1 | //===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// Defines the fixed point number interface. |
11 | /// This is a class for abstracting various operations performed on fixed point |
12 | /// types. |
13 | /// |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #ifndef LLVM_ADT_APFIXEDPOINT_H |
17 | #define LLVM_ADT_APFIXEDPOINT_H |
18 | |
19 | #include "llvm/ADT/APSInt.h" |
20 | #include "llvm/ADT/DenseMapInfo.h" |
21 | #include "llvm/ADT/Hashing.h" |
22 | #include "llvm/ADT/SmallString.h" |
23 | #include "llvm/Support/raw_ostream.h" |
24 | |
25 | namespace llvm { |
26 | |
27 | class APFloat; |
28 | struct fltSemantics; |
29 | |
30 | /// The fixed point semantics work similarly to fltSemantics. The width |
31 | /// specifies the whole bit width of the underlying scaled integer (with padding |
32 | /// if any). The scale represents the number of fractional bits in this type. |
33 | /// When HasUnsignedPadding is true and this type is unsigned, the first bit |
34 | /// in the value this represents is treated as padding. |
35 | class FixedPointSemantics { |
36 | public: |
37 | static constexpr unsigned WidthBitWidth = 16; |
38 | static constexpr unsigned LsbWeightBitWidth = 13; |
39 | /// Used to differentiate between constructors with Width and Lsb from the |
40 | /// default Width and scale |
41 | struct Lsb { |
42 | int LsbWeight; |
43 | }; |
44 | FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned, |
45 | bool IsSaturated, bool HasUnsignedPadding) |
46 | : FixedPointSemantics(Width, Lsb{.LsbWeight: -static_cast<int>(Scale)}, IsSigned, |
47 | IsSaturated, HasUnsignedPadding) {} |
48 | FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned, |
49 | bool IsSaturated, bool HasUnsignedPadding) |
50 | : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned), |
51 | IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) { |
52 | assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight)); |
53 | assert(!(IsSigned && HasUnsignedPadding) && |
54 | "Cannot have unsigned padding on a signed type." ); |
55 | } |
56 | |
57 | /// Check if the Semantic follow the requirements of an older more limited |
58 | /// version of this class |
59 | bool isValidLegacySema() const { |
60 | return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight; |
61 | } |
62 | unsigned getWidth() const { return Width; } |
63 | unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; } |
64 | int getLsbWeight() const { return LsbWeight; } |
65 | int getMsbWeight() const { |
66 | return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/; |
67 | } |
68 | bool isSigned() const { return IsSigned; } |
69 | bool isSaturated() const { return IsSaturated; } |
70 | bool hasUnsignedPadding() const { return HasUnsignedPadding; } |
71 | |
72 | void setSaturated(bool Saturated) { IsSaturated = Saturated; } |
73 | |
74 | /// return true if the first bit doesn't have a strictly positive weight |
75 | bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; } |
76 | |
77 | /// Return the number of integral bits represented by these semantics. These |
78 | /// are separate from the fractional bits and do not include the sign or |
79 | /// padding bit. |
80 | unsigned getIntegralBits() const { |
81 | return std::max(a: getMsbWeight() + 1 - hasSignOrPaddingBit(), b: 0); |
82 | } |
83 | |
84 | /// Return the FixedPointSemantics that allows for calculating the full |
85 | /// precision semantic that can precisely represent the precision and ranges |
86 | /// of both input values. This does not compute the resulting semantics for a |
87 | /// given binary operation. |
88 | FixedPointSemantics |
89 | getCommonSemantics(const FixedPointSemantics &Other) const; |
90 | |
91 | /// Print semantics for debug purposes |
92 | void print(llvm::raw_ostream& OS) const; |
93 | |
94 | /// Returns true if this fixed-point semantic with its value bits interpreted |
95 | /// as an integer can fit in the given floating point semantic without |
96 | /// overflowing to infinity. |
97 | /// For example, a signed 8-bit fixed-point semantic has a maximum and |
98 | /// minimum integer representation of 127 and -128, respectively. If both of |
99 | /// these values can be represented (possibly inexactly) in the floating |
100 | /// point semantic without overflowing, this returns true. |
101 | bool fitsInFloatSemantics(const fltSemantics &FloatSema) const; |
102 | |
103 | /// Return the FixedPointSemantics for an integer type. |
104 | static FixedPointSemantics GetIntegerSemantics(unsigned Width, |
105 | bool IsSigned) { |
106 | return FixedPointSemantics(Width, /*Scale=*/0, IsSigned, |
107 | /*IsSaturated=*/false, |
108 | /*HasUnsignedPadding=*/false); |
109 | } |
110 | |
111 | bool operator==(FixedPointSemantics Other) const { |
112 | return Width == Other.Width && LsbWeight == Other.LsbWeight && |
113 | IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated && |
114 | HasUnsignedPadding == Other.HasUnsignedPadding; |
115 | } |
116 | bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); } |
117 | |
118 | private: |
119 | unsigned Width : WidthBitWidth; |
120 | signed int LsbWeight : LsbWeightBitWidth; |
121 | unsigned IsSigned : 1; |
122 | unsigned IsSaturated : 1; |
123 | unsigned HasUnsignedPadding : 1; |
124 | }; |
125 | |
126 | static_assert(sizeof(FixedPointSemantics) == 4, "" ); |
127 | |
128 | inline hash_code hash_value(const FixedPointSemantics &Val) { |
129 | return hash_value(value: bit_cast<uint32_t>(from: Val)); |
130 | } |
131 | |
132 | template <> struct DenseMapInfo<FixedPointSemantics> { |
133 | static inline FixedPointSemantics getEmptyKey() { |
134 | return FixedPointSemantics(0, 0, false, false, false); |
135 | } |
136 | |
137 | static inline FixedPointSemantics getTombstoneKey() { |
138 | return FixedPointSemantics(0, 1, false, false, false); |
139 | } |
140 | |
141 | static unsigned getHashValue(const FixedPointSemantics &Val) { |
142 | return hash_value(Val); |
143 | } |
144 | |
145 | static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; } |
146 | }; |
147 | |
148 | /// The APFixedPoint class works similarly to APInt/APSInt in that it is a |
149 | /// functional replacement for a scaled integer. It supports a wide range of |
150 | /// semantics including the one used by fixed point types proposed in ISO/IEC |
151 | /// JTC1 SC22 WG14 N1169. The class carries the value and semantics of |
152 | /// a fixed point, and provides different operations that would normally be |
153 | /// performed on fixed point types. |
154 | class APFixedPoint { |
155 | public: |
156 | APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema) |
157 | : Val(Val, !Sema.isSigned()), Sema(Sema) { |
158 | assert(Val.getBitWidth() == Sema.getWidth() && |
159 | "The value should have a bit width that matches the Sema width" ); |
160 | } |
161 | |
162 | APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema) |
163 | : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {} |
164 | |
165 | // Zero initialization. |
166 | APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {} |
167 | |
168 | APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); } |
169 | inline unsigned getWidth() const { return Sema.getWidth(); } |
170 | inline unsigned getScale() const { return Sema.getScale(); } |
171 | int getLsbWeight() const { return Sema.getLsbWeight(); } |
172 | int getMsbWeight() const { return Sema.getMsbWeight(); } |
173 | inline bool isSaturated() const { return Sema.isSaturated(); } |
174 | inline bool isSigned() const { return Sema.isSigned(); } |
175 | inline bool hasPadding() const { return Sema.hasUnsignedPadding(); } |
176 | FixedPointSemantics getSemantics() const { return Sema; } |
177 | |
178 | bool getBoolValue() const { return Val.getBoolValue(); } |
179 | |
180 | // Convert this number to match the semantics provided. If the overflow |
181 | // parameter is provided, set this value to true or false to indicate if this |
182 | // operation results in an overflow. |
183 | APFixedPoint convert(const FixedPointSemantics &DstSema, |
184 | bool *Overflow = nullptr) const; |
185 | |
186 | // Perform binary operations on a fixed point type. The resulting fixed point |
187 | // value will be in the common, full precision semantics that can represent |
188 | // the precision and ranges of both input values. See convert() for an |
189 | // explanation of the Overflow parameter. |
190 | APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
191 | APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
192 | APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
193 | APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
194 | |
195 | // Perform shift operations on a fixed point type. Unlike the other binary |
196 | // operations, the resulting fixed point value will be in the original |
197 | // semantic. |
198 | APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const; |
199 | APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const { |
200 | // Right shift cannot overflow. |
201 | if (Overflow) |
202 | *Overflow = false; |
203 | return APFixedPoint(Val >> Amt, Sema); |
204 | } |
205 | |
206 | /// Perform a unary negation (-X) on this fixed point type, taking into |
207 | /// account saturation if applicable. |
208 | APFixedPoint negate(bool *Overflow = nullptr) const; |
209 | |
210 | /// Return the integral part of this fixed point number, rounded towards |
211 | /// zero. (-2.5k -> -2) |
212 | APSInt getIntPart() const { |
213 | if (getMsbWeight() < 0) |
214 | return APSInt(APInt::getZero(numBits: getWidth()), Val.isUnsigned()); |
215 | APSInt ExtVal = |
216 | (getLsbWeight() > 0) ? Val.extend(width: getWidth() + getLsbWeight()) : Val; |
217 | if (Val < 0 && Val != -Val) // Cover the case when we have the min val |
218 | return -((-ExtVal).relativeShl(Amt: getLsbWeight())); |
219 | return ExtVal.relativeShl(Amt: getLsbWeight()); |
220 | } |
221 | |
222 | /// Return the integral part of this fixed point number, rounded towards |
223 | /// zero. The value is stored into an APSInt with the provided width and sign. |
224 | /// If the overflow parameter is provided, and the integral value is not able |
225 | /// to be fully stored in the provided width and sign, the overflow parameter |
226 | /// is set to true. |
227 | APSInt convertToInt(unsigned DstWidth, bool DstSign, |
228 | bool *Overflow = nullptr) const; |
229 | |
230 | /// Convert this fixed point number to a floating point value with the |
231 | /// provided semantics. |
232 | APFloat convertToFloat(const fltSemantics &FloatSema) const; |
233 | |
234 | void toString(SmallVectorImpl<char> &Str) const; |
235 | std::string toString() const { |
236 | SmallString<40> S; |
237 | toString(Str&: S); |
238 | return std::string(S.str()); |
239 | } |
240 | |
241 | void print(raw_ostream &) const; |
242 | void dump() const; |
243 | |
244 | // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1. |
245 | int compare(const APFixedPoint &Other) const; |
246 | bool operator==(const APFixedPoint &Other) const { |
247 | return compare(Other) == 0; |
248 | } |
249 | bool operator!=(const APFixedPoint &Other) const { |
250 | return compare(Other) != 0; |
251 | } |
252 | bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; } |
253 | bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; } |
254 | bool operator>=(const APFixedPoint &Other) const { |
255 | return compare(Other) >= 0; |
256 | } |
257 | bool operator<=(const APFixedPoint &Other) const { |
258 | return compare(Other) <= 0; |
259 | } |
260 | |
261 | static APFixedPoint getMax(const FixedPointSemantics &Sema); |
262 | static APFixedPoint getMin(const FixedPointSemantics &Sema); |
263 | |
264 | /// Given a floating point semantic, return the next floating point semantic |
265 | /// with a larger exponent and larger or equal mantissa. |
266 | static const fltSemantics *promoteFloatSemantics(const fltSemantics *S); |
267 | |
268 | /// Create an APFixedPoint with a value equal to that of the provided integer, |
269 | /// and in the same semantics as the provided target semantics. If the value |
270 | /// is not able to fit in the specified fixed point semantics, and the |
271 | /// overflow parameter is provided, it is set to true. |
272 | static APFixedPoint getFromIntValue(const APSInt &Value, |
273 | const FixedPointSemantics &DstFXSema, |
274 | bool *Overflow = nullptr); |
275 | |
276 | /// Create an APFixedPoint with a value equal to that of the provided |
277 | /// floating point value, in the provided target semantics. If the value is |
278 | /// not able to fit in the specified fixed point semantics and the overflow |
279 | /// parameter is specified, it is set to true. |
280 | /// For NaN, the Overflow flag is always set. For +inf and -inf, if the |
281 | /// semantic is saturating, the value saturates. Otherwise, the Overflow flag |
282 | /// is set. |
283 | static APFixedPoint getFromFloatValue(const APFloat &Value, |
284 | const FixedPointSemantics &DstFXSema, |
285 | bool *Overflow = nullptr); |
286 | |
287 | private: |
288 | APSInt Val; |
289 | FixedPointSemantics Sema; |
290 | }; |
291 | |
292 | inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) { |
293 | OS << FX.toString(); |
294 | return OS; |
295 | } |
296 | |
297 | inline hash_code hash_value(const APFixedPoint &Val) { |
298 | return hash_combine(args: Val.getSemantics(), args: Val.getValue()); |
299 | } |
300 | |
301 | template <> struct DenseMapInfo<APFixedPoint> { |
302 | static inline APFixedPoint getEmptyKey() { |
303 | return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getEmptyKey()); |
304 | } |
305 | |
306 | static inline APFixedPoint getTombstoneKey() { |
307 | return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getTombstoneKey()); |
308 | } |
309 | |
310 | static unsigned getHashValue(const APFixedPoint &Val) { |
311 | return hash_value(Val); |
312 | } |
313 | |
314 | static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) { |
315 | return LHS.getSemantics() == RHS.getSemantics() && |
316 | LHS.getValue() == RHS.getValue(); |
317 | } |
318 | }; |
319 | |
320 | } // namespace llvm |
321 | |
322 | #endif |
323 | |