1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements a class to represent arbitrary precision |
11 | /// integral constant values and operations on them. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_APINT_H |
16 | #define LLVM_ADT_APINT_H |
17 | |
18 | #include "llvm/Support/Compiler.h" |
19 | #include "llvm/Support/MathExtras.h" |
20 | #include <cassert> |
21 | #include <climits> |
22 | #include <cstring> |
23 | #include <optional> |
24 | #include <utility> |
25 | |
26 | namespace llvm { |
27 | class FoldingSetNodeID; |
28 | class StringRef; |
29 | class hash_code; |
30 | class raw_ostream; |
31 | struct Align; |
32 | |
33 | template <typename T> class SmallVectorImpl; |
34 | template <typename T> class ArrayRef; |
35 | template <typename T, typename Enable> struct DenseMapInfo; |
36 | |
37 | class APInt; |
38 | |
39 | inline APInt operator-(APInt); |
40 | |
41 | //===----------------------------------------------------------------------===// |
42 | // APInt Class |
43 | //===----------------------------------------------------------------------===// |
44 | |
45 | /// Class for arbitrary precision integers. |
46 | /// |
47 | /// APInt is a functional replacement for common case unsigned integer type like |
48 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
49 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
50 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
51 | /// and methods to manipulate integer values of any bit-width. It supports both |
52 | /// the typical integer arithmetic and comparison operations as well as bitwise |
53 | /// manipulation. |
54 | /// |
55 | /// The class has several invariants worth noting: |
56 | /// * All bit, byte, and word positions are zero-based. |
57 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
58 | /// SignExtend, or ZeroExtend operations. |
59 | /// * All binary operators must be on APInt instances of the same bit width. |
60 | /// Attempting to use these operators on instances with different bit |
61 | /// widths will yield an assertion. |
62 | /// * The value is stored canonically as an unsigned value. For operations |
63 | /// where it makes a difference, there are both signed and unsigned variants |
64 | /// of the operation. For example, sdiv and udiv. However, because the bit |
65 | /// widths must be the same, operations such as Mul and Add produce the same |
66 | /// results regardless of whether the values are interpreted as signed or |
67 | /// not. |
68 | /// * In general, the class tries to follow the style of computation that LLVM |
69 | /// uses in its IR. This simplifies its use for LLVM. |
70 | /// * APInt supports zero-bit-width values, but operations that require bits |
71 | /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit |
72 | /// integer). This means that operations like zero extension and logical |
73 | /// shifts are defined, but sign extension and ashr is not. Zero bit values |
74 | /// compare and hash equal to themselves, and countLeadingZeros returns 0. |
75 | /// |
76 | class [[nodiscard]] APInt { |
77 | public: |
78 | typedef uint64_t WordType; |
79 | |
80 | /// This enum is used to hold the constants we needed for APInt. |
81 | enum : unsigned { |
82 | /// Byte size of a word. |
83 | APINT_WORD_SIZE = sizeof(WordType), |
84 | /// Bits in a word. |
85 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT |
86 | }; |
87 | |
88 | enum class Rounding { |
89 | DOWN, |
90 | TOWARD_ZERO, |
91 | UP, |
92 | }; |
93 | |
94 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
95 | |
96 | /// \name Constructors |
97 | /// @{ |
98 | |
99 | /// Create a new APInt of numBits width, initialized as val. |
100 | /// |
101 | /// If isSigned is true then val is treated as if it were a signed value |
102 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
103 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
104 | /// the range of val are zero filled). |
105 | /// |
106 | /// \param numBits the bit width of the constructed APInt |
107 | /// \param val the initial value of the APInt |
108 | /// \param isSigned how to treat signedness of val |
109 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
110 | : BitWidth(numBits) { |
111 | if (isSingleWord()) { |
112 | U.VAL = val; |
113 | clearUnusedBits(); |
114 | } else { |
115 | initSlowCase(val, isSigned); |
116 | } |
117 | } |
118 | |
119 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
120 | /// |
121 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
122 | /// bit width but any extraneous bits will be dropped. |
123 | /// |
124 | /// \param numBits the bit width of the constructed APInt |
125 | /// \param bigVal a sequence of words to form the initial value of the APInt |
126 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
127 | |
128 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
129 | /// deprecated because this constructor is prone to ambiguity with the |
130 | /// APInt(unsigned, uint64_t, bool) constructor. |
131 | /// |
132 | /// If this overload is ever deleted, care should be taken to prevent calls |
133 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
134 | /// constructor. |
135 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
136 | |
137 | /// Construct an APInt from a string representation. |
138 | /// |
139 | /// This constructor interprets the string \p str in the given radix. The |
140 | /// interpretation stops when the first character that is not suitable for the |
141 | /// radix is encountered, or the end of the string. Acceptable radix values |
142 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
143 | /// string to require more bits than numBits. |
144 | /// |
145 | /// \param numBits the bit width of the constructed APInt |
146 | /// \param str the string to be interpreted |
147 | /// \param radix the radix to use for the conversion |
148 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
149 | |
150 | /// Default constructor that creates an APInt with a 1-bit zero value. |
151 | explicit APInt() { U.VAL = 0; } |
152 | |
153 | /// Copy Constructor. |
154 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
155 | if (isSingleWord()) |
156 | U.VAL = that.U.VAL; |
157 | else |
158 | initSlowCase(that); |
159 | } |
160 | |
161 | /// Move Constructor. |
162 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
163 | memcpy(dest: &U, src: &that.U, n: sizeof(U)); |
164 | that.BitWidth = 0; |
165 | } |
166 | |
167 | /// Destructor. |
168 | ~APInt() { |
169 | if (needsCleanup()) |
170 | delete[] U.pVal; |
171 | } |
172 | |
173 | /// @} |
174 | /// \name Value Generators |
175 | /// @{ |
176 | |
177 | /// Get the '0' value for the specified bit-width. |
178 | static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } |
179 | |
180 | /// Return an APInt zero bits wide. |
181 | static APInt getZeroWidth() { return getZero(numBits: 0); } |
182 | |
183 | /// Gets maximum unsigned value of APInt for specific bit width. |
184 | static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } |
185 | |
186 | /// Gets maximum signed value of APInt for a specific bit width. |
187 | static APInt getSignedMaxValue(unsigned numBits) { |
188 | APInt API = getAllOnes(numBits); |
189 | API.clearBit(BitPosition: numBits - 1); |
190 | return API; |
191 | } |
192 | |
193 | /// Gets minimum unsigned value of APInt for a specific bit width. |
194 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
195 | |
196 | /// Gets minimum signed value of APInt for a specific bit width. |
197 | static APInt getSignedMinValue(unsigned numBits) { |
198 | APInt API(numBits, 0); |
199 | API.setBit(numBits - 1); |
200 | return API; |
201 | } |
202 | |
203 | /// Get the SignMask for a specific bit width. |
204 | /// |
205 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
206 | /// readability when we want to get a SignMask. |
207 | static APInt getSignMask(unsigned BitWidth) { |
208 | return getSignedMinValue(numBits: BitWidth); |
209 | } |
210 | |
211 | /// Return an APInt of a specified width with all bits set. |
212 | static APInt getAllOnes(unsigned numBits) { |
213 | return APInt(numBits, WORDTYPE_MAX, true); |
214 | } |
215 | |
216 | /// Return an APInt with exactly one bit set in the result. |
217 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
218 | APInt Res(numBits, 0); |
219 | Res.setBit(BitNo); |
220 | return Res; |
221 | } |
222 | |
223 | /// Get a value with a block of bits set. |
224 | /// |
225 | /// Constructs an APInt value that has a contiguous range of bits set. The |
226 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
227 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
228 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
229 | /// \p hiBit. |
230 | /// |
231 | /// \param numBits the intended bit width of the result |
232 | /// \param loBit the index of the lowest bit set. |
233 | /// \param hiBit the index of the highest bit set. |
234 | /// |
235 | /// \returns An APInt value with the requested bits set. |
236 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
237 | APInt Res(numBits, 0); |
238 | Res.setBits(loBit, hiBit); |
239 | return Res; |
240 | } |
241 | |
242 | /// Wrap version of getBitsSet. |
243 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
244 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
245 | /// with parameters (32, 28, 4), you would get 0xF000000F. |
246 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
247 | /// set. |
248 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
249 | unsigned hiBit) { |
250 | APInt Res(numBits, 0); |
251 | Res.setBitsWithWrap(loBit, hiBit); |
252 | return Res; |
253 | } |
254 | |
255 | /// Constructs an APInt value that has a contiguous range of bits set. The |
256 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
257 | /// bits will be zero. For example, with parameters(32, 12) you would get |
258 | /// 0xFFFFF000. |
259 | /// |
260 | /// \param numBits the intended bit width of the result |
261 | /// \param loBit the index of the lowest bit to set. |
262 | /// |
263 | /// \returns An APInt value with the requested bits set. |
264 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
265 | APInt Res(numBits, 0); |
266 | Res.setBitsFrom(loBit); |
267 | return Res; |
268 | } |
269 | |
270 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
271 | /// |
272 | /// \param numBits the bitwidth of the result |
273 | /// \param hiBitsSet the number of high-order bits set in the result. |
274 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
275 | APInt Res(numBits, 0); |
276 | Res.setHighBits(hiBitsSet); |
277 | return Res; |
278 | } |
279 | |
280 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
281 | /// |
282 | /// \param numBits the bitwidth of the result |
283 | /// \param loBitsSet the number of low-order bits set in the result. |
284 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
285 | APInt Res(numBits, 0); |
286 | Res.setLowBits(loBitsSet); |
287 | return Res; |
288 | } |
289 | |
290 | /// Return a value containing V broadcasted over NewLen bits. |
291 | static APInt getSplat(unsigned NewLen, const APInt &V); |
292 | |
293 | /// @} |
294 | /// \name Value Tests |
295 | /// @{ |
296 | |
297 | /// Determine if this APInt just has one word to store value. |
298 | /// |
299 | /// \returns true if the number of bits <= 64, false otherwise. |
300 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
301 | |
302 | /// Determine sign of this APInt. |
303 | /// |
304 | /// This tests the high bit of this APInt to determine if it is set. |
305 | /// |
306 | /// \returns true if this APInt is negative, false otherwise |
307 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
308 | |
309 | /// Determine if this APInt Value is non-negative (>= 0) |
310 | /// |
311 | /// This tests the high bit of the APInt to determine if it is unset. |
312 | bool isNonNegative() const { return !isNegative(); } |
313 | |
314 | /// Determine if sign bit of this APInt is set. |
315 | /// |
316 | /// This tests the high bit of this APInt to determine if it is set. |
317 | /// |
318 | /// \returns true if this APInt has its sign bit set, false otherwise. |
319 | bool isSignBitSet() const { return (*this)[BitWidth - 1]; } |
320 | |
321 | /// Determine if sign bit of this APInt is clear. |
322 | /// |
323 | /// This tests the high bit of this APInt to determine if it is clear. |
324 | /// |
325 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
326 | bool isSignBitClear() const { return !isSignBitSet(); } |
327 | |
328 | /// Determine if this APInt Value is positive. |
329 | /// |
330 | /// This tests if the value of this APInt is positive (> 0). Note |
331 | /// that 0 is not a positive value. |
332 | /// |
333 | /// \returns true if this APInt is positive. |
334 | bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } |
335 | |
336 | /// Determine if this APInt Value is non-positive (<= 0). |
337 | /// |
338 | /// \returns true if this APInt is non-positive. |
339 | bool isNonPositive() const { return !isStrictlyPositive(); } |
340 | |
341 | /// Determine if this APInt Value only has the specified bit set. |
342 | /// |
343 | /// \returns true if this APInt only has the specified bit set. |
344 | bool isOneBitSet(unsigned BitNo) const { |
345 | return (*this)[BitNo] && popcount() == 1; |
346 | } |
347 | |
348 | /// Determine if all bits are set. This is true for zero-width values. |
349 | bool isAllOnes() const { |
350 | if (BitWidth == 0) |
351 | return true; |
352 | if (isSingleWord()) |
353 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
354 | return countTrailingOnesSlowCase() == BitWidth; |
355 | } |
356 | |
357 | /// Determine if this value is zero, i.e. all bits are clear. |
358 | bool isZero() const { |
359 | if (isSingleWord()) |
360 | return U.VAL == 0; |
361 | return countLeadingZerosSlowCase() == BitWidth; |
362 | } |
363 | |
364 | /// Determine if this is a value of 1. |
365 | /// |
366 | /// This checks to see if the value of this APInt is one. |
367 | bool isOne() const { |
368 | if (isSingleWord()) |
369 | return U.VAL == 1; |
370 | return countLeadingZerosSlowCase() == BitWidth - 1; |
371 | } |
372 | |
373 | /// Determine if this is the largest unsigned value. |
374 | /// |
375 | /// This checks to see if the value of this APInt is the maximum unsigned |
376 | /// value for the APInt's bit width. |
377 | bool isMaxValue() const { return isAllOnes(); } |
378 | |
379 | /// Determine if this is the largest signed value. |
380 | /// |
381 | /// This checks to see if the value of this APInt is the maximum signed |
382 | /// value for the APInt's bit width. |
383 | bool isMaxSignedValue() const { |
384 | if (isSingleWord()) { |
385 | assert(BitWidth && "zero width values not allowed" ); |
386 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
387 | } |
388 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
389 | } |
390 | |
391 | /// Determine if this is the smallest unsigned value. |
392 | /// |
393 | /// This checks to see if the value of this APInt is the minimum unsigned |
394 | /// value for the APInt's bit width. |
395 | bool isMinValue() const { return isZero(); } |
396 | |
397 | /// Determine if this is the smallest signed value. |
398 | /// |
399 | /// This checks to see if the value of this APInt is the minimum signed |
400 | /// value for the APInt's bit width. |
401 | bool isMinSignedValue() const { |
402 | if (isSingleWord()) { |
403 | assert(BitWidth && "zero width values not allowed" ); |
404 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
405 | } |
406 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
407 | } |
408 | |
409 | /// Check if this APInt has an N-bits unsigned integer value. |
410 | bool isIntN(unsigned N) const { return getActiveBits() <= N; } |
411 | |
412 | /// Check if this APInt has an N-bits signed integer value. |
413 | bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; } |
414 | |
415 | /// Check if this APInt's value is a power of two greater than zero. |
416 | /// |
417 | /// \returns true if the argument APInt value is a power of two > 0. |
418 | bool isPowerOf2() const { |
419 | if (isSingleWord()) { |
420 | assert(BitWidth && "zero width values not allowed" ); |
421 | return isPowerOf2_64(Value: U.VAL); |
422 | } |
423 | return countPopulationSlowCase() == 1; |
424 | } |
425 | |
426 | /// Check if this APInt's negated value is a power of two greater than zero. |
427 | bool isNegatedPowerOf2() const { |
428 | assert(BitWidth && "zero width values not allowed" ); |
429 | if (isNonNegative()) |
430 | return false; |
431 | // NegatedPowerOf2 - shifted mask in the top bits. |
432 | unsigned LO = countl_one(); |
433 | unsigned TZ = countr_zero(); |
434 | return (LO + TZ) == BitWidth; |
435 | } |
436 | |
437 | /// Checks if this APInt -interpreted as an address- is aligned to the |
438 | /// provided value. |
439 | bool isAligned(Align A) const; |
440 | |
441 | /// Check if the APInt's value is returned by getSignMask. |
442 | /// |
443 | /// \returns true if this is the value returned by getSignMask. |
444 | bool isSignMask() const { return isMinSignedValue(); } |
445 | |
446 | /// Convert APInt to a boolean value. |
447 | /// |
448 | /// This converts the APInt to a boolean value as a test against zero. |
449 | bool getBoolValue() const { return !isZero(); } |
450 | |
451 | /// If this value is smaller than the specified limit, return it, otherwise |
452 | /// return the limit value. This causes the value to saturate to the limit. |
453 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
454 | return ugt(RHS: Limit) ? Limit : getZExtValue(); |
455 | } |
456 | |
457 | /// Check if the APInt consists of a repeated bit pattern. |
458 | /// |
459 | /// e.g. 0x01010101 satisfies isSplat(8). |
460 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
461 | /// width without remainder. |
462 | bool isSplat(unsigned SplatSizeInBits) const; |
463 | |
464 | /// \returns true if this APInt value is a sequence of \param numBits ones |
465 | /// starting at the least significant bit with the remainder zero. |
466 | bool isMask(unsigned numBits) const { |
467 | assert(numBits != 0 && "numBits must be non-zero" ); |
468 | assert(numBits <= BitWidth && "numBits out of range" ); |
469 | if (isSingleWord()) |
470 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
471 | unsigned Ones = countTrailingOnesSlowCase(); |
472 | return (numBits == Ones) && |
473 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
474 | } |
475 | |
476 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
477 | /// the least significant bit with the remainder zero. |
478 | /// Ex. isMask(0x0000FFFFU) == true. |
479 | bool isMask() const { |
480 | if (isSingleWord()) |
481 | return isMask_64(Value: U.VAL); |
482 | unsigned Ones = countTrailingOnesSlowCase(); |
483 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
484 | } |
485 | |
486 | /// Return true if this APInt value contains a non-empty sequence of ones with |
487 | /// the remainder zero. |
488 | bool isShiftedMask() const { |
489 | if (isSingleWord()) |
490 | return isShiftedMask_64(Value: U.VAL); |
491 | unsigned Ones = countPopulationSlowCase(); |
492 | unsigned LeadZ = countLeadingZerosSlowCase(); |
493 | return (Ones + LeadZ + countr_zero()) == BitWidth; |
494 | } |
495 | |
496 | /// Return true if this APInt value contains a non-empty sequence of ones with |
497 | /// the remainder zero. If true, \p MaskIdx will specify the index of the |
498 | /// lowest set bit and \p MaskLen is updated to specify the length of the |
499 | /// mask, else neither are updated. |
500 | bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const { |
501 | if (isSingleWord()) |
502 | return isShiftedMask_64(Value: U.VAL, MaskIdx, MaskLen); |
503 | unsigned Ones = countPopulationSlowCase(); |
504 | unsigned LeadZ = countLeadingZerosSlowCase(); |
505 | unsigned TrailZ = countTrailingZerosSlowCase(); |
506 | if ((Ones + LeadZ + TrailZ) != BitWidth) |
507 | return false; |
508 | MaskLen = Ones; |
509 | MaskIdx = TrailZ; |
510 | return true; |
511 | } |
512 | |
513 | /// Compute an APInt containing numBits highbits from this APInt. |
514 | /// |
515 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the low |
516 | /// bits and right shift to the least significant bit. |
517 | /// |
518 | /// \returns the high "numBits" bits of this APInt. |
519 | APInt getHiBits(unsigned numBits) const; |
520 | |
521 | /// Compute an APInt containing numBits lowbits from this APInt. |
522 | /// |
523 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the high |
524 | /// bits. |
525 | /// |
526 | /// \returns the low "numBits" bits of this APInt. |
527 | APInt getLoBits(unsigned numBits) const; |
528 | |
529 | /// Determine if two APInts have the same value, after zero-extending |
530 | /// one of them (if needed!) to ensure that the bit-widths match. |
531 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
532 | if (I1.getBitWidth() == I2.getBitWidth()) |
533 | return I1 == I2; |
534 | |
535 | if (I1.getBitWidth() > I2.getBitWidth()) |
536 | return I1 == I2.zext(width: I1.getBitWidth()); |
537 | |
538 | return I1.zext(width: I2.getBitWidth()) == I2; |
539 | } |
540 | |
541 | /// Overload to compute a hash_code for an APInt value. |
542 | friend hash_code hash_value(const APInt &Arg); |
543 | |
544 | /// This function returns a pointer to the internal storage of the APInt. |
545 | /// This is useful for writing out the APInt in binary form without any |
546 | /// conversions. |
547 | const uint64_t *getRawData() const { |
548 | if (isSingleWord()) |
549 | return &U.VAL; |
550 | return &U.pVal[0]; |
551 | } |
552 | |
553 | /// @} |
554 | /// \name Unary Operators |
555 | /// @{ |
556 | |
557 | /// Postfix increment operator. Increment *this by 1. |
558 | /// |
559 | /// \returns a new APInt value representing the original value of *this. |
560 | APInt operator++(int) { |
561 | APInt API(*this); |
562 | ++(*this); |
563 | return API; |
564 | } |
565 | |
566 | /// Prefix increment operator. |
567 | /// |
568 | /// \returns *this incremented by one |
569 | APInt &operator++(); |
570 | |
571 | /// Postfix decrement operator. Decrement *this by 1. |
572 | /// |
573 | /// \returns a new APInt value representing the original value of *this. |
574 | APInt operator--(int) { |
575 | APInt API(*this); |
576 | --(*this); |
577 | return API; |
578 | } |
579 | |
580 | /// Prefix decrement operator. |
581 | /// |
582 | /// \returns *this decremented by one. |
583 | APInt &operator--(); |
584 | |
585 | /// Logical negation operation on this APInt returns true if zero, like normal |
586 | /// integers. |
587 | bool operator!() const { return isZero(); } |
588 | |
589 | /// @} |
590 | /// \name Assignment Operators |
591 | /// @{ |
592 | |
593 | /// Copy assignment operator. |
594 | /// |
595 | /// \returns *this after assignment of RHS. |
596 | APInt &operator=(const APInt &RHS) { |
597 | // The common case (both source or dest being inline) doesn't require |
598 | // allocation or deallocation. |
599 | if (isSingleWord() && RHS.isSingleWord()) { |
600 | U.VAL = RHS.U.VAL; |
601 | BitWidth = RHS.BitWidth; |
602 | return *this; |
603 | } |
604 | |
605 | assignSlowCase(RHS); |
606 | return *this; |
607 | } |
608 | |
609 | /// Move assignment operator. |
610 | APInt &operator=(APInt &&that) { |
611 | #ifdef EXPENSIVE_CHECKS |
612 | // Some std::shuffle implementations still do self-assignment. |
613 | if (this == &that) |
614 | return *this; |
615 | #endif |
616 | assert(this != &that && "Self-move not supported" ); |
617 | if (!isSingleWord()) |
618 | delete[] U.pVal; |
619 | |
620 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
621 | // as modified. |
622 | memcpy(dest: &U, src: &that.U, n: sizeof(U)); |
623 | |
624 | BitWidth = that.BitWidth; |
625 | that.BitWidth = 0; |
626 | return *this; |
627 | } |
628 | |
629 | /// Assignment operator. |
630 | /// |
631 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
632 | /// the bit width, the excess bits are truncated. If the bit width is larger |
633 | /// than 64, the value is zero filled in the unspecified high order bits. |
634 | /// |
635 | /// \returns *this after assignment of RHS value. |
636 | APInt &operator=(uint64_t RHS) { |
637 | if (isSingleWord()) { |
638 | U.VAL = RHS; |
639 | return clearUnusedBits(); |
640 | } |
641 | U.pVal[0] = RHS; |
642 | memset(s: U.pVal + 1, c: 0, n: (getNumWords() - 1) * APINT_WORD_SIZE); |
643 | return *this; |
644 | } |
645 | |
646 | /// Bitwise AND assignment operator. |
647 | /// |
648 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
649 | /// assigned to *this. |
650 | /// |
651 | /// \returns *this after ANDing with RHS. |
652 | APInt &operator&=(const APInt &RHS) { |
653 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
654 | if (isSingleWord()) |
655 | U.VAL &= RHS.U.VAL; |
656 | else |
657 | andAssignSlowCase(RHS); |
658 | return *this; |
659 | } |
660 | |
661 | /// Bitwise AND assignment operator. |
662 | /// |
663 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
664 | /// logically zero-extended or truncated to match the bit-width of |
665 | /// the LHS. |
666 | APInt &operator&=(uint64_t RHS) { |
667 | if (isSingleWord()) { |
668 | U.VAL &= RHS; |
669 | return *this; |
670 | } |
671 | U.pVal[0] &= RHS; |
672 | memset(s: U.pVal + 1, c: 0, n: (getNumWords() - 1) * APINT_WORD_SIZE); |
673 | return *this; |
674 | } |
675 | |
676 | /// Bitwise OR assignment operator. |
677 | /// |
678 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
679 | /// assigned *this; |
680 | /// |
681 | /// \returns *this after ORing with RHS. |
682 | APInt &operator|=(const APInt &RHS) { |
683 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
684 | if (isSingleWord()) |
685 | U.VAL |= RHS.U.VAL; |
686 | else |
687 | orAssignSlowCase(RHS); |
688 | return *this; |
689 | } |
690 | |
691 | /// Bitwise OR assignment operator. |
692 | /// |
693 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
694 | /// logically zero-extended or truncated to match the bit-width of |
695 | /// the LHS. |
696 | APInt &operator|=(uint64_t RHS) { |
697 | if (isSingleWord()) { |
698 | U.VAL |= RHS; |
699 | return clearUnusedBits(); |
700 | } |
701 | U.pVal[0] |= RHS; |
702 | return *this; |
703 | } |
704 | |
705 | /// Bitwise XOR assignment operator. |
706 | /// |
707 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
708 | /// assigned to *this. |
709 | /// |
710 | /// \returns *this after XORing with RHS. |
711 | APInt &operator^=(const APInt &RHS) { |
712 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
713 | if (isSingleWord()) |
714 | U.VAL ^= RHS.U.VAL; |
715 | else |
716 | xorAssignSlowCase(RHS); |
717 | return *this; |
718 | } |
719 | |
720 | /// Bitwise XOR assignment operator. |
721 | /// |
722 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
723 | /// logically zero-extended or truncated to match the bit-width of |
724 | /// the LHS. |
725 | APInt &operator^=(uint64_t RHS) { |
726 | if (isSingleWord()) { |
727 | U.VAL ^= RHS; |
728 | return clearUnusedBits(); |
729 | } |
730 | U.pVal[0] ^= RHS; |
731 | return *this; |
732 | } |
733 | |
734 | /// Multiplication assignment operator. |
735 | /// |
736 | /// Multiplies this APInt by RHS and assigns the result to *this. |
737 | /// |
738 | /// \returns *this |
739 | APInt &operator*=(const APInt &RHS); |
740 | APInt &operator*=(uint64_t RHS); |
741 | |
742 | /// Addition assignment operator. |
743 | /// |
744 | /// Adds RHS to *this and assigns the result to *this. |
745 | /// |
746 | /// \returns *this |
747 | APInt &operator+=(const APInt &RHS); |
748 | APInt &operator+=(uint64_t RHS); |
749 | |
750 | /// Subtraction assignment operator. |
751 | /// |
752 | /// Subtracts RHS from *this and assigns the result to *this. |
753 | /// |
754 | /// \returns *this |
755 | APInt &operator-=(const APInt &RHS); |
756 | APInt &operator-=(uint64_t RHS); |
757 | |
758 | /// Left-shift assignment function. |
759 | /// |
760 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
761 | /// |
762 | /// \returns *this after shifting left by ShiftAmt |
763 | APInt &operator<<=(unsigned ShiftAmt) { |
764 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
765 | if (isSingleWord()) { |
766 | if (ShiftAmt == BitWidth) |
767 | U.VAL = 0; |
768 | else |
769 | U.VAL <<= ShiftAmt; |
770 | return clearUnusedBits(); |
771 | } |
772 | shlSlowCase(ShiftAmt); |
773 | return *this; |
774 | } |
775 | |
776 | /// Left-shift assignment function. |
777 | /// |
778 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
779 | /// |
780 | /// \returns *this after shifting left by ShiftAmt |
781 | APInt &operator<<=(const APInt &ShiftAmt); |
782 | |
783 | /// @} |
784 | /// \name Binary Operators |
785 | /// @{ |
786 | |
787 | /// Multiplication operator. |
788 | /// |
789 | /// Multiplies this APInt by RHS and returns the result. |
790 | APInt operator*(const APInt &RHS) const; |
791 | |
792 | /// Left logical shift operator. |
793 | /// |
794 | /// Shifts this APInt left by \p Bits and returns the result. |
795 | APInt operator<<(unsigned Bits) const { return shl(shiftAmt: Bits); } |
796 | |
797 | /// Left logical shift operator. |
798 | /// |
799 | /// Shifts this APInt left by \p Bits and returns the result. |
800 | APInt operator<<(const APInt &Bits) const { return shl(ShiftAmt: Bits); } |
801 | |
802 | /// Arithmetic right-shift function. |
803 | /// |
804 | /// Arithmetic right-shift this APInt by shiftAmt. |
805 | APInt ashr(unsigned ShiftAmt) const { |
806 | APInt R(*this); |
807 | R.ashrInPlace(ShiftAmt); |
808 | return R; |
809 | } |
810 | |
811 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
812 | void ashrInPlace(unsigned ShiftAmt) { |
813 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
814 | if (isSingleWord()) { |
815 | int64_t SExtVAL = SignExtend64(X: U.VAL, B: BitWidth); |
816 | if (ShiftAmt == BitWidth) |
817 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
818 | else |
819 | U.VAL = SExtVAL >> ShiftAmt; |
820 | clearUnusedBits(); |
821 | return; |
822 | } |
823 | ashrSlowCase(ShiftAmt); |
824 | } |
825 | |
826 | /// Logical right-shift function. |
827 | /// |
828 | /// Logical right-shift this APInt by shiftAmt. |
829 | APInt lshr(unsigned shiftAmt) const { |
830 | APInt R(*this); |
831 | R.lshrInPlace(ShiftAmt: shiftAmt); |
832 | return R; |
833 | } |
834 | |
835 | /// Logical right-shift this APInt by ShiftAmt in place. |
836 | void lshrInPlace(unsigned ShiftAmt) { |
837 | assert(ShiftAmt <= BitWidth && "Invalid shift amount" ); |
838 | if (isSingleWord()) { |
839 | if (ShiftAmt == BitWidth) |
840 | U.VAL = 0; |
841 | else |
842 | U.VAL >>= ShiftAmt; |
843 | return; |
844 | } |
845 | lshrSlowCase(ShiftAmt); |
846 | } |
847 | |
848 | /// Left-shift function. |
849 | /// |
850 | /// Left-shift this APInt by shiftAmt. |
851 | APInt shl(unsigned shiftAmt) const { |
852 | APInt R(*this); |
853 | R <<= shiftAmt; |
854 | return R; |
855 | } |
856 | |
857 | /// relative logical shift right |
858 | APInt relativeLShr(int RelativeShift) const { |
859 | return RelativeShift > 0 ? lshr(shiftAmt: RelativeShift) : shl(shiftAmt: -RelativeShift); |
860 | } |
861 | |
862 | /// relative logical shift left |
863 | APInt relativeLShl(int RelativeShift) const { |
864 | return relativeLShr(RelativeShift: -RelativeShift); |
865 | } |
866 | |
867 | /// relative arithmetic shift right |
868 | APInt relativeAShr(int RelativeShift) const { |
869 | return RelativeShift > 0 ? ashr(ShiftAmt: RelativeShift) : shl(shiftAmt: -RelativeShift); |
870 | } |
871 | |
872 | /// relative arithmetic shift left |
873 | APInt relativeAShl(int RelativeShift) const { |
874 | return relativeAShr(RelativeShift: -RelativeShift); |
875 | } |
876 | |
877 | /// Rotate left by rotateAmt. |
878 | APInt rotl(unsigned rotateAmt) const; |
879 | |
880 | /// Rotate right by rotateAmt. |
881 | APInt rotr(unsigned rotateAmt) const; |
882 | |
883 | /// Arithmetic right-shift function. |
884 | /// |
885 | /// Arithmetic right-shift this APInt by shiftAmt. |
886 | APInt ashr(const APInt &ShiftAmt) const { |
887 | APInt R(*this); |
888 | R.ashrInPlace(shiftAmt: ShiftAmt); |
889 | return R; |
890 | } |
891 | |
892 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
893 | void ashrInPlace(const APInt &shiftAmt); |
894 | |
895 | /// Logical right-shift function. |
896 | /// |
897 | /// Logical right-shift this APInt by shiftAmt. |
898 | APInt lshr(const APInt &ShiftAmt) const { |
899 | APInt R(*this); |
900 | R.lshrInPlace(ShiftAmt); |
901 | return R; |
902 | } |
903 | |
904 | /// Logical right-shift this APInt by ShiftAmt in place. |
905 | void lshrInPlace(const APInt &ShiftAmt); |
906 | |
907 | /// Left-shift function. |
908 | /// |
909 | /// Left-shift this APInt by shiftAmt. |
910 | APInt shl(const APInt &ShiftAmt) const { |
911 | APInt R(*this); |
912 | R <<= ShiftAmt; |
913 | return R; |
914 | } |
915 | |
916 | /// Rotate left by rotateAmt. |
917 | APInt rotl(const APInt &rotateAmt) const; |
918 | |
919 | /// Rotate right by rotateAmt. |
920 | APInt rotr(const APInt &rotateAmt) const; |
921 | |
922 | /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is |
923 | /// equivalent to: |
924 | /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) |
925 | APInt concat(const APInt &NewLSB) const { |
926 | /// If the result will be small, then both the merged values are small. |
927 | unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); |
928 | if (NewWidth <= APINT_BITS_PER_WORD) |
929 | return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); |
930 | return concatSlowCase(NewLSB); |
931 | } |
932 | |
933 | /// Unsigned division operation. |
934 | /// |
935 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
936 | /// RHS are treated as unsigned quantities for purposes of this division. |
937 | /// |
938 | /// \returns a new APInt value containing the division result, rounded towards |
939 | /// zero. |
940 | APInt udiv(const APInt &RHS) const; |
941 | APInt udiv(uint64_t RHS) const; |
942 | |
943 | /// Signed division function for APInt. |
944 | /// |
945 | /// Signed divide this APInt by APInt RHS. |
946 | /// |
947 | /// The result is rounded towards zero. |
948 | APInt sdiv(const APInt &RHS) const; |
949 | APInt sdiv(int64_t RHS) const; |
950 | |
951 | /// Unsigned remainder operation. |
952 | /// |
953 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
954 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
955 | /// of this operation. |
956 | /// |
957 | /// \returns a new APInt value containing the remainder result |
958 | APInt urem(const APInt &RHS) const; |
959 | uint64_t urem(uint64_t RHS) const; |
960 | |
961 | /// Function for signed remainder operation. |
962 | /// |
963 | /// Signed remainder operation on APInt. |
964 | /// |
965 | /// Note that this is a true remainder operation and not a modulo operation |
966 | /// because the sign follows the sign of the dividend which is *this. |
967 | APInt srem(const APInt &RHS) const; |
968 | int64_t srem(int64_t RHS) const; |
969 | |
970 | /// Dual division/remainder interface. |
971 | /// |
972 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
973 | /// quotient and remainder. This function does both operations in the same |
974 | /// computation making it a little more efficient. The pair of input arguments |
975 | /// may overlap with the pair of output arguments. It is safe to call |
976 | /// udivrem(X, Y, X, Y), for example. |
977 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
978 | APInt &Remainder); |
979 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
980 | uint64_t &Remainder); |
981 | |
982 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
983 | APInt &Remainder); |
984 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
985 | int64_t &Remainder); |
986 | |
987 | // Operations that return overflow indicators. |
988 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
989 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
990 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
991 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
992 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
993 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
994 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
995 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
996 | APInt sshl_ov(unsigned Amt, bool &Overflow) const; |
997 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
998 | APInt ushl_ov(unsigned Amt, bool &Overflow) const; |
999 | |
1000 | // Operations that saturate |
1001 | APInt sadd_sat(const APInt &RHS) const; |
1002 | APInt uadd_sat(const APInt &RHS) const; |
1003 | APInt ssub_sat(const APInt &RHS) const; |
1004 | APInt usub_sat(const APInt &RHS) const; |
1005 | APInt smul_sat(const APInt &RHS) const; |
1006 | APInt umul_sat(const APInt &RHS) const; |
1007 | APInt sshl_sat(const APInt &RHS) const; |
1008 | APInt sshl_sat(unsigned RHS) const; |
1009 | APInt ushl_sat(const APInt &RHS) const; |
1010 | APInt ushl_sat(unsigned RHS) const; |
1011 | |
1012 | /// Array-indexing support. |
1013 | /// |
1014 | /// \returns the bit value at bitPosition |
1015 | bool operator[](unsigned bitPosition) const { |
1016 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!" ); |
1017 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
1018 | } |
1019 | |
1020 | /// @} |
1021 | /// \name Comparison Operators |
1022 | /// @{ |
1023 | |
1024 | /// Equality operator. |
1025 | /// |
1026 | /// Compares this APInt with RHS for the validity of the equality |
1027 | /// relationship. |
1028 | bool operator==(const APInt &RHS) const { |
1029 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths" ); |
1030 | if (isSingleWord()) |
1031 | return U.VAL == RHS.U.VAL; |
1032 | return equalSlowCase(RHS); |
1033 | } |
1034 | |
1035 | /// Equality operator. |
1036 | /// |
1037 | /// Compares this APInt with a uint64_t for the validity of the equality |
1038 | /// relationship. |
1039 | /// |
1040 | /// \returns true if *this == Val |
1041 | bool operator==(uint64_t Val) const { |
1042 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
1043 | } |
1044 | |
1045 | /// Equality comparison. |
1046 | /// |
1047 | /// Compares this APInt with RHS for the validity of the equality |
1048 | /// relationship. |
1049 | /// |
1050 | /// \returns true if *this == Val |
1051 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
1052 | |
1053 | /// Inequality operator. |
1054 | /// |
1055 | /// Compares this APInt with RHS for the validity of the inequality |
1056 | /// relationship. |
1057 | /// |
1058 | /// \returns true if *this != Val |
1059 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
1060 | |
1061 | /// Inequality operator. |
1062 | /// |
1063 | /// Compares this APInt with a uint64_t for the validity of the inequality |
1064 | /// relationship. |
1065 | /// |
1066 | /// \returns true if *this != Val |
1067 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
1068 | |
1069 | /// Inequality comparison |
1070 | /// |
1071 | /// Compares this APInt with RHS for the validity of the inequality |
1072 | /// relationship. |
1073 | /// |
1074 | /// \returns true if *this != Val |
1075 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
1076 | |
1077 | /// Unsigned less than comparison |
1078 | /// |
1079 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1080 | /// the validity of the less-than relationship. |
1081 | /// |
1082 | /// \returns true if *this < RHS when both are considered unsigned. |
1083 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
1084 | |
1085 | /// Unsigned less than comparison |
1086 | /// |
1087 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1088 | /// the validity of the less-than relationship. |
1089 | /// |
1090 | /// \returns true if *this < RHS when considered unsigned. |
1091 | bool ult(uint64_t RHS) const { |
1092 | // Only need to check active bits if not a single word. |
1093 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
1094 | } |
1095 | |
1096 | /// Signed less than comparison |
1097 | /// |
1098 | /// Regards both *this and RHS as signed quantities and compares them for |
1099 | /// validity of the less-than relationship. |
1100 | /// |
1101 | /// \returns true if *this < RHS when both are considered signed. |
1102 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
1103 | |
1104 | /// Signed less than comparison |
1105 | /// |
1106 | /// Regards both *this as a signed quantity and compares it with RHS for |
1107 | /// the validity of the less-than relationship. |
1108 | /// |
1109 | /// \returns true if *this < RHS when considered signed. |
1110 | bool slt(int64_t RHS) const { |
1111 | return (!isSingleWord() && getSignificantBits() > 64) |
1112 | ? isNegative() |
1113 | : getSExtValue() < RHS; |
1114 | } |
1115 | |
1116 | /// Unsigned less or equal comparison |
1117 | /// |
1118 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1119 | /// validity of the less-or-equal relationship. |
1120 | /// |
1121 | /// \returns true if *this <= RHS when both are considered unsigned. |
1122 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
1123 | |
1124 | /// Unsigned less or equal comparison |
1125 | /// |
1126 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1127 | /// the validity of the less-or-equal relationship. |
1128 | /// |
1129 | /// \returns true if *this <= RHS when considered unsigned. |
1130 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
1131 | |
1132 | /// Signed less or equal comparison |
1133 | /// |
1134 | /// Regards both *this and RHS as signed quantities and compares them for |
1135 | /// validity of the less-or-equal relationship. |
1136 | /// |
1137 | /// \returns true if *this <= RHS when both are considered signed. |
1138 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
1139 | |
1140 | /// Signed less or equal comparison |
1141 | /// |
1142 | /// Regards both *this as a signed quantity and compares it with RHS for the |
1143 | /// validity of the less-or-equal relationship. |
1144 | /// |
1145 | /// \returns true if *this <= RHS when considered signed. |
1146 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
1147 | |
1148 | /// Unsigned greater than comparison |
1149 | /// |
1150 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1151 | /// the validity of the greater-than relationship. |
1152 | /// |
1153 | /// \returns true if *this > RHS when both are considered unsigned. |
1154 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
1155 | |
1156 | /// Unsigned greater than comparison |
1157 | /// |
1158 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1159 | /// the validity of the greater-than relationship. |
1160 | /// |
1161 | /// \returns true if *this > RHS when considered unsigned. |
1162 | bool ugt(uint64_t RHS) const { |
1163 | // Only need to check active bits if not a single word. |
1164 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
1165 | } |
1166 | |
1167 | /// Signed greater than comparison |
1168 | /// |
1169 | /// Regards both *this and RHS as signed quantities and compares them for the |
1170 | /// validity of the greater-than relationship. |
1171 | /// |
1172 | /// \returns true if *this > RHS when both are considered signed. |
1173 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
1174 | |
1175 | /// Signed greater than comparison |
1176 | /// |
1177 | /// Regards both *this as a signed quantity and compares it with RHS for |
1178 | /// the validity of the greater-than relationship. |
1179 | /// |
1180 | /// \returns true if *this > RHS when considered signed. |
1181 | bool sgt(int64_t RHS) const { |
1182 | return (!isSingleWord() && getSignificantBits() > 64) |
1183 | ? !isNegative() |
1184 | : getSExtValue() > RHS; |
1185 | } |
1186 | |
1187 | /// Unsigned greater or equal comparison |
1188 | /// |
1189 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1190 | /// validity of the greater-or-equal relationship. |
1191 | /// |
1192 | /// \returns true if *this >= RHS when both are considered unsigned. |
1193 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
1194 | |
1195 | /// Unsigned greater or equal comparison |
1196 | /// |
1197 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1198 | /// the validity of the greater-or-equal relationship. |
1199 | /// |
1200 | /// \returns true if *this >= RHS when considered unsigned. |
1201 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
1202 | |
1203 | /// Signed greater or equal comparison |
1204 | /// |
1205 | /// Regards both *this and RHS as signed quantities and compares them for |
1206 | /// validity of the greater-or-equal relationship. |
1207 | /// |
1208 | /// \returns true if *this >= RHS when both are considered signed. |
1209 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
1210 | |
1211 | /// Signed greater or equal comparison |
1212 | /// |
1213 | /// Regards both *this as a signed quantity and compares it with RHS for |
1214 | /// the validity of the greater-or-equal relationship. |
1215 | /// |
1216 | /// \returns true if *this >= RHS when considered signed. |
1217 | bool sge(int64_t RHS) const { return !slt(RHS); } |
1218 | |
1219 | /// This operation tests if there are any pairs of corresponding bits |
1220 | /// between this APInt and RHS that are both set. |
1221 | bool intersects(const APInt &RHS) const { |
1222 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1223 | if (isSingleWord()) |
1224 | return (U.VAL & RHS.U.VAL) != 0; |
1225 | return intersectsSlowCase(RHS); |
1226 | } |
1227 | |
1228 | /// This operation checks that all bits set in this APInt are also set in RHS. |
1229 | bool isSubsetOf(const APInt &RHS) const { |
1230 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same" ); |
1231 | if (isSingleWord()) |
1232 | return (U.VAL & ~RHS.U.VAL) == 0; |
1233 | return isSubsetOfSlowCase(RHS); |
1234 | } |
1235 | |
1236 | /// @} |
1237 | /// \name Resizing Operators |
1238 | /// @{ |
1239 | |
1240 | /// Truncate to new width. |
1241 | /// |
1242 | /// Truncate the APInt to a specified width. It is an error to specify a width |
1243 | /// that is greater than the current width. |
1244 | APInt trunc(unsigned width) const; |
1245 | |
1246 | /// Truncate to new width with unsigned saturation. |
1247 | /// |
1248 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
1249 | /// the new bitwidth, then return truncated APInt. Else, return max value. |
1250 | APInt truncUSat(unsigned width) const; |
1251 | |
1252 | /// Truncate to new width with signed saturation. |
1253 | /// |
1254 | /// If this APInt, treated as signed integer, can be losslessly truncated to |
1255 | /// the new bitwidth, then return truncated APInt. Else, return either |
1256 | /// signed min value if the APInt was negative, or signed max value. |
1257 | APInt truncSSat(unsigned width) const; |
1258 | |
1259 | /// Sign extend to a new width. |
1260 | /// |
1261 | /// This operation sign extends the APInt to a new width. If the high order |
1262 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
1263 | /// It is an error to specify a width that is less than the |
1264 | /// current width. |
1265 | APInt sext(unsigned width) const; |
1266 | |
1267 | /// Zero extend to a new width. |
1268 | /// |
1269 | /// This operation zero extends the APInt to a new width. The high order bits |
1270 | /// are filled with 0 bits. It is an error to specify a width that is less |
1271 | /// than the current width. |
1272 | APInt zext(unsigned width) const; |
1273 | |
1274 | /// Sign extend or truncate to width |
1275 | /// |
1276 | /// Make this APInt have the bit width given by \p width. The value is sign |
1277 | /// extended, truncated, or left alone to make it that width. |
1278 | APInt sextOrTrunc(unsigned width) const; |
1279 | |
1280 | /// Zero extend or truncate to width |
1281 | /// |
1282 | /// Make this APInt have the bit width given by \p width. The value is zero |
1283 | /// extended, truncated, or left alone to make it that width. |
1284 | APInt zextOrTrunc(unsigned width) const; |
1285 | |
1286 | /// @} |
1287 | /// \name Bit Manipulation Operators |
1288 | /// @{ |
1289 | |
1290 | /// Set every bit to 1. |
1291 | void setAllBits() { |
1292 | if (isSingleWord()) |
1293 | U.VAL = WORDTYPE_MAX; |
1294 | else |
1295 | // Set all the bits in all the words. |
1296 | memset(s: U.pVal, c: -1, n: getNumWords() * APINT_WORD_SIZE); |
1297 | // Clear the unused ones |
1298 | clearUnusedBits(); |
1299 | } |
1300 | |
1301 | /// Set the given bit to 1 whose position is given as "bitPosition". |
1302 | void setBit(unsigned BitPosition) { |
1303 | assert(BitPosition < BitWidth && "BitPosition out of range" ); |
1304 | WordType Mask = maskBit(bitPosition: BitPosition); |
1305 | if (isSingleWord()) |
1306 | U.VAL |= Mask; |
1307 | else |
1308 | U.pVal[whichWord(bitPosition: BitPosition)] |= Mask; |
1309 | } |
1310 | |
1311 | /// Set the sign bit to 1. |
1312 | void setSignBit() { setBit(BitWidth - 1); } |
1313 | |
1314 | /// Set a given bit to a given value. |
1315 | void setBitVal(unsigned BitPosition, bool BitValue) { |
1316 | if (BitValue) |
1317 | setBit(BitPosition); |
1318 | else |
1319 | clearBit(BitPosition); |
1320 | } |
1321 | |
1322 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1323 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
1324 | /// setBits when \p loBit < \p hiBit. |
1325 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
1326 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
1327 | assert(hiBit <= BitWidth && "hiBit out of range" ); |
1328 | assert(loBit <= BitWidth && "loBit out of range" ); |
1329 | if (loBit < hiBit) { |
1330 | setBits(loBit, hiBit); |
1331 | return; |
1332 | } |
1333 | setLowBits(hiBit); |
1334 | setHighBits(BitWidth - loBit); |
1335 | } |
1336 | |
1337 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1338 | /// This function handles case when \p loBit <= \p hiBit. |
1339 | void setBits(unsigned loBit, unsigned hiBit) { |
1340 | assert(hiBit <= BitWidth && "hiBit out of range" ); |
1341 | assert(loBit <= BitWidth && "loBit out of range" ); |
1342 | assert(loBit <= hiBit && "loBit greater than hiBit" ); |
1343 | if (loBit == hiBit) |
1344 | return; |
1345 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
1346 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
1347 | mask <<= loBit; |
1348 | if (isSingleWord()) |
1349 | U.VAL |= mask; |
1350 | else |
1351 | U.pVal[0] |= mask; |
1352 | } else { |
1353 | setBitsSlowCase(loBit, hiBit); |
1354 | } |
1355 | } |
1356 | |
1357 | /// Set the top bits starting from loBit. |
1358 | void setBitsFrom(unsigned loBit) { return setBits(loBit, hiBit: BitWidth); } |
1359 | |
1360 | /// Set the bottom loBits bits. |
1361 | void setLowBits(unsigned loBits) { return setBits(loBit: 0, hiBit: loBits); } |
1362 | |
1363 | /// Set the top hiBits bits. |
1364 | void setHighBits(unsigned hiBits) { |
1365 | return setBits(loBit: BitWidth - hiBits, hiBit: BitWidth); |
1366 | } |
1367 | |
1368 | /// Set every bit to 0. |
1369 | void clearAllBits() { |
1370 | if (isSingleWord()) |
1371 | U.VAL = 0; |
1372 | else |
1373 | memset(s: U.pVal, c: 0, n: getNumWords() * APINT_WORD_SIZE); |
1374 | } |
1375 | |
1376 | /// Set a given bit to 0. |
1377 | /// |
1378 | /// Set the given bit to 0 whose position is given as "bitPosition". |
1379 | void clearBit(unsigned BitPosition) { |
1380 | assert(BitPosition < BitWidth && "BitPosition out of range" ); |
1381 | WordType Mask = ~maskBit(bitPosition: BitPosition); |
1382 | if (isSingleWord()) |
1383 | U.VAL &= Mask; |
1384 | else |
1385 | U.pVal[whichWord(bitPosition: BitPosition)] &= Mask; |
1386 | } |
1387 | |
1388 | /// Set bottom loBits bits to 0. |
1389 | void clearLowBits(unsigned loBits) { |
1390 | assert(loBits <= BitWidth && "More bits than bitwidth" ); |
1391 | APInt Keep = getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - loBits); |
1392 | *this &= Keep; |
1393 | } |
1394 | |
1395 | /// Set the sign bit to 0. |
1396 | void clearSignBit() { clearBit(BitPosition: BitWidth - 1); } |
1397 | |
1398 | /// Toggle every bit to its opposite value. |
1399 | void flipAllBits() { |
1400 | if (isSingleWord()) { |
1401 | U.VAL ^= WORDTYPE_MAX; |
1402 | clearUnusedBits(); |
1403 | } else { |
1404 | flipAllBitsSlowCase(); |
1405 | } |
1406 | } |
1407 | |
1408 | /// Toggles a given bit to its opposite value. |
1409 | /// |
1410 | /// Toggle a given bit to its opposite value whose position is given |
1411 | /// as "bitPosition". |
1412 | void flipBit(unsigned bitPosition); |
1413 | |
1414 | /// Negate this APInt in place. |
1415 | void negate() { |
1416 | flipAllBits(); |
1417 | ++(*this); |
1418 | } |
1419 | |
1420 | /// Insert the bits from a smaller APInt starting at bitPosition. |
1421 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
1422 | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
1423 | |
1424 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
1425 | APInt (unsigned numBits, unsigned bitPosition) const; |
1426 | uint64_t (unsigned numBits, unsigned bitPosition) const; |
1427 | |
1428 | /// @} |
1429 | /// \name Value Characterization Functions |
1430 | /// @{ |
1431 | |
1432 | /// Return the number of bits in the APInt. |
1433 | unsigned getBitWidth() const { return BitWidth; } |
1434 | |
1435 | /// Get the number of words. |
1436 | /// |
1437 | /// Here one word's bitwidth equals to that of uint64_t. |
1438 | /// |
1439 | /// \returns the number of words to hold the integer value of this APInt. |
1440 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
1441 | |
1442 | /// Get the number of words. |
1443 | /// |
1444 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
1445 | /// |
1446 | /// \returns the number of words to hold the integer value with a given bit |
1447 | /// width. |
1448 | static unsigned getNumWords(unsigned BitWidth) { |
1449 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
1450 | } |
1451 | |
1452 | /// Compute the number of active bits in the value |
1453 | /// |
1454 | /// This function returns the number of active bits which is defined as the |
1455 | /// bit width minus the number of leading zeros. This is used in several |
1456 | /// computations to see how "wide" the value is. |
1457 | unsigned getActiveBits() const { return BitWidth - countl_zero(); } |
1458 | |
1459 | /// Compute the number of active words in the value of this APInt. |
1460 | /// |
1461 | /// This is used in conjunction with getActiveData to extract the raw value of |
1462 | /// the APInt. |
1463 | unsigned getActiveWords() const { |
1464 | unsigned numActiveBits = getActiveBits(); |
1465 | return numActiveBits ? whichWord(bitPosition: numActiveBits - 1) + 1 : 1; |
1466 | } |
1467 | |
1468 | /// Get the minimum bit size for this signed APInt |
1469 | /// |
1470 | /// Computes the minimum bit width for this APInt while considering it to be a |
1471 | /// signed (and probably negative) value. If the value is not negative, this |
1472 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
1473 | /// returns the smallest bit width that will retain the negative value. For |
1474 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
1475 | /// for -1, this function will always return 1. |
1476 | unsigned getSignificantBits() const { |
1477 | return BitWidth - getNumSignBits() + 1; |
1478 | } |
1479 | |
1480 | /// Get zero extended value |
1481 | /// |
1482 | /// This method attempts to return the value of this APInt as a zero extended |
1483 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1484 | /// uint64_t. Otherwise an assertion will result. |
1485 | uint64_t getZExtValue() const { |
1486 | if (isSingleWord()) |
1487 | return U.VAL; |
1488 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t" ); |
1489 | return U.pVal[0]; |
1490 | } |
1491 | |
1492 | /// Get zero extended value if possible |
1493 | /// |
1494 | /// This method attempts to return the value of this APInt as a zero extended |
1495 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1496 | /// uint64_t. Otherwise no value is returned. |
1497 | std::optional<uint64_t> tryZExtValue() const { |
1498 | return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue()) |
1499 | : std::nullopt; |
1500 | }; |
1501 | |
1502 | /// Get sign extended value |
1503 | /// |
1504 | /// This method attempts to return the value of this APInt as a sign extended |
1505 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
1506 | /// int64_t. Otherwise an assertion will result. |
1507 | int64_t getSExtValue() const { |
1508 | if (isSingleWord()) |
1509 | return SignExtend64(X: U.VAL, B: BitWidth); |
1510 | assert(getSignificantBits() <= 64 && "Too many bits for int64_t" ); |
1511 | return int64_t(U.pVal[0]); |
1512 | } |
1513 | |
1514 | /// Get sign extended value if possible |
1515 | /// |
1516 | /// This method attempts to return the value of this APInt as a sign extended |
1517 | /// int64_t. The bitwidth must be <= 64 or the value must fit within an |
1518 | /// int64_t. Otherwise no value is returned. |
1519 | std::optional<int64_t> trySExtValue() const { |
1520 | return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue()) |
1521 | : std::nullopt; |
1522 | }; |
1523 | |
1524 | /// Get bits required for string value. |
1525 | /// |
1526 | /// This method determines how many bits are required to hold the APInt |
1527 | /// equivalent of the string given by \p str. |
1528 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
1529 | |
1530 | /// Get the bits that are sufficient to represent the string value. This may |
1531 | /// over estimate the amount of bits required, but it does not require |
1532 | /// parsing the value in the string. |
1533 | static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix); |
1534 | |
1535 | /// The APInt version of std::countl_zero. |
1536 | /// |
1537 | /// It counts the number of zeros from the most significant bit to the first |
1538 | /// one bit. |
1539 | /// |
1540 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1541 | /// zeros from the most significant bit to the first one bits. |
1542 | unsigned countl_zero() const { |
1543 | if (isSingleWord()) { |
1544 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
1545 | return llvm::countl_zero(Val: U.VAL) - unusedBits; |
1546 | } |
1547 | return countLeadingZerosSlowCase(); |
1548 | } |
1549 | |
1550 | unsigned countLeadingZeros() const { return countl_zero(); } |
1551 | |
1552 | /// Count the number of leading one bits. |
1553 | /// |
1554 | /// This function is an APInt version of std::countl_one. It counts the number |
1555 | /// of ones from the most significant bit to the first zero bit. |
1556 | /// |
1557 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
1558 | /// of 1 bits from the most significant to the least |
1559 | unsigned countl_one() const { |
1560 | if (isSingleWord()) { |
1561 | if (LLVM_UNLIKELY(BitWidth == 0)) |
1562 | return 0; |
1563 | return llvm::countl_one(Value: U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
1564 | } |
1565 | return countLeadingOnesSlowCase(); |
1566 | } |
1567 | |
1568 | unsigned countLeadingOnes() const { return countl_one(); } |
1569 | |
1570 | /// Computes the number of leading bits of this APInt that are equal to its |
1571 | /// sign bit. |
1572 | unsigned getNumSignBits() const { |
1573 | return isNegative() ? countl_one() : countl_zero(); |
1574 | } |
1575 | |
1576 | /// Count the number of trailing zero bits. |
1577 | /// |
1578 | /// This function is an APInt version of std::countr_zero. It counts the |
1579 | /// number of zeros from the least significant bit to the first set bit. |
1580 | /// |
1581 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1582 | /// zeros from the least significant bit to the first one bit. |
1583 | unsigned countr_zero() const { |
1584 | if (isSingleWord()) { |
1585 | unsigned TrailingZeros = llvm::countr_zero(Val: U.VAL); |
1586 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
1587 | } |
1588 | return countTrailingZerosSlowCase(); |
1589 | } |
1590 | |
1591 | unsigned countTrailingZeros() const { return countr_zero(); } |
1592 | |
1593 | /// Count the number of trailing one bits. |
1594 | /// |
1595 | /// This function is an APInt version of std::countr_one. It counts the number |
1596 | /// of ones from the least significant bit to the first zero bit. |
1597 | /// |
1598 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
1599 | /// of ones from the least significant bit to the first zero bit. |
1600 | unsigned countr_one() const { |
1601 | if (isSingleWord()) |
1602 | return llvm::countr_one(Value: U.VAL); |
1603 | return countTrailingOnesSlowCase(); |
1604 | } |
1605 | |
1606 | unsigned countTrailingOnes() const { return countr_one(); } |
1607 | |
1608 | /// Count the number of bits set. |
1609 | /// |
1610 | /// This function is an APInt version of std::popcount. It counts the number |
1611 | /// of 1 bits in the APInt value. |
1612 | /// |
1613 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
1614 | unsigned popcount() const { |
1615 | if (isSingleWord()) |
1616 | return llvm::popcount(Value: U.VAL); |
1617 | return countPopulationSlowCase(); |
1618 | } |
1619 | |
1620 | /// @} |
1621 | /// \name Conversion Functions |
1622 | /// @{ |
1623 | void print(raw_ostream &OS, bool isSigned) const; |
1624 | |
1625 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
1626 | /// SmallString. If Radix > 10, UpperCase determine the case of letter |
1627 | /// digits. |
1628 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
1629 | bool formatAsCLiteral = false, bool UpperCase = true) const; |
1630 | |
1631 | /// Considers the APInt to be unsigned and converts it into a string in the |
1632 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
1633 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1634 | toString(Str, Radix, Signed: false, formatAsCLiteral: false); |
1635 | } |
1636 | |
1637 | /// Considers the APInt to be signed and converts it into a string in the |
1638 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
1639 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1640 | toString(Str, Radix, Signed: true, formatAsCLiteral: false); |
1641 | } |
1642 | |
1643 | /// \returns a byte-swapped representation of this APInt Value. |
1644 | APInt byteSwap() const; |
1645 | |
1646 | /// \returns the value with the bit representation reversed of this APInt |
1647 | /// Value. |
1648 | APInt reverseBits() const; |
1649 | |
1650 | /// Converts this APInt to a double value. |
1651 | double roundToDouble(bool isSigned) const; |
1652 | |
1653 | /// Converts this unsigned APInt to a double value. |
1654 | double roundToDouble() const { return roundToDouble(isSigned: false); } |
1655 | |
1656 | /// Converts this signed APInt to a double value. |
1657 | double signedRoundToDouble() const { return roundToDouble(isSigned: true); } |
1658 | |
1659 | /// Converts APInt bits to a double |
1660 | /// |
1661 | /// The conversion does not do a translation from integer to double, it just |
1662 | /// re-interprets the bits as a double. Note that it is valid to do this on |
1663 | /// any bit width. Exactly 64 bits will be translated. |
1664 | double bitsToDouble() const { return llvm::bit_cast<double>(from: getWord(bitPosition: 0)); } |
1665 | |
1666 | /// Converts APInt bits to a float |
1667 | /// |
1668 | /// The conversion does not do a translation from integer to float, it just |
1669 | /// re-interprets the bits as a float. Note that it is valid to do this on |
1670 | /// any bit width. Exactly 32 bits will be translated. |
1671 | float bitsToFloat() const { |
1672 | return llvm::bit_cast<float>(from: static_cast<uint32_t>(getWord(bitPosition: 0))); |
1673 | } |
1674 | |
1675 | /// Converts a double to APInt bits. |
1676 | /// |
1677 | /// The conversion does not do a translation from double to integer, it just |
1678 | /// re-interprets the bits of the double. |
1679 | static APInt doubleToBits(double V) { |
1680 | return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(from: V)); |
1681 | } |
1682 | |
1683 | /// Converts a float to APInt bits. |
1684 | /// |
1685 | /// The conversion does not do a translation from float to integer, it just |
1686 | /// re-interprets the bits of the float. |
1687 | static APInt floatToBits(float V) { |
1688 | return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(from: V)); |
1689 | } |
1690 | |
1691 | /// @} |
1692 | /// \name Mathematics Operations |
1693 | /// @{ |
1694 | |
1695 | /// \returns the floor log base 2 of this APInt. |
1696 | unsigned logBase2() const { return getActiveBits() - 1; } |
1697 | |
1698 | /// \returns the ceil log base 2 of this APInt. |
1699 | unsigned ceilLogBase2() const { |
1700 | APInt temp(*this); |
1701 | --temp; |
1702 | return temp.getActiveBits(); |
1703 | } |
1704 | |
1705 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1706 | /// |
1707 | /// NOTE: When we have a BitWidth of 1, we define: |
1708 | /// |
1709 | /// log2(0) = UINT32_MAX |
1710 | /// log2(1) = 0 |
1711 | /// |
1712 | /// to get around any mathematical concerns resulting from |
1713 | /// referencing 2 in a space where 2 does no exist. |
1714 | unsigned nearestLogBase2() const; |
1715 | |
1716 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
1717 | /// otherwise |
1718 | int32_t exactLogBase2() const { |
1719 | if (!isPowerOf2()) |
1720 | return -1; |
1721 | return logBase2(); |
1722 | } |
1723 | |
1724 | /// Compute the square root. |
1725 | APInt sqrt() const; |
1726 | |
1727 | /// Get the absolute value. If *this is < 0 then return -(*this), otherwise |
1728 | /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit |
1729 | /// wide APInt) is unchanged due to how negation works. |
1730 | APInt abs() const { |
1731 | if (isNegative()) |
1732 | return -(*this); |
1733 | return *this; |
1734 | } |
1735 | |
1736 | /// \returns the multiplicative inverse for a given modulo. |
1737 | APInt multiplicativeInverse(const APInt &modulo) const; |
1738 | |
1739 | /// @} |
1740 | /// \name Building-block Operations for APInt and APFloat |
1741 | /// @{ |
1742 | |
1743 | // These building block operations operate on a representation of arbitrary |
1744 | // precision, two's-complement, bignum integer values. They should be |
1745 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
1746 | // generally a pointer to the base of an array of integer parts, representing |
1747 | // an unsigned bignum, and a count of how many parts there are. |
1748 | |
1749 | /// Sets the least significant part of a bignum to the input value, and zeroes |
1750 | /// out higher parts. |
1751 | static void tcSet(WordType *, WordType, unsigned); |
1752 | |
1753 | /// Assign one bignum to another. |
1754 | static void tcAssign(WordType *, const WordType *, unsigned); |
1755 | |
1756 | /// Returns true if a bignum is zero, false otherwise. |
1757 | static bool tcIsZero(const WordType *, unsigned); |
1758 | |
1759 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
1760 | static int (const WordType *, unsigned bit); |
1761 | |
1762 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
1763 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
1764 | /// significant bit of DST. All high bits above srcBITS in DST are |
1765 | /// zero-filled. |
1766 | static void (WordType *, unsigned dstCount, const WordType *, |
1767 | unsigned srcBits, unsigned srcLSB); |
1768 | |
1769 | /// Set the given bit of a bignum. Zero-based. |
1770 | static void tcSetBit(WordType *, unsigned bit); |
1771 | |
1772 | /// Clear the given bit of a bignum. Zero-based. |
1773 | static void tcClearBit(WordType *, unsigned bit); |
1774 | |
1775 | /// Returns the bit number of the least or most significant set bit of a |
1776 | /// number. If the input number has no bits set -1U is returned. |
1777 | static unsigned tcLSB(const WordType *, unsigned n); |
1778 | static unsigned tcMSB(const WordType *parts, unsigned n); |
1779 | |
1780 | /// Negate a bignum in-place. |
1781 | static void tcNegate(WordType *, unsigned); |
1782 | |
1783 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1784 | static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); |
1785 | /// DST += RHS. Returns the carry flag. |
1786 | static WordType tcAddPart(WordType *, WordType, unsigned); |
1787 | |
1788 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1789 | static WordType tcSubtract(WordType *, const WordType *, WordType carry, |
1790 | unsigned); |
1791 | /// DST -= RHS. Returns the carry flag. |
1792 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
1793 | |
1794 | /// DST += SRC * MULTIPLIER + PART if add is true |
1795 | /// DST = SRC * MULTIPLIER + PART if add is false |
1796 | /// |
1797 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
1798 | /// start at the same point, i.e. DST == SRC. |
1799 | /// |
1800 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
1801 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
1802 | /// result, and if all of the omitted higher parts were zero return zero, |
1803 | /// otherwise overflow occurred and return one. |
1804 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
1805 | WordType multiplier, WordType carry, |
1806 | unsigned srcParts, unsigned dstParts, bool add); |
1807 | |
1808 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
1809 | /// filled with the least significant parts of the result. Returns one if |
1810 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
1811 | /// operands. |
1812 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
1813 | unsigned); |
1814 | |
1815 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
1816 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
1817 | static void tcFullMultiply(WordType *, const WordType *, const WordType *, |
1818 | unsigned, unsigned); |
1819 | |
1820 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
1821 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
1822 | /// REMAINDER to the remainder, return zero. i.e. |
1823 | /// |
1824 | /// OLD_LHS = RHS * LHS + REMAINDER |
1825 | /// |
1826 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
1827 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
1828 | /// REMAINDER and SCRATCH must be distinct. |
1829 | static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, |
1830 | WordType *scratch, unsigned parts); |
1831 | |
1832 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
1833 | /// restrictions on Count. |
1834 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
1835 | |
1836 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
1837 | /// restrictions on Count. |
1838 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
1839 | |
1840 | /// Comparison (unsigned) of two bignums. |
1841 | static int tcCompare(const WordType *, const WordType *, unsigned); |
1842 | |
1843 | /// Increment a bignum in-place. Return the carry flag. |
1844 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
1845 | return tcAddPart(dst, 1, parts); |
1846 | } |
1847 | |
1848 | /// Decrement a bignum in-place. Return the borrow flag. |
1849 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
1850 | return tcSubtractPart(dst, 1, parts); |
1851 | } |
1852 | |
1853 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
1854 | /// FoldingSets. |
1855 | void Profile(FoldingSetNodeID &id) const; |
1856 | |
1857 | /// debug method |
1858 | void dump() const; |
1859 | |
1860 | /// Returns whether this instance allocated memory. |
1861 | bool needsCleanup() const { return !isSingleWord(); } |
1862 | |
1863 | private: |
1864 | /// This union is used to store the integer value. When the |
1865 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
1866 | union { |
1867 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
1868 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
1869 | } U; |
1870 | |
1871 | unsigned BitWidth = 1; ///< The number of bits in this APInt. |
1872 | |
1873 | friend struct DenseMapInfo<APInt, void>; |
1874 | friend class APSInt; |
1875 | |
1876 | /// This constructor is used only internally for speed of construction of |
1877 | /// temporaries. It is unsafe since it takes ownership of the pointer, so it |
1878 | /// is not public. |
1879 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } |
1880 | |
1881 | /// Determine which word a bit is in. |
1882 | /// |
1883 | /// \returns the word position for the specified bit position. |
1884 | static unsigned whichWord(unsigned bitPosition) { |
1885 | return bitPosition / APINT_BITS_PER_WORD; |
1886 | } |
1887 | |
1888 | /// Determine which bit in a word the specified bit position is in. |
1889 | static unsigned whichBit(unsigned bitPosition) { |
1890 | return bitPosition % APINT_BITS_PER_WORD; |
1891 | } |
1892 | |
1893 | /// Get a single bit mask. |
1894 | /// |
1895 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
1896 | /// This method generates and returns a uint64_t (word) mask for a single |
1897 | /// bit at a specific bit position. This is used to mask the bit in the |
1898 | /// corresponding word. |
1899 | static uint64_t maskBit(unsigned bitPosition) { |
1900 | return 1ULL << whichBit(bitPosition); |
1901 | } |
1902 | |
1903 | /// Clear unused high order bits |
1904 | /// |
1905 | /// This method is used internally to clear the top "N" bits in the high order |
1906 | /// word that are not used by the APInt. This is needed after the most |
1907 | /// significant word is assigned a value to ensure that those bits are |
1908 | /// zero'd out. |
1909 | APInt &clearUnusedBits() { |
1910 | // Compute how many bits are used in the final word. |
1911 | unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; |
1912 | |
1913 | // Mask out the high bits. |
1914 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
1915 | if (LLVM_UNLIKELY(BitWidth == 0)) |
1916 | mask = 0; |
1917 | |
1918 | if (isSingleWord()) |
1919 | U.VAL &= mask; |
1920 | else |
1921 | U.pVal[getNumWords() - 1] &= mask; |
1922 | return *this; |
1923 | } |
1924 | |
1925 | /// Get the word corresponding to a bit position |
1926 | /// \returns the corresponding word for the specified bit position. |
1927 | uint64_t getWord(unsigned bitPosition) const { |
1928 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
1929 | } |
1930 | |
1931 | /// Utility method to change the bit width of this APInt to new bit width, |
1932 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
1933 | /// value of any bits upon return. Caller should populate the bits after. |
1934 | void reallocate(unsigned NewBitWidth); |
1935 | |
1936 | /// Convert a char array into an APInt |
1937 | /// |
1938 | /// \param radix 2, 8, 10, 16, or 36 |
1939 | /// Converts a string into a number. The string must be non-empty |
1940 | /// and well-formed as a number of the given base. The bit-width |
1941 | /// must be sufficient to hold the result. |
1942 | /// |
1943 | /// This is used by the constructors that take string arguments. |
1944 | /// |
1945 | /// StringRef::getAsInteger is superficially similar but (1) does |
1946 | /// not assume that the string is well-formed and (2) grows the |
1947 | /// result to hold the input. |
1948 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
1949 | |
1950 | /// An internal division function for dividing APInts. |
1951 | /// |
1952 | /// This is used by the toString method to divide by the radix. It simply |
1953 | /// provides a more convenient form of divide for internal use since KnuthDiv |
1954 | /// has specific constraints on its inputs. If those constraints are not met |
1955 | /// then it provides a simpler form of divide. |
1956 | static void divide(const WordType *LHS, unsigned lhsWords, |
1957 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
1958 | WordType *Remainder); |
1959 | |
1960 | /// out-of-line slow case for inline constructor |
1961 | void initSlowCase(uint64_t val, bool isSigned); |
1962 | |
1963 | /// shared code between two array constructors |
1964 | void initFromArray(ArrayRef<uint64_t> array); |
1965 | |
1966 | /// out-of-line slow case for inline copy constructor |
1967 | void initSlowCase(const APInt &that); |
1968 | |
1969 | /// out-of-line slow case for shl |
1970 | void shlSlowCase(unsigned ShiftAmt); |
1971 | |
1972 | /// out-of-line slow case for lshr. |
1973 | void lshrSlowCase(unsigned ShiftAmt); |
1974 | |
1975 | /// out-of-line slow case for ashr. |
1976 | void ashrSlowCase(unsigned ShiftAmt); |
1977 | |
1978 | /// out-of-line slow case for operator= |
1979 | void assignSlowCase(const APInt &RHS); |
1980 | |
1981 | /// out-of-line slow case for operator== |
1982 | bool equalSlowCase(const APInt &RHS) const LLVM_READONLY; |
1983 | |
1984 | /// out-of-line slow case for countLeadingZeros |
1985 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
1986 | |
1987 | /// out-of-line slow case for countLeadingOnes. |
1988 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
1989 | |
1990 | /// out-of-line slow case for countTrailingZeros. |
1991 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
1992 | |
1993 | /// out-of-line slow case for countTrailingOnes |
1994 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
1995 | |
1996 | /// out-of-line slow case for countPopulation |
1997 | unsigned countPopulationSlowCase() const LLVM_READONLY; |
1998 | |
1999 | /// out-of-line slow case for intersects. |
2000 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
2001 | |
2002 | /// out-of-line slow case for isSubsetOf. |
2003 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
2004 | |
2005 | /// out-of-line slow case for setBits. |
2006 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
2007 | |
2008 | /// out-of-line slow case for flipAllBits. |
2009 | void flipAllBitsSlowCase(); |
2010 | |
2011 | /// out-of-line slow case for concat. |
2012 | APInt concatSlowCase(const APInt &NewLSB) const; |
2013 | |
2014 | /// out-of-line slow case for operator&=. |
2015 | void andAssignSlowCase(const APInt &RHS); |
2016 | |
2017 | /// out-of-line slow case for operator|=. |
2018 | void orAssignSlowCase(const APInt &RHS); |
2019 | |
2020 | /// out-of-line slow case for operator^=. |
2021 | void xorAssignSlowCase(const APInt &RHS); |
2022 | |
2023 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
2024 | /// to, or greater than RHS. |
2025 | int compare(const APInt &RHS) const LLVM_READONLY; |
2026 | |
2027 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
2028 | /// to, or greater than RHS. |
2029 | int compareSigned(const APInt &RHS) const LLVM_READONLY; |
2030 | |
2031 | /// @} |
2032 | }; |
2033 | |
2034 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
2035 | |
2036 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
2037 | |
2038 | /// Unary bitwise complement operator. |
2039 | /// |
2040 | /// \returns an APInt that is the bitwise complement of \p v. |
2041 | inline APInt operator~(APInt v) { |
2042 | v.flipAllBits(); |
2043 | return v; |
2044 | } |
2045 | |
2046 | inline APInt operator&(APInt a, const APInt &b) { |
2047 | a &= b; |
2048 | return a; |
2049 | } |
2050 | |
2051 | inline APInt operator&(const APInt &a, APInt &&b) { |
2052 | b &= a; |
2053 | return std::move(b); |
2054 | } |
2055 | |
2056 | inline APInt operator&(APInt a, uint64_t RHS) { |
2057 | a &= RHS; |
2058 | return a; |
2059 | } |
2060 | |
2061 | inline APInt operator&(uint64_t LHS, APInt b) { |
2062 | b &= LHS; |
2063 | return b; |
2064 | } |
2065 | |
2066 | inline APInt operator|(APInt a, const APInt &b) { |
2067 | a |= b; |
2068 | return a; |
2069 | } |
2070 | |
2071 | inline APInt operator|(const APInt &a, APInt &&b) { |
2072 | b |= a; |
2073 | return std::move(b); |
2074 | } |
2075 | |
2076 | inline APInt operator|(APInt a, uint64_t RHS) { |
2077 | a |= RHS; |
2078 | return a; |
2079 | } |
2080 | |
2081 | inline APInt operator|(uint64_t LHS, APInt b) { |
2082 | b |= LHS; |
2083 | return b; |
2084 | } |
2085 | |
2086 | inline APInt operator^(APInt a, const APInt &b) { |
2087 | a ^= b; |
2088 | return a; |
2089 | } |
2090 | |
2091 | inline APInt operator^(const APInt &a, APInt &&b) { |
2092 | b ^= a; |
2093 | return std::move(b); |
2094 | } |
2095 | |
2096 | inline APInt operator^(APInt a, uint64_t RHS) { |
2097 | a ^= RHS; |
2098 | return a; |
2099 | } |
2100 | |
2101 | inline APInt operator^(uint64_t LHS, APInt b) { |
2102 | b ^= LHS; |
2103 | return b; |
2104 | } |
2105 | |
2106 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
2107 | I.print(OS, isSigned: true); |
2108 | return OS; |
2109 | } |
2110 | |
2111 | inline APInt operator-(APInt v) { |
2112 | v.negate(); |
2113 | return v; |
2114 | } |
2115 | |
2116 | inline APInt operator+(APInt a, const APInt &b) { |
2117 | a += b; |
2118 | return a; |
2119 | } |
2120 | |
2121 | inline APInt operator+(const APInt &a, APInt &&b) { |
2122 | b += a; |
2123 | return std::move(b); |
2124 | } |
2125 | |
2126 | inline APInt operator+(APInt a, uint64_t RHS) { |
2127 | a += RHS; |
2128 | return a; |
2129 | } |
2130 | |
2131 | inline APInt operator+(uint64_t LHS, APInt b) { |
2132 | b += LHS; |
2133 | return b; |
2134 | } |
2135 | |
2136 | inline APInt operator-(APInt a, const APInt &b) { |
2137 | a -= b; |
2138 | return a; |
2139 | } |
2140 | |
2141 | inline APInt operator-(const APInt &a, APInt &&b) { |
2142 | b.negate(); |
2143 | b += a; |
2144 | return std::move(b); |
2145 | } |
2146 | |
2147 | inline APInt operator-(APInt a, uint64_t RHS) { |
2148 | a -= RHS; |
2149 | return a; |
2150 | } |
2151 | |
2152 | inline APInt operator-(uint64_t LHS, APInt b) { |
2153 | b.negate(); |
2154 | b += LHS; |
2155 | return b; |
2156 | } |
2157 | |
2158 | inline APInt operator*(APInt a, uint64_t RHS) { |
2159 | a *= RHS; |
2160 | return a; |
2161 | } |
2162 | |
2163 | inline APInt operator*(uint64_t LHS, APInt b) { |
2164 | b *= LHS; |
2165 | return b; |
2166 | } |
2167 | |
2168 | namespace APIntOps { |
2169 | |
2170 | /// Determine the smaller of two APInts considered to be signed. |
2171 | inline const APInt &smin(const APInt &A, const APInt &B) { |
2172 | return A.slt(RHS: B) ? A : B; |
2173 | } |
2174 | |
2175 | /// Determine the larger of two APInts considered to be signed. |
2176 | inline const APInt &smax(const APInt &A, const APInt &B) { |
2177 | return A.sgt(RHS: B) ? A : B; |
2178 | } |
2179 | |
2180 | /// Determine the smaller of two APInts considered to be unsigned. |
2181 | inline const APInt &umin(const APInt &A, const APInt &B) { |
2182 | return A.ult(RHS: B) ? A : B; |
2183 | } |
2184 | |
2185 | /// Determine the larger of two APInts considered to be unsigned. |
2186 | inline const APInt &umax(const APInt &A, const APInt &B) { |
2187 | return A.ugt(RHS: B) ? A : B; |
2188 | } |
2189 | |
2190 | /// Compute GCD of two unsigned APInt values. |
2191 | /// |
2192 | /// This function returns the greatest common divisor of the two APInt values |
2193 | /// using Stein's algorithm. |
2194 | /// |
2195 | /// \returns the greatest common divisor of A and B. |
2196 | APInt GreatestCommonDivisor(APInt A, APInt B); |
2197 | |
2198 | /// Converts the given APInt to a double value. |
2199 | /// |
2200 | /// Treats the APInt as an unsigned value for conversion purposes. |
2201 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
2202 | return APIVal.roundToDouble(); |
2203 | } |
2204 | |
2205 | /// Converts the given APInt to a double value. |
2206 | /// |
2207 | /// Treats the APInt as a signed value for conversion purposes. |
2208 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
2209 | return APIVal.signedRoundToDouble(); |
2210 | } |
2211 | |
2212 | /// Converts the given APInt to a float value. |
2213 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
2214 | return float(RoundAPIntToDouble(APIVal)); |
2215 | } |
2216 | |
2217 | /// Converts the given APInt to a float value. |
2218 | /// |
2219 | /// Treats the APInt as a signed value for conversion purposes. |
2220 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
2221 | return float(APIVal.signedRoundToDouble()); |
2222 | } |
2223 | |
2224 | /// Converts the given double value into a APInt. |
2225 | /// |
2226 | /// This function convert a double value to an APInt value. |
2227 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
2228 | |
2229 | /// Converts a float value into a APInt. |
2230 | /// |
2231 | /// Converts a float value into an APInt value. |
2232 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
2233 | return RoundDoubleToAPInt(Double: double(Float), width); |
2234 | } |
2235 | |
2236 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
2237 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2238 | |
2239 | /// Return A sign-divided by B, rounded by the given rounding mode. |
2240 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2241 | |
2242 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
2243 | /// (e.g. 32 for i32). |
2244 | /// This function finds the smallest number n, such that |
2245 | /// (a) n >= 0 and q(n) = 0, or |
2246 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
2247 | /// integers, belong to two different intervals [Rk, Rk+R), |
2248 | /// where R = 2^BW, and k is an integer. |
2249 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
2250 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
2251 | /// subtraction (treated as addition of negated numbers) would always |
2252 | /// count as an overflow, but here we want to allow values to decrease |
2253 | /// and increase as long as they are within the same interval. |
2254 | /// Specifically, adding of two negative numbers should not cause an |
2255 | /// overflow (as long as the magnitude does not exceed the bit width). |
2256 | /// On the other hand, given a positive number, adding a negative |
2257 | /// number to it can give a negative result, which would cause the |
2258 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
2259 | /// treated as a special case of an overflow. |
2260 | /// |
2261 | /// This function returns std::nullopt if after finding k that minimizes the |
2262 | /// positive solution to q(n) = kR, both solutions are contained between |
2263 | /// two consecutive integers. |
2264 | /// |
2265 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
2266 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
2267 | /// virtue of *signed* overflow. This function will *not* find such an n, |
2268 | /// however it may find a value of n satisfying the inequalities due to |
2269 | /// an *unsigned* overflow (if the values are treated as unsigned). |
2270 | /// To find a solution for a signed overflow, treat it as a problem of |
2271 | /// finding an unsigned overflow with a range with of BW-1. |
2272 | /// |
2273 | /// The returned value may have a different bit width from the input |
2274 | /// coefficients. |
2275 | std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
2276 | unsigned RangeWidth); |
2277 | |
2278 | /// Compare two values, and if they are different, return the position of the |
2279 | /// most significant bit that is different in the values. |
2280 | std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
2281 | const APInt &B); |
2282 | |
2283 | /// Splat/Merge neighboring bits to widen/narrow the bitmask represented |
2284 | /// by \param A to \param NewBitWidth bits. |
2285 | /// |
2286 | /// MatchAnyBits: (Default) |
2287 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
2288 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 |
2289 | /// |
2290 | /// MatchAllBits: |
2291 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
2292 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001 |
2293 | /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. |
2294 | APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, |
2295 | bool MatchAllBits = false); |
2296 | } // namespace APIntOps |
2297 | |
2298 | // See friend declaration above. This additional declaration is required in |
2299 | // order to compile LLVM with IBM xlC compiler. |
2300 | hash_code hash_value(const APInt &Arg); |
2301 | |
2302 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
2303 | /// with the integer held in IntVal. |
2304 | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
2305 | |
2306 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
2307 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
2308 | void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); |
2309 | |
2310 | /// Provide DenseMapInfo for APInt. |
2311 | template <> struct DenseMapInfo<APInt, void> { |
2312 | static inline APInt getEmptyKey() { |
2313 | APInt V(nullptr, 0); |
2314 | V.U.VAL = ~0ULL; |
2315 | return V; |
2316 | } |
2317 | |
2318 | static inline APInt getTombstoneKey() { |
2319 | APInt V(nullptr, 0); |
2320 | V.U.VAL = ~1ULL; |
2321 | return V; |
2322 | } |
2323 | |
2324 | static unsigned getHashValue(const APInt &Key); |
2325 | |
2326 | static bool isEqual(const APInt &LHS, const APInt &RHS) { |
2327 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
2328 | } |
2329 | }; |
2330 | |
2331 | } // namespace llvm |
2332 | |
2333 | #endif |
2334 | |