| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Contact: http://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtLocation module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL3$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see http://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at http://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPLv3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or later as published by the Free |
| 28 | ** Software Foundation and appearing in the file LICENSE.GPL included in |
| 29 | ** the packaging of this file. Please review the following information to |
| 30 | ** ensure the GNU General Public License version 2.0 requirements will be |
| 31 | ** met: http://www.gnu.org/licenses/gpl-2.0.html. |
| 32 | ** |
| 33 | ** $QT_END_LICENSE$ |
| 34 | ** |
| 35 | ****************************************************************************/ |
| 36 | |
| 37 | #include "qgeoprojection_p.h" |
| 38 | #include <QtPositioning/private/qwebmercator_p.h> |
| 39 | #include <QtPositioning/private/qlocationutils_p.h> |
| 40 | #include <QtPositioning/private/qclipperutils_p.h> |
| 41 | #include <QtPositioning/QGeoPolygon> |
| 42 | #include <QtPositioning/QGeoRectangle> |
| 43 | #include <QSize> |
| 44 | #include <QtGui/QMatrix4x4> |
| 45 | #include <cmath> |
| 46 | |
| 47 | namespace { |
| 48 | static const double defaultTileSize = 256.0; |
| 49 | static const QDoubleVector3D xyNormal(0.0, 0.0, 1.0); |
| 50 | static const QGeoProjectionWebMercator::Plane xyPlane(QDoubleVector3D(0,0,0), QDoubleVector3D(0,0,1)); |
| 51 | static const QList<QDoubleVector2D> mercatorGeometry = { |
| 52 | QDoubleVector2D(-1.0,0.0), |
| 53 | QDoubleVector2D( 2.0,0.0), |
| 54 | QDoubleVector2D( 2.0,1.0), |
| 55 | QDoubleVector2D(-1.0,1.0) }; |
| 56 | } |
| 57 | |
| 58 | static QMatrix4x4 toMatrix4x4(const QDoubleMatrix4x4 &m) |
| 59 | { |
| 60 | return QMatrix4x4(m(0,0), m(0,1), m(0,2), m(0,3), |
| 61 | m(1,0), m(1,1), m(1,2), m(1,3), |
| 62 | m(2,0), m(2,1), m(2,2), m(2,3), |
| 63 | m(3,0), m(3,1), m(3,2), m(3,3)); |
| 64 | } |
| 65 | |
| 66 | static QPointF centerOffset(const QSizeF &screenSize, const QRectF &visibleArea) |
| 67 | { |
| 68 | QRectF va = visibleArea; |
| 69 | if (va.isNull()) |
| 70 | va = QRectF(0, 0, screenSize.width(), screenSize.height()); |
| 71 | |
| 72 | QRectF screen = QRectF(QPointF(0,0),screenSize); |
| 73 | QPointF vaCenter = va.center(); |
| 74 | |
| 75 | QPointF screenCenter = screen.center(); |
| 76 | QPointF diff = screenCenter - vaCenter; |
| 77 | |
| 78 | return diff; |
| 79 | } |
| 80 | |
| 81 | static QPointF marginsOffset(const QSizeF &screenSize, const QRectF &visibleArea) |
| 82 | { |
| 83 | QPointF diff = centerOffset(screenSize, visibleArea); |
| 84 | qreal xdiffpct = diff.x() / qMax<double>(a: screenSize.width() - 1, b: 1); |
| 85 | qreal ydiffpct = diff.y() / qMax<double>(a: screenSize.height() - 1, b: 1); |
| 86 | |
| 87 | return QPointF(-xdiffpct, -ydiffpct); |
| 88 | } |
| 89 | |
| 90 | QT_BEGIN_NAMESPACE |
| 91 | |
| 92 | QGeoProjection::QGeoProjection() |
| 93 | { |
| 94 | |
| 95 | } |
| 96 | |
| 97 | QGeoProjection::~QGeoProjection() |
| 98 | { |
| 99 | |
| 100 | } |
| 101 | |
| 102 | QGeoCoordinate QGeoProjection::anchorCoordinateToPoint(const QGeoCoordinate &coordinate, const QPointF &anchorPoint) const |
| 103 | { |
| 104 | Q_UNUSED(coordinate); |
| 105 | Q_UNUSED(anchorPoint); |
| 106 | return QGeoCoordinate(); |
| 107 | } |
| 108 | |
| 109 | QGeoShape QGeoProjection::visibleRegion() const |
| 110 | { |
| 111 | return QGeoShape(); |
| 112 | } |
| 113 | |
| 114 | bool QGeoProjection::setBearing(qreal bearing, const QGeoCoordinate &coordinate) |
| 115 | { |
| 116 | Q_UNUSED(bearing); |
| 117 | Q_UNUSED(coordinate); |
| 118 | return false; |
| 119 | } |
| 120 | |
| 121 | void QGeoProjection::setItemToWindowTransform(const QTransform &itemToWindowTransform) |
| 122 | { |
| 123 | if (m_itemToWindowTransform == itemToWindowTransform) |
| 124 | return; |
| 125 | m_qsgTransformDirty = true; |
| 126 | m_itemToWindowTransform = itemToWindowTransform; |
| 127 | } |
| 128 | |
| 129 | QTransform QGeoProjection::itemToWindowTransform() const |
| 130 | { |
| 131 | return m_itemToWindowTransform; |
| 132 | } |
| 133 | |
| 134 | |
| 135 | /* |
| 136 | * QGeoProjectionWebMercator implementation |
| 137 | */ |
| 138 | |
| 139 | QGeoCoordinate QGeoProjectionWebMercator::anchorCoordinateToPoint(const QGeoCoordinate &coordinate, const QPointF &anchorPoint) const |
| 140 | { |
| 141 | // Approach: find the displacement in (wrapped) mercator space, and apply that to the center |
| 142 | QDoubleVector2D centerProj = geoToWrappedMapProjection(coordinate: cameraData().center()); |
| 143 | QDoubleVector2D coordProj = geoToWrappedMapProjection(coordinate); |
| 144 | |
| 145 | QDoubleVector2D anchorProj = itemPositionToWrappedMapProjection(itemPosition: QDoubleVector2D(anchorPoint)); |
| 146 | // Y-clamping done in mercatorToCoord |
| 147 | return wrappedMapProjectionToGeo(wrappedProjection: centerProj + coordProj - anchorProj); |
| 148 | } |
| 149 | |
| 150 | bool QGeoProjectionWebMercator::setBearing(qreal bearing, const QGeoCoordinate &coordinate) |
| 151 | { |
| 152 | const QDoubleVector2D coordWrapped = geoToWrappedMapProjection(coordinate); |
| 153 | if (!isProjectable(wrappedProjection: coordWrapped)) |
| 154 | return false; |
| 155 | const QPointF rotationPoint = wrappedMapProjectionToItemPosition(wrappedProjection: coordWrapped).toPointF(); |
| 156 | |
| 157 | QGeoCameraData camera = cameraData(); |
| 158 | // first set bearing |
| 159 | camera.setBearing(bearing); |
| 160 | setCameraData(cameraData: camera); |
| 161 | camera = cameraData(); |
| 162 | |
| 163 | // then reanchor |
| 164 | const QGeoCoordinate center = anchorCoordinateToPoint(coordinate, anchorPoint: rotationPoint); |
| 165 | camera.setCenter(center); |
| 166 | setCameraData(cameraData: camera); |
| 167 | return true; |
| 168 | } |
| 169 | |
| 170 | QGeoProjectionWebMercator::QGeoProjectionWebMercator() |
| 171 | : QGeoProjection(), |
| 172 | m_mapEdgeSize(256), // at zl 0 |
| 173 | m_minimumZoom(0), |
| 174 | m_cameraCenterXMercator(0), |
| 175 | m_cameraCenterYMercator(0), |
| 176 | m_viewportWidth(1), |
| 177 | m_viewportHeight(1), |
| 178 | m_1_viewportWidth(0), |
| 179 | m_1_viewportHeight(0), |
| 180 | m_sideLengthPixels(256), |
| 181 | m_aperture(0.0), |
| 182 | m_nearPlane(0.0), |
| 183 | m_farPlane(0.0), |
| 184 | m_halfWidth(0.0), |
| 185 | m_halfHeight(0.0), |
| 186 | m_minimumUnprojectableY(0.0), |
| 187 | m_verticalEstateToSkip(0.0), |
| 188 | m_visibleRegionDirty(false) |
| 189 | { |
| 190 | } |
| 191 | |
| 192 | QGeoProjectionWebMercator::~QGeoProjectionWebMercator() |
| 193 | { |
| 194 | |
| 195 | } |
| 196 | |
| 197 | // This method returns the minimum zoom level that this specific qgeomap type allows |
| 198 | // at the current viewport size and for the default tile size of 256^2. |
| 199 | double QGeoProjectionWebMercator::minimumZoom() const |
| 200 | { |
| 201 | return m_minimumZoom; |
| 202 | } |
| 203 | |
| 204 | QMatrix4x4 QGeoProjectionWebMercator::projectionTransformation() const |
| 205 | { |
| 206 | return toMatrix4x4(m: m_transformation); |
| 207 | } |
| 208 | |
| 209 | QMatrix4x4 QGeoProjectionWebMercator::projectionTransformation_centered() const |
| 210 | { |
| 211 | return toMatrix4x4(m: m_transformation0); |
| 212 | } |
| 213 | |
| 214 | const QMatrix4x4 &QGeoProjectionWebMercator::qsgTransform() const |
| 215 | { |
| 216 | if (m_qsgTransformDirty) { |
| 217 | m_qsgTransformDirty = false; |
| 218 | m_qsgTransform = QMatrix4x4(m_itemToWindowTransform) * toMatrix4x4(m: m_transformation0); |
| 219 | // qDebug() << "QGeoProjectionWebMercator::qsgTransform" << m_itemToWindowTransform << toMatrix4x4(m_transformation0); |
| 220 | } |
| 221 | return m_qsgTransform; |
| 222 | } |
| 223 | |
| 224 | QDoubleVector3D QGeoProjectionWebMercator::centerMercator() const |
| 225 | { |
| 226 | return geoToMapProjection(coordinate: m_cameraData.center()).toVector3D(); |
| 227 | } |
| 228 | |
| 229 | // This method recalculates the "no-trespassing" limits for the map center. |
| 230 | // This has to be used when: |
| 231 | // 1) the map is resized, because the meters per pixel remain the same, but |
| 232 | // the amount of pixels between the center and the borders changes |
| 233 | // 2) when the zoom level changes, because the amount of pixels between the center |
| 234 | // and the borders stays the same, but the meters per pixel change |
| 235 | double QGeoProjectionWebMercator::maximumCenterLatitudeAtZoom(const QGeoCameraData &cameraData) const |
| 236 | { |
| 237 | double mapEdgeSize = std::pow(x: 2.0, y: cameraData.zoomLevel()) * defaultTileSize; |
| 238 | |
| 239 | // At init time weird things happen |
| 240 | int clampedWindowHeight = (m_viewportHeight > mapEdgeSize) ? mapEdgeSize : m_viewportHeight; |
| 241 | QPointF offsetPct = centerOffset(screenSize: QSizeF(m_viewportWidth, m_viewportHeight), visibleArea: m_visibleArea); |
| 242 | double hpct = offsetPct.y() / qMax<double>(a: m_viewportHeight - 1, b: 1); |
| 243 | |
| 244 | // Use the window height divided by 2 as the topmost allowed center, with respect to the map size in pixels |
| 245 | double mercatorTopmost = (clampedWindowHeight * (0.5 - hpct)) / mapEdgeSize ; |
| 246 | QGeoCoordinate topMost = QWebMercator::mercatorToCoord(mercator: QDoubleVector2D(0.0, mercatorTopmost)); |
| 247 | return topMost.latitude(); |
| 248 | } |
| 249 | |
| 250 | double QGeoProjectionWebMercator::minimumCenterLatitudeAtZoom(const QGeoCameraData &cameraData) const |
| 251 | { |
| 252 | double mapEdgeSize = std::pow(x: 2.0, y: cameraData.zoomLevel()) * defaultTileSize; |
| 253 | |
| 254 | // At init time weird things happen |
| 255 | int clampedWindowHeight = (m_viewportHeight > mapEdgeSize) ? mapEdgeSize : m_viewportHeight; |
| 256 | QPointF offsetPct = centerOffset(screenSize: QSizeF(m_viewportWidth, m_viewportHeight), visibleArea: m_visibleArea); |
| 257 | double hpct = offsetPct.y() / qMax<double>(a: m_viewportHeight - 1, b: 1); |
| 258 | |
| 259 | // Use the window height divided by 2 as the topmost allowed center, with respect to the map size in pixels |
| 260 | double mercatorTopmost = (clampedWindowHeight * (0.5 + hpct)) / mapEdgeSize ; |
| 261 | QGeoCoordinate topMost = QWebMercator::mercatorToCoord(mercator: QDoubleVector2D(0.0, mercatorTopmost)); |
| 262 | return -topMost.latitude(); |
| 263 | } |
| 264 | |
| 265 | void QGeoProjectionWebMercator::setVisibleArea(const QRectF &visibleArea) |
| 266 | { |
| 267 | m_visibleArea = visibleArea; |
| 268 | setupCamera(); |
| 269 | } |
| 270 | |
| 271 | double QGeoProjectionWebMercator::mapWidth() const |
| 272 | { |
| 273 | return m_mapEdgeSize; |
| 274 | } |
| 275 | |
| 276 | double QGeoProjectionWebMercator::mapHeight() const |
| 277 | { |
| 278 | return m_mapEdgeSize; |
| 279 | } |
| 280 | |
| 281 | void QGeoProjectionWebMercator::setViewportSize(const QSize &size) |
| 282 | { |
| 283 | if (int(m_viewportWidth) == size.width() && int(m_viewportHeight) == size.height()) |
| 284 | return; |
| 285 | |
| 286 | m_viewportWidth = size.width(); |
| 287 | m_viewportHeight = size.height(); |
| 288 | m_1_viewportWidth = 1.0 / m_viewportWidth; |
| 289 | m_1_viewportHeight = 1.0 / m_viewportHeight; |
| 290 | m_minimumZoom = std::log(x: qMax(a: m_viewportWidth, b: m_viewportHeight) / defaultTileSize) / std::log(x: 2.0); |
| 291 | setupCamera(); |
| 292 | } |
| 293 | |
| 294 | void QGeoProjectionWebMercator::setCameraData(const QGeoCameraData &cameraData, bool force) |
| 295 | { |
| 296 | if (m_cameraData == cameraData && !force) |
| 297 | return; |
| 298 | |
| 299 | m_cameraData = cameraData; |
| 300 | m_mapEdgeSize = std::pow(x: 2.0, y: cameraData.zoomLevel()) * defaultTileSize; |
| 301 | setupCamera(); |
| 302 | } |
| 303 | |
| 304 | QDoubleVector2D QGeoProjectionWebMercator::geoToMapProjection(const QGeoCoordinate &coordinate) const |
| 305 | { |
| 306 | return QWebMercator::coordToMercator(coord: coordinate); |
| 307 | } |
| 308 | |
| 309 | QGeoCoordinate QGeoProjectionWebMercator::mapProjectionToGeo(const QDoubleVector2D &projection) const |
| 310 | { |
| 311 | return QWebMercator::mercatorToCoord(mercator: projection); |
| 312 | } |
| 313 | |
| 314 | int QGeoProjectionWebMercator::projectionWrapFactor(const QDoubleVector2D &projection) const |
| 315 | { |
| 316 | const double &x = projection.x(); |
| 317 | if (m_cameraCenterXMercator < 0.5) { |
| 318 | if (x - m_cameraCenterXMercator > 0.5 ) |
| 319 | return -1; |
| 320 | } else if (m_cameraCenterXMercator > 0.5) { |
| 321 | if (x - m_cameraCenterXMercator < -0.5 ) |
| 322 | return 1; |
| 323 | } |
| 324 | return 0; |
| 325 | } |
| 326 | |
| 327 | //wraps around center |
| 328 | QDoubleVector2D QGeoProjectionWebMercator::wrapMapProjection(const QDoubleVector2D &projection) const |
| 329 | { |
| 330 | return QDoubleVector2D(projection.x() + double(projectionWrapFactor(projection)), projection.y()); |
| 331 | } |
| 332 | |
| 333 | QDoubleVector2D QGeoProjectionWebMercator::unwrapMapProjection(const QDoubleVector2D &wrappedProjection) const |
| 334 | { |
| 335 | double x = wrappedProjection.x(); |
| 336 | if (x > 1.0) |
| 337 | return QDoubleVector2D(x - 1.0, wrappedProjection.y()); |
| 338 | if (x <= 0.0) |
| 339 | return QDoubleVector2D(x + 1.0, wrappedProjection.y()); |
| 340 | return wrappedProjection; |
| 341 | } |
| 342 | |
| 343 | QDoubleVector2D QGeoProjectionWebMercator::wrappedMapProjectionToItemPosition(const QDoubleVector2D &wrappedProjection) const |
| 344 | { |
| 345 | return (m_transformation * wrappedProjection).toVector2D(); |
| 346 | } |
| 347 | |
| 348 | QDoubleVector2D QGeoProjectionWebMercator::itemPositionToWrappedMapProjection(const QDoubleVector2D &itemPosition) const |
| 349 | { |
| 350 | const QPointF centerOff = centerOffset(screenSize: QSizeF(m_viewportWidth, m_viewportHeight), visibleArea: m_visibleArea); |
| 351 | QDoubleVector2D pos = itemPosition + QDoubleVector2D(centerOff); |
| 352 | pos *= QDoubleVector2D(m_1_viewportWidth, m_1_viewportHeight); |
| 353 | pos *= 2.0; |
| 354 | pos -= QDoubleVector2D(1.0,1.0); |
| 355 | |
| 356 | double s; |
| 357 | QDoubleVector2D res = viewportToWrappedMapProjection(itemPosition: pos, s); |
| 358 | |
| 359 | // a positive s means a point behind the camera. So do it again, after clamping Y. See QTBUG-61813 |
| 360 | if (s > 0.0) { |
| 361 | pos = itemPosition; |
| 362 | // when the camera is tilted, picking a point above the horizon returns a coordinate behind the camera |
| 363 | pos.setY(m_minimumUnprojectableY); |
| 364 | pos *= QDoubleVector2D(m_1_viewportWidth, m_1_viewportHeight); |
| 365 | pos *= 2.0; |
| 366 | pos -= QDoubleVector2D(1.0,1.0); |
| 367 | res = viewportToWrappedMapProjection(itemPosition: pos, s); |
| 368 | } |
| 369 | |
| 370 | return res; |
| 371 | } |
| 372 | |
| 373 | /* Default implementations */ |
| 374 | QGeoCoordinate QGeoProjectionWebMercator::itemPositionToCoordinate(const QDoubleVector2D &pos, bool clipToViewport) const |
| 375 | { |
| 376 | if (qIsNaN(d: pos.x()) || qIsNaN(d: pos.y())) |
| 377 | return QGeoCoordinate(); |
| 378 | |
| 379 | if (clipToViewport) { |
| 380 | int w = m_viewportWidth; |
| 381 | int h = m_viewportHeight; |
| 382 | |
| 383 | if ((pos.x() < 0) || (w < pos.x()) || (pos.y() < 0) || (h < pos.y())) |
| 384 | return QGeoCoordinate(); |
| 385 | } |
| 386 | |
| 387 | QDoubleVector2D wrappedMapProjection = itemPositionToWrappedMapProjection(itemPosition: pos); |
| 388 | // With rotation/tilting, a screen position might end up outside the projection space. |
| 389 | if (!isProjectable(wrappedProjection: wrappedMapProjection)) |
| 390 | return QGeoCoordinate(); |
| 391 | return mapProjectionToGeo(projection: unwrapMapProjection(wrappedProjection: wrappedMapProjection)); |
| 392 | } |
| 393 | |
| 394 | QDoubleVector2D QGeoProjectionWebMercator::coordinateToItemPosition(const QGeoCoordinate &coordinate, bool clipToViewport) const |
| 395 | { |
| 396 | if (!coordinate.isValid()) |
| 397 | return QDoubleVector2D(qQNaN(), qQNaN()); |
| 398 | |
| 399 | QDoubleVector2D wrappedProjection = wrapMapProjection(projection: geoToMapProjection(coordinate)); |
| 400 | if (!isProjectable(wrappedProjection)) |
| 401 | return QDoubleVector2D(qQNaN(), qQNaN()); |
| 402 | |
| 403 | QDoubleVector2D pos = wrappedMapProjectionToItemPosition(wrappedProjection); |
| 404 | |
| 405 | if (clipToViewport) { |
| 406 | int w = m_viewportWidth; |
| 407 | int h = m_viewportHeight; |
| 408 | double x = pos.x(); |
| 409 | double y = pos.y(); |
| 410 | if ((x < -0.5) || (x > w + 0.5) || (y < -0.5) || (y > h + 0.5) || qIsNaN(d: x) || qIsNaN(d: y)) |
| 411 | return QDoubleVector2D(qQNaN(), qQNaN()); |
| 412 | } |
| 413 | return pos; |
| 414 | } |
| 415 | |
| 416 | QDoubleVector2D QGeoProjectionWebMercator::geoToWrappedMapProjection(const QGeoCoordinate &coordinate) const |
| 417 | { |
| 418 | return wrapMapProjection(projection: geoToMapProjection(coordinate)); |
| 419 | } |
| 420 | |
| 421 | QGeoCoordinate QGeoProjectionWebMercator::wrappedMapProjectionToGeo(const QDoubleVector2D &wrappedProjection) const |
| 422 | { |
| 423 | return mapProjectionToGeo(projection: unwrapMapProjection(wrappedProjection)); |
| 424 | } |
| 425 | |
| 426 | QMatrix4x4 QGeoProjectionWebMercator::quickItemTransformation(const QGeoCoordinate &coordinate, const QPointF &anchorPoint, qreal zoomLevel) const |
| 427 | { |
| 428 | const QDoubleVector2D coordWrapped = geoToWrappedMapProjection(coordinate); |
| 429 | double scale = std::pow(x: 0.5, y: zoomLevel - m_cameraData.zoomLevel()); |
| 430 | const QDoubleVector2D anchorScaled = QDoubleVector2D(anchorPoint.x(), anchorPoint.y()) * scale; |
| 431 | const QDoubleVector2D anchorMercator = anchorScaled / mapWidth(); |
| 432 | |
| 433 | const QDoubleVector2D coordAnchored = coordWrapped - anchorMercator; |
| 434 | const QDoubleVector2D coordAnchoredScaled = coordAnchored * m_sideLengthPixels; |
| 435 | QDoubleMatrix4x4 matTranslateScale; |
| 436 | matTranslateScale.translate(x: coordAnchoredScaled.x(), y: coordAnchoredScaled.y(), z: 0.0); |
| 437 | |
| 438 | scale = std::pow(x: 0.5, y: (zoomLevel - std::floor(x: zoomLevel)) + |
| 439 | (std::floor(x: zoomLevel) - std::floor(x: m_cameraData.zoomLevel()))); |
| 440 | matTranslateScale.scale(factor: scale); |
| 441 | |
| 442 | /* |
| 443 | * The full transformation chain for quickItemTransformation() would be: |
| 444 | * matScreenShift * m_quickItemTransformation * matTranslate * matScale |
| 445 | * where: |
| 446 | * matScreenShift = translate(-coordOnScreen.x(), -coordOnScreen.y(), 0) |
| 447 | * matTranslate = translate(coordAnchoredScaled.x(), coordAnchoredScaled.y(), 0.0) |
| 448 | * matScale = scale(scale) |
| 449 | * |
| 450 | * However, matScreenShift is removed, as setPosition(0,0) is used in place of setPositionOnScreen. |
| 451 | */ |
| 452 | |
| 453 | return toMatrix4x4(m: m_quickItemTransformation * matTranslateScale); |
| 454 | } |
| 455 | |
| 456 | bool QGeoProjectionWebMercator::isProjectable(const QDoubleVector2D &wrappedProjection) const |
| 457 | { |
| 458 | if (m_cameraData.tilt() == 0.0) |
| 459 | return true; |
| 460 | |
| 461 | QDoubleVector3D pos = wrappedProjection * m_sideLengthPixels; |
| 462 | // use m_centerNearPlane in order to add an offset to m_eye. |
| 463 | QDoubleVector3D p = m_centerNearPlane - pos; |
| 464 | double dot = QDoubleVector3D::dotProduct(v1: p , v2: m_viewNormalized); |
| 465 | |
| 466 | if (dot < 0.0) // behind the near plane |
| 467 | return false; |
| 468 | return true; |
| 469 | } |
| 470 | |
| 471 | QList<QDoubleVector2D> QGeoProjectionWebMercator::visibleGeometry() const |
| 472 | { |
| 473 | if (m_visibleRegionDirty) |
| 474 | const_cast<QGeoProjectionWebMercator *>(this)->updateVisibleRegion(); |
| 475 | return m_visibleRegion; |
| 476 | } |
| 477 | |
| 478 | QList<QDoubleVector2D> QGeoProjectionWebMercator::visibleGeometryExpanded() const |
| 479 | { |
| 480 | if (m_visibleRegionDirty) |
| 481 | const_cast<QGeoProjectionWebMercator *>(this)->updateVisibleRegion(); |
| 482 | return m_visibleRegionExpanded; |
| 483 | } |
| 484 | |
| 485 | QList<QDoubleVector2D> QGeoProjectionWebMercator::projectableGeometry() const |
| 486 | { |
| 487 | if (m_visibleRegionDirty) |
| 488 | const_cast<QGeoProjectionWebMercator *>(this)->updateVisibleRegion(); |
| 489 | return m_projectableRegion; |
| 490 | } |
| 491 | |
| 492 | QGeoShape QGeoProjectionWebMercator::visibleRegion() const |
| 493 | { |
| 494 | const QList<QDoubleVector2D> &visibleRegion = visibleGeometry(); |
| 495 | QGeoPolygon poly; |
| 496 | for (int i = 0; i < visibleRegion.size(); ++i) { |
| 497 | const QDoubleVector2D &c = visibleRegion.at(i); |
| 498 | // If a segment spans more than half of the map longitudinally, split in 2. |
| 499 | if (i && qAbs(t: visibleRegion.at(i: i-1).x() - c.x()) >= 0.5) { // This assumes a segment is never >= 1.0 (whole map span) |
| 500 | QDoubleVector2D = (visibleRegion.at(i: i-1) + c) * 0.5; |
| 501 | poly.addCoordinate(coordinate: wrappedMapProjectionToGeo(wrappedProjection: extraPoint)); |
| 502 | } |
| 503 | poly.addCoordinate(coordinate: wrappedMapProjectionToGeo(wrappedProjection: c)); |
| 504 | } |
| 505 | if (visibleRegion.size() >= 2 && qAbs(t: visibleRegion.last().x() - visibleRegion.first().x()) >= 0.5) { |
| 506 | QDoubleVector2D = (visibleRegion.last() + visibleRegion.first()) * 0.5; |
| 507 | poly.addCoordinate(coordinate: wrappedMapProjectionToGeo(wrappedProjection: extraPoint)); |
| 508 | } |
| 509 | |
| 510 | return poly; |
| 511 | } |
| 512 | |
| 513 | QDoubleVector2D QGeoProjectionWebMercator::viewportToWrappedMapProjection(const QDoubleVector2D &itemPosition) const |
| 514 | { |
| 515 | double s; |
| 516 | return viewportToWrappedMapProjection(itemPosition, s); |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | actual implementation of itemPositionToWrappedMapProjection |
| 521 | */ |
| 522 | QDoubleVector2D QGeoProjectionWebMercator::viewportToWrappedMapProjection(const QDoubleVector2D &itemPosition, double &s) const |
| 523 | { |
| 524 | QDoubleVector2D pos = itemPosition; |
| 525 | pos *= QDoubleVector2D(m_halfWidth, m_halfHeight); |
| 526 | |
| 527 | // determine itemPosition on the near plane |
| 528 | QDoubleVector3D p = m_centerNearPlane; |
| 529 | p += m_up * pos.y(); |
| 530 | p += m_side * pos.x(); |
| 531 | |
| 532 | // compute the ray using the eye position |
| 533 | QDoubleVector3D ray = m_eye - p; |
| 534 | ray.normalize(); |
| 535 | |
| 536 | return (xyPlane.lineIntersection(linePoint: m_eye, lineDirection: ray, s) / m_sideLengthPixels).toVector2D(); |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | Returns a pair of <newCenter, newZoom> |
| 541 | */ |
| 542 | QPair<QGeoCoordinate, qreal> QGeoProjectionWebMercator::fitViewportToGeoRectangle(const QGeoRectangle &rectangle, |
| 543 | const QMargins &m) const |
| 544 | { |
| 545 | QPair<QGeoCoordinate, qreal> res; |
| 546 | res.second = qQNaN(); |
| 547 | if (m_viewportWidth <= m.left() + m.right() || m_viewportHeight <= m.top() + m.bottom()) |
| 548 | return res; |
| 549 | |
| 550 | QDoubleVector2D topLeftPoint = geoToMapProjection(coordinate: rectangle.topLeft()); |
| 551 | QDoubleVector2D bottomRightPoint = geoToMapProjection(coordinate: rectangle.bottomRight()); |
| 552 | if (bottomRightPoint.x() < topLeftPoint.x()) // crossing the dateline |
| 553 | bottomRightPoint.setX(bottomRightPoint.x() + 1.0); |
| 554 | |
| 555 | // find center of the bounding box |
| 556 | QDoubleVector2D center = (topLeftPoint + bottomRightPoint) * 0.5; |
| 557 | center.setX(center.x() > 1.0 ? center.x() - 1.0 : center.x()); |
| 558 | res.first = mapProjectionToGeo(projection: center); |
| 559 | |
| 560 | // if the shape is empty we just change center position, not zoom |
| 561 | double bboxWidth = (bottomRightPoint.x() - topLeftPoint.x()) * mapWidth(); |
| 562 | double bboxHeight = (bottomRightPoint.y() - topLeftPoint.y()) * mapHeight(); |
| 563 | |
| 564 | if (bboxHeight == 0.0 && bboxWidth == 0.0) |
| 565 | return res; |
| 566 | |
| 567 | double zoomRatio = qMax(a: bboxWidth / (m_viewportWidth - m.left() - m.right()), |
| 568 | b: bboxHeight / (m_viewportHeight - m.top() - m.bottom())); |
| 569 | zoomRatio = std::log(x: zoomRatio) / std::log(x: 2.0); |
| 570 | res.second = m_cameraData.zoomLevel() - zoomRatio; |
| 571 | |
| 572 | return res; |
| 573 | } |
| 574 | |
| 575 | QGeoProjection::ProjectionGroup QGeoProjectionWebMercator::projectionGroup() const |
| 576 | { |
| 577 | return QGeoProjection::ProjectionCylindrical; |
| 578 | } |
| 579 | |
| 580 | QGeoProjection::Datum QGeoProjectionWebMercator::datum() const |
| 581 | { |
| 582 | return QGeoProjection::DatumWGS84; |
| 583 | } |
| 584 | |
| 585 | QGeoProjection::ProjectionType QGeoProjectionWebMercator::projectionType() const |
| 586 | { |
| 587 | return QGeoProjection::ProjectionWebMercator; |
| 588 | } |
| 589 | |
| 590 | void QGeoProjectionWebMercator::setupCamera() |
| 591 | { |
| 592 | m_qsgTransformDirty = true; |
| 593 | m_centerMercator = geoToMapProjection(coordinate: m_cameraData.center()); |
| 594 | m_cameraCenterXMercator = m_centerMercator.x(); |
| 595 | m_cameraCenterYMercator = m_centerMercator.y(); |
| 596 | |
| 597 | int intZoomLevel = static_cast<int>(std::floor(x: m_cameraData.zoomLevel())); |
| 598 | m_sideLengthPixels = (1 << intZoomLevel) * defaultTileSize; |
| 599 | m_center = m_centerMercator * m_sideLengthPixels; |
| 600 | //aperture(90 / 2) = 1 |
| 601 | m_aperture = tan(x: QLocationUtils::radians(degrees: m_cameraData.fieldOfView()) * 0.5); |
| 602 | |
| 603 | double f = m_viewportHeight; |
| 604 | double z = std::pow(x: 2.0, y: m_cameraData.zoomLevel() - intZoomLevel) * defaultTileSize; |
| 605 | double altitude = f / (2.0 * z); |
| 606 | // Also in mercator space |
| 607 | double z_mercator = std::pow(x: 2.0, y: m_cameraData.zoomLevel()) * defaultTileSize; |
| 608 | double altitude_mercator = f / (2.0 * z_mercator); |
| 609 | |
| 610 | // calculate eye |
| 611 | m_eye = m_center; |
| 612 | m_eye.setZ(altitude * defaultTileSize / m_aperture); |
| 613 | |
| 614 | // And in mercator space |
| 615 | m_eyeMercator = m_centerMercator; |
| 616 | m_eyeMercator.setZ(altitude_mercator / m_aperture); |
| 617 | m_eyeMercator0 = QDoubleVector3D(0,0,0); |
| 618 | m_eyeMercator0.setZ(altitude_mercator / m_aperture); |
| 619 | QDoubleVector3D eye0(0,0,0); |
| 620 | eye0.setZ(altitude * defaultTileSize / m_aperture); |
| 621 | |
| 622 | m_view = m_eye - m_center; |
| 623 | QDoubleVector3D side = QDoubleVector3D::normal(v1: m_view, v2: QDoubleVector3D(0.0, 1.0, 0.0)); |
| 624 | m_up = QDoubleVector3D::normal(v1: side, v2: m_view); |
| 625 | |
| 626 | // In mercator space too |
| 627 | m_viewMercator = m_eyeMercator - m_centerMercator; |
| 628 | QDoubleVector3D sideMercator = QDoubleVector3D::normal(v1: m_viewMercator, v2: QDoubleVector3D(0.0, 1.0, 0.0)); |
| 629 | m_upMercator = QDoubleVector3D::normal(v1: sideMercator, v2: m_viewMercator); |
| 630 | |
| 631 | if (m_cameraData.bearing() > 0.0) { |
| 632 | QDoubleMatrix4x4 mBearing; |
| 633 | mBearing.rotate(angle: m_cameraData.bearing(), vector: m_view); |
| 634 | m_up = mBearing * m_up; |
| 635 | |
| 636 | // In mercator space too |
| 637 | QDoubleMatrix4x4 mBearingMercator; |
| 638 | mBearingMercator.rotate(angle: m_cameraData.bearing(), vector: m_viewMercator); |
| 639 | m_upMercator = mBearingMercator * m_upMercator; |
| 640 | } |
| 641 | |
| 642 | m_side = QDoubleVector3D::normal(v1: m_up, v2: m_view); |
| 643 | m_sideMercator = QDoubleVector3D::normal(v1: m_upMercator, v2: m_viewMercator); |
| 644 | |
| 645 | if (m_cameraData.tilt() > 0.0) { // tilt has been already thresholded by QGeoCameraData::setTilt |
| 646 | QDoubleMatrix4x4 mTilt; |
| 647 | mTilt.rotate(angle: -m_cameraData.tilt(), vector: m_side); |
| 648 | m_eye = mTilt * m_view + m_center; |
| 649 | eye0 = mTilt * m_view; |
| 650 | |
| 651 | // In mercator space too |
| 652 | QDoubleMatrix4x4 mTiltMercator; |
| 653 | mTiltMercator.rotate(angle: -m_cameraData.tilt(), vector: m_sideMercator); |
| 654 | m_eyeMercator = mTiltMercator * m_viewMercator + m_centerMercator; |
| 655 | m_eyeMercator0 = mTiltMercator * m_viewMercator; |
| 656 | } |
| 657 | |
| 658 | m_view = m_eye - m_center; // ToDo: this should be inverted (center - eye), and the rest should follow |
| 659 | m_viewNormalized = m_view.normalized(); |
| 660 | m_up = QDoubleVector3D::normal(v1: m_view, v2: m_side); |
| 661 | |
| 662 | m_nearPlane = 1.0; |
| 663 | // At ZL 20 the map has 2^20 tiles per side. That is 1048576. |
| 664 | // Placing the camera on one corner of the map, rotated toward the opposite corner, and tilted |
| 665 | // at almost 90 degrees would require a frustum that can span the whole size of this map. |
| 666 | // For this reason, the far plane is set to 2 * 2^20 * defaultTileSize. |
| 667 | // That is, in order to make sure that the whole map would fit in the frustum at this ZL. |
| 668 | // Since we are using a double matrix, and since the largest value in the matrix is going to be |
| 669 | // 2 * m_farPlane (as near plane is 1.0), there should be sufficient precision left. |
| 670 | // |
| 671 | // TODO: extend this to support clip distance. |
| 672 | m_farPlane = (altitude + 2097152.0) * defaultTileSize; |
| 673 | |
| 674 | m_viewMercator = m_eyeMercator - m_centerMercator; |
| 675 | m_upMercator = QDoubleVector3D::normal(v1: m_viewMercator, v2: m_sideMercator); |
| 676 | m_nearPlaneMercator = 0.000002; // this value works until ZL 18. Above that, a better progressive formula is needed, or |
| 677 | // else, this clips too much. |
| 678 | |
| 679 | double aspectRatio = 1.0 * m_viewportWidth / m_viewportHeight; |
| 680 | |
| 681 | m_halfWidth = m_aperture * aspectRatio; |
| 682 | m_halfHeight = m_aperture; |
| 683 | |
| 684 | double verticalHalfFOV = QLocationUtils::degrees(radians: atan(x: m_aperture)); |
| 685 | |
| 686 | m_cameraMatrix.setToIdentity(); |
| 687 | m_cameraMatrix.lookAt(eye: m_eye, center: m_center, up: m_up); |
| 688 | m_cameraMatrix0.setToIdentity(); |
| 689 | m_cameraMatrix0.lookAt(eye: eye0, center: QDoubleVector3D(0,0,0), up: m_up); |
| 690 | |
| 691 | QDoubleMatrix4x4 projectionMatrix; |
| 692 | projectionMatrix.frustum(left: -m_halfWidth, right: m_halfWidth, bottom: -m_halfHeight, top: m_halfHeight, nearPlane: m_nearPlane, farPlane: m_farPlane); |
| 693 | |
| 694 | /* |
| 695 | * The full transformation chain for m_transformation is: |
| 696 | * matScreen * matScreenFit * matShift * projectionMatrix * cameraMatrix * matZoomLevelScale |
| 697 | * where: |
| 698 | * matZoomLevelScale = scale(m_sideLength, m_sideLength, 1.0) |
| 699 | * matShift = translate(1.0, 1.0, 0.0) |
| 700 | * matScreenFit = scale(0.5, 0.5, 1.0) |
| 701 | * matScreen = scale(m_viewportWidth, m_viewportHeight, 1.0) |
| 702 | */ |
| 703 | |
| 704 | QPointF offsetPct = marginsOffset(screenSize: QSizeF(m_viewportWidth, m_viewportHeight), visibleArea: m_visibleArea); |
| 705 | QDoubleMatrix4x4 matScreenTransformation; |
| 706 | matScreenTransformation.scale(x: 0.5 * m_viewportWidth, y: 0.5 * m_viewportHeight, z: 1.0); |
| 707 | matScreenTransformation(0,3) = (0.5 + offsetPct.x()) * m_viewportWidth; |
| 708 | matScreenTransformation(1,3) = (0.5 + offsetPct.y()) * m_viewportHeight; |
| 709 | |
| 710 | m_transformation = matScreenTransformation * projectionMatrix * m_cameraMatrix; |
| 711 | m_quickItemTransformation = m_transformation; |
| 712 | m_transformation.scale(x: m_sideLengthPixels, y: m_sideLengthPixels, z: 1.0); |
| 713 | |
| 714 | m_transformation0 = matScreenTransformation * projectionMatrix * m_cameraMatrix0; |
| 715 | m_transformation0.scale(x: m_sideLengthPixels, y: m_sideLengthPixels, z: 1.0); |
| 716 | |
| 717 | m_centerNearPlane = m_eye - m_viewNormalized; |
| 718 | m_centerNearPlaneMercator = m_eyeMercator - m_viewNormalized * m_nearPlaneMercator; |
| 719 | |
| 720 | // The method does not support tilting angles >= 90.0 or < 0. |
| 721 | |
| 722 | // The following formula is used to have a growing epsilon with the zoom level, |
| 723 | // in order not to have too large values at low zl, which would overflow when converted to Clipper::cInt. |
| 724 | const double upperBoundEpsilon = 1.0 / std::pow(x: 10, y: 1.0 + m_cameraData.zoomLevel() / 5.0); |
| 725 | const double elevationUpperBound = 90.0 - upperBoundEpsilon; |
| 726 | const double maxRayElevation = qMin(a: elevationUpperBound - m_cameraData.tilt(), b: verticalHalfFOV); |
| 727 | double maxHalfAperture = 0; |
| 728 | m_verticalEstateToSkip = 0; |
| 729 | if (maxRayElevation < verticalHalfFOV) { |
| 730 | maxHalfAperture = tan(x: QLocationUtils::radians(degrees: maxRayElevation)); |
| 731 | m_verticalEstateToSkip = 1.0 - maxHalfAperture / m_aperture; |
| 732 | } |
| 733 | |
| 734 | m_minimumUnprojectableY = m_verticalEstateToSkip * 0.5 * m_viewportHeight; // m_verticalEstateToSkip is relative to half aperture |
| 735 | m_visibleRegionDirty = true; |
| 736 | } |
| 737 | |
| 738 | void QGeoProjectionWebMercator::updateVisibleRegion() |
| 739 | { |
| 740 | m_visibleRegionDirty = false; |
| 741 | |
| 742 | double viewportHalfWidth = (!m_visibleArea.isEmpty()) ? m_visibleArea.width() / m_viewportWidth : 1.0; |
| 743 | double viewportHalfHeight = (!m_visibleArea.isEmpty()) ? m_visibleArea.height() / m_viewportHeight : 1.0; |
| 744 | |
| 745 | double top = qMax<double>(a: -viewportHalfHeight, b: -1 + m_verticalEstateToSkip); |
| 746 | double bottom = viewportHalfHeight; |
| 747 | double left = -viewportHalfWidth; |
| 748 | double right = viewportHalfWidth; |
| 749 | |
| 750 | QDoubleVector2D tl = viewportToWrappedMapProjection(itemPosition: QDoubleVector2D(left, top )); |
| 751 | QDoubleVector2D tr = viewportToWrappedMapProjection(itemPosition: QDoubleVector2D(right, top )); |
| 752 | QDoubleVector2D bl = viewportToWrappedMapProjection(itemPosition: QDoubleVector2D(left, bottom )); |
| 753 | QDoubleVector2D br = viewportToWrappedMapProjection(itemPosition: QDoubleVector2D(right, bottom )); |
| 754 | |
| 755 | // To make sure that what is returned can be safely converted back to lat/lon without risking overlaps |
| 756 | double mapLeftLongitude = QLocationUtils::mapLeftLongitude(centerLongitude: m_cameraData.center().longitude()); |
| 757 | double mapRightLongitude = QLocationUtils::mapRightLongitude(centerLongitude: m_cameraData.center().longitude()); |
| 758 | double leftX = geoToWrappedMapProjection(coordinate: QGeoCoordinate(0, mapLeftLongitude)).x(); |
| 759 | double rightX = geoToWrappedMapProjection(coordinate: QGeoCoordinate(0, mapRightLongitude)).x(); |
| 760 | |
| 761 | QList<QDoubleVector2D> mapRect; |
| 762 | mapRect.push_back(t: QDoubleVector2D(leftX, 1.0)); |
| 763 | mapRect.push_back(t: QDoubleVector2D(rightX, 1.0)); |
| 764 | mapRect.push_back(t: QDoubleVector2D(rightX, 0.0)); |
| 765 | mapRect.push_back(t: QDoubleVector2D(leftX, 0.0)); |
| 766 | |
| 767 | QList<QDoubleVector2D> viewportRect; |
| 768 | viewportRect.push_back(t: bl); |
| 769 | viewportRect.push_back(t: br); |
| 770 | viewportRect.push_back(t: tr); |
| 771 | viewportRect.push_back(t: tl); |
| 772 | |
| 773 | c2t::clip2tri clipper; |
| 774 | clipper.clearClipper(); |
| 775 | clipper.addSubjectPath(path: QClipperUtils::qListToPath(list: mapRect), closed: true); |
| 776 | clipper.addClipPolygon(path: QClipperUtils::qListToPath(list: viewportRect)); |
| 777 | |
| 778 | Paths res = clipper.execute(op: c2t::clip2tri::Intersection); |
| 779 | m_visibleRegion.clear(); |
| 780 | if (res.size()) |
| 781 | m_visibleRegion = QClipperUtils::pathToQList(path: res[0]); // Intersection between two convex quadrilaterals should always be a single polygon |
| 782 | |
| 783 | m_projectableRegion.clear(); |
| 784 | mapRect.clear(); |
| 785 | // The full map rectangle in extended mercator space |
| 786 | mapRect.push_back(t: QDoubleVector2D(-1.0, 1.0)); |
| 787 | mapRect.push_back(t: QDoubleVector2D( 2.0, 1.0)); |
| 788 | mapRect.push_back(t: QDoubleVector2D( 2.0, 0.0)); |
| 789 | mapRect.push_back(t: QDoubleVector2D(-1.0, 0.0)); |
| 790 | if (m_cameraData.tilt() == 0) { |
| 791 | m_projectableRegion = mapRect; |
| 792 | } else { |
| 793 | QGeoProjectionWebMercator::Plane nearPlane(m_centerNearPlaneMercator, m_viewNormalized); |
| 794 | Line2D nearPlaneXYIntersection = nearPlane.planeXYIntersection(); |
| 795 | double squareHalfSide = qMax(a: 5.0, b: nearPlaneXYIntersection.m_point.length()); |
| 796 | QDoubleVector2D viewDirectionProjected = -m_viewNormalized.toVector2D().normalized(); |
| 797 | |
| 798 | |
| 799 | QDoubleVector2D tl = nearPlaneXYIntersection.m_point |
| 800 | - squareHalfSide * nearPlaneXYIntersection.m_direction |
| 801 | + 2 * squareHalfSide * viewDirectionProjected; |
| 802 | QDoubleVector2D tr = nearPlaneXYIntersection.m_point |
| 803 | + squareHalfSide * nearPlaneXYIntersection.m_direction |
| 804 | + 2 * squareHalfSide * viewDirectionProjected; |
| 805 | QDoubleVector2D bl = nearPlaneXYIntersection.m_point |
| 806 | - squareHalfSide * nearPlaneXYIntersection.m_direction; |
| 807 | QDoubleVector2D br = nearPlaneXYIntersection.m_point |
| 808 | + squareHalfSide * nearPlaneXYIntersection.m_direction; |
| 809 | |
| 810 | QList<QDoubleVector2D> projectableRect; |
| 811 | projectableRect.push_back(t: bl); |
| 812 | projectableRect.push_back(t: br); |
| 813 | projectableRect.push_back(t: tr); |
| 814 | projectableRect.push_back(t: tl); |
| 815 | |
| 816 | |
| 817 | c2t::clip2tri clipperProjectable; |
| 818 | clipperProjectable.clearClipper(); |
| 819 | clipperProjectable.addSubjectPath(path: QClipperUtils::qListToPath(list: mapRect), closed: true); |
| 820 | clipperProjectable.addClipPolygon(path: QClipperUtils::qListToPath(list: projectableRect)); |
| 821 | |
| 822 | Paths resProjectable = clipperProjectable.execute(op: c2t::clip2tri::Intersection); |
| 823 | if (resProjectable.size()) |
| 824 | m_projectableRegion = QClipperUtils::pathToQList(path: resProjectable[0]); // Intersection between two convex quadrilaterals should always be a single polygon |
| 825 | else |
| 826 | m_projectableRegion = viewportRect; |
| 827 | } |
| 828 | |
| 829 | // Compute m_visibleRegionExpanded as a clipped expanded version of m_visibleRegion |
| 830 | QDoubleVector2D centroid; |
| 831 | for (const QDoubleVector2D &v: qAsConst(t&: m_visibleRegion)) |
| 832 | centroid += v; |
| 833 | centroid /= m_visibleRegion.size(); |
| 834 | |
| 835 | m_visibleRegionExpanded.clear(); |
| 836 | for (const QDoubleVector2D &v: qAsConst(t&: m_visibleRegion)) { |
| 837 | const QDoubleVector2D vc = v - centroid; |
| 838 | m_visibleRegionExpanded.push_back(t: centroid + vc * 1.2); // fixing expansion factor to 1.2 |
| 839 | } |
| 840 | |
| 841 | c2t::clip2tri clipperExpanded; |
| 842 | clipperExpanded.clearClipper(); |
| 843 | clipperExpanded.addSubjectPath(path: QClipperUtils::qListToPath(list: m_visibleRegionExpanded), closed: true); |
| 844 | clipperExpanded.addClipPolygon(path: QClipperUtils::qListToPath(list: m_projectableRegion)); |
| 845 | Paths resVisibleExpanded = clipperExpanded.execute(op: c2t::clip2tri::Intersection); |
| 846 | if (resVisibleExpanded.size()) |
| 847 | m_visibleRegionExpanded = QClipperUtils::pathToQList(path: resVisibleExpanded[0]); // Intersection between two convex quadrilaterals should always be a single polygon |
| 848 | else |
| 849 | m_visibleRegionExpanded = m_visibleRegion; |
| 850 | } |
| 851 | |
| 852 | QGeoCameraData QGeoProjectionWebMercator::cameraData() const |
| 853 | { |
| 854 | return m_cameraData; |
| 855 | } |
| 856 | |
| 857 | /* |
| 858 | * |
| 859 | * Line implementation |
| 860 | * |
| 861 | */ |
| 862 | |
| 863 | QGeoProjectionWebMercator::Line2D::Line2D() |
| 864 | { |
| 865 | |
| 866 | } |
| 867 | |
| 868 | QGeoProjectionWebMercator::Line2D::Line2D(const QDoubleVector2D &linePoint, const QDoubleVector2D &lineDirection) |
| 869 | : m_point(linePoint), m_direction(lineDirection.normalized()) |
| 870 | { |
| 871 | |
| 872 | } |
| 873 | |
| 874 | bool QGeoProjectionWebMercator::Line2D::isValid() const |
| 875 | { |
| 876 | return (m_direction.length() > 0.5); |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * |
| 881 | * Plane implementation |
| 882 | * |
| 883 | */ |
| 884 | |
| 885 | QGeoProjectionWebMercator::Plane::Plane() |
| 886 | { |
| 887 | |
| 888 | } |
| 889 | |
| 890 | QGeoProjectionWebMercator::Plane::Plane(const QDoubleVector3D &planePoint, const QDoubleVector3D &planeNormal) |
| 891 | : m_point(planePoint), m_normal(planeNormal.normalized()) { } |
| 892 | |
| 893 | QDoubleVector3D QGeoProjectionWebMercator::Plane::lineIntersection(const QDoubleVector3D &linePoint, const QDoubleVector3D &lineDirection) const |
| 894 | { |
| 895 | double s; |
| 896 | return lineIntersection(linePoint, lineDirection, s); |
| 897 | } |
| 898 | |
| 899 | QDoubleVector3D QGeoProjectionWebMercator::Plane::lineIntersection(const QDoubleVector3D &linePoint, const QDoubleVector3D &lineDirection, double &s) const |
| 900 | { |
| 901 | QDoubleVector3D w = linePoint - m_point; |
| 902 | // s = -n.dot(w) / n.dot(u). p = p0 + su; u is lineDirection |
| 903 | s = QDoubleVector3D::dotProduct(v1: -m_normal, v2: w) / QDoubleVector3D::dotProduct(v1: m_normal, v2: lineDirection); |
| 904 | return linePoint + lineDirection * s; |
| 905 | } |
| 906 | |
| 907 | QGeoProjectionWebMercator::Line2D QGeoProjectionWebMercator::Plane::planeXYIntersection() const |
| 908 | { |
| 909 | // cross product of the two normals for the line direction |
| 910 | QDoubleVector3D lineDirection = QDoubleVector3D::crossProduct(v1: m_normal, v2: xyNormal); |
| 911 | lineDirection.setZ(0.0); |
| 912 | lineDirection.normalize(); |
| 913 | |
| 914 | // cross product of the line direction and the plane normal to find the direction on the plane |
| 915 | // intersecting the xy plane |
| 916 | QDoubleVector3D directionToXY = QDoubleVector3D::crossProduct(v1: m_normal, v2: lineDirection); |
| 917 | QDoubleVector3D p = xyPlane.lineIntersection(linePoint: m_point, lineDirection: directionToXY); |
| 918 | return Line2D(p.toVector2D(), lineDirection.toVector2D()); |
| 919 | } |
| 920 | |
| 921 | bool QGeoProjectionWebMercator::Plane::isValid() const |
| 922 | { |
| 923 | return (m_normal.length() > 0.5); |
| 924 | } |
| 925 | |
| 926 | QT_END_NAMESPACE |
| 927 | |