1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5// By downloading, copying, installing or using the software you agree to this license.
6// If you do not agree to this license, do not download, install,
7// copy or use the software.
8//
9//
10// License Agreement
11// For Open Source Computer Vision Library
12//
13// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15// Third party copyrights are property of their respective owners.
16//
17// Redistribution and use in source and binary forms, with or without modification,
18// are permitted provided that the following conditions are met:
19//
20// * Redistribution's of source code must retain the above copyright notice,
21// this list of conditions and the following disclaimer.
22//
23// * Redistribution's in binary form must reproduce the above copyright notice,
24// this list of conditions and the following disclaimer in the documentation
25// and/or other materials provided with the distribution.
26//
27// * The name of the copyright holders may not be used to endorse or promote products
28// derived from this software without specific prior written permission.
29//
30// This software is provided by the copyright holders and contributors "as is" and
31// any express or implied warranties, including, but not limited to, the implied
32// warranties of merchantability and fitness for a particular purpose are disclaimed.
33// In no event shall the Intel Corporation or contributors be liable for any direct,
34// indirect, incidental, special, exemplary, or consequential damages
35// (including, but not limited to, procurement of substitute goods or services;
36// loss of use, data, or profits; or business interruption) however caused
37// and on any theory of liability, whether in contract, strict liability,
38// or tort (including negligence or otherwise) arising in any way out of
39// the use of this software, even if advised of the possibility of such damage.
40//
41//M*/
42
43#include "precomp.hpp"
44#include "opencl_kernels_stitching.hpp"
45#include <iostream>
46namespace cv {
47
48PyRotationWarper::PyRotationWarper(String warp_type, float scale)
49{
50 Ptr<WarperCreator> warper_creator;
51 if (warp_type == "plane")
52 warper_creator = makePtr<cv::PlaneWarper>();
53 else if (warp_type == "affine")
54 warper_creator = makePtr<cv::AffineWarper>();
55 else if (warp_type == "cylindrical")
56 warper_creator = makePtr<cv::CylindricalWarper>();
57 else if (warp_type == "spherical")
58 warper_creator = makePtr<cv::SphericalWarper>();
59 else if (warp_type == "fisheye")
60 warper_creator = makePtr<cv::FisheyeWarper>();
61 else if (warp_type == "stereographic")
62 warper_creator = makePtr<cv::StereographicWarper>();
63 else if (warp_type == "compressedPlaneA2B1")
64 warper_creator = makePtr<cv::CompressedRectilinearWarper>(a1: 2.0f, a1: 1.0f);
65 else if (warp_type == "compressedPlaneA1.5B1")
66 warper_creator = makePtr<cv::CompressedRectilinearWarper>(a1: 1.5f, a1: 1.0f);
67 else if (warp_type == "compressedPlanePortraitA2B1")
68 warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(a1: 2.0f, a1: 1.0f);
69 else if (warp_type == "compressedPlanePortraitA1.5B1")
70 warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(a1: 1.5f, a1: 1.0f);
71 else if (warp_type == "paniniA2B1")
72 warper_creator = makePtr<cv::PaniniWarper>(a1: 2.0f, a1: 1.0f);
73 else if (warp_type == "paniniA1.5B1")
74 warper_creator = makePtr<cv::PaniniWarper>(a1: 1.5f, a1: 1.0f);
75 else if (warp_type == "paniniPortraitA2B1")
76 warper_creator = makePtr<cv::PaniniPortraitWarper>(a1: 2.0f, a1: 1.0f);
77 else if (warp_type == "paniniPortraitA1.5B1")
78 warper_creator = makePtr<cv::PaniniPortraitWarper>(a1: 1.5f, a1: 1.0f);
79 else if (warp_type == "mercator")
80 warper_creator = makePtr<cv::MercatorWarper>();
81 else if (warp_type == "transverseMercator")
82 warper_creator = makePtr<cv::TransverseMercatorWarper>();
83 if (warper_creator.get() != nullptr)
84 {
85 rw = warper_creator->create(scale);
86
87 }
88 else
89 CV_Error(Error::StsError, "unknown warper :" + warp_type);
90}
91Point2f PyRotationWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R)
92{
93 return rw.get()->warpPoint(pt, K, R);
94}
95
96#if CV_VERSION_MAJOR != 4
97Point2f PyRotationWarper::warpPointBackward(const Point2f& pt, InputArray K, InputArray R)
98{
99 return rw.get()->warpPointBackward(pt, K, R);
100}
101#endif
102
103Rect PyRotationWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
104{
105 return rw.get()->buildMaps(src_size, K, R, xmap, ymap);
106}
107Point PyRotationWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
108 OutputArray dst)
109{
110 if (rw.get() == nullptr)
111 CV_Error(Error::StsError, "Warper is null");
112 Point p = rw.get()->warp(src, K, R, interp_mode, border_mode, dst);
113 return p;
114
115}
116void PyRotationWarper::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
117 Size dst_size, OutputArray dst)
118{
119 return rw.get()->warpBackward(src, K, R, interp_mode, border_mode, dst_size, dst);
120}
121Rect PyRotationWarper::warpRoi(Size src_size, InputArray K, InputArray R)
122{
123 return rw.get()->warpRoi(src_size, K, R);
124}
125
126namespace detail {
127
128void ProjectorBase::setCameraParams(InputArray _K, InputArray _R, InputArray _T)
129{
130 Mat K = _K.getMat(), R = _R.getMat(), T = _T.getMat();
131
132 CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F);
133 CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F);
134 CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F);
135
136 Mat_<float> K_(K);
137 k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2);
138 k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2);
139 k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2);
140
141 Mat_<float> Rinv = R.t();
142 rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2);
143 rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2);
144 rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2);
145
146 Mat_<float> R_Kinv = R * K.inv();
147 r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2);
148 r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2);
149 r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2);
150
151 Mat_<float> K_Rinv = K * Rinv;
152 k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2);
153 k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2);
154 k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2);
155
156 Mat_<float> T_(T.reshape(cn: 0, rows: 3));
157 t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0);
158}
159
160
161Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T)
162{
163 projector_.setCameraParams(K: K, R: R, T: T);
164 Point2f uv;
165 projector_.mapForward(x: pt.x, y: pt.y, u&: uv.x, v&: uv.y);
166 return uv;
167}
168
169Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R)
170{
171 float tz[] = {0.f, 0.f, 0.f};
172 Mat_<float> T(3, 1, tz);
173 return warpPoint(pt, K, R, T);
174}
175Point2f PlaneWarper::warpPointBackward(const Point2f& pt, InputArray K, InputArray R, InputArray T)
176{
177 projector_.setCameraParams(K: K, R: R, T: T);
178 Point2f xy;
179 projector_.mapBackward(u: pt.x, v: pt.y, x&: xy.x, y&: xy.y);
180 return xy;
181}
182
183Point2f PlaneWarper::warpPointBackward(const Point2f& pt, InputArray K, InputArray R)
184{
185 float tz[] = { 0.f, 0.f, 0.f };
186 Mat_<float> T(3, 1, tz);
187 return warpPointBackward(pt, K, R, T);
188}
189
190Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
191{
192 return buildMaps(src_size, K, R, T: Mat::zeros(rows: 3, cols: 1, CV_32FC1), xmap, ymap);
193}
194
195Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray _xmap, OutputArray _ymap)
196{
197 projector_.setCameraParams(K: K, R: R, T: T);
198
199 Point dst_tl, dst_br;
200 detectResultRoi(src_size, dst_tl, dst_br);
201
202 Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1);
203 _xmap.create(sz: dsize, CV_32FC1);
204 _ymap.create(sz: dsize, CV_32FC1);
205
206#ifdef HAVE_OPENCL
207 if (ocl::isOpenCLActivated())
208 {
209 ocl::Kernel k("buildWarpPlaneMaps", ocl::stitching::warpers_oclsrc);
210 if (!k.empty())
211 {
212 int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
213 Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv), t(1, 3, CV_32FC1, projector_.t);
214 UMat uxmap = _xmap.getUMat(), uymap = _ymap.getUMat(),
215 uk_rinv = k_rinv.getUMat(accessFlags: ACCESS_READ), ut = t.getUMat(accessFlags: ACCESS_READ);
216
217 k.args(kernel_args: ocl::KernelArg::WriteOnlyNoSize(m: uxmap), kernel_args: ocl::KernelArg::WriteOnly(m: uymap),
218 kernel_args: ocl::KernelArg::PtrReadOnly(m: uk_rinv), kernel_args: ocl::KernelArg::PtrReadOnly(m: ut),
219 kernel_args: dst_tl.x, kernel_args: dst_tl.y, kernel_args: 1/projector_.scale, kernel_args: rowsPerWI);
220
221 size_t globalsize[2] = { (size_t)dsize.width, ((size_t)dsize.height + rowsPerWI - 1) / rowsPerWI };
222 if (k.run(dims: 2, globalsize, NULL, sync: true))
223 {
224 CV_IMPL_ADD(CV_IMPL_OCL);
225 return Rect(dst_tl, dst_br);
226 }
227 }
228 }
229#endif
230
231 Mat xmap = _xmap.getMat(), ymap = _ymap.getMat();
232
233 float x, y;
234 for (int v = dst_tl.y; v <= dst_br.y; ++v)
235 {
236 for (int u = dst_tl.x; u <= dst_br.x; ++u)
237 {
238 projector_.mapBackward(u: static_cast<float>(u), v: static_cast<float>(v), x, y);
239 xmap.at<float>(i0: v - dst_tl.y, i1: u - dst_tl.x) = x;
240 ymap.at<float>(i0: v - dst_tl.y, i1: u - dst_tl.x) = y;
241 }
242 }
243
244 return Rect(dst_tl, dst_br);
245}
246
247
248Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
249 OutputArray dst)
250{
251 UMat uxmap, uymap;
252 Rect dst_roi = buildMaps(src_size: src.size(), K, R, T, xmap: uxmap, ymap: uymap);
253 dst.create(rows: dst_roi.height + 1, cols: dst_roi.width + 1, type: src.type());
254 remap(src, dst, map1: uxmap, map2: uymap, interpolation: interp_mode, borderMode: border_mode);
255
256 return dst_roi.tl();
257}
258
259Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R,
260 int interp_mode, int border_mode, OutputArray dst)
261{
262 float tz[] = {0.f, 0.f, 0.f};
263 Mat_<float> T(3, 1, tz);
264 return warp(src, K, R, T, interp_mode, border_mode, dst);
265}
266
267Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R, InputArray T)
268{
269 projector_.setCameraParams(K: K, R: R, T: T);
270
271 Point dst_tl, dst_br;
272 detectResultRoi(src_size, dst_tl, dst_br);
273
274 return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
275}
276
277Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R)
278{
279 float tz[] = {0.f, 0.f, 0.f};
280 Mat_<float> T(3, 1, tz);
281 return warpRoi(src_size, K, R, T);
282}
283
284
285void PlaneWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
286{
287 float tl_uf = std::numeric_limits<float>::max();
288 float tl_vf = std::numeric_limits<float>::max();
289 float br_uf = -std::numeric_limits<float>::max();
290 float br_vf = -std::numeric_limits<float>::max();
291
292 float u, v;
293
294 projector_.mapForward(x: 0, y: 0, u, v);
295 tl_uf = std::min(a: tl_uf, b: u); tl_vf = std::min(a: tl_vf, b: v);
296 br_uf = std::max(a: br_uf, b: u); br_vf = std::max(a: br_vf, b: v);
297
298 projector_.mapForward(x: 0, y: static_cast<float>(src_size.height - 1), u, v);
299 tl_uf = std::min(a: tl_uf, b: u); tl_vf = std::min(a: tl_vf, b: v);
300 br_uf = std::max(a: br_uf, b: u); br_vf = std::max(a: br_vf, b: v);
301
302 projector_.mapForward(x: static_cast<float>(src_size.width - 1), y: 0, u, v);
303 tl_uf = std::min(a: tl_uf, b: u); tl_vf = std::min(a: tl_vf, b: v);
304 br_uf = std::max(a: br_uf, b: u); br_vf = std::max(a: br_vf, b: v);
305
306 projector_.mapForward(x: static_cast<float>(src_size.width - 1), y: static_cast<float>(src_size.height - 1), u, v);
307 tl_uf = std::min(a: tl_uf, b: u); tl_vf = std::min(a: tl_vf, b: v);
308 br_uf = std::max(a: br_uf, b: u); br_vf = std::max(a: br_vf, b: v);
309
310 dst_tl.x = static_cast<int>(tl_uf);
311 dst_tl.y = static_cast<int>(tl_vf);
312 dst_br.x = static_cast<int>(br_uf);
313 dst_br.y = static_cast<int>(br_vf);
314}
315
316
317Point2f AffineWarper::warpPoint(const Point2f &pt, InputArray K, InputArray H)
318{
319 Mat R, T;
320 getRTfromHomogeneous(H, R, T);
321 return PlaneWarper::warpPoint(pt, K, R, T);
322}
323
324Point2f AffineWarper::warpPointBackward(const Point2f& pt, InputArray K, InputArray H)
325{
326 Mat R, T;
327 getRTfromHomogeneous(H, R, T);
328 return PlaneWarper::warpPointBackward(pt, K, R, T);
329}
330
331Rect AffineWarper::buildMaps(Size src_size, InputArray K, InputArray H, OutputArray xmap, OutputArray ymap)
332{
333 Mat R, T;
334 getRTfromHomogeneous(H, R, T);
335 return PlaneWarper::buildMaps(src_size, K, R, T, xmap: xmap, ymap: ymap);
336}
337
338
339Point AffineWarper::warp(InputArray src, InputArray K, InputArray H,
340 int interp_mode, int border_mode, OutputArray dst)
341{
342 Mat R, T;
343 getRTfromHomogeneous(H, R, T);
344 return PlaneWarper::warp(src, K, R, T, interp_mode, border_mode, dst);
345}
346
347
348Rect AffineWarper::warpRoi(Size src_size, InputArray K, InputArray H)
349{
350 Mat R, T;
351 getRTfromHomogeneous(H, R, T);
352 return PlaneWarper::warpRoi(src_size, K, R, T);
353}
354
355
356void AffineWarper::getRTfromHomogeneous(InputArray H_, Mat &R, Mat &T)
357{
358 Mat H = H_.getMat();
359 CV_Assert(H.size() == Size(3, 3) && H.type() == CV_32F);
360
361 T = Mat::zeros(rows: 3, cols: 1, CV_32F);
362 R = H.clone();
363
364 T.at<float>(i0: 0,i1: 0) = R.at<float>(i0: 0,i1: 2);
365 T.at<float>(i0: 1,i1: 0) = R.at<float>(i0: 1,i1: 2);
366 R.at<float>(i0: 0,i1: 2) = 0.f;
367 R.at<float>(i0: 1,i1: 2) = 0.f;
368
369 // we want to compensate transform to fit into plane warper
370 R = R.t();
371 T = (R * T) * -1;
372}
373
374
375void SphericalWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
376{
377 detectResultRoiByBorder(src_size, dst_tl, dst_br);
378
379 float tl_uf = static_cast<float>(dst_tl.x);
380 float tl_vf = static_cast<float>(dst_tl.y);
381 float br_uf = static_cast<float>(dst_br.x);
382 float br_vf = static_cast<float>(dst_br.y);
383
384 float x = projector_.rinv[1];
385 float y = projector_.rinv[4];
386 float z = projector_.rinv[7];
387 if (y > 0.f)
388 {
389 float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
390 float y_ = projector_.k[4] * y / z + projector_.k[5];
391 if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
392 {
393 tl_uf = std::min(a: tl_uf, b: 0.f); tl_vf = std::min(a: tl_vf, b: static_cast<float>(CV_PI * projector_.scale));
394 br_uf = std::max(a: br_uf, b: 0.f); br_vf = std::max(a: br_vf, b: static_cast<float>(CV_PI * projector_.scale));
395 }
396 }
397
398 x = projector_.rinv[1];
399 y = -projector_.rinv[4];
400 z = projector_.rinv[7];
401 if (y > 0.f)
402 {
403 float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
404 float y_ = projector_.k[4] * y / z + projector_.k[5];
405 if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
406 {
407 tl_uf = std::min(a: tl_uf, b: 0.f); tl_vf = std::min(a: tl_vf, b: static_cast<float>(0));
408 br_uf = std::max(a: br_uf, b: 0.f); br_vf = std::max(a: br_vf, b: static_cast<float>(0));
409 }
410 }
411
412 dst_tl.x = static_cast<int>(tl_uf);
413 dst_tl.y = static_cast<int>(tl_vf);
414 dst_br.x = static_cast<int>(br_uf);
415 dst_br.y = static_cast<int>(br_vf);
416}
417
418void SphericalPortraitWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
419{
420 detectResultRoiByBorder(src_size, dst_tl, dst_br);
421
422 float tl_uf = static_cast<float>(dst_tl.x);
423 float tl_vf = static_cast<float>(dst_tl.y);
424 float br_uf = static_cast<float>(dst_br.x);
425 float br_vf = static_cast<float>(dst_br.y);
426
427 float x = projector_.rinv[0];
428 float y = projector_.rinv[3];
429 float z = projector_.rinv[6];
430 if (y > 0.f)
431 {
432 float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
433 float y_ = projector_.k[4] * y / z + projector_.k[5];
434 if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
435 {
436 tl_uf = std::min(a: tl_uf, b: 0.f); tl_vf = std::min(a: tl_vf, b: static_cast<float>(CV_PI * projector_.scale));
437 br_uf = std::max(a: br_uf, b: 0.f); br_vf = std::max(a: br_vf, b: static_cast<float>(CV_PI * projector_.scale));
438 }
439 }
440
441 x = projector_.rinv[0];
442 y = -projector_.rinv[3];
443 z = projector_.rinv[6];
444 if (y > 0.f)
445 {
446 float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
447 float y_ = projector_.k[4] * y / z + projector_.k[5];
448 if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
449 {
450 tl_uf = std::min(a: tl_uf, b: 0.f); tl_vf = std::min(a: tl_vf, b: static_cast<float>(0));
451 br_uf = std::max(a: br_uf, b: 0.f); br_vf = std::max(a: br_vf, b: static_cast<float>(0));
452 }
453 }
454
455 dst_tl.x = static_cast<int>(tl_uf);
456 dst_tl.y = static_cast<int>(tl_vf);
457 dst_br.x = static_cast<int>(br_uf);
458 dst_br.y = static_cast<int>(br_vf);
459}
460
461/////////////////////////////////////////// SphericalWarper ////////////////////////////////////////
462
463Rect SphericalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
464{
465#ifdef HAVE_OPENCL
466 if (ocl::isOpenCLActivated())
467 {
468 ocl::Kernel k("buildWarpSphericalMaps", ocl::stitching::warpers_oclsrc);
469 if (!k.empty())
470 {
471 int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
472 projector_.setCameraParams(K: K, R: R);
473
474 Point dst_tl, dst_br;
475 detectResultRoi(src_size, dst_tl, dst_br);
476
477 Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1);
478 xmap.create(sz: dsize, CV_32FC1);
479 ymap.create(sz: dsize, CV_32FC1);
480
481 Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv);
482 UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(accessFlags: ACCESS_READ);
483
484 k.args(kernel_args: ocl::KernelArg::WriteOnlyNoSize(m: uxmap), kernel_args: ocl::KernelArg::WriteOnly(m: uymap),
485 kernel_args: ocl::KernelArg::PtrReadOnly(m: uk_rinv), kernel_args: dst_tl.x, kernel_args: dst_tl.y, kernel_args: 1/projector_.scale, kernel_args: rowsPerWI);
486
487 size_t globalsize[2] = { (size_t)dsize.width, ((size_t)dsize.height + rowsPerWI - 1) / rowsPerWI };
488 if (k.run(dims: 2, globalsize, NULL, sync: true))
489 {
490 CV_IMPL_ADD(CV_IMPL_OCL);
491 return Rect(dst_tl, dst_br);
492 }
493 }
494 }
495#endif
496 return RotationWarperBase<SphericalProjector>::buildMaps(src_size, K, R, xmap: xmap, ymap: ymap);
497}
498
499Point SphericalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst)
500{
501 UMat uxmap, uymap;
502 Rect dst_roi = buildMaps(src_size: src.size(), K, R, xmap: uxmap, ymap: uymap);
503
504 dst.create(rows: dst_roi.height + 1, cols: dst_roi.width + 1, type: src.type());
505 remap(src, dst, map1: uxmap, map2: uymap, interpolation: interp_mode, borderMode: border_mode);
506
507 return dst_roi.tl();
508}
509
510/////////////////////////////////////////// CylindricalWarper ////////////////////////////////////////
511
512Rect CylindricalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
513{
514#ifdef HAVE_OPENCL
515 if (ocl::isOpenCLActivated())
516 {
517 ocl::Kernel k("buildWarpCylindricalMaps", ocl::stitching::warpers_oclsrc);
518 if (!k.empty())
519 {
520 int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
521 projector_.setCameraParams(K: K, R: R);
522
523 Point dst_tl, dst_br;
524 detectResultRoi(src_size, dst_tl, dst_br);
525
526 Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1);
527 xmap.create(sz: dsize, CV_32FC1);
528 ymap.create(sz: dsize, CV_32FC1);
529
530 Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv);
531 UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(accessFlags: ACCESS_READ);
532
533 k.args(kernel_args: ocl::KernelArg::WriteOnlyNoSize(m: uxmap), kernel_args: ocl::KernelArg::WriteOnly(m: uymap),
534 kernel_args: ocl::KernelArg::PtrReadOnly(m: uk_rinv), kernel_args: dst_tl.x, kernel_args: dst_tl.y, kernel_args: 1/projector_.scale,
535 kernel_args: rowsPerWI);
536
537 size_t globalsize[2] = { (size_t)dsize.width, ((size_t)dsize.height + rowsPerWI - 1) / rowsPerWI };
538 if (k.run(dims: 2, globalsize, NULL, sync: true))
539 {
540 CV_IMPL_ADD(CV_IMPL_OCL);
541 return Rect(dst_tl, dst_br);
542 }
543 }
544 }
545#endif
546 return RotationWarperBase<CylindricalProjector>::buildMaps(src_size, K, R, xmap: xmap, ymap: ymap);
547}
548
549Point CylindricalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst)
550{
551 UMat uxmap, uymap;
552 Rect dst_roi = buildMaps(src_size: src.size(), K, R, xmap: uxmap, ymap: uymap);
553
554 dst.create(rows: dst_roi.height + 1, cols: dst_roi.width + 1, type: src.type());
555 remap(src, dst, map1: uxmap, map2: uymap, interpolation: interp_mode, borderMode: border_mode);
556
557 return dst_roi.tl();
558}
559
560} // namespace detail
561} // namespace cv
562

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of opencv/modules/stitching/src/warpers.cpp