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); |
3038 | |
3039 | /** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum. |
3040 | |
3041 | The function cv::divSpectrums performs the per-element division of the first array by the second array. |
3042 | The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform. |
3043 | |
3044 | @param a first input array. |
3045 | @param b second input array of the same size and type as src1 . |
3046 | @param c output array of the same size and type as src1 . |
3047 | @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that |
3048 | each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value. |
3049 | @param conjB optional flag that conjugates the second input array before the multiplication (true) |
3050 | or not (false). |
3051 | */ |
3052 | CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c, |
3053 | int flags, bool conjB = false); |
3054 | |
3055 | //! @} imgproc_motion |
3056 | |
3057 | //! @addtogroup imgproc_misc |
3058 | //! @{ |
3059 | |
3060 | /** @brief Applies a fixed-level threshold to each array element. |
3061 | |
3062 | The function applies fixed-level thresholding to a multiple-channel array. The function is typically |
3063 | used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for |
3064 | this purpose) or for removing a noise, that is, filtering out pixels with too small or too large |
3065 | values. There are several types of thresholding supported by the function. They are determined by |
3066 | type parameter. |
3067 | |
3068 | Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the |
3069 | above values. In these cases, the function determines the optimal threshold value using the Otsu's |
3070 | or Triangle algorithm and uses it instead of the specified thresh. |
3071 | |
3072 | @note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images. |
3073 | |
3074 | @param src input array (multiple-channel, 8-bit or 32-bit floating point). |
3075 | @param dst output array of the same size and type and the same number of channels as src. |
3076 | @param thresh threshold value. |
3077 | @param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding |
3078 | types. |
3079 | @param type thresholding type (see #ThresholdTypes). |
3080 | @return the computed threshold value if Otsu's or Triangle methods used. |
3081 | |
3082 | @sa adaptiveThreshold, findContours, compare, min, max |
3083 | */ |
3084 | CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, |
3085 | double thresh, double maxval, int type ); |
3086 | |
3087 | |
3088 | /** @brief Applies an adaptive threshold to an array. |
3089 | |
3090 | The function transforms a grayscale image to a binary image according to the formulae: |
3091 | - **THRESH_BINARY** |
3092 | \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f] |
3093 | - **THRESH_BINARY_INV** |
3094 | \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f] |
3095 | where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter). |
3096 | |
3097 | The function can process the image in-place. |
3098 | |
3099 | @param src Source 8-bit single-channel image. |
3100 | @param dst Destination image of the same size and the same type as src. |
3101 | @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied |
3102 | @param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes. |
3103 | The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries. |
3104 | @param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV, |
3105 | see #ThresholdTypes. |
3106 | @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the |
3107 | pixel: 3, 5, 7, and so on. |
3108 | @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it |
3109 | is positive but may be zero or negative as well. |
3110 | |
3111 | @sa threshold, blur, GaussianBlur |
3112 | */ |
3113 | CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, |
3114 | double maxValue, int adaptiveMethod, |
3115 | int thresholdType, int blockSize, double C ); |
3116 | |
3117 | //! @} imgproc_misc |
3118 | |
3119 | //! @addtogroup imgproc_filter |
3120 | //! @{ |
3121 | |
3122 | /** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp |
3123 | An example using pyrDown and pyrUp functions |
3124 | */ |
3125 | |
3126 | /** @brief Blurs an image and downsamples it. |
3127 | |
3128 | By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in |
3129 | any case, the following conditions should be satisfied: |
3130 | |
3131 | \f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f] |
3132 | |
3133 | The function performs the downsampling step of the Gaussian pyramid construction. First, it |
3134 | convolves the source image with the kernel: |
3135 | |
3136 | \f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f] |
3137 | |
3138 | Then, it downsamples the image by rejecting even rows and columns. |
3139 | |
3140 | @param src input image. |
3141 | @param dst output image; it has the specified size and the same type as src. |
3142 | @param dstsize size of the output image. |
3143 | @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) |
3144 | */ |
3145 | CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, |
3146 | const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); |
3147 | |
3148 | /** @brief Upsamples an image and then blurs it. |
3149 | |
3150 | By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any |
3151 | case, the following conditions should be satisfied: |
3152 | |
3153 | \f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f] |
3154 | |
3155 | The function performs the upsampling step of the Gaussian pyramid construction, though it can |
3156 | actually be used to construct the Laplacian pyramid. First, it upsamples the source image by |
3157 | injecting even zero rows and columns and then convolves the result with the same kernel as in |
3158 | pyrDown multiplied by 4. |
3159 | |
3160 | @param src input image. |
3161 | @param dst output image. It has the specified size and the same type as src . |
3162 | @param dstsize size of the output image. |
3163 | @param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported) |
3164 | */ |
3165 | CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, |
3166 | const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); |
3167 | |
3168 | /** @brief Constructs the Gaussian pyramid for an image. |
3169 | |
3170 | The function constructs a vector of images and builds the Gaussian pyramid by recursively applying |
3171 | pyrDown to the previously built pyramid layers, starting from `dst[0]==src`. |
3172 | |
3173 | @param src Source image. Check pyrDown for the list of supported types. |
3174 | @param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the |
3175 | same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on. |
3176 | @param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative. |
3177 | @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) |
3178 | */ |
3179 | CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, |
3180 | int maxlevel, int borderType = BORDER_DEFAULT ); |
3181 | |
3182 | //! @} imgproc_filter |
3183 | |
3184 | //! @addtogroup imgproc_hist |
3185 | //! @{ |
3186 | |
3187 | /** @example samples/cpp/demhist.cpp |
3188 | An example for creating histograms of an image |
3189 | */ |
3190 | |
3191 | /** @brief Calculates a histogram of a set of arrays. |
3192 | |
3193 | The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used |
3194 | to increment a histogram bin are taken from the corresponding input arrays at the same location. The |
3195 | sample below shows how to compute a 2D Hue-Saturation histogram for a color image. : |
3196 | @include snippets/imgproc_calcHist.cpp |
3197 | |
3198 | @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same |
3199 | size. Each of them can have an arbitrary number of channels. |
3200 | @param nimages Number of source images. |
3201 | @param channels List of the dims channels used to compute the histogram. The first array channels |
3202 | are numerated from 0 to images[0].channels()-1 , the second array channels are counted from |
3203 | images[0].channels() to images[0].channels() + images[1].channels()-1, and so on. |
3204 | @param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size |
3205 | as images[i] . The non-zero mask elements mark the array elements counted in the histogram. |
3206 | @param hist Output histogram, which is a dense or sparse dims -dimensional array. |
3207 | @param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS |
3208 | (equal to 32 in the current OpenCV version). |
3209 | @param histSize Array of histogram sizes in each dimension. |
3210 | @param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the |
3211 | histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower |
3212 | (inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary |
3213 | \f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a |
3214 | uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform ( |
3215 | uniform=false ), then each of ranges[i] contains histSize[i]+1 elements: |
3216 | \f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$ |
3217 | . The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not |
3218 | counted in the histogram. |
3219 | @param uniform Flag indicating whether the histogram is uniform or not (see above). |
3220 | @param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning |
3221 | when it is allocated. This feature enables you to compute a single histogram from several sets of |
3222 | arrays, or to update the histogram in time. |
3223 | */ |
3224 | CV_EXPORTS void calcHist( const Mat* images, int nimages, |
3225 | const int* channels, InputArray mask, |
3226 | OutputArray hist, int dims, const int* histSize, |
3227 | const float** ranges, bool uniform = true, bool accumulate = false ); |
3228 | |
3229 | /** @overload |
3230 | |
3231 | this variant uses %SparseMat for output |
3232 | */ |
3233 | CV_EXPORTS void calcHist( const Mat* images, int nimages, |
3234 | const int* channels, InputArray mask, |
3235 | SparseMat& hist, int dims, |
3236 | const int* histSize, const float** ranges, |
3237 | bool uniform = true, bool accumulate = false ); |
3238 | |
3239 | /** @overload |
3240 | |
3241 | this variant supports only uniform histograms. |
3242 | |
3243 | ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements |
3244 | (histSize.size() element pairs). The first and second elements of each pair specify the lower and |
3245 | upper boundaries. |
3246 | */ |
3247 | CV_EXPORTS_W void calcHist( InputArrayOfArrays images, |
3248 | const std::vector<int>& channels, |
3249 | InputArray mask, OutputArray hist, |
3250 | const std::vector<int>& histSize, |
3251 | const std::vector<float>& ranges, |
3252 | bool accumulate = false ); |
3253 | |
3254 | /** @brief Calculates the back projection of a histogram. |
3255 | |
3256 | The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to |
3257 | #calcHist , at each location (x, y) the function collects the values from the selected channels |
3258 | in the input images and finds the corresponding histogram bin. But instead of incrementing it, the |
3259 | function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of |
3260 | statistics, the function computes probability of each element value in respect with the empirical |
3261 | probability distribution represented by the histogram. See how, for example, you can find and track |
3262 | a bright-colored object in a scene: |
3263 | |
3264 | - Before tracking, show the object to the camera so that it covers almost the whole frame. |
3265 | Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant |
3266 | colors in the object. |
3267 | |
3268 | - When tracking, calculate a back projection of a hue plane of each input video frame using that |
3269 | pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make |
3270 | sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels. |
3271 | |
3272 | - Find connected components in the resulting picture and choose, for example, the largest |
3273 | component. |
3274 | |
3275 | This is an approximate algorithm of the CamShift color object tracker. |
3276 | |
3277 | @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same |
3278 | size. Each of them can have an arbitrary number of channels. |
3279 | @param nimages Number of source images. |
3280 | @param channels The list of channels used to compute the back projection. The number of channels |
3281 | must match the histogram dimensionality. The first array channels are numerated from 0 to |
3282 | images[0].channels()-1 , the second array channels are counted from images[0].channels() to |
3283 | images[0].channels() + images[1].channels()-1, and so on. |
3284 | @param hist Input histogram that can be dense or sparse. |
3285 | @param backProject Destination back projection array that is a single-channel array of the same |
3286 | size and depth as images[0] . |
3287 | @param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist . |
3288 | @param scale Optional scale factor for the output back projection. |
3289 | @param uniform Flag indicating whether the histogram is uniform or not (see #calcHist). |
3290 | |
3291 | @sa calcHist, compareHist |
3292 | */ |
3293 | CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
3294 | const int* channels, InputArray hist, |
3295 | OutputArray backProject, const float** ranges, |
3296 | double scale = 1, bool uniform = true ); |
3297 | |
3298 | /** @overload */ |
3299 | CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
3300 | const int* channels, const SparseMat& hist, |
3301 | OutputArray backProject, const float** ranges, |
3302 | double scale = 1, bool uniform = true ); |
3303 | |
3304 | /** @overload */ |
3305 | CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels, |
3306 | InputArray hist, OutputArray dst, |
3307 | const std::vector<float>& ranges, |
3308 | double scale ); |
3309 | |
3310 | /** @brief Compares two histograms. |
3311 | |
3312 | The function cv::compareHist compares two dense or two sparse histograms using the specified method. |
3313 | |
3314 | The function returns \f$d(H_1, H_2)\f$ . |
3315 | |
3316 | While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable |
3317 | for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling |
3318 | problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms |
3319 | or more general sparse configurations of weighted points, consider using the #EMD function. |
3320 | |
3321 | @param H1 First compared histogram. |
3322 | @param H2 Second compared histogram of the same size as H1 . |
3323 | @param method Comparison method, see #HistCompMethods |
3324 | */ |
3325 | CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); |
3326 | |
3327 | /** @overload */ |
3328 | CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); |
3329 | |
3330 | /** @brief Equalizes the histogram of a grayscale image. |
3331 | |
3332 | The function equalizes the histogram of the input image using the following algorithm: |
3333 | |
3334 | - Calculate the histogram \f$H\f$ for src . |
3335 | - Normalize the histogram so that the sum of histogram bins is 255. |
3336 | - Compute the integral of the histogram: |
3337 | \f[H'_i = \sum _{0 \le j < i} H(j)\f] |
3338 | - Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$ |
3339 | |
3340 | The algorithm normalizes the brightness and increases the contrast of the image. |
3341 | |
3342 | @param src Source 8-bit single channel image. |
3343 | @param dst Destination image of the same size and type as src . |
3344 | */ |
3345 | CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); |
3346 | |
3347 | /** @brief Creates a smart pointer to a cv::CLAHE class and initializes it. |
3348 | |
3349 | @param clipLimit Threshold for contrast limiting. |
3350 | @param tileGridSize Size of grid for histogram equalization. Input image will be divided into |
3351 | equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. |
3352 | */ |
3353 | CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); |
3354 | |
3355 | /** @brief Computes the "minimal work" distance between two weighted point configurations. |
3356 | |
3357 | The function computes the earth mover distance and/or a lower boundary of the distance between the |
3358 | two weighted point configurations. One of the applications described in @cite RubnerSept98, |
3359 | @cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation |
3360 | problem that is solved using some modification of a simplex algorithm, thus the complexity is |
3361 | exponential in the worst case, though, on average it is much faster. In the case of a real metric |
3362 | the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used |
3363 | to determine roughly whether the two signatures are far enough so that they cannot relate to the |
3364 | same object. |
3365 | |
3366 | @param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix. |
3367 | Each row stores the point weight followed by the point coordinates. The matrix is allowed to have |
3368 | a single column (weights only) if the user-defined cost matrix is used. The weights must be |
3369 | non-negative and have at least one non-zero value. |
3370 | @param signature2 Second signature of the same format as signature1 , though the number of rows |
3371 | may be different. The total weights may be different. In this case an extra "dummy" point is added |
3372 | to either signature1 or signature2. The weights must be non-negative and have at least one non-zero |
3373 | value. |
3374 | @param distType Used metric. See #DistanceTypes. |
3375 | @param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix |
3376 | is used, lower boundary lowerBound cannot be calculated because it needs a metric function. |
3377 | @param lowerBound Optional input/output parameter: lower boundary of a distance between the two |
3378 | signatures that is a distance between mass centers. The lower boundary may not be calculated if |
3379 | the user-defined cost matrix is used, the total weights of point configurations are not equal, or |
3380 | if the signatures consist of weights only (the signature matrices have a single column). You |
3381 | **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or |
3382 | equal to \*lowerBound (it means that the signatures are far enough), the function does not |
3383 | calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on |
3384 | return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound |
3385 | should be set to 0. |
3386 | @param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is |
3387 | a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 . |
3388 | */ |
3389 | CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, |
3390 | int distType, InputArray cost=noArray(), |
3391 | float* lowerBound = 0, OutputArray flow = noArray() ); |
3392 | |
3393 | CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2, |
3394 | int distType, InputArray cost=noArray(), |
3395 | CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() ); |
3396 | |
3397 | //! @} imgproc_hist |
3398 | |
3399 | //! @addtogroup imgproc_segmentation |
3400 | //! @{ |
3401 | |
3402 | /** @example samples/cpp/watershed.cpp |
3403 | An example using the watershed algorithm |
3404 | */ |
3405 | |
3406 | /** @brief Performs a marker-based image segmentation using the watershed algorithm. |
3407 | |
3408 | The function implements one of the variants of watershed, non-parametric marker-based segmentation |
3409 | algorithm, described in @cite Meyer92 . |
3410 | |
3411 | Before passing the image to the function, you have to roughly outline the desired regions in the |
3412 | image markers with positive (\>0) indices. So, every region is represented as one or more connected |
3413 | components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary |
3414 | mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of |
3415 | the future image regions. All the other pixels in markers , whose relation to the outlined regions |
3416 | is not known and should be defined by the algorithm, should be set to 0's. In the function output, |
3417 | each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the |
3418 | regions. |
3419 | |
3420 | @note Any two neighbor connected components are not necessarily separated by a watershed boundary |
3421 | (-1's pixels); for example, they can touch each other in the initial marker image passed to the |
3422 | function. |
3423 | |
3424 | @param image Input 8-bit 3-channel image. |
3425 | @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same |
3426 | size as image . |
3427 | |
3428 | @sa findContours |
3429 | */ |
3430 | CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); |
3431 | |
3432 | //! @} imgproc_segmentation |
3433 | |
3434 | //! @addtogroup imgproc_filter |
3435 | //! @{ |
3436 | |
3437 | /** @brief Performs initial step of meanshift segmentation of an image. |
3438 | |
3439 | The function implements the filtering stage of meanshift segmentation, that is, the output of the |
3440 | function is the filtered "posterized" image with color gradients and fine-grain texture flattened. |
3441 | At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes |
3442 | meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is |
3443 | considered: |
3444 | |
3445 | \f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f] |
3446 | |
3447 | where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively |
3448 | (though, the algorithm does not depend on the color space used, so any 3-component color space can |
3449 | be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector |
3450 | (R',G',B') are found and they act as the neighborhood center on the next iteration: |
3451 | |
3452 | \f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f] |
3453 | |
3454 | After the iterations over, the color components of the initial pixel (that is, the pixel from where |
3455 | the iterations started) are set to the final value (average color at the last iteration): |
3456 | |
3457 | \f[I(X,Y) <- (R*,G*,B*)\f] |
3458 | |
3459 | When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is |
3460 | run on the smallest layer first. After that, the results are propagated to the larger layer and the |
3461 | iterations are run again only on those pixels where the layer colors differ by more than sr from the |
3462 | lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the |
3463 | results will be actually different from the ones obtained by running the meanshift procedure on the |
3464 | whole original image (i.e. when maxLevel==0). |
3465 | |
3466 | @param src The source 8-bit, 3-channel image. |
3467 | @param dst The destination image of the same format and the same size as the source. |
3468 | @param sp The spatial window radius. |
3469 | @param sr The color window radius. |
3470 | @param maxLevel Maximum level of the pyramid for the segmentation. |
3471 | @param termcrit Termination criteria: when to stop meanshift iterations. |
3472 | */ |
3473 | CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, |
3474 | double sp, double sr, int maxLevel = 1, |
3475 | TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); |
3476 | |
3477 | //! @} |
3478 | |
3479 | //! @addtogroup imgproc_segmentation |
3480 | //! @{ |
3481 | |
3482 | /** @example samples/cpp/grabcut.cpp |
3483 | An example using the GrabCut algorithm |
3484 |  |
3485 | */ |
3486 | |
3487 | /** @brief Runs the GrabCut algorithm. |
3488 | |
3489 | The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). |
3490 | |
3491 | @param img Input 8-bit 3-channel image. |
3492 | @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when |
3493 | mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses. |
3494 | @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as |
3495 | "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT . |
3496 | @param bgdModel Temporary array for the background model. Do not modify it while you are |
3497 | processing the same image. |
3498 | @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are |
3499 | processing the same image. |
3500 | @param iterCount Number of iterations the algorithm should make before returning the result. Note |
3501 | that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or |
3502 | mode==GC_EVAL . |
3503 | @param mode Operation mode that could be one of the #GrabCutModes |
3504 | */ |
3505 | CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, |
3506 | InputOutputArray bgdModel, InputOutputArray fgdModel, |
3507 | int iterCount, int mode = GC_EVAL ); |
3508 | |
3509 | //! @} imgproc_segmentation |
3510 | |
3511 | //! @addtogroup imgproc_misc |
3512 | //! @{ |
3513 | |
3514 | /** @example samples/cpp/distrans.cpp |
3515 | An example on using the distance transform |
3516 | */ |
3517 | |
3518 | /** @brief Calculates the distance to the closest zero pixel for each pixel of the source image. |
3519 | |
3520 | The function cv::distanceTransform calculates the approximate or precise distance from every binary |
3521 | image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. |
3522 | |
3523 | When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the |
3524 | algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library. |
3525 | |
3526 | In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function |
3527 | finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, |
3528 | diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall |
3529 | distance is calculated as a sum of these basic distances. Since the distance function should be |
3530 | symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all |
3531 | the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the |
3532 | same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated |
3533 | precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a |
3534 | relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV |
3535 | uses the values suggested in the original paper: |
3536 | - DIST_L1: `a = 1, b = 2` |
3537 | - DIST_L2: |
3538 | - `3 x 3`: `a=0.955, b=1.3693` |
3539 | - `5 x 5`: `a=1, b=1.4, c=2.1969` |
3540 | - DIST_C: `a = 1, b = 1` |
3541 | |
3542 | Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a |
3543 | more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used. |
3544 | Note that both the precise and the approximate algorithms are linear on the number of pixels. |
3545 | |
3546 | This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$ |
3547 | but also identifies the nearest connected component consisting of zero pixels |
3548 | (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the |
3549 | component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function |
3550 | automatically finds connected components of zero pixels in the input image and marks them with |
3551 | distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and |
3552 | marks all the zero pixels with distinct labels. |
3553 | |
3554 | In this mode, the complexity is still linear. That is, the function provides a very fast way to |
3555 | compute the Voronoi diagram for a binary image. Currently, the second variant can use only the |
3556 | approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported |
3557 | yet. |
3558 | |
3559 | @param src 8-bit, single-channel (binary) source image. |
3560 | @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, |
3561 | single-channel image of the same size as src. |
3562 | @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type |
3563 | CV_32SC1 and the same size as src. |
3564 | @param distanceType Type of distance, see #DistanceTypes |
3565 | @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. |
3566 | #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type, |
3567 | the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times |
3568 | 5\f$ or any larger aperture. |
3569 | @param labelType Type of the label array to build, see #DistanceTransformLabelTypes. |
3570 | */ |
3571 | CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, |
3572 | OutputArray labels, int distanceType, int maskSize, |
3573 | int labelType = DIST_LABEL_CCOMP ); |
3574 | |
3575 | /** @overload |
3576 | @param src 8-bit, single-channel (binary) source image. |
3577 | @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, |
3578 | single-channel image of the same size as src . |
3579 | @param distanceType Type of distance, see #DistanceTypes |
3580 | @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the |
3581 | #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives |
3582 | the same result as \f$5\times 5\f$ or any larger aperture. |
3583 | @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for |
3584 | the first variant of the function and distanceType == #DIST_L1. |
3585 | */ |
3586 | CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, |
3587 | int distanceType, int maskSize, int dstType=CV_32F); |
3588 | |
3589 | /** @brief Fills a connected component with the given color. |
3590 | |
3591 | The function cv::floodFill fills a connected component starting from the seed point with the specified |
3592 | color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The |
3593 | pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if: |
3594 | |
3595 | - in case of a grayscale image and floating range |
3596 | \f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f] |
3597 | |
3598 | |
3599 | - in case of a grayscale image and fixed range |
3600 | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f] |
3601 | |
3602 | |
3603 | - in case of a color image and floating range |
3604 | \f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f] |
3605 | \f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f] |
3606 | and |
3607 | \f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f] |
3608 | |
3609 | |
3610 | - in case of a color image and fixed range |
3611 | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f] |
3612 | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f] |
3613 | and |
3614 | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f] |
3615 | |
3616 | |
3617 | where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the |
3618 | component. That is, to be added to the connected component, a color/brightness of the pixel should |
3619 | be close enough to: |
3620 | - Color/brightness of one of its neighbors that already belong to the connected component in case |
3621 | of a floating range. |
3622 | - Color/brightness of the seed point in case of a fixed range. |
3623 | |
3624 | Use these functions to either mark a connected component with the specified color in-place, or build |
3625 | a mask and then extract the contour, or copy the region to another image, and so on. |
3626 | |
3627 | @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the |
3628 | function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See |
3629 | the details below. |
3630 | @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels |
3631 | taller than image. If an empty Mat is passed it will be created automatically. Since this is both an |
3632 | input and output parameter, you must take responsibility of initializing it. |
3633 | Flood-filling cannot go across non-zero pixels in the input mask. For example, |
3634 | an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the |
3635 | mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags |
3636 | as described below. Additionally, the function fills the border of the mask with ones to simplify |
3637 | internal processing. It is therefore possible to use the same mask in multiple calls to the function |
3638 | to make sure the filled areas do not overlap. |
3639 | @param seedPoint Starting point. |
3640 | @param newVal New value of the repainted domain pixels. |
3641 | @param loDiff Maximal lower brightness/color difference between the currently observed pixel and |
3642 | one of its neighbors belonging to the component, or a seed pixel being added to the component. |
3643 | @param upDiff Maximal upper brightness/color difference between the currently observed pixel and |
3644 | one of its neighbors belonging to the component, or a seed pixel being added to the component. |
3645 | @param rect Optional output parameter set by the function to the minimum bounding rectangle of the |
3646 | repainted domain. |
3647 | @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of |
3648 | 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A |
3649 | connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) |
3650 | will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill |
3651 | the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest |
3652 | neighbours and fill the mask with a value of 255. The following additional options occupy higher |
3653 | bits and therefore may be further combined with the connectivity and mask fill values using |
3654 | bit-wise or (|), see #FloodFillFlags. |
3655 | |
3656 | @note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the |
3657 | pixel \f$(x+1, y+1)\f$ in the mask . |
3658 | |
3659 | @sa findContours |
3660 | */ |
3661 | CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, |
3662 | Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, |
3663 | Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), |
3664 | int flags = 4 ); |
3665 | |
3666 | /** @example samples/cpp/ffilldemo.cpp |
3667 | An example using the FloodFill technique |
3668 | */ |
3669 | |
3670 | /** @overload |
3671 | |
3672 | variant without `mask` parameter |
3673 | */ |
3674 | CV_EXPORTS int floodFill( InputOutputArray image, |
3675 | Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0, |
3676 | Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), |
3677 | int flags = 4 ); |
3678 | |
3679 | //! Performs linear blending of two images: |
3680 | //! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f] |
3681 | //! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer. |
3682 | //! @param src2 It has the same type and size as src1. |
3683 | //! @param weights1 It has a type of CV_32FC1 and the same size with src1. |
3684 | //! @param weights2 It has a type of CV_32FC1 and the same size with src1. |
3685 | //! @param dst It is created if it does not have the same size and type with src1. |
3686 | CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst); |
3687 | |
3688 | //! @} imgproc_misc |
3689 | |
3690 | //! @addtogroup imgproc_color_conversions |
3691 | //! @{ |
3692 | |
3693 | /** @brief Converts an image from one color space to another. |
3694 | |
3695 | The function converts an input image from one color space to another. In case of a transformation |
3696 | to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note |
3697 | that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the |
3698 | bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue |
3699 | component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and |
3700 | sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. |
3701 | |
3702 | The conventional ranges for R, G, and B channel values are: |
3703 | - 0 to 255 for CV_8U images |
3704 | - 0 to 65535 for CV_16U images |
3705 | - 0 to 1 for CV_32F images |
3706 | |
3707 | In case of linear transformations, the range does not matter. But in case of a non-linear |
3708 | transformation, an input RGB image should be normalized to the proper value range to get the correct |
3709 | results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a |
3710 | 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will |
3711 | have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor , |
3712 | you need first to scale the image down: |
3713 | @code |
3714 | img *= 1./255; |
3715 | cvtColor(img, img, COLOR_BGR2Luv); |
3716 | @endcode |
3717 | If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many |
3718 | applications, this will not be noticeable but it is recommended to use 32-bit images in applications |
3719 | that need the full range of colors or that convert an image before an operation and then convert |
3720 | back. |
3721 | |
3722 | If conversion adds the alpha channel, its value will set to the maximum of corresponding channel |
3723 | range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. |
3724 | |
3725 | @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision |
3726 | floating-point. |
3727 | @param dst output image of the same size and depth as src. |
3728 | @param code color space conversion code (see #ColorConversionCodes). |
3729 | @param dstCn number of channels in the destination image; if the parameter is 0, the number of the |
3730 | channels is derived automatically from src and code. |
3731 | @param hint Implementation modfication flags. See #AlgorithmHint |
3732 | |
3733 | @see @ref imgproc_color_conversions |
3734 | */ |
3735 | CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0, AlgorithmHint hint = cv::ALGO_HINT_DEFAULT ); |
3736 | |
3737 | /** @brief Converts an image from one color space to another where the source image is |
3738 | stored in two planes. |
3739 | |
3740 | This function only supports YUV420 to RGB conversion as of now. |
3741 | |
3742 | @param src1 8-bit image (#CV_8U) of the Y plane. |
3743 | @param src2 image containing interleaved U/V plane. |
3744 | @param dst output image. |
3745 | @param code Specifies the type of conversion. It can take any of the following values: |
3746 | - #COLOR_YUV2BGR_NV12 |
3747 | - #COLOR_YUV2RGB_NV12 |
3748 | - #COLOR_YUV2BGRA_NV12 |
3749 | - #COLOR_YUV2RGBA_NV12 |
3750 | - #COLOR_YUV2BGR_NV21 |
3751 | - #COLOR_YUV2RGB_NV21 |
3752 | - #COLOR_YUV2BGRA_NV21 |
3753 | - #COLOR_YUV2RGBA_NV21 |
3754 | @param hint Implementation modfication flags. See #AlgorithmHint |
3755 | */ |
3756 | CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code, AlgorithmHint hint = cv::ALGO_HINT_DEFAULT ); |
3757 | |
3758 | /** @brief main function for all demosaicing processes |
3759 | |
3760 | @param src input image: 8-bit unsigned or 16-bit unsigned. |
3761 | @param dst output image of the same size and depth as src. |
3762 | @param code Color space conversion code (see the description below). |
3763 | @param dstCn number of channels in the destination image; if the parameter is 0, the number of the |
3764 | channels is derived automatically from src and code. |
3765 | |
3766 | The function can do the following transformations: |
3767 | |
3768 | - Demosaicing using bilinear interpolation |
3769 | |
3770 | #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR |
3771 | |
3772 | #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY |
3773 | |
3774 | - Demosaicing using Variable Number of Gradients. |
3775 | |
3776 | #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG |
3777 | |
3778 | - Edge-Aware Demosaicing. |
3779 | |
3780 | #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA |
3781 | |
3782 | - Demosaicing with alpha channel |
3783 | |
3784 | #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA |
3785 | |
3786 | @sa cvtColor |
3787 | */ |
3788 | CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0); |
3789 | |
3790 | //! @} imgproc_color_conversions |
3791 | |
3792 | //! @addtogroup imgproc_shape |
3793 | //! @{ |
3794 | |
3795 | /** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape. |
3796 | |
3797 | The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The |
3798 | results are returned in the structure cv::Moments. |
3799 | |
3800 | @param array Single chanel raster image (CV_8U, CV_16U, CV_16S, CV_32F, CV_64F) or an array ( |
3801 | \f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f). |
3802 | @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is |
3803 | used for images only. |
3804 | @returns moments. |
3805 | |
3806 | @note Only applicable to contour moments calculations from Python bindings: Note that the numpy |
3807 | type for the input array should be either np.int32 or np.float32. |
3808 | |
3809 | @sa contourArea, arcLength |
3810 | */ |
3811 | CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false ); |
3812 | |
3813 | /** @brief Calculates seven Hu invariants. |
3814 | |
3815 | The function calculates seven Hu invariants (introduced in @cite Hu62; see also |
3816 | <http://en.wikipedia.org/wiki/Image_moment>) defined as: |
3817 | |
3818 | \f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f] |
3819 | |
3820 | where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ . |
3821 | |
3822 | These values are proved to be invariants to the image scale, rotation, and reflection except the |
3823 | seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of |
3824 | infinite image resolution. In case of raster images, the computed Hu invariants for the original and |
3825 | transformed images are a bit different. |
3826 | |
3827 | @param moments Input moments computed with moments . |
3828 | @param hu Output Hu invariants. |
3829 | |
3830 | @sa matchShapes |
3831 | */ |
3832 | CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); |
3833 | |
3834 | /** @overload */ |
3835 | CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); |
3836 | |
3837 | //! @} imgproc_shape |
3838 | |
3839 | //! @addtogroup imgproc_object |
3840 | //! @{ |
3841 | |
3842 | //! type of the template matching operation |
3843 | enum TemplateMatchModes { |
3844 | TM_SQDIFF = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f] |
3845 | with mask: |
3846 | \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot |
3847 | M(x',y') \right)^2\f] */ |
3848 | TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{ |
3849 | x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] |
3850 | with mask: |
3851 | \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot |
3852 | M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot |
3853 | M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot |
3854 | M(x',y') \right)^2}}\f] */ |
3855 | TM_CCORR = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f] |
3856 | with mask: |
3857 | \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y') |
3858 | ^2)\f] */ |
3859 | TM_CCORR_NORMED = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{ |
3860 | \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] |
3861 | with mask: |
3862 | \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot |
3863 | M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y') |
3864 | \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y') |
3865 | \right)^2}}\f] */ |
3866 | TM_CCOEFF = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f] |
3867 | where |
3868 | \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{ |
3869 | x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) |
3870 | \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f] |
3871 | with mask: |
3872 | \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') - |
3873 | \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''} |
3874 | (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y') |
3875 | \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')} |
3876 | \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right) |
3877 | \end{array} \f] */ |
3878 | TM_CCOEFF_NORMED = 5 /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ |
3879 | \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} |
3880 | }\f] */ |
3881 | }; |
3882 | |
3883 | /** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp |
3884 | An example using Template Matching algorithm |
3885 | */ |
3886 | |
3887 | /** @brief Compares a template against overlapped image regions. |
3888 | |
3889 | The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against |
3890 | templ using the specified method and stores the comparison results in result . #TemplateMatchModes |
3891 | describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ |
3892 | template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or |
3893 | the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$ |
3894 | |
3895 | After the function finishes the comparison, the best matches can be found as global minimums (when |
3896 | #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the |
3897 | #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in |
3898 | the denominator is done over all of the channels and separate mean values are used for each channel. |
3899 | That is, the function can take a color template and a color image. The result will still be a |
3900 | single-channel image, which is easier to analyze. |
3901 | |
3902 | @param image Image where the search is running. It must be 8-bit or 32-bit floating-point. |
3903 | @param templ Searched template. It must be not greater than the source image and have the same |
3904 | data type. |
3905 | @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image |
3906 | is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ . |
3907 | @param method Parameter specifying the comparison method, see #TemplateMatchModes |
3908 | @param mask Optional mask. It must have the same size as templ. It must either have the same number |
3909 | of channels as template or only one channel, which is then used for all template and |
3910 | image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask, |
3911 | meaning only elements where mask is nonzero are used and are kept unchanged independent |
3912 | of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are |
3913 | used as weights. The exact formulas are documented in #TemplateMatchModes. |
3914 | */ |
3915 | CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, |
3916 | OutputArray result, int method, InputArray mask = noArray() ); |
3917 | |
3918 | //! @} |
3919 | |
3920 | //! @addtogroup imgproc_shape |
3921 | //! @{ |
3922 | |
3923 | /** @example samples/cpp/connected_components.cpp |
3924 | This program demonstrates connected components and use of the trackbar |
3925 | */ |
3926 | |
3927 | /** @brief computes the connected components labeled image of boolean image |
3928 | |
3929 | image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 |
3930 | represents the background label. ltype specifies the output label image type, an important |
3931 | consideration based on the total number of labels or alternatively the total number of pixels in |
3932 | the source image. ccltype specifies the connected components labeling algorithm to use, currently |
3933 | Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms |
3934 | are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces |
3935 | a row major ordering of labels while Spaghetti and BBDT do not. |
3936 | This function uses parallel version of the algorithms if at least one allowed |
3937 | parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. |
3938 | |
3939 | @param image the 8-bit single-channel image to be labeled |
3940 | @param labels destination labeled image |
3941 | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3942 | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3943 | @param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes). |
3944 | */ |
3945 | CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels, |
3946 | int connectivity, int ltype, int ccltype); |
3947 | |
3948 | |
3949 | /** @overload |
3950 | |
3951 | @param image the 8-bit single-channel image to be labeled |
3952 | @param labels destination labeled image |
3953 | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3954 | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3955 | */ |
3956 | CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, |
3957 | int connectivity = 8, int ltype = CV_32S); |
3958 | |
3959 | |
3960 | /** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label |
3961 | |
3962 | image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 |
3963 | represents the background label. ltype specifies the output label image type, an important |
3964 | consideration based on the total number of labels or alternatively the total number of pixels in |
3965 | the source image. ccltype specifies the connected components labeling algorithm to use, currently |
3966 | Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms |
3967 | are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces |
3968 | a row major ordering of labels while Spaghetti and BBDT do not. |
3969 | This function uses parallel version of the algorithms (statistics included) if at least one allowed |
3970 | parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. |
3971 | |
3972 | @param image the 8-bit single-channel image to be labeled |
3973 | @param labels destination labeled image |
3974 | @param stats statistics output for each label, including the background label. |
3975 | Statistics are accessed via stats(label, COLUMN) where COLUMN is one of |
3976 | #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. |
3977 | @param centroids centroid output for each label, including the background label. Centroids are |
3978 | accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. |
3979 | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3980 | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3981 | @param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes). |
3982 | */ |
3983 | CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels, |
3984 | OutputArray stats, OutputArray centroids, |
3985 | int connectivity, int ltype, int ccltype); |
3986 | |
3987 | /** @overload |
3988 | @param image the 8-bit single-channel image to be labeled |
3989 | @param labels destination labeled image |
3990 | @param stats statistics output for each label, including the background label. |
3991 | Statistics are accessed via stats(label, COLUMN) where COLUMN is one of |
3992 | #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. |
3993 | @param centroids centroid output for each label, including the background label. Centroids are |
3994 | accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. |
3995 | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3996 | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3997 | */ |
3998 | CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, |
3999 | OutputArray stats, OutputArray centroids, |
4000 | int connectivity = 8, int ltype = CV_32S); |
4001 | |
4002 | |
4003 | /** @brief Finds contours in a binary image. |
4004 | |
4005 | The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours |
4006 | are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the |
4007 | OpenCV sample directory. |
4008 | @note Since opencv 3.2 source image is not modified by this function. |
4009 | |
4010 | @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero |
4011 | pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold , |
4012 | #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one. |
4013 | If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). |
4014 | @param contours Detected contours. Each contour is stored as a vector of points (e.g. |
4015 | std::vector<std::vector<cv::Point> >). |
4016 | @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has |
4017 | as many elements as the number of contours. For each i-th contour contours[i], the elements |
4018 | hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices |
4019 | in contours of the next and previous contours at the same hierarchical level, the first child |
4020 | contour and the parent contour, respectively. If for the contour i there are no next, previous, |
4021 | parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. |
4022 | @note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour. |
4023 | @param mode Contour retrieval mode, see #RetrievalModes |
4024 | @param method Contour approximation method, see #ContourApproximationModes |
4025 | @param offset Optional offset by which every contour point is shifted. This is useful if the |
4026 | contours are extracted from the image ROI and then they should be analyzed in the whole image |
4027 | context. |
4028 | */ |
4029 | CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours, |
4030 | OutputArray hierarchy, int mode, |
4031 | int method, Point offset = Point()); |
4032 | |
4033 | /** @overload */ |
4034 | CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours, |
4035 | int mode, int method, Point offset = Point()); |
4036 | |
4037 | //! @brief Find contours using link runs algorithm |
4038 | //! |
4039 | //! This function implements an algorithm different from cv::findContours: |
4040 | //! - doesn't allocate temporary image internally, thus it has reduced memory consumption |
4041 | //! - supports CV_8UC1 images only |
4042 | //! - outputs 2-level hierarhy only (RETR_CCOMP mode) |
4043 | //! - doesn't support approximation change other than CHAIN_APPROX_SIMPLE |
4044 | //! In all other aspects this function is compatible with cv::findContours. |
4045 | CV_EXPORTS_W void findContoursLinkRuns(InputArray image, OutputArrayOfArrays contours, OutputArray hierarchy); |
4046 | |
4047 | //! @overload |
4048 | CV_EXPORTS_W void findContoursLinkRuns(InputArray image, OutputArrayOfArrays contours); |
4049 | |
4050 | /** @brief Approximates a polygonal curve(s) with the specified precision. |
4051 | |
4052 | The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less |
4053 | vertices so that the distance between them is less or equal to the specified precision. It uses the |
4054 | Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm> |
4055 | |
4056 | @param curve Input vector of a 2D point stored in std::vector or Mat |
4057 | @param approxCurve Result of the approximation. The type should match the type of the input curve. |
4058 | @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance |
4059 | between the original curve and its approximation. |
4060 | @param closed If true, the approximated curve is closed (its first and last vertices are |
4061 | connected). Otherwise, it is not closed. |
4062 | */ |
4063 | CV_EXPORTS_W void approxPolyDP( InputArray curve, |
4064 | OutputArray approxCurve, |
4065 | double epsilon, bool closed ); |
4066 | |
4067 | /** @brief Approximates a polygon with a convex hull with a specified accuracy and number of sides. |
4068 | |
4069 | The cv::approxPolyN function approximates a polygon with a convex hull |
4070 | so that the difference between the contour area of the original contour and the new polygon is minimal. |
4071 | It uses a greedy algorithm for contracting two vertices into one in such a way that the additional area is minimal. |
4072 | Straight lines formed by each edge of the convex contour are drawn and the areas of the resulting triangles are considered. |
4073 | Each vertex will lie either on the original contour or outside it. |
4074 | |
4075 | The algorithm based on the paper @cite LowIlie2003 . |
4076 | |
4077 | @param curve Input vector of a 2D points stored in std::vector or Mat, points must be float or integer. |
4078 | @param approxCurve Result of the approximation. The type is vector of a 2D point (Point2f or Point) in std::vector or Mat. |
4079 | @param nsides The parameter defines the number of sides of the result polygon. |
4080 | @param epsilon_percentage defines the percentage of the maximum of additional area. |
4081 | If it equals -1, it is not used. Otherwise algorighm stops if additional area is greater than contourArea(_curve) * percentage. |
4082 | If additional area exceeds the limit, algorithm returns as many vertices as there were at the moment the limit was exceeded. |
4083 | @param ensure_convex If it is true, algorithm creates a convex hull of input contour. Otherwise input vector should be convex. |
4084 | */ |
4085 | CV_EXPORTS_W void approxPolyN(InputArray curve, OutputArray approxCurve, |
4086 | int nsides, float epsilon_percentage = -1.0, |
4087 | bool ensure_convex = true); |
4088 | |
4089 | /** @brief Calculates a contour perimeter or a curve length. |
4090 | |
4091 | The function computes a curve length or a closed contour perimeter. |
4092 | |
4093 | @param curve Input vector of 2D points, stored in std::vector or Mat. |
4094 | @param closed Flag indicating whether the curve is closed or not. |
4095 | */ |
4096 | CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); |
4097 | |
4098 | /** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image. |
4099 | |
4100 | The function calculates and returns the minimal up-right bounding rectangle for the specified point set or |
4101 | non-zero pixels of gray-scale image. |
4102 | |
4103 | @param array Input gray-scale image or 2D point set, stored in std::vector or Mat. |
4104 | */ |
4105 | CV_EXPORTS_W Rect boundingRect( InputArray array ); |
4106 | |
4107 | /** @brief Calculates a contour area. |
4108 | |
4109 | The function computes a contour area. Similarly to moments , the area is computed using the Green |
4110 | formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using |
4111 | #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong |
4112 | results for contours with self-intersections. |
4113 | |
4114 | Example: |
4115 | @code |
4116 | vector<Point> contour; |
4117 | contour.push_back(Point2f(0, 0)); |
4118 | contour.push_back(Point2f(10, 0)); |
4119 | contour.push_back(Point2f(10, 10)); |
4120 | contour.push_back(Point2f(5, 4)); |
4121 | |
4122 | double area0 = contourArea(contour); |
4123 | vector<Point> approx; |
4124 | approxPolyDP(contour, approx, 5, true); |
4125 | double area1 = contourArea(approx); |
4126 | |
4127 | cout << "area0 =" << area0 << endl << |
4128 | "area1 =" << area1 << endl << |
4129 | "approx poly vertices" << approx.size() << endl; |
4130 | @endcode |
4131 | @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. |
4132 | @param oriented Oriented area flag. If it is true, the function returns a signed area value, |
4133 | depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can |
4134 | determine orientation of a contour by taking the sign of an area. By default, the parameter is |
4135 | false, which means that the absolute value is returned. |
4136 | */ |
4137 | CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false ); |
4138 | |
4139 | /** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set. |
4140 | |
4141 | The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a |
4142 | specified point set. Developer should keep in mind that the returned RotatedRect can contain negative |
4143 | indices when data is close to the containing Mat element boundary. |
4144 | |
4145 | @param points Input vector of 2D points, stored in std::vector\<\> or Mat |
4146 | */ |
4147 | CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); |
4148 | |
4149 | /** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. |
4150 | |
4151 | The function finds the four vertices of a rotated rectangle. This function is useful to draw the |
4152 | rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please |
4153 | visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information. |
4154 | |
4155 | @param box The input rotated rectangle. It may be the output of @ref minAreaRect. |
4156 | @param points The output array of four vertices of rectangles. |
4157 | */ |
4158 | CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points); |
4159 | |
4160 | /** @brief Finds a circle of the minimum area enclosing a 2D point set. |
4161 | |
4162 | The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. |
4163 | |
4164 | @param points Input vector of 2D points, stored in std::vector\<\> or Mat |
4165 | @param center Output center of the circle. |
4166 | @param radius Output radius of the circle. |
4167 | */ |
4168 | CV_EXPORTS_W void minEnclosingCircle( InputArray points, |
4169 | CV_OUT Point2f& center, CV_OUT float& radius ); |
4170 | |
4171 | /** @example samples/cpp/minarea.cpp |
4172 | */ |
4173 | |
4174 | /** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area. |
4175 | |
4176 | The function finds a triangle of minimum area enclosing the given set of 2D points and returns its |
4177 | area. The output for a given 2D point set is shown in the image below. 2D points are depicted in |
4178 | *red* and the enclosing triangle in *yellow*. |
4179 | |
4180 |  |
4181 | |
4182 | The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's |
4183 | @cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal |
4184 | enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function |
4185 | takes a 2D point set as input an additional preprocessing step of computing the convex hull of the |
4186 | 2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher |
4187 | than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$. |
4188 | |
4189 | @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat |
4190 | @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth |
4191 | of the OutputArray must be CV_32F. |
4192 | */ |
4193 | CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle ); |
4194 | |
4195 | /** @brief Compares two shapes. |
4196 | |
4197 | The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments) |
4198 | |
4199 | @param contour1 First contour or grayscale image. |
4200 | @param contour2 Second contour or grayscale image. |
4201 | @param method Comparison method, see #ShapeMatchModes |
4202 | @param parameter Method-specific parameter (not supported now). |
4203 | */ |
4204 | CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, |
4205 | int method, double parameter ); |
4206 | |
4207 | /** @example samples/cpp/convexhull.cpp |
4208 | An example using the convexHull functionality |
4209 | */ |
4210 | |
4211 | /** @brief Finds the convex hull of a point set. |
4212 | |
4213 | The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82 |
4214 | that has *O(N logN)* complexity in the current implementation. |
4215 | |
4216 | @param points Input 2D point set, stored in std::vector or Mat. |
4217 | @param hull Output convex hull. It is either an integer vector of indices or vector of points. In |
4218 | the first case, the hull elements are 0-based indices of the convex hull points in the original |
4219 | array (since the set of convex hull points is a subset of the original point set). In the second |
4220 | case, hull elements are the convex hull points themselves. |
4221 | @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise. |
4222 | Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing |
4223 | to the right, and its Y axis pointing upwards. |
4224 | @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function |
4225 | returns convex hull points. Otherwise, it returns indices of the convex hull points. When the |
4226 | output array is std::vector, the flag is ignored, and the output depends on the type of the |
4227 | vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies |
4228 | returnPoints=true. |
4229 | |
4230 | @note `points` and `hull` should be different arrays, inplace processing isn't supported. |
4231 | |
4232 | Check @ref tutorial_hull "the corresponding tutorial" for more details. |
4233 | |
4234 | useful links: |
4235 | |
4236 | https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/ |
4237 | */ |
4238 | CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, |
4239 | bool clockwise = false, bool returnPoints = true ); |
4240 | |
4241 | /** @brief Finds the convexity defects of a contour. |
4242 | |
4243 | The figure below displays convexity defects of a hand contour: |
4244 | |
4245 |  |
4246 | |
4247 | @param contour Input contour. |
4248 | @param convexhull Convex hull obtained using convexHull that should contain indices of the contour |
4249 | points that make the hull. |
4250 | @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java |
4251 | interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i): |
4252 | (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices |
4253 | in the original contour of the convexity defect beginning, end and the farthest point, and |
4254 | fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the |
4255 | farthest contour point and the hull. That is, to get the floating-point value of the depth will be |
4256 | fixpt_depth/256.0. |
4257 | */ |
4258 | CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); |
4259 | |
4260 | /** @brief Tests a contour convexity. |
4261 | |
4262 | The function tests whether the input contour is convex or not. The contour must be simple, that is, |
4263 | without self-intersections. Otherwise, the function output is undefined. |
4264 | |
4265 | @param contour Input vector of 2D points, stored in std::vector\<\> or Mat |
4266 | */ |
4267 | CV_EXPORTS_W bool isContourConvex( InputArray contour ); |
4268 | |
4269 | /** @example samples/cpp/intersectExample.cpp |
4270 | Examples of how intersectConvexConvex works |
4271 | */ |
4272 | |
4273 | /** @brief Finds intersection of two convex polygons |
4274 | |
4275 | @param p1 First polygon |
4276 | @param p2 Second polygon |
4277 | @param p12 Output polygon describing the intersecting area |
4278 | @param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other. |
4279 | When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge |
4280 | of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested. |
4281 | |
4282 | @returns Area of intersecting polygon. May be negative, if algorithm has not converged, e.g. non-convex input. |
4283 | |
4284 | @note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't. |
4285 | */ |
4286 | CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2, |
4287 | OutputArray p12, bool handleNested = true ); |
4288 | |
4289 | /** @example samples/cpp/fitellipse.cpp |
4290 | An example using the fitEllipse technique |
4291 | */ |
4292 | |
4293 | /** @brief Fits an ellipse around a set of 2D points. |
4294 | |
4295 | The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of |
4296 | all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95 |
4297 | is used. Developer should keep in mind that it is possible that the returned |
4298 | ellipse/rotatedRect data contains negative indices, due to the data points being close to the |
4299 | border of the containing Mat element. |
4300 | |
4301 | @param points Input 2D point set, stored in std::vector\<\> or Mat |
4302 | */ |
4303 | CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); |
4304 | |
4305 | /** @brief Fits an ellipse around a set of 2D points. |
4306 | |
4307 | The function calculates the ellipse that fits a set of 2D points. |
4308 | It returns the rotated rectangle in which the ellipse is inscribed. |
4309 | The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used. |
4310 | |
4311 | For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, |
4312 | which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. |
4313 | However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, |
4314 | the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, |
4315 | quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. |
4316 | If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used. |
4317 | The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves |
4318 | by imposing the condition that \f$ A^T ( D_x^T D_x + D_y^T D_y) A = 1 \f$ where |
4319 | the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with |
4320 | respect to x and y. The matrices are formed row by row applying the following to |
4321 | each of the points in the set: |
4322 | \f{align*}{ |
4323 | D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} & |
4324 | D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} & |
4325 | D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\} |
4326 | \f} |
4327 | The AMS method minimizes the cost function |
4328 | \f{equation*}{ |
4329 | \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T } |
4330 | \f} |
4331 | |
4332 | The minimum cost is found by solving the generalized eigenvalue problem. |
4333 | |
4334 | \f{equation*}{ |
4335 | D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A |
4336 | \f} |
4337 | |
4338 | @param points Input 2D point set, stored in std::vector\<\> or Mat |
4339 | */ |
4340 | CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points ); |
4341 | |
4342 | |
4343 | /** @brief Fits an ellipse around a set of 2D points. |
4344 | |
4345 | The function calculates the ellipse that fits a set of 2D points. |
4346 | It returns the rotated rectangle in which the ellipse is inscribed. |
4347 | The Direct least square (Direct) method by @cite oy1998NumericallySD is used. |
4348 | |
4349 | For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, |
4350 | which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. |
4351 | However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, |
4352 | the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, |
4353 | quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. |
4354 | The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$. |
4355 | The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality |
4356 | and as the coefficients can be arbitrarily scaled is not overly restrictive. |
4357 | |
4358 | \f{equation*}{ |
4359 | \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix} |
4360 | 0 & 0 & 2 & 0 & 0 & 0 \\ |
4361 | 0 & -1 & 0 & 0 & 0 & 0 \\ |
4362 | 2 & 0 & 0 & 0 & 0 & 0 \\ |
4363 | 0 & 0 & 0 & 0 & 0 & 0 \\ |
4364 | 0 & 0 & 0 & 0 & 0 & 0 \\ |
4365 | 0 & 0 & 0 & 0 & 0 & 0 |
4366 | \end{matrix} \right) |
4367 | \f} |
4368 | |
4369 | The minimum cost is found by solving the generalized eigenvalue problem. |
4370 | |
4371 | \f{equation*}{ |
4372 | D^T D A = \lambda \left( C\right) A |
4373 | \f} |
4374 | |
4375 | The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution |
4376 | with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients |
4377 | |
4378 | \f{equation*}{ |
4379 | A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u} |
4380 | \f} |
4381 | The scaling factor guarantees that \f$A^T C A =1\f$. |
4382 | |
4383 | @param points Input 2D point set, stored in std::vector\<\> or Mat |
4384 | */ |
4385 | CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points ); |
4386 | |
4387 | /** @brief Fits a line to a 2D or 3D point set. |
4388 | |
4389 | The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where |
4390 | \f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one |
4391 | of the following: |
4392 | - DIST_L2 |
4393 | \f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f] |
4394 | - DIST_L1 |
4395 | \f[\rho (r) = r\f] |
4396 | - DIST_L12 |
4397 | \f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f] |
4398 | - DIST_FAIR |
4399 | \f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f] |
4400 | - DIST_WELSCH |
4401 | \f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f] |
4402 | - DIST_HUBER |
4403 | \f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f] |
4404 | |
4405 | The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique |
4406 | that iteratively fits the line using the weighted least-squares algorithm. After each iteration the |
4407 | weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ . |
4408 | |
4409 | @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat. |
4410 | @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements |
4411 | (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and |
4412 | (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like |
4413 | Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line |
4414 | and (x0, y0, z0) is a point on the line. |
4415 | @param distType Distance used by the M-estimator, see #DistanceTypes |
4416 | @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value |
4417 | is chosen. |
4418 | @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line). |
4419 | @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps. |
4420 | */ |
4421 | CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, |
4422 | double param, double reps, double aeps ); |
4423 | |
4424 | /** @brief Performs a point-in-contour test. |
4425 | |
4426 | The function determines whether the point is inside a contour, outside, or lies on an edge (or |
4427 | coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge) |
4428 | value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively. |
4429 | Otherwise, the return value is a signed distance between the point and the nearest contour edge. |
4430 | |
4431 | See below a sample output of the function where each image pixel is tested against the contour: |
4432 | |
4433 |  |
4434 | |
4435 | @param contour Input contour. |
4436 | @param pt Point tested against the contour. |
4437 | @param measureDist If true, the function estimates the signed distance from the point to the |
4438 | nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. |
4439 | */ |
4440 | CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); |
4441 | |
4442 | /** @brief Finds out if there is any intersection between two rotated rectangles. |
4443 | |
4444 | If there is then the vertices of the intersecting region are returned as well. |
4445 | |
4446 | Below are some examples of intersection configurations. The hatched pattern indicates the |
4447 | intersecting region and the red vertices are returned by the function. |
4448 | |
4449 |  |
4450 | |
4451 | @param rect1 First rectangle |
4452 | @param rect2 Second rectangle |
4453 | @param intersectingRegion The output array of the vertices of the intersecting region. It returns |
4454 | at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2. |
4455 | @returns One of #RectanglesIntersectTypes |
4456 | */ |
4457 | CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion ); |
4458 | |
4459 | /** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it. |
4460 | */ |
4461 | CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard(); |
4462 | |
4463 | /** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it. |
4464 | */ |
4465 | CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil(); |
4466 | |
4467 | //! @} imgproc_shape |
4468 | |
4469 | //! @addtogroup imgproc_colormap |
4470 | //! @{ |
4471 | |
4472 | //! GNU Octave/MATLAB equivalent colormaps |
4473 | enum ColormapTypes |
4474 | { |
4475 | COLORMAP_AUTUMN = 0, //!<  |
4476 | COLORMAP_BONE = 1, //!<  |
4477 | COLORMAP_JET = 2, //!<  |
4478 | COLORMAP_WINTER = 3, //!<  |
4479 | COLORMAP_RAINBOW = 4, //!<  |
4480 | COLORMAP_OCEAN = 5, //!<  |
4481 | COLORMAP_SUMMER = 6, //!<  |
4482 | COLORMAP_SPRING = 7, //!<  |
4483 | COLORMAP_COOL = 8, //!<  |
4484 | COLORMAP_HSV = 9, //!<  |
4485 | COLORMAP_PINK = 10, //!<  |
4486 | COLORMAP_HOT = 11, //!<  |
4487 | COLORMAP_PARULA = 12, //!<  |
4488 | COLORMAP_MAGMA = 13, //!<  |
4489 | COLORMAP_INFERNO = 14, //!<  |
4490 | COLORMAP_PLASMA = 15, //!<  |
4491 | COLORMAP_VIRIDIS = 16, //!<  |
4492 | COLORMAP_CIVIDIS = 17, //!<  |
4493 | COLORMAP_TWILIGHT = 18, //!<  |
4494 | COLORMAP_TWILIGHT_SHIFTED = 19, //!<  |
4495 | COLORMAP_TURBO = 20, //!<  |
4496 | COLORMAP_DEEPGREEN = 21 //!<  |
4497 | }; |
4498 | |
4499 | /** @example samples/cpp/falsecolor.cpp |
4500 | An example using applyColorMap function |
4501 | */ |
4502 | |
4503 | /** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image. |
4504 | |
4505 | @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. If CV_8UC3, then the CV_8UC1 image is generated internally using cv::COLOR_BGR2GRAY. |
4506 | @param dst The result is the colormapped source image. Note: Mat::create is called on dst. |
4507 | @param colormap The colormap to apply, see #ColormapTypes |
4508 | */ |
4509 | CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); |
4510 | |
4511 | /** @brief Applies a user colormap on a given image. |
4512 | |
4513 | @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. If CV_8UC3, then the CV_8UC1 image is generated internally using cv::COLOR_BGR2GRAY. |
4514 | @param dst The result is the colormapped source image of the same number of channels as userColor. Note: Mat::create is called on dst. |
4515 | @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256 |
4516 | */ |
4517 | CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor); |
4518 | |
4519 | //! @} imgproc_colormap |
4520 | |
4521 | //! @addtogroup imgproc_draw |
4522 | //! @{ |
4523 | |
4524 | |
4525 | /** OpenCV color channel order is BGR[A] */ |
4526 | #define CV_RGB(r, g, b) cv::Scalar((b), (g), (r), 0) |
4527 | |
4528 | /** @brief Draws a line segment connecting two points. |
4529 | |
4530 | The function line draws the line segment between pt1 and pt2 points in the image. The line is |
4531 | clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected |
4532 | or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased |
4533 | lines are drawn using Gaussian filtering. |
4534 | |
4535 | @param img Image. |
4536 | @param pt1 First point of the line segment. |
4537 | @param pt2 Second point of the line segment. |
4538 | @param color Line color. |
4539 | @param thickness Line thickness. |
4540 | @param lineType Type of the line. See #LineTypes. |
4541 | @param shift Number of fractional bits in the point coordinates. |
4542 | */ |
4543 | CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, |
4544 | int thickness = 1, int lineType = LINE_8, int shift = 0); |
4545 | |
4546 | /** @brief Draws an arrow segment pointing from the first point to the second one. |
4547 | |
4548 | The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. |
4549 | |
4550 | @param img Image. |
4551 | @param pt1 The point the arrow starts from. |
4552 | @param pt2 The point the arrow points to. |
4553 | @param color Line color. |
4554 | @param thickness Line thickness. |
4555 | @param line_type Type of the line. See #LineTypes |
4556 | @param shift Number of fractional bits in the point coordinates. |
4557 | @param tipLength The length of the arrow tip in relation to the arrow length |
4558 | */ |
4559 | CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, |
4560 | int thickness=1, int line_type=8, int shift=0, double tipLength=0.1); |
4561 | |
4562 | /** @brief Draws a simple, thick, or filled up-right rectangle. |
4563 | |
4564 | The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners |
4565 | are pt1 and pt2. |
4566 | |
4567 | @param img Image. |
4568 | @param pt1 Vertex of the rectangle. |
4569 | @param pt2 Vertex of the rectangle opposite to pt1 . |
4570 | @param color Rectangle color or brightness (grayscale image). |
4571 | @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED, |
4572 | mean that the function has to draw a filled rectangle. |
4573 | @param lineType Type of the line. See #LineTypes |
4574 | @param shift Number of fractional bits in the point coordinates. |
4575 | */ |
4576 | CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2, |
4577 | const Scalar& color, int thickness = 1, |
4578 | int lineType = LINE_8, int shift = 0); |
4579 | |
4580 | /** @overload |
4581 | |
4582 | use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and |
4583 | r.br()-Point(1,1)` are opposite corners |
4584 | */ |
4585 | CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec, |
4586 | const Scalar& color, int thickness = 1, |
4587 | int lineType = LINE_8, int shift = 0); |
4588 | |
4589 | /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp |
4590 | An example using drawing functions |
4591 | */ |
4592 | |
4593 | /** @brief Draws a circle. |
4594 | |
4595 | The function cv::circle draws a simple or filled circle with a given center and radius. |
4596 | @param img Image where the circle is drawn. |
4597 | @param center Center of the circle. |
4598 | @param radius Radius of the circle. |
4599 | @param color Circle color. |
4600 | @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED, |
4601 | mean that a filled circle is to be drawn. |
4602 | @param lineType Type of the circle boundary. See #LineTypes |
4603 | @param shift Number of fractional bits in the coordinates of the center and in the radius value. |
4604 | */ |
4605 | CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius, |
4606 | const Scalar& color, int thickness = 1, |
4607 | int lineType = LINE_8, int shift = 0); |
4608 | |
4609 | /** @brief Draws a simple or thick elliptic arc or fills an ellipse sector. |
4610 | |
4611 | The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic |
4612 | arc, or a filled ellipse sector. The drawing code uses general parametric form. |
4613 | A piecewise-linear curve is used to approximate the elliptic arc |
4614 | boundary. If you need more control of the ellipse rendering, you can retrieve the curve using |
4615 | #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first |
4616 | variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and |
4617 | `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains |
4618 | the meaning of the parameters to draw the blue arc. |
4619 | |
4620 |  |
4621 | |
4622 | @param img Image. |
4623 | @param center Center of the ellipse. |
4624 | @param axes Half of the size of the ellipse main axes. |
4625 | @param angle Ellipse rotation angle in degrees. |
4626 | @param startAngle Starting angle of the elliptic arc in degrees. |
4627 | @param endAngle Ending angle of the elliptic arc in degrees. |
4628 | @param color Ellipse color. |
4629 | @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that |
4630 | a filled ellipse sector is to be drawn. |
4631 | @param lineType Type of the ellipse boundary. See #LineTypes |
4632 | @param shift Number of fractional bits in the coordinates of the center and values of axes. |
4633 | */ |
4634 | CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes, |
4635 | double angle, double startAngle, double endAngle, |
4636 | const Scalar& color, int thickness = 1, |
4637 | int lineType = LINE_8, int shift = 0); |
4638 | |
4639 | /** @overload |
4640 | @param img Image. |
4641 | @param box Alternative ellipse representation via RotatedRect. This means that the function draws |
4642 | an ellipse inscribed in the rotated rectangle. |
4643 | @param color Ellipse color. |
4644 | @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that |
4645 | a filled ellipse sector is to be drawn. |
4646 | @param lineType Type of the ellipse boundary. See #LineTypes |
4647 | */ |
4648 | CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color, |
4649 | int thickness = 1, int lineType = LINE_8); |
4650 | |
4651 | /* ----------------------------------------------------------------------------------------- */ |
4652 | /* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */ |
4653 | /* ----------------------------------------------------------------------------------------- */ |
4654 | |
4655 | /** @brief Draws a marker on a predefined position in an image. |
4656 | |
4657 | The function cv::drawMarker draws a marker on a given position in the image. For the moment several |
4658 | marker types are supported, see #MarkerTypes for more information. |
4659 | |
4660 | @param img Image. |
4661 | @param position The point where the crosshair is positioned. |
4662 | @param color Line color. |
4663 | @param markerType The specific type of marker you want to use, see #MarkerTypes |
4664 | @param thickness Line thickness. |
4665 | @param line_type Type of the line, See #LineTypes |
4666 | @param markerSize The length of the marker axis [default = 20 pixels] |
4667 | */ |
4668 | CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color, |
4669 | int markerType = MARKER_CROSS, int markerSize=20, int thickness=1, |
4670 | int line_type=8); |
4671 | |
4672 | /* ----------------------------------------------------------------------------------------- */ |
4673 | /* END OF MARKER SECTION */ |
4674 | /* ----------------------------------------------------------------------------------------- */ |
4675 | |
4676 | /** @brief Fills a convex polygon. |
4677 | |
4678 | The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the |
4679 | function #fillPoly . It can fill not only convex polygons but any monotonic polygon without |
4680 | self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) |
4681 | twice at the most (though, its top-most and/or the bottom edge could be horizontal). |
4682 | |
4683 | @param img Image. |
4684 | @param points Polygon vertices. |
4685 | @param color Polygon color. |
4686 | @param lineType Type of the polygon boundaries. See #LineTypes |
4687 | @param shift Number of fractional bits in the vertex coordinates. |
4688 | */ |
4689 | CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points, |
4690 | const Scalar& color, int lineType = LINE_8, |
4691 | int shift = 0); |
4692 | |
4693 | /** @overload */ |
4694 | CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts, |
4695 | const Scalar& color, int lineType = LINE_8, |
4696 | int shift = 0); |
4697 | |
4698 | /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp |
4699 | An example using drawing functions |
4700 | Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details |
4701 | */ |
4702 | |
4703 | /** @brief Fills the area bounded by one or more polygons. |
4704 | |
4705 | The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill |
4706 | complex areas, for example, areas with holes, contours with self-intersections (some of their |
4707 | parts), and so forth. |
4708 | |
4709 | @param img Image. |
4710 | @param pts Array of polygons where each polygon is represented as an array of points. |
4711 | @param color Polygon color. |
4712 | @param lineType Type of the polygon boundaries. See #LineTypes |
4713 | @param shift Number of fractional bits in the vertex coordinates. |
4714 | @param offset Optional offset of all points of the contours. |
4715 | */ |
4716 | CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts, |
4717 | const Scalar& color, int lineType = LINE_8, int shift = 0, |
4718 | Point offset = Point() ); |
4719 | |
4720 | /** @overload */ |
4721 | CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts, |
4722 | const int* npts, int ncontours, |
4723 | const Scalar& color, int lineType = LINE_8, int shift = 0, |
4724 | Point offset = Point() ); |
4725 | |
4726 | /** @brief Draws several polygonal curves. |
4727 | |
4728 | @param img Image. |
4729 | @param pts Array of polygonal curves. |
4730 | @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, |
4731 | the function draws a line from the last vertex of each curve to its first vertex. |
4732 | @param color Polyline color. |
4733 | @param thickness Thickness of the polyline edges. |
4734 | @param lineType Type of the line segments. See #LineTypes |
4735 | @param shift Number of fractional bits in the vertex coordinates. |
4736 | |
4737 | The function cv::polylines draws one or more polygonal curves. |
4738 | */ |
4739 | CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts, |
4740 | bool isClosed, const Scalar& color, |
4741 | int thickness = 1, int lineType = LINE_8, int shift = 0 ); |
4742 | |
4743 | /** @overload */ |
4744 | CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts, |
4745 | int ncontours, bool isClosed, const Scalar& color, |
4746 | int thickness = 1, int lineType = LINE_8, int shift = 0 ); |
4747 | |
4748 | /** @example samples/cpp/contours2.cpp |
4749 | An example program illustrates the use of cv::findContours and cv::drawContours |
4750 | \image html WindowsQtContoursOutput.png "Screenshot of the program" |
4751 | */ |
4752 | |
4753 | /** @example samples/cpp/segment_objects.cpp |
4754 | An example using drawContours to clean up a background segmentation result |
4755 | */ |
4756 | |
4757 | /** @brief Draws contours outlines or filled contours. |
4758 | |
4759 | The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area |
4760 | bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve |
4761 | connected components from the binary image and label them: : |
4762 | @include snippets/imgproc_drawContours.cpp |
4763 | |
4764 | @param image Destination image. |
4765 | @param contours All the input contours. Each contour is stored as a point vector. |
4766 | @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. |
4767 | @param color Color of the contours. |
4768 | @param thickness Thickness of lines the contours are drawn with. If it is negative (for example, |
4769 | thickness=#FILLED ), the contour interiors are drawn. |
4770 | @param lineType Line connectivity. See #LineTypes |
4771 | @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only |
4772 | some of the contours (see maxLevel ). |
4773 | @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. |
4774 | If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function |
4775 | draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This |
4776 | parameter is only taken into account when there is hierarchy available. |
4777 | @param offset Optional contour shift parameter. Shift all the drawn contours by the specified |
4778 | \f$\texttt{offset}=(dx,dy)\f$ . |
4779 | @note When thickness=#FILLED, the function is designed to handle connected components with holes correctly |
4780 | even when no hierarchy data is provided. This is done by analyzing all the outlines together |
4781 | using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved |
4782 | contours. In order to solve this problem, you need to call #drawContours separately for each sub-group |
4783 | of contours, or iterate over the collection using contourIdx parameter. |
4784 | */ |
4785 | CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, |
4786 | int contourIdx, const Scalar& color, |
4787 | int thickness = 1, int lineType = LINE_8, |
4788 | InputArray hierarchy = noArray(), |
4789 | int maxLevel = INT_MAX, Point offset = Point() ); |
4790 | |
4791 | /** @brief Clips the line against the image rectangle. |
4792 | |
4793 | The function cv::clipLine calculates a part of the line segment that is entirely within the specified |
4794 | rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise, |
4795 | it returns true . |
4796 | @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . |
4797 | @param pt1 First line point. |
4798 | @param pt2 Second line point. |
4799 | */ |
4800 | CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2); |
4801 | |
4802 | /** @overload |
4803 | @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . |
4804 | @param pt1 First line point. |
4805 | @param pt2 Second line point. |
4806 | */ |
4807 | CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2); |
4808 | |
4809 | /** @overload |
4810 | @param imgRect Image rectangle. |
4811 | @param pt1 First line point. |
4812 | @param pt2 Second line point. |
4813 | */ |
4814 | CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2); |
4815 | |
4816 | /** @brief Approximates an elliptic arc with a polyline. |
4817 | |
4818 | The function ellipse2Poly computes the vertices of a polyline that approximates the specified |
4819 | elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped. |
4820 | |
4821 | @param center Center of the arc. |
4822 | @param axes Half of the size of the ellipse main axes. See #ellipse for details. |
4823 | @param angle Rotation angle of the ellipse in degrees. See #ellipse for details. |
4824 | @param arcStart Starting angle of the elliptic arc in degrees. |
4825 | @param arcEnd Ending angle of the elliptic arc in degrees. |
4826 | @param delta Angle between the subsequent polyline vertices. It defines the approximation |
4827 | accuracy. |
4828 | @param pts Output vector of polyline vertices. |
4829 | */ |
4830 | CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle, |
4831 | int arcStart, int arcEnd, int delta, |
4832 | CV_OUT std::vector<Point>& pts ); |
4833 | |
4834 | /** @overload |
4835 | @param center Center of the arc. |
4836 | @param axes Half of the size of the ellipse main axes. See #ellipse for details. |
4837 | @param angle Rotation angle of the ellipse in degrees. See #ellipse for details. |
4838 | @param arcStart Starting angle of the elliptic arc in degrees. |
4839 | @param arcEnd Ending angle of the elliptic arc in degrees. |
4840 | @param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy. |
4841 | @param pts Output vector of polyline vertices. |
4842 | */ |
4843 | CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle, |
4844 | int arcStart, int arcEnd, int delta, |
4845 | CV_OUT std::vector<Point2d>& pts); |
4846 | |
4847 | /** @brief Draws a text string. |
4848 | |
4849 | The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered |
4850 | using the specified font are replaced by question marks. See #getTextSize for a text rendering code |
4851 | example. |
4852 | |
4853 | @param img Image. |
4854 | @param text Text string to be drawn. |
4855 | @param org Bottom-left corner of the text string in the image. |
4856 | @param fontFace Font type, see #HersheyFonts. |
4857 | @param fontScale Font scale factor that is multiplied by the font-specific base size. |
4858 | @param color Text color. |
4859 | @param thickness Thickness of the lines used to draw a text. |
4860 | @param lineType Line type. See #LineTypes |
4861 | @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, |
4862 | it is at the top-left corner. |
4863 | */ |
4864 | CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org, |
4865 | int fontFace, double fontScale, Scalar color, |
4866 | int thickness = 1, int lineType = LINE_8, |
4867 | bool bottomLeftOrigin = false ); |
4868 | |
4869 | /** @brief Calculates the width and height of a text string. |
4870 | |
4871 | The function cv::getTextSize calculates and returns the size of a box that contains the specified text. |
4872 | That is, the following code renders some text, the tight box surrounding it, and the baseline: : |
4873 | @code |
4874 | String text = "Funny text inside the box"; |
4875 | int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX; |
4876 | double fontScale = 2; |
4877 | int thickness = 3; |
4878 | |
4879 | Mat img(600, 800, CV_8UC3, Scalar::all(0)); |
4880 | |
4881 | int baseline=0; |
4882 | Size textSize = getTextSize(text, fontFace, |
4883 | fontScale, thickness, &baseline); |
4884 | baseline += thickness; |
4885 | |
4886 | // center the text |
4887 | Point textOrg((img.cols - textSize.width)/2, |
4888 | (img.rows + textSize.height)/2); |
4889 | |
4890 | // draw the box |
4891 | rectangle(img, textOrg + Point(0, baseline), |
4892 | textOrg + Point(textSize.width, -textSize.height), |
4893 | Scalar(0,0,255)); |
4894 | // ... and the baseline first |
4895 | line(img, textOrg + Point(0, thickness), |
4896 | textOrg + Point(textSize.width, thickness), |
4897 | Scalar(0, 0, 255)); |
4898 | |
4899 | // then put the text itself |
4900 | putText(img, text, textOrg, fontFace, fontScale, |
4901 | Scalar::all(255), thickness, 8); |
4902 | @endcode |
4903 | |
4904 | @param text Input text string. |
4905 | @param fontFace Font to use, see #HersheyFonts. |
4906 | @param fontScale Font scale factor that is multiplied by the font-specific base size. |
4907 | @param thickness Thickness of lines used to render the text. See #putText for details. |
4908 | @param[out] baseLine y-coordinate of the baseline relative to the bottom-most text |
4909 | point. |
4910 | @return The size of a box that contains the specified text. |
4911 | |
4912 | @see putText |
4913 | */ |
4914 | CV_EXPORTS_W Size getTextSize(const String& text, int fontFace, |
4915 | double fontScale, int thickness, |
4916 | CV_OUT int* baseLine); |
4917 | |
4918 | |
4919 | /** @brief Calculates the font-specific size to use to achieve a given height in pixels. |
4920 | |
4921 | @param fontFace Font to use, see cv::HersheyFonts. |
4922 | @param pixelHeight Pixel height to compute the fontScale for |
4923 | @param thickness Thickness of lines used to render the text.See putText for details. |
4924 | @return The fontSize to use for cv::putText |
4925 | |
4926 | @see cv::putText |
4927 | */ |
4928 | CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace, |
4929 | const int pixelHeight, |
4930 | const int thickness = 1); |
4931 | |
4932 | /** @brief Class for iterating over all pixels on a raster line segment. |
4933 | |
4934 | The class LineIterator is used to get each pixel of a raster line connecting |
4935 | two specified points. |
4936 | It can be treated as a versatile implementation of the Bresenham algorithm |
4937 | where you can stop at each pixel and do some extra processing, for |
4938 | example, grab pixel values along the line or draw a line with an effect |
4939 | (for example, with XOR operation). |
4940 | |
4941 | The number of pixels along the line is stored in LineIterator::count. |
4942 | The method LineIterator::pos returns the current position in the image: |
4943 | |
4944 | @code{.cpp} |
4945 | // grabs pixels along the line (pt1, pt2) |
4946 | // from 8-bit 3-channel image to the buffer |
4947 | LineIterator it(img, pt1, pt2, 8); |
4948 | LineIterator it2 = it; |
4949 | vector<Vec3b> buf(it.count); |
4950 | |
4951 | for(int i = 0; i < it.count; i++, ++it) |
4952 | buf[i] = *(const Vec3b*)*it; |
4953 | |
4954 | // alternative way of iterating through the line |
4955 | for(int i = 0; i < it2.count; i++, ++it2) |
4956 | { |
4957 | Vec3b val = img.at<Vec3b>(it2.pos()); |
4958 | CV_Assert(buf[i] == val); |
4959 | } |
4960 | @endcode |
4961 | */ |
4962 | class CV_EXPORTS LineIterator |
4963 | { |
4964 | public: |
4965 | /** @brief Initializes iterator object for the given line and image. |
4966 | |
4967 | The returned iterator can be used to traverse all pixels on a line that |
4968 | connects the given two points. |
4969 | The line will be clipped on the image boundaries. |
4970 | |
4971 | @param img Underlying image. |
4972 | @param pt1 First endpoint of the line. |
4973 | @param pt2 The other endpoint of the line. |
4974 | @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move |
4975 | up, down, left and right) and 8 (iterator can also move diagonally). |
4976 | @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost |
4977 | endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2. |
4978 | */ |
4979 | LineIterator( const Mat& img, Point pt1, Point pt2, |
4980 | int connectivity = 8, bool leftToRight = false ) |
4981 | { |
4982 | init(img: &img, boundingAreaRect: Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight); |
4983 | ptmode = false; |
4984 | } |
4985 | LineIterator( Point pt1, Point pt2, |
4986 | int connectivity = 8, bool leftToRight = false ) |
4987 | { |
4988 | init(img: 0, boundingAreaRect: Rect(std::min(a: pt1.x, b: pt2.x), |
4989 | std::min(a: pt1.y, b: pt2.y), |
4990 | std::max(a: pt1.x, b: pt2.x) - std::min(a: pt1.x, b: pt2.x) + 1, |
4991 | std::max(a: pt1.y, b: pt2.y) - std::min(a: pt1.y, b: pt2.y) + 1), |
4992 | pt1, pt2, connectivity, leftToRight); |
4993 | ptmode = true; |
4994 | } |
4995 | LineIterator( Size boundingAreaSize, Point pt1, Point pt2, |
4996 | int connectivity = 8, bool leftToRight = false ) |
4997 | { |
4998 | init(img: 0, boundingAreaRect: Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height), |
4999 | pt1, pt2, connectivity, leftToRight); |
5000 | ptmode = true; |
5001 | } |
5002 | LineIterator( Rect boundingAreaRect, Point pt1, Point pt2, |
5003 | int connectivity = 8, bool leftToRight = false ) |
5004 | { |
5005 | init(img: 0, boundingAreaRect, pt1, pt2, connectivity, leftToRight); |
5006 | ptmode = true; |
5007 | } |
5008 | void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight); |
5009 | |
5010 | /** @brief Returns pointer to the current pixel. |
5011 | */ |
5012 | uchar* operator *(); |
5013 | |
5014 | /** @brief Moves iterator to the next pixel on the line. |
5015 | |
5016 | This is the prefix version (++it). |
5017 | */ |
5018 | LineIterator& operator ++(); |
5019 | |
5020 | /** @brief Moves iterator to the next pixel on the line. |
5021 | |
5022 | This is the postfix version (it++). |
5023 | */ |
5024 | LineIterator operator ++(int); |
5025 | |
5026 | /** @brief Returns coordinates of the current pixel. |
5027 | */ |
5028 | Point pos() const; |
5029 | |
5030 | uchar* ptr; |
5031 | const uchar* ptr0; |
5032 | int step, elemSize; |
5033 | int err, count; |
5034 | int minusDelta, plusDelta; |
5035 | int minusStep, plusStep; |
5036 | int minusShift, plusShift; |
5037 | Point p; |
5038 | bool ptmode; |
5039 | }; |
5040 | |
5041 | //! @cond IGNORED |
5042 | |
5043 | // === LineIterator implementation === |
5044 | |
5045 | inline |
5046 | uchar* LineIterator::operator *() |
5047 | { |
5048 | return ptmode ? 0 : ptr; |
5049 | } |
5050 | |
5051 | inline |
5052 | LineIterator& LineIterator::operator ++() |
5053 | { |
5054 | int mask = err < 0 ? -1 : 0; |
5055 | err += minusDelta + (plusDelta & mask); |
5056 | if(!ptmode) |
5057 | { |
5058 | ptr += minusStep + (plusStep & mask); |
5059 | } |
5060 | else |
5061 | { |
5062 | p.x += minusShift + (plusShift & mask); |
5063 | p.y += minusStep + (plusStep & mask); |
5064 | } |
5065 | return *this; |
5066 | } |
5067 | |
5068 | inline |
5069 | LineIterator LineIterator::operator ++(int) |
5070 | { |
5071 | LineIterator it = *this; |
5072 | ++(*this); |
5073 | return it; |
5074 | } |
5075 | |
5076 | inline |
5077 | Point LineIterator::pos() const |
5078 | { |
5079 | if(!ptmode) |
5080 | { |
5081 | size_t offset = (size_t)(ptr - ptr0); |
5082 | int y = (int)(offset/step); |
5083 | int x = (int)((offset - (size_t)y*step)/elemSize); |
5084 | return Point(x, y); |
5085 | } |
5086 | return p; |
5087 | } |
5088 | |
5089 | //! @endcond |
5090 | |
5091 | //! @} imgproc_draw |
5092 | |
5093 | //! @} imgproc |
5094 | |
5095 | } // cv |
5096 | |
5097 | |
5098 | #include "./imgproc/segmentation.hpp" |
5099 | |
5100 | |
5101 | #endif |
5102 |
Definitions
- SpecialFilter
- MorphTypes
- MorphShapes
- InterpolationFlags
- WarpPolarMode
- InterpolationMasks
- DistanceTypes
- DistanceTransformMasks
- ThresholdTypes
- AdaptiveThresholdTypes
- GrabCutClasses
- GrabCutModes
- DistanceTransformLabelTypes
- FloodFillFlags
- ConnectedComponentsTypes
- ConnectedComponentsAlgorithmsTypes
- RetrievalModes
- ContourApproximationModes
- ShapeMatchModes
- HoughModes
- LineSegmentDetectorModes
- HistCompMethods
- ColorConversionCodes
- RectanglesIntersectTypes
- LineTypes
- HersheyFonts
- MarkerTypes
- GeneralizedHough
- GeneralizedHoughBallard
- GeneralizedHoughGuil
- CLAHE
- Subdiv2D
- Vertex
- QuadEdge
- LineSegmentDetector
- ~LineSegmentDetector
- morphologyDefaultBorderValue
- getRotationMatrix2D
- TemplateMatchModes
- ColormapTypes
- LineIterator
- LineIterator
- LineIterator
- LineIterator
- LineIterator
- operator *
- operator ++
- operator ++
Improve your Profiling and Debugging skills
Find out more