1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB). |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "sphere_p.h" |
41 | |
42 | #include <Qt3DRender/private/qray3d_p.h> |
43 | |
44 | #include <QPair> |
45 | |
46 | #include <math.h> |
47 | #include <algorithm> |
48 | |
49 | QT_BEGIN_NAMESPACE |
50 | |
51 | namespace { |
52 | |
53 | // Algorithms taken from Real-time collision detection, p178-179 |
54 | |
55 | // Intersects ray r = p + td, |d| = 1, with sphere s and, if intersecting, |
56 | // returns true and intersection point q; false otherwise |
57 | bool intersectRaySphere(const Qt3DRender::RayCasting::QRay3D &ray, const Qt3DRender::Render::Sphere &s, Vector3D *q = nullptr) |
58 | { |
59 | if (s.isNull()) |
60 | return false; |
61 | |
62 | const Vector3D p = ray.origin(); |
63 | const Vector3D d = ray.direction(); |
64 | const Vector3D m = p - s.center(); |
65 | const float c = Vector3D::dotProduct(a: m, b: m) - s.radius() * s.radius(); |
66 | |
67 | // If there is definitely at least one real root, there must be an intersection |
68 | if (q == nullptr && c <= 0.0f) |
69 | return true; |
70 | |
71 | const float b = Vector3D::dotProduct(a: m, b: d); |
72 | // Exit if r’s origin outside s (c > 0) and r pointing away from s (b > 0) |
73 | if (c > 0.0f && b > 0.0f) |
74 | return false; |
75 | |
76 | const float discr = b*b - c; |
77 | // A negative discriminant corresponds to ray missing sphere |
78 | if (discr < 0.0f) |
79 | return false; |
80 | |
81 | // If we don't need the intersection point, return early |
82 | if (q == nullptr) |
83 | return true; |
84 | |
85 | // Ray now found to intersect sphere, compute smallest t value of intersection |
86 | float t = -b - sqrt(x: discr); |
87 | |
88 | // If t is negative, ray started inside sphere so clamp t to zero |
89 | if (t < 0.0f) |
90 | t = 0.0f; |
91 | |
92 | *q = p + t * d; |
93 | return true; |
94 | } |
95 | |
96 | inline void constructRitterSphere(Qt3DRender::Render::Sphere &s, const QVector<Vector3D> &points) |
97 | { |
98 | //def bounding_sphere(points): |
99 | // dist = lambda a,b: ((a[0] - b[0])**2 + (a[1] - b[1])**2 + (a[2] - b[2])**2)**0.5 |
100 | // x = points[0] |
101 | // y = max(points,key= lambda p: dist(p,x) ) |
102 | // z = max(points,key= lambda p: dist(p,y) ) |
103 | // bounding_sphere = (((y[0]+z[0])/2,(y[1]+z[1])/2,(y[2]+z[2])/2), dist(y,z)/2) |
104 | // |
105 | // exterior_points = [p for p in points if dist(p,bounding_sphere[0]) > bounding_sphere[1] ] |
106 | // while ( len(exterior_points) > 0 ): |
107 | // pt = exterior_points.pop() |
108 | // if (dist(pt, bounding_sphere[0]) > bounding_sphere[1]): |
109 | // bounding_sphere = (bounding_sphere[0],dist(pt,bounding_sphere[0])) |
110 | // |
111 | // return bounding_sphere |
112 | |
113 | const Vector3D x = points[0]; |
114 | const Vector3D y = *std::max_element(first: points.begin(), last: points.end(), comp: [&x](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - x).lengthSquared() < (rhs - x).lengthSquared(); }); |
115 | const Vector3D z = *std::max_element(first: points.begin(), last: points.end(), comp: [&y](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - y).lengthSquared() < (rhs - y).lengthSquared(); }); |
116 | |
117 | const Vector3D center = (y + z) * 0.5f; |
118 | const Vector3D maxDistPt = *std::max_element(first: points.begin(), last: points.end(), comp: [¢er](const Vector3D& lhs, const Vector3D& rhs){ return (lhs - center).lengthSquared() < (rhs - center).lengthSquared(); }); |
119 | const float radius = (maxDistPt - center).length(); |
120 | |
121 | s.setCenter(center); |
122 | s.setRadius(radius); |
123 | } |
124 | |
125 | } // anonymous namespace |
126 | |
127 | namespace Qt3DRender { |
128 | |
129 | namespace Render { |
130 | |
131 | const float Sphere::ms_epsilon = 1.0e-7f; |
132 | |
133 | Sphere Sphere::fromPoints(const QVector<Vector3D> &points) |
134 | { |
135 | Sphere s; |
136 | s.initializeFromPoints(points); |
137 | return s; |
138 | } |
139 | |
140 | void Sphere::initializeFromPoints(const QVector<Vector3D> &points) |
141 | { |
142 | if (!points.isEmpty()) |
143 | constructRitterSphere(s&: *this, points); |
144 | } |
145 | |
146 | void Sphere::expandToContain(const Vector3D &p) |
147 | { |
148 | if (isNull()) { |
149 | m_center = p; |
150 | m_radius = 0.0f; |
151 | return; |
152 | } |
153 | |
154 | const Vector3D d = p - m_center; |
155 | const float dist2 = d.lengthSquared(); |
156 | |
157 | if (dist2 > m_radius * m_radius) { |
158 | // Expand radius so sphere also contains p |
159 | const float dist = sqrt(x: dist2); |
160 | const float newRadius = 0.5f * (m_radius + dist); |
161 | const float k = (newRadius - m_radius) / dist; |
162 | m_radius = newRadius; |
163 | m_center += k * d; |
164 | } |
165 | } |
166 | |
167 | void Sphere::expandToContain(const Sphere &sphere) |
168 | { |
169 | if (isNull()) { |
170 | *this = sphere; |
171 | return; |
172 | } else if (sphere.isNull()) { |
173 | return; |
174 | } |
175 | |
176 | const Vector3D d(sphere.m_center - m_center); |
177 | const float dist2 = d.lengthSquared(); |
178 | |
179 | const float dr = sphere.m_radius - m_radius; |
180 | if (dr * dr >= dist2) { |
181 | // Larger sphere encloses the smaller. Set our size to the larger |
182 | if (m_radius > sphere.m_radius) |
183 | return; |
184 | else |
185 | *this = sphere; |
186 | } else { |
187 | // The spheres are overlapping or disjoint |
188 | const float dist = sqrt(x: dist2); |
189 | const float newRadius = 0.5f * (dist + m_radius + sphere.m_radius); |
190 | if (dist > ms_epsilon) |
191 | m_center += d * (newRadius - m_radius) / dist; |
192 | m_radius = newRadius; |
193 | } |
194 | } |
195 | |
196 | Sphere Sphere::transformed(const Matrix4x4 &mat) const |
197 | { |
198 | if (isNull()) |
199 | return *this; |
200 | |
201 | // Transform extremities in x, y, and z directions to find extremities |
202 | // of the resulting ellipsoid |
203 | Vector3D x = mat.map(point: m_center + Vector3D(m_radius, 0.0f, 0.0f)); |
204 | Vector3D y = mat.map(point: m_center + Vector3D(0.0f, m_radius, 0.0f)); |
205 | Vector3D z = mat.map(point: m_center + Vector3D(0.0f, 0.0f, m_radius)); |
206 | |
207 | // Transform center and find maximum radius of ellipsoid |
208 | Vector3D c = mat.map(point: m_center); |
209 | float rSquared = qMax(a: qMax(a: (x - c).lengthSquared(), b: (y - c).lengthSquared()), b: (z - c).lengthSquared()); |
210 | return Sphere(c, sqrt(x: rSquared), id()); |
211 | } |
212 | |
213 | Qt3DCore::QNodeId Sphere::id() const |
214 | { |
215 | return m_id; |
216 | } |
217 | |
218 | bool Sphere::intersects(const RayCasting::QRay3D &ray, Vector3D *q, Vector3D *uvw) const |
219 | { |
220 | Q_UNUSED(uvw); |
221 | return intersectRaySphere(ray, s: *this, q); |
222 | } |
223 | |
224 | Sphere::Type Sphere::type() const |
225 | { |
226 | return RayCasting::QBoundingVolume::Sphere; |
227 | } |
228 | |
229 | #ifndef QT_NO_DEBUG_STREAM |
230 | |
231 | QDebug operator<<(QDebug dbg, const Sphere &sphere) |
232 | { |
233 | QDebugStateSaver saver(dbg); |
234 | dbg.nospace() << "Sphere(center(" |
235 | << sphere.center().x() << ", " << sphere.center().y() << ", " |
236 | << sphere.center().z() << ") - radius(" << sphere.radius() << "))" ; |
237 | return dbg; |
238 | } |
239 | |
240 | #endif |
241 | |
242 | } // Render |
243 | |
244 | } // Qt3DRender |
245 | |
246 | QT_END_NAMESPACE |
247 | |