1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/Support/CBindingWrapping.h"
19#include "llvm/Support/Casting.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/TypeSize.h"
23#include <cassert>
24#include <cstdint>
25#include <iterator>
26
27namespace llvm {
28
29class IntegerType;
30struct fltSemantics;
31class LLVMContext;
32class PointerType;
33class raw_ostream;
34class StringRef;
35template <typename PtrType> class SmallPtrSetImpl;
36
37/// The instances of the Type class are immutable: once they are created,
38/// they are never changed. Also note that only one instance of a particular
39/// type is ever created. Thus seeing if two types are equal is a matter of
40/// doing a trivial pointer comparison. To enforce that no two equal instances
41/// are created, Type instances can only be created via static factory methods
42/// in class Type and in derived classes. Once allocated, Types are never
43/// free'd.
44///
45class Type {
46public:
47 //===--------------------------------------------------------------------===//
48 /// Definitions of all of the base types for the Type system. Based on this
49 /// value, you can cast to a class defined in DerivedTypes.h.
50 /// Note: If you add an element to this, you need to add an element to the
51 /// Type::getPrimitiveType function, or else things will break!
52 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53 ///
54 enum TypeID {
55 // PrimitiveTypes
56 HalfTyID = 0, ///< 16-bit floating point type
57 BFloatTyID, ///< 16-bit floating point type (7-bit significand)
58 FloatTyID, ///< 32-bit floating point type
59 DoubleTyID, ///< 64-bit floating point type
60 X86_FP80TyID, ///< 80-bit floating point type (X87)
61 FP128TyID, ///< 128-bit floating point type (112-bit significand)
62 PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63 VoidTyID, ///< type with no size
64 LabelTyID, ///< Labels
65 MetadataTyID, ///< Metadata
66 X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific)
67 X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific)
68 TokenTyID, ///< Tokens
69
70 // Derived types... see DerivedTypes.h file.
71 IntegerTyID, ///< Arbitrary bit width integers
72 FunctionTyID, ///< Functions
73 PointerTyID, ///< Pointers
74 StructTyID, ///< Structures
75 ArrayTyID, ///< Arrays
76 FixedVectorTyID, ///< Fixed width SIMD vector type
77 ScalableVectorTyID, ///< Scalable SIMD vector type
78 TypedPointerTyID, ///< Typed pointer used by some GPU targets
79 TargetExtTyID, ///< Target extension type
80 };
81
82private:
83 /// This refers to the LLVMContext in which this type was uniqued.
84 LLVMContext &Context;
85
86 TypeID ID : 8; // The current base type of this type.
87 unsigned SubclassData : 24; // Space for subclasses to store data.
88 // Note that this should be synchronized with
89 // MAX_INT_BITS value in IntegerType class.
90
91protected:
92 friend class LLVMContextImpl;
93
94 explicit Type(LLVMContext &C, TypeID tid)
95 : Context(C), ID(tid), SubclassData(0) {}
96 ~Type() = default;
97
98 unsigned getSubclassData() const { return SubclassData; }
99
100 void setSubclassData(unsigned val) {
101 SubclassData = val;
102 // Ensure we don't have any accidental truncation.
103 assert(getSubclassData() == val && "Subclass data too large for field");
104 }
105
106 /// Keeps track of how many Type*'s there are in the ContainedTys list.
107 unsigned NumContainedTys = 0;
108
109 /// A pointer to the array of Types contained by this Type. For example, this
110 /// includes the arguments of a function type, the elements of a structure,
111 /// the pointee of a pointer, the element type of an array, etc. This pointer
112 /// may be 0 for types that don't contain other types (Integer, Double,
113 /// Float).
114 Type * const *ContainedTys = nullptr;
115
116public:
117 /// Print the current type.
118 /// Omit the type details if \p NoDetails == true.
119 /// E.g., let %st = type { i32, i16 }
120 /// When \p NoDetails is true, we only print %st.
121 /// Put differently, \p NoDetails prints the type as if
122 /// inlined with the operands when printing an instruction.
123 void print(raw_ostream &O, bool IsForDebug = false,
124 bool NoDetails = false) const;
125
126 void dump() const;
127
128 /// Return the LLVMContext in which this type was uniqued.
129 LLVMContext &getContext() const { return Context; }
130
131 //===--------------------------------------------------------------------===//
132 // Accessors for working with types.
133 //
134
135 /// Return the type id for the type. This will return one of the TypeID enum
136 /// elements defined above.
137 TypeID getTypeID() const { return ID; }
138
139 /// Return true if this is 'void'.
140 bool isVoidTy() const { return getTypeID() == VoidTyID; }
141
142 /// Return true if this is 'half', a 16-bit IEEE fp type.
143 bool isHalfTy() const { return getTypeID() == HalfTyID; }
144
145 /// Return true if this is 'bfloat', a 16-bit bfloat type.
146 bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
147
148 /// Return true if this is a 16-bit float type.
149 bool is16bitFPTy() const {
150 return getTypeID() == BFloatTyID || getTypeID() == HalfTyID;
151 }
152
153 /// Return true if this is 'float', a 32-bit IEEE fp type.
154 bool isFloatTy() const { return getTypeID() == FloatTyID; }
155
156 /// Return true if this is 'double', a 64-bit IEEE fp type.
157 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
158
159 /// Return true if this is x86 long double.
160 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
161
162 /// Return true if this is 'fp128'.
163 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
164
165 /// Return true if this is powerpc long double.
166 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
167
168 /// Return true if this is a well-behaved IEEE-like type, which has a IEEE
169 /// compatible layout as defined by isIEEE(), and does not have unnormal
170 /// values
171 bool isIEEELikeFPTy() const {
172 switch (getTypeID()) {
173 case DoubleTyID:
174 case FloatTyID:
175 case HalfTyID:
176 case BFloatTyID:
177 case FP128TyID:
178 return true;
179 default:
180 return false;
181 }
182 }
183
184 /// Return true if this is one of the floating-point types
185 bool isFloatingPointTy() const {
186 return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID ||
187 getTypeID() == PPC_FP128TyID;
188 }
189
190 /// Returns true if this is a floating-point type that is an unevaluated sum
191 /// of multiple floating-point units.
192 /// An example of such a type is ppc_fp128, also known as double-double, which
193 /// consists of two IEEE 754 doubles.
194 bool isMultiUnitFPType() const {
195 return getTypeID() == PPC_FP128TyID;
196 }
197
198 const fltSemantics &getFltSemantics() const;
199
200 /// Return true if this is X86 MMX.
201 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
202
203 /// Return true if this is X86 AMX.
204 bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
205
206 /// Return true if this is a target extension type.
207 bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; }
208
209 /// Return true if this is a target extension type with a scalable layout.
210 bool isScalableTargetExtTy() const;
211
212 /// Return true if this is a scalable vector type or a target extension type
213 /// with a scalable layout.
214 bool isScalableTy() const;
215
216 /// Return true if this is a FP type or a vector of FP.
217 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
218
219 /// Return true if this is 'label'.
220 bool isLabelTy() const { return getTypeID() == LabelTyID; }
221
222 /// Return true if this is 'metadata'.
223 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
224
225 /// Return true if this is 'token'.
226 bool isTokenTy() const { return getTypeID() == TokenTyID; }
227
228 /// True if this is an instance of IntegerType.
229 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
230
231 /// Return true if this is an IntegerType of the given width.
232 bool isIntegerTy(unsigned Bitwidth) const;
233
234 /// Return true if this is an integer type or a vector of integer types.
235 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
236
237 /// Return true if this is an integer type or a vector of integer types of
238 /// the given width.
239 bool isIntOrIntVectorTy(unsigned BitWidth) const {
240 return getScalarType()->isIntegerTy(Bitwidth: BitWidth);
241 }
242
243 /// Return true if this is an integer type or a pointer type.
244 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
245
246 /// True if this is an instance of FunctionType.
247 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
248
249 /// True if this is an instance of StructType.
250 bool isStructTy() const { return getTypeID() == StructTyID; }
251
252 /// True if this is an instance of ArrayType.
253 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
254
255 /// True if this is an instance of PointerType.
256 bool isPointerTy() const { return getTypeID() == PointerTyID; }
257
258 /// True if this is an instance of an opaque PointerType.
259 LLVM_DEPRECATED("Use isPointerTy() instead", "isPointerTy")
260 bool isOpaquePointerTy() const { return isPointerTy(); };
261
262 /// Return true if this is a pointer type or a vector of pointer types.
263 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
264
265 /// True if this is an instance of VectorType.
266 inline bool isVectorTy() const {
267 return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
268 }
269
270 /// Return true if this type could be converted with a lossless BitCast to
271 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
272 /// same size only where no re-interpretation of the bits is done.
273 /// Determine if this type could be losslessly bitcast to Ty
274 bool canLosslesslyBitCastTo(Type *Ty) const;
275
276 /// Return true if this type is empty, that is, it has no elements or all of
277 /// its elements are empty.
278 bool isEmptyTy() const;
279
280 /// Return true if the type is "first class", meaning it is a valid type for a
281 /// Value.
282 bool isFirstClassType() const {
283 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
284 }
285
286 /// Return true if the type is a valid type for a register in codegen. This
287 /// includes all first-class types except struct and array types.
288 bool isSingleValueType() const {
289 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
290 isPointerTy() || isVectorTy() || isX86_AMXTy() || isTargetExtTy();
291 }
292
293 /// Return true if the type is an aggregate type. This means it is valid as
294 /// the first operand of an insertvalue or extractvalue instruction. This
295 /// includes struct and array types, but does not include vector types.
296 bool isAggregateType() const {
297 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
298 }
299
300 /// Return true if it makes sense to take the size of this type. To get the
301 /// actual size for a particular target, it is reasonable to use the
302 /// DataLayout subsystem to do this.
303 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
304 // If it's a primitive, it is always sized.
305 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
306 getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
307 getTypeID() == X86_AMXTyID)
308 return true;
309 // If it is not something that can have a size (e.g. a function or label),
310 // it doesn't have a size.
311 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
312 !isVectorTy() && getTypeID() != TargetExtTyID)
313 return false;
314 // Otherwise we have to try harder to decide.
315 return isSizedDerivedType(Visited);
316 }
317
318 /// Return the basic size of this type if it is a primitive type. These are
319 /// fixed by LLVM and are not target-dependent.
320 /// This will return zero if the type does not have a size or is not a
321 /// primitive type.
322 ///
323 /// If this is a scalable vector type, the scalable property will be set and
324 /// the runtime size will be a positive integer multiple of the base size.
325 ///
326 /// Note that this may not reflect the size of memory allocated for an
327 /// instance of the type or the number of bytes that are written when an
328 /// instance of the type is stored to memory. The DataLayout class provides
329 /// additional query functions to provide this information.
330 ///
331 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
332
333 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
334 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
335 /// type.
336 unsigned getScalarSizeInBits() const LLVM_READONLY;
337
338 /// Return the width of the mantissa of this type. This is only valid on
339 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
340 /// ppc long double), this method returns -1.
341 int getFPMantissaWidth() const;
342
343 /// Return whether the type is IEEE compatible, as defined by the eponymous
344 /// method in APFloat.
345 bool isIEEE() const;
346
347 /// If this is a vector type, return the element type, otherwise return
348 /// 'this'.
349 inline Type *getScalarType() const {
350 if (isVectorTy())
351 return getContainedType(i: 0);
352 return const_cast<Type *>(this);
353 }
354
355 //===--------------------------------------------------------------------===//
356 // Type Iteration support.
357 //
358 using subtype_iterator = Type * const *;
359
360 subtype_iterator subtype_begin() const { return ContainedTys; }
361 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
362 ArrayRef<Type*> subtypes() const {
363 return ArrayRef(subtype_begin(), subtype_end());
364 }
365
366 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
367
368 subtype_reverse_iterator subtype_rbegin() const {
369 return subtype_reverse_iterator(subtype_end());
370 }
371 subtype_reverse_iterator subtype_rend() const {
372 return subtype_reverse_iterator(subtype_begin());
373 }
374
375 /// This method is used to implement the type iterator (defined at the end of
376 /// the file). For derived types, this returns the types 'contained' in the
377 /// derived type.
378 Type *getContainedType(unsigned i) const {
379 assert(i < NumContainedTys && "Index out of range!");
380 return ContainedTys[i];
381 }
382
383 /// Return the number of types in the derived type.
384 unsigned getNumContainedTypes() const { return NumContainedTys; }
385
386 //===--------------------------------------------------------------------===//
387 // Helper methods corresponding to subclass methods. This forces a cast to
388 // the specified subclass and calls its accessor. "getArrayNumElements" (for
389 // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is
390 // only intended to cover the core methods that are frequently used, helper
391 // methods should not be added here.
392
393 inline unsigned getIntegerBitWidth() const;
394
395 inline Type *getFunctionParamType(unsigned i) const;
396 inline unsigned getFunctionNumParams() const;
397 inline bool isFunctionVarArg() const;
398
399 inline StringRef getStructName() const;
400 inline unsigned getStructNumElements() const;
401 inline Type *getStructElementType(unsigned N) const;
402
403 inline uint64_t getArrayNumElements() const;
404
405 Type *getArrayElementType() const {
406 assert(getTypeID() == ArrayTyID);
407 return ContainedTys[0];
408 }
409
410 inline StringRef getTargetExtName() const;
411
412 /// Only use this method in code that is not reachable with opaque pointers,
413 /// or part of deprecated methods that will be removed as part of the opaque
414 /// pointers transition.
415 [[deprecated("Pointers no longer have element types")]]
416 Type *getNonOpaquePointerElementType() const {
417 llvm_unreachable("Pointers no longer have element types");
418 }
419
420 /// Given vector type, change the element type,
421 /// whilst keeping the old number of elements.
422 /// For non-vectors simply returns \p EltTy.
423 inline Type *getWithNewType(Type *EltTy) const;
424
425 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
426 /// whilst keeping the old number of lanes.
427 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
428
429 /// Given scalar/vector integer type, returns a type with elements twice as
430 /// wide as in the original type. For vectors, preserves element count.
431 inline Type *getExtendedType() const;
432
433 /// Get the address space of this pointer or pointer vector type.
434 inline unsigned getPointerAddressSpace() const;
435
436 //===--------------------------------------------------------------------===//
437 // Static members exported by the Type class itself. Useful for getting
438 // instances of Type.
439 //
440
441 /// Return a type based on an identifier.
442 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
443
444 //===--------------------------------------------------------------------===//
445 // These are the builtin types that are always available.
446 //
447 static Type *getVoidTy(LLVMContext &C);
448 static Type *getLabelTy(LLVMContext &C);
449 static Type *getHalfTy(LLVMContext &C);
450 static Type *getBFloatTy(LLVMContext &C);
451 static Type *getFloatTy(LLVMContext &C);
452 static Type *getDoubleTy(LLVMContext &C);
453 static Type *getMetadataTy(LLVMContext &C);
454 static Type *getX86_FP80Ty(LLVMContext &C);
455 static Type *getFP128Ty(LLVMContext &C);
456 static Type *getPPC_FP128Ty(LLVMContext &C);
457 static Type *getX86_MMXTy(LLVMContext &C);
458 static Type *getX86_AMXTy(LLVMContext &C);
459 static Type *getTokenTy(LLVMContext &C);
460 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
461 static IntegerType *getInt1Ty(LLVMContext &C);
462 static IntegerType *getInt8Ty(LLVMContext &C);
463 static IntegerType *getInt16Ty(LLVMContext &C);
464 static IntegerType *getInt32Ty(LLVMContext &C);
465 static IntegerType *getInt64Ty(LLVMContext &C);
466 static IntegerType *getInt128Ty(LLVMContext &C);
467 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
468 int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
469 if (std::is_integral<ScalarTy>::value) {
470 return (Type*) Type::getIntNTy(C, N: noOfBits);
471 } else if (std::is_floating_point<ScalarTy>::value) {
472 switch (noOfBits) {
473 case 32:
474 return Type::getFloatTy(C);
475 case 64:
476 return Type::getDoubleTy(C);
477 }
478 }
479 llvm_unreachable("Unsupported type in Type::getScalarTy");
480 }
481 static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
482
483 //===--------------------------------------------------------------------===//
484 // Convenience methods for getting pointer types with one of the above builtin
485 // types as pointee.
486 //
487 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
488 static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
489 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
490 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
491 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
492 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
493 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
494 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
495 static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
496 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
497 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
498 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
499 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
500 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
501 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
502 static Type *getWasm_ExternrefTy(LLVMContext &C);
503 static Type *getWasm_FuncrefTy(LLVMContext &C);
504
505 /// Return a pointer to the current type. This is equivalent to
506 /// PointerType::get(Foo, AddrSpace).
507 /// TODO: Remove this after opaque pointer transition is complete.
508 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
509
510private:
511 /// Derived types like structures and arrays are sized iff all of the members
512 /// of the type are sized as well. Since asking for their size is relatively
513 /// uncommon, move this operation out-of-line.
514 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
515};
516
517// Printing of types.
518inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
519 T.print(O&: OS);
520 return OS;
521}
522
523// allow isa<PointerType>(x) to work without DerivedTypes.h included.
524template <> struct isa_impl<PointerType, Type> {
525 static inline bool doit(const Type &Ty) {
526 return Ty.getTypeID() == Type::PointerTyID;
527 }
528};
529
530// Create wrappers for C Binding types (see CBindingWrapping.h).
531DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
532
533/* Specialized opaque type conversions.
534 */
535inline Type **unwrap(LLVMTypeRef* Tys) {
536 return reinterpret_cast<Type**>(Tys);
537}
538
539inline LLVMTypeRef *wrap(Type **Tys) {
540 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
541}
542
543} // end namespace llvm
544
545#endif // LLVM_IR_TYPE_H
546

source code of include/llvm-17/llvm/IR/Type.h