| 1 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
| 2 | // |
| 3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| 4 | // |
| 5 | // By downloading, copying, installing or using the software you agree to this license. |
| 6 | // If you do not agree to this license, do not download, install, |
| 7 | // copy or use the software. |
| 8 | // |
| 9 | // |
| 10 | // Intel License Agreement |
| 11 | // For Open Source Computer Vision Library |
| 12 | // |
| 13 | // Copyright (C) 2000, Intel Corporation, all rights reserved. |
| 14 | // Third party copyrights are property of their respective icvers. |
| 15 | // |
| 16 | // Redistribution and use in source and binary forms, with or without modification, |
| 17 | // are permitted provided that the following conditions are met: |
| 18 | // |
| 19 | // * Redistribution's of source code must retain the above copyright notice, |
| 20 | // this list of conditions and the following disclaimer. |
| 21 | // |
| 22 | // * Redistribution's in binary form must reproduce the above copyright notice, |
| 23 | // this list of conditions and the following disclaimer in the documentation |
| 24 | // and/or other materials provided with the distribution. |
| 25 | // |
| 26 | // * The name of Intel Corporation may not be used to endorse or promote products |
| 27 | // derived from this software without specific prior written permission. |
| 28 | // |
| 29 | // This software is provided by the copyright holders and contributors "as is" and |
| 30 | // any express or implied warranties, including, but not limited to, the implied |
| 31 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
| 32 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
| 33 | // indirect, incidental, special, exemplary, or consequential damages |
| 34 | // (including, but not limited to, procurement of substitute goods or services; |
| 35 | // loss of use, data, or profits; or business interruption) however caused |
| 36 | // and on any theory of liability, whether in contract, strict liability, |
| 37 | // or tort (including negligence or otherwise) arising in any way out of |
| 38 | // the use of this software, even if advised of the possibility of such damage. |
| 39 | // |
| 40 | //M*/ |
| 41 | |
| 42 | #include "precomp.hpp" |
| 43 | |
| 44 | #include "fast_nlmeans_denoising_invoker.hpp" |
| 45 | #include "fast_nlmeans_multi_denoising_invoker.hpp" |
| 46 | #include "fast_nlmeans_denoising_opencl.hpp" |
| 47 | |
| 48 | template<typename ST, typename IT, typename UIT, typename D> |
| 49 | static void fastNlMeansDenoising_( const Mat& src, Mat& dst, const std::vector<float>& h, |
| 50 | int templateWindowSize, int searchWindowSize) |
| 51 | { |
| 52 | int hn = (int)h.size(); |
| 53 | double granularity = (double)std::max(a: 1., b: (double)dst.total()/(1 << 17)); |
| 54 | |
| 55 | switch (CV_MAT_CN(src.type())) { |
| 56 | case 1: |
| 57 | parallel_for_(cv::Range(0, src.rows), |
| 58 | FastNlMeansDenoisingInvoker<ST, IT, UIT, D, int>( |
| 59 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 60 | granularity); |
| 61 | break; |
| 62 | case 2: |
| 63 | if (hn == 1) |
| 64 | parallel_for_(cv::Range(0, src.rows), |
| 65 | FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>( |
| 66 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 67 | granularity); |
| 68 | else |
| 69 | parallel_for_(cv::Range(0, src.rows), |
| 70 | FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>( |
| 71 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 72 | granularity); |
| 73 | break; |
| 74 | case 3: |
| 75 | if (hn == 1) |
| 76 | parallel_for_(cv::Range(0, src.rows), |
| 77 | FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>( |
| 78 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 79 | granularity); |
| 80 | else |
| 81 | parallel_for_(cv::Range(0, src.rows), |
| 82 | FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>( |
| 83 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 84 | granularity); |
| 85 | break; |
| 86 | case 4: |
| 87 | if (hn == 1) |
| 88 | parallel_for_(cv::Range(0, src.rows), |
| 89 | FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>( |
| 90 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 91 | granularity); |
| 92 | else |
| 93 | parallel_for_(cv::Range(0, src.rows), |
| 94 | FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>( |
| 95 | src, dst, templateWindowSize, searchWindowSize, &h[0]), |
| 96 | granularity); |
| 97 | break; |
| 98 | default: |
| 99 | CV_Error(Error::StsBadArg, |
| 100 | "Unsupported number of channels! Only 1, 2, 3, and 4 are supported" ); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h, |
| 105 | int templateWindowSize, int searchWindowSize) |
| 106 | { |
| 107 | CV_INSTRUMENT_REGION(); |
| 108 | |
| 109 | fastNlMeansDenoising(src: _src, dst: _dst, h: std::vector<float>(1, h), |
| 110 | templateWindowSize, searchWindowSize); |
| 111 | } |
| 112 | |
| 113 | void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, const std::vector<float>& h, |
| 114 | int templateWindowSize, int searchWindowSize, int normType) |
| 115 | { |
| 116 | CV_INSTRUMENT_REGION(); |
| 117 | |
| 118 | int hn = (int)h.size(), type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
| 119 | CV_Assert(!_src.empty()); |
| 120 | CV_Assert(hn == 1 || hn == cn); |
| 121 | |
| 122 | Size src_size = _src.size(); |
| 123 | CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) && |
| 124 | src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes |
| 125 | ocl_fastNlMeansDenoising(_src, _dst, h: &h[0], hn, |
| 126 | templateWindowSize, searchWindowSize, normType)) |
| 127 | |
| 128 | Mat src = _src.getMat(); |
| 129 | _dst.create(sz: src_size, type: src.type()); |
| 130 | Mat dst = _dst.getMat(); |
| 131 | |
| 132 | switch (normType) { |
| 133 | case NORM_L2: |
| 134 | switch (depth) { |
| 135 | case CV_8U: |
| 136 | fastNlMeansDenoising_<uchar, int, unsigned, DistSquared>(src, dst, h, |
| 137 | templateWindowSize, |
| 138 | searchWindowSize); |
| 139 | break; |
| 140 | default: |
| 141 | CV_Error(Error::StsBadArg, |
| 142 | "Unsupported depth! Only CV_8U is supported for NORM_L2" ); |
| 143 | } |
| 144 | break; |
| 145 | case NORM_L1: |
| 146 | switch (depth) { |
| 147 | case CV_8U: |
| 148 | fastNlMeansDenoising_<uchar, int, unsigned, DistAbs>(src, dst, h, |
| 149 | templateWindowSize, |
| 150 | searchWindowSize); |
| 151 | break; |
| 152 | case CV_16U: |
| 153 | fastNlMeansDenoising_<ushort, int64, uint64, DistAbs>(src, dst, h, |
| 154 | templateWindowSize, |
| 155 | searchWindowSize); |
| 156 | break; |
| 157 | default: |
| 158 | CV_Error(Error::StsBadArg, |
| 159 | "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1" ); |
| 160 | } |
| 161 | break; |
| 162 | default: |
| 163 | CV_Error(Error::StsBadArg, |
| 164 | "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported" ); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst, |
| 169 | float h, float hForColorComponents, |
| 170 | int templateWindowSize, int searchWindowSize) |
| 171 | { |
| 172 | CV_INSTRUMENT_REGION(); |
| 173 | |
| 174 | int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
| 175 | Size src_size = _src.size(); |
| 176 | if (type != CV_8UC3 && type != CV_8UC4) |
| 177 | { |
| 178 | CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3 or CV_8UC4!" ); |
| 179 | return; |
| 180 | } |
| 181 | |
| 182 | CV_OCL_RUN(_src.dims() <= 2 && (_dst.isUMat() || _src.isUMat()) && |
| 183 | src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes |
| 184 | ocl_fastNlMeansDenoisingColored(_src, _dst, h, hForColorComponents, |
| 185 | templateWindowSize, searchWindowSize)) |
| 186 | |
| 187 | Mat src = _src.getMat(); |
| 188 | _dst.create(sz: src_size, type); |
| 189 | Mat dst = _dst.getMat(); |
| 190 | |
| 191 | Mat src_lab; |
| 192 | cvtColor(src, dst: src_lab, code: COLOR_LBGR2Lab); |
| 193 | |
| 194 | Mat l(src_size, CV_MAKE_TYPE(depth, 1)); |
| 195 | Mat ab(src_size, CV_MAKE_TYPE(depth, 2)); |
| 196 | Mat l_ab[] = { l, ab }; |
| 197 | int from_to[] = { 0,0, 1,1, 2,2 }; |
| 198 | mixChannels(src: &src_lab, nsrcs: 1, dst: l_ab, ndsts: 2, fromTo: from_to, npairs: 3); |
| 199 | |
| 200 | fastNlMeansDenoising(src: l, dst: l, h, templateWindowSize, searchWindowSize); |
| 201 | fastNlMeansDenoising(src: ab, dst: ab, h: hForColorComponents, templateWindowSize, searchWindowSize); |
| 202 | |
| 203 | Mat l_ab_denoised[] = { l, ab }; |
| 204 | Mat dst_lab(src_size, CV_MAKE_TYPE(depth, 3)); |
| 205 | mixChannels(src: l_ab_denoised, nsrcs: 2, dst: &dst_lab, ndsts: 1, fromTo: from_to, npairs: 3); |
| 206 | |
| 207 | cvtColor(src: dst_lab, dst, code: COLOR_Lab2LBGR, dstCn: cn); |
| 208 | } |
| 209 | |
| 210 | static void fastNlMeansDenoisingMultiCheckPreconditions( |
| 211 | const std::vector<Mat>& srcImgs, |
| 212 | int imgToDenoiseIndex, int temporalWindowSize, |
| 213 | int templateWindowSize, int searchWindowSize) |
| 214 | { |
| 215 | int src_imgs_size = static_cast<int>(srcImgs.size()); |
| 216 | if (src_imgs_size == 0) |
| 217 | { |
| 218 | CV_Error(Error::StsBadArg, "Input images vector should not be empty!" ); |
| 219 | } |
| 220 | |
| 221 | if (temporalWindowSize % 2 == 0 || |
| 222 | searchWindowSize % 2 == 0 || |
| 223 | templateWindowSize % 2 == 0) { |
| 224 | CV_Error(Error::StsBadArg, "All windows sizes should be odd!" ); |
| 225 | } |
| 226 | |
| 227 | int temporalWindowHalfSize = temporalWindowSize / 2; |
| 228 | if (imgToDenoiseIndex - temporalWindowHalfSize < 0 || |
| 229 | imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size) |
| 230 | { |
| 231 | CV_Error(Error::StsBadArg, |
| 232 | "imgToDenoiseIndex and temporalWindowSize " |
| 233 | "should be chosen corresponding srcImgs size!" ); |
| 234 | } |
| 235 | |
| 236 | for (int i = 1; i < src_imgs_size; i++) |
| 237 | if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) |
| 238 | { |
| 239 | CV_Error(Error::StsBadArg, "Input images should have the same size and type!" ); |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | template<typename ST, typename IT, typename UIT, typename D> |
| 244 | static void fastNlMeansDenoisingMulti_( const std::vector<Mat>& srcImgs, Mat& dst, |
| 245 | int imgToDenoiseIndex, int temporalWindowSize, |
| 246 | const std::vector<float>& h, |
| 247 | int templateWindowSize, int searchWindowSize) |
| 248 | { |
| 249 | int hn = (int)h.size(); |
| 250 | double granularity = (double)std::max(a: 1., b: (double)dst.total()/(1 << 16)); |
| 251 | |
| 252 | switch (CV_MAT_CN(srcImgs[0].type())) { |
| 253 | case 1: |
| 254 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 255 | FastNlMeansMultiDenoisingInvoker<ST, IT, UIT, D, int>( |
| 256 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 257 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 258 | granularity); |
| 259 | break; |
| 260 | case 2: |
| 261 | if (hn == 1) |
| 262 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 263 | FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>( |
| 264 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 265 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 266 | granularity); |
| 267 | else |
| 268 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 269 | FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>( |
| 270 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 271 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 272 | granularity); |
| 273 | break; |
| 274 | case 3: |
| 275 | if (hn == 1) |
| 276 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 277 | FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>( |
| 278 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 279 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 280 | granularity); |
| 281 | else |
| 282 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 283 | FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>( |
| 284 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 285 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 286 | granularity); |
| 287 | break; |
| 288 | case 4: |
| 289 | if (hn == 1) |
| 290 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 291 | FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>( |
| 292 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 293 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 294 | granularity); |
| 295 | else |
| 296 | parallel_for_(cv::Range(0, srcImgs[0].rows), |
| 297 | FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>( |
| 298 | srcImgs, imgToDenoiseIndex, temporalWindowSize, |
| 299 | dst, templateWindowSize, searchWindowSize, &h[0]), |
| 300 | granularity); |
| 301 | break; |
| 302 | default: |
| 303 | CV_Error(Error::StsBadArg, |
| 304 | "Unsupported number of channels! Only 1, 2, 3, and 4 are supported" ); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, |
| 309 | int imgToDenoiseIndex, int temporalWindowSize, |
| 310 | float h, int templateWindowSize, int searchWindowSize) |
| 311 | { |
| 312 | CV_INSTRUMENT_REGION(); |
| 313 | |
| 314 | fastNlMeansDenoisingMulti(srcImgs: _srcImgs, dst: _dst, imgToDenoiseIndex, temporalWindowSize, |
| 315 | h: std::vector<float>(1, h), templateWindowSize, searchWindowSize); |
| 316 | } |
| 317 | |
| 318 | void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, |
| 319 | int imgToDenoiseIndex, int temporalWindowSize, |
| 320 | const std::vector<float>& h, |
| 321 | int templateWindowSize, int searchWindowSize, int normType) |
| 322 | { |
| 323 | CV_INSTRUMENT_REGION(); |
| 324 | |
| 325 | std::vector<Mat> srcImgs; |
| 326 | _srcImgs.getMatVector(mv&: srcImgs); |
| 327 | |
| 328 | fastNlMeansDenoisingMultiCheckPreconditions( |
| 329 | srcImgs, imgToDenoiseIndex, |
| 330 | temporalWindowSize, templateWindowSize, searchWindowSize); |
| 331 | |
| 332 | int hn = (int)h.size(); |
| 333 | int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
| 334 | CV_Assert(hn == 1 || hn == cn); |
| 335 | |
| 336 | _dst.create(sz: srcImgs[0].size(), type: srcImgs[0].type()); |
| 337 | Mat dst = _dst.getMat(); |
| 338 | |
| 339 | switch (normType) { |
| 340 | case NORM_L2: |
| 341 | switch (depth) { |
| 342 | case CV_8U: |
| 343 | fastNlMeansDenoisingMulti_<uchar, int, unsigned, |
| 344 | DistSquared>(srcImgs, dst, |
| 345 | imgToDenoiseIndex, temporalWindowSize, |
| 346 | h, |
| 347 | templateWindowSize, searchWindowSize); |
| 348 | break; |
| 349 | default: |
| 350 | CV_Error(Error::StsBadArg, |
| 351 | "Unsupported depth! Only CV_8U is supported for NORM_L2" ); |
| 352 | } |
| 353 | break; |
| 354 | case NORM_L1: |
| 355 | switch (depth) { |
| 356 | case CV_8U: |
| 357 | fastNlMeansDenoisingMulti_<uchar, int, unsigned, |
| 358 | DistAbs>(srcImgs, dst, |
| 359 | imgToDenoiseIndex, temporalWindowSize, |
| 360 | h, |
| 361 | templateWindowSize, searchWindowSize); |
| 362 | break; |
| 363 | case CV_16U: |
| 364 | fastNlMeansDenoisingMulti_<ushort, int64, uint64, |
| 365 | DistAbs>(srcImgs, dst, |
| 366 | imgToDenoiseIndex, temporalWindowSize, |
| 367 | h, |
| 368 | templateWindowSize, searchWindowSize); |
| 369 | break; |
| 370 | default: |
| 371 | CV_Error(Error::StsBadArg, |
| 372 | "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1" ); |
| 373 | } |
| 374 | break; |
| 375 | default: |
| 376 | CV_Error(Error::StsBadArg, |
| 377 | "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported" ); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst, |
| 382 | int imgToDenoiseIndex, int temporalWindowSize, |
| 383 | float h, float hForColorComponents, |
| 384 | int templateWindowSize, int searchWindowSize) |
| 385 | { |
| 386 | CV_INSTRUMENT_REGION(); |
| 387 | |
| 388 | std::vector<Mat> srcImgs; |
| 389 | _srcImgs.getMatVector(mv&: srcImgs); |
| 390 | |
| 391 | fastNlMeansDenoisingMultiCheckPreconditions( |
| 392 | srcImgs, imgToDenoiseIndex, |
| 393 | temporalWindowSize, templateWindowSize, searchWindowSize); |
| 394 | |
| 395 | _dst.create(sz: srcImgs[0].size(), type: srcImgs[0].type()); |
| 396 | Mat dst = _dst.getMat(); |
| 397 | |
| 398 | int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type); |
| 399 | int src_imgs_size = static_cast<int>(srcImgs.size()); |
| 400 | |
| 401 | if (type != CV_8UC3) |
| 402 | { |
| 403 | CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!" ); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | int from_to[] = { 0,0, 1,1, 2,2 }; |
| 408 | |
| 409 | // TODO convert only required images |
| 410 | std::vector<Mat> src_lab(src_imgs_size); |
| 411 | std::vector<Mat> l(src_imgs_size); |
| 412 | std::vector<Mat> ab(src_imgs_size); |
| 413 | for (int i = 0; i < src_imgs_size; i++) |
| 414 | { |
| 415 | src_lab[i] = Mat::zeros(size: srcImgs[0].size(), type); |
| 416 | l[i] = Mat::zeros(size: srcImgs[0].size(), CV_MAKE_TYPE(depth, 1)); |
| 417 | ab[i] = Mat::zeros(size: srcImgs[0].size(), CV_MAKE_TYPE(depth, 2)); |
| 418 | cvtColor(src: srcImgs[i], dst: src_lab[i], code: COLOR_LBGR2Lab); |
| 419 | |
| 420 | Mat l_ab[] = { l[i], ab[i] }; |
| 421 | mixChannels(src: &src_lab[i], nsrcs: 1, dst: l_ab, ndsts: 2, fromTo: from_to, npairs: 3); |
| 422 | } |
| 423 | |
| 424 | Mat dst_l; |
| 425 | Mat dst_ab; |
| 426 | |
| 427 | fastNlMeansDenoisingMulti( |
| 428 | srcImgs: l, dst: dst_l, imgToDenoiseIndex, temporalWindowSize, |
| 429 | h, templateWindowSize, searchWindowSize); |
| 430 | |
| 431 | fastNlMeansDenoisingMulti( |
| 432 | srcImgs: ab, dst: dst_ab, imgToDenoiseIndex, temporalWindowSize, |
| 433 | h: hForColorComponents, templateWindowSize, searchWindowSize); |
| 434 | |
| 435 | Mat l_ab_denoised[] = { dst_l, dst_ab }; |
| 436 | Mat dst_lab(srcImgs[0].size(), srcImgs[0].type()); |
| 437 | mixChannels(src: l_ab_denoised, nsrcs: 2, dst: &dst_lab, ndsts: 1, fromTo: from_to, npairs: 3); |
| 438 | |
| 439 | cvtColor(src: dst_lab, dst, code: COLOR_Lab2LBGR); |
| 440 | } |
| 441 | |