1 | // Copyright (C) 2023 The Qt Company Ltd. |
---|---|
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qsgcurveprocessor_p.h" |
5 | |
6 | #include <QtGui/private/qtriangulator_p.h> |
7 | #include <QtCore/qloggingcategory.h> |
8 | #include <QtCore/qhash.h> |
9 | |
10 | QT_BEGIN_NAMESPACE |
11 | |
12 | Q_LOGGING_CATEGORY(lcSGCurveProcessor, "qt.quick.curveprocessor"); |
13 | Q_LOGGING_CATEGORY(lcSGCurveIntersectionSolver, "qt.quick.curveprocessor.intersections"); |
14 | |
15 | namespace { |
16 | // Input coordinate space is pre-mapped so that (0, 0) maps to [0, 0] in uv space. |
17 | // v1 maps to [1,0], v2 maps to [0,1]. p is the point to be mapped to uv in this space (i.e. vector from p0) |
18 | static inline QVector2D uvForPoint(QVector2D v1, QVector2D v2, QVector2D p) |
19 | { |
20 | double divisor = v1.x() * v2.y() - v2.x() * v1.y(); |
21 | |
22 | float u = (p.x() * v2.y() - p.y() * v2.x()) / divisor; |
23 | float v = (p.y() * v1.x() - p.x() * v1.y()) / divisor; |
24 | |
25 | return {u, v}; |
26 | } |
27 | |
28 | // Find uv coordinates for the point p, for a quadratic curve from p0 to p2 with control point p1 |
29 | // also works for a line from p0 to p2, where p1 is on the inside of the path relative to the line |
30 | static inline QVector2D curveUv(QVector2D p0, QVector2D p1, QVector2D p2, QVector2D p) |
31 | { |
32 | QVector2D v1 = 2 * (p1 - p0); |
33 | QVector2D v2 = p2 - v1 - p0; |
34 | return uvForPoint(v1, v2, p: p - p0); |
35 | } |
36 | |
37 | static QVector3D elementUvForPoint(const QQuadPath::Element& e, QVector2D p) |
38 | { |
39 | auto uv = curveUv(p0: e.startPoint(), p1: e.referencePoint(), p2: e.endPoint(), p); |
40 | if (e.isLine()) |
41 | return { uv.x(), uv.y(), 0.0f }; |
42 | else |
43 | return { uv.x(), uv.y(), e.isConvex() ? -1.0f : 1.0f }; |
44 | } |
45 | |
46 | static inline QVector2D calcNormalVector(QVector2D a, QVector2D b) |
47 | { |
48 | auto v = b - a; |
49 | return {v.y(), -v.x()}; |
50 | } |
51 | |
52 | // The sign of the return value indicates which side of the line defined by a and n the point p falls |
53 | static inline float testSideOfLineByNormal(QVector2D a, QVector2D n, QVector2D p) |
54 | { |
55 | float dot = QVector2D::dotProduct(v1: p - a, v2: n); |
56 | return dot; |
57 | }; |
58 | |
59 | static inline float determinant(const QVector2D &p1, const QVector2D &p2, const QVector2D &p3) |
60 | { |
61 | return p1.x() * (p2.y() - p3.y()) |
62 | + p2.x() * (p3.y() - p1.y()) |
63 | + p3.x() * (p1.y() - p2.y()); |
64 | } |
65 | |
66 | /* |
67 | Clever triangle overlap algorithm. Stack Overflow says: |
68 | |
69 | You can prove that the two triangles do not collide by finding an edge (out of the total 6 |
70 | edges that make up the two triangles) that acts as a separating line where all the vertices |
71 | of one triangle lie on one side and the vertices of the other triangle lie on the other side. |
72 | If you can find such an edge then it means that the triangles do not intersect otherwise the |
73 | triangles are colliding. |
74 | */ |
75 | using TrianglePoints = std::array<QVector2D, 3>; |
76 | using LinePoints = std::array<QVector2D, 2>; |
77 | |
78 | // The sign of the determinant tells the winding order: positive means counter-clockwise |
79 | |
80 | static inline double determinant(const TrianglePoints &p) |
81 | { |
82 | return determinant(p1: p[0], p2: p[1], p3: p[2]); |
83 | } |
84 | |
85 | // Fix the triangle so that the determinant is positive |
86 | static void fixWinding(TrianglePoints &p) |
87 | { |
88 | double det = determinant(p); |
89 | if (det < 0.0) { |
90 | qSwap(value1&: p[0], value2&: p[1]); |
91 | } |
92 | } |
93 | |
94 | // Return true if the determinant is negative, i.e. if the winding order is opposite of the triangle p1,p2,p3. |
95 | // This means that p is strictly on the other side of p1-p2 relative to p3 [where p1,p2,p3 is a triangle with |
96 | // a positive determinant]. |
97 | bool checkEdge(const QVector2D &p1, const QVector2D &p2, const QVector2D &p, float epsilon) |
98 | { |
99 | return determinant(p1, p2, p3: p) <= epsilon; |
100 | } |
101 | |
102 | // Check if lines l1 and l2 are intersecting and return the respective value. Solutions are stored to |
103 | // the optional pointer solution. |
104 | bool lineIntersection(const LinePoints &l1, const LinePoints &l2, QList<QPair<float, float>> *solution = nullptr) |
105 | { |
106 | constexpr double eps2 = 1e-5; // Epsilon for parameter space t1-t2 |
107 | |
108 | // see https://www.wolframalpha.com/input?i=solve%28A+%2B+t+*+B+%3D+C+%2B+s*D%3B+E+%2B+t+*+F+%3D+G+%2B+s+*+H+for+s+and+t%29 |
109 | const float A = l1[0].x(); |
110 | const float B = l1[1].x() - l1[0].x(); |
111 | const float C = l2[0].x(); |
112 | const float D = l2[1].x() - l2[0].x(); |
113 | const float E = l1[0].y(); |
114 | const float F = l1[1].y() - l1[0].y(); |
115 | const float G = l2[0].y(); |
116 | const float H = l2[1].y() - l2[0].y(); |
117 | |
118 | float det = D * F - B * H; |
119 | |
120 | if (det == 0) |
121 | return false; |
122 | |
123 | float s = (F * (A - C) - B * (E - G)) / det; |
124 | float t = (H * (A - C) - D * (E - G)) / det; |
125 | |
126 | // Intersections at 0 count. Intersections at 1 do not. |
127 | bool intersecting = (s >= 0 && s <= 1. - eps2 && t >= 0 && t <= 1. - eps2); |
128 | |
129 | if (solution && intersecting) |
130 | solution->append(t: QPair<float, float>(t, s)); |
131 | |
132 | return intersecting; |
133 | } |
134 | |
135 | |
136 | bool checkTriangleOverlap(TrianglePoints &triangle1, TrianglePoints &triangle2, float epsilon = 1.0/32) |
137 | { |
138 | // See if there is an edge of triangle1 such that all vertices in triangle2 are on the opposite side |
139 | fixWinding(p&: triangle1); |
140 | for (int i = 0; i < 3; i++) { |
141 | int ni = (i + 1) % 3; |
142 | if (checkEdge(p1: triangle1[i], p2: triangle1[ni], p: triangle2[0], epsilon) && |
143 | checkEdge(p1: triangle1[i], p2: triangle1[ni], p: triangle2[1], epsilon) && |
144 | checkEdge(p1: triangle1[i], p2: triangle1[ni], p: triangle2[2], epsilon)) |
145 | return false; |
146 | } |
147 | |
148 | // See if there is an edge of triangle2 such that all vertices in triangle1 are on the opposite side |
149 | fixWinding(p&: triangle2); |
150 | for (int i = 0; i < 3; i++) { |
151 | int ni = (i + 1) % 3; |
152 | |
153 | if (checkEdge(p1: triangle2[i], p2: triangle2[ni], p: triangle1[0], epsilon) && |
154 | checkEdge(p1: triangle2[i], p2: triangle2[ni], p: triangle1[1], epsilon) && |
155 | checkEdge(p1: triangle2[i], p2: triangle2[ni], p: triangle1[2], epsilon)) |
156 | return false; |
157 | } |
158 | |
159 | return true; |
160 | } |
161 | |
162 | bool checkLineTriangleOverlap(TrianglePoints &triangle, LinePoints &line, float epsilon = 1.0/32) |
163 | { |
164 | // See if all vertices of the triangle are on the same side of the line |
165 | bool s1 = determinant(p1: line[0], p2: line[1], p3: triangle[0]) < 0; |
166 | bool s2 = determinant(p1: line[0], p2: line[1], p3: triangle[1]) < 0; |
167 | bool s3 = determinant(p1: line[0], p2: line[1], p3: triangle[2]) < 0; |
168 | // If all determinants have the same sign, then there is no overlap |
169 | if (s1 == s2 && s2 == s3) { |
170 | return false; |
171 | } |
172 | // See if there is an edge of triangle1 such that both vertices in line are on the opposite side |
173 | fixWinding(p&: triangle); |
174 | for (int i = 0; i < 3; i++) { |
175 | int ni = (i + 1) % 3; |
176 | if (checkEdge(p1: triangle[i], p2: triangle[ni], p: line[0], epsilon) && |
177 | checkEdge(p1: triangle[i], p2: triangle[ni], p: line[1], epsilon)) |
178 | return false; |
179 | } |
180 | |
181 | return true; |
182 | } |
183 | |
184 | static bool isOverlap(const QQuadPath &path, int e1, int e2) |
185 | { |
186 | const QQuadPath::Element &element1 = path.elementAt(i: e1); |
187 | const QQuadPath::Element &element2 = path.elementAt(i: e2); |
188 | |
189 | if (element1.isLine()) { |
190 | LinePoints line1{ element1.startPoint(), element1.endPoint() }; |
191 | if (element2.isLine()) { |
192 | LinePoints line2{ element2.startPoint(), element2.endPoint() }; |
193 | return lineIntersection(l1: line1, l2: line2); |
194 | } else { |
195 | TrianglePoints t2{ element2.startPoint(), element2.controlPoint(), element2.endPoint() }; |
196 | return checkLineTriangleOverlap(triangle&: t2, line&: line1); |
197 | } |
198 | } else { |
199 | TrianglePoints t1{ element1.startPoint(), element1.controlPoint(), element1.endPoint() }; |
200 | if (element2.isLine()) { |
201 | LinePoints line{ element2.startPoint(), element2.endPoint() }; |
202 | return checkLineTriangleOverlap(triangle&: t1, line); |
203 | } else { |
204 | TrianglePoints t2{ element2.startPoint(), element2.controlPoint(), element2.endPoint() }; |
205 | return checkTriangleOverlap(triangle1&: t1, triangle2&: t2); |
206 | } |
207 | } |
208 | |
209 | return false; |
210 | } |
211 | |
212 | static float angleBetween(const QVector2D v1, const QVector2D v2) |
213 | { |
214 | float dot = v1.x() * v2.x() + v1.y() * v2.y(); |
215 | float cross = v1.x() * v2.y() - v1.y() * v2.x(); |
216 | //TODO: Optimization: Maybe we don't need the atan2 here. |
217 | return atan2(y: cross, x: dot); |
218 | } |
219 | |
220 | static bool isIntersecting(const TrianglePoints &t1, const TrianglePoints &t2, QList<QPair<float, float>> *solutions = nullptr) |
221 | { |
222 | constexpr double eps = 1e-5; // Epsilon for coordinate space x-y |
223 | constexpr double eps2 = 1e-5; // Epsilon for parameter space t1-t2 |
224 | constexpr int maxIterations = 7; // Maximum iterations allowed for Newton |
225 | |
226 | // Convert to double to get better accuracy. |
227 | QPointF td1[3] = { t1[0].toPointF(), t1[1].toPointF(), t1[2].toPointF() }; |
228 | QPointF td2[3] = { t2[0].toPointF(), t2[1].toPointF(), t2[2].toPointF() }; |
229 | |
230 | // F = P1(t1) - P2(t2) where P1 and P2 are bezier curve functions. |
231 | // F = (0, 0) at the intersection. |
232 | // t is the vector of bezier curve parameters for curves P1 and P2 |
233 | auto F = [=](QPointF t) { return |
234 | td1[0] * (1 - t.x()) * (1. - t.x()) + 2 * td1[1] * (1. - t.x()) * t.x() + td1[2] * t.x() * t.x() - |
235 | td2[0] * (1 - t.y()) * (1. - t.y()) - 2 * td2[1] * (1. - t.y()) * t.y() - td2[2] * t.y() * t.y();}; |
236 | |
237 | // J is the Jacobi Matrix dF/dt where F and t are both vectors of dimension 2. |
238 | // Storing in a QLineF for simplicity. |
239 | auto J = [=](QPointF t) { return QLineF( |
240 | td1[0].x() * (-2 * (1-t.x())) + 2 * td1[1].x() * (1 - 2 * t.x()) + td1[2].x() * 2 * t.x(), |
241 | -td2[0].x() * (-2 * (1-t.y())) - 2 * td2[1].x() * (1 - 2 * t.y()) - td2[2].x() * 2 * t.y(), |
242 | td1[0].y() * (-2 * (1-t.x())) + 2 * td1[1].y() * (1 - 2 * t.x()) + td1[2].y() * 2 * t.x(), |
243 | -td2[0].y() * (-2 * (1-t.y())) - 2 * td2[1].y() * (1 - 2 * t.y()) - td2[2].y() * 2 * t.y());}; |
244 | |
245 | // solve the equation A(as 2x2 matrix)*x = b. Returns x. |
246 | auto solve = [](QLineF A, QPointF b) { |
247 | // invert A |
248 | const double det = A.x1() * A.y2() - A.y1() * A.x2(); |
249 | QLineF Ainv(A.y2() / det, -A.y1() / det, -A.x2() / det, A.x1() / det); |
250 | // return A^-1 * b |
251 | return QPointF(Ainv.x1() * b.x() + Ainv.y1() * b.y(), |
252 | Ainv.x2() * b.x() + Ainv.y2() * b.y()); |
253 | }; |
254 | |
255 | #ifdef INTERSECTION_EXTRA_DEBUG |
256 | qCDebug(lcSGCurveIntersectionSolver) << "Checking"<< t1[0] << t1[1] << t1[2]; |
257 | qCDebug(lcSGCurveIntersectionSolver) << " vs"<< t2[0] << t2[1] << t2[2]; |
258 | #endif |
259 | |
260 | // TODO: Try to figure out reasonable starting points to reach all 4 possible intersections. |
261 | // This works but is kinda brute forcing it. |
262 | constexpr std::array tref = { QPointF{0.0, 0.0}, QPointF{0.5, 0.0}, QPointF{1.0, 0.0}, |
263 | QPointF{0.0, 0.5}, QPointF{0.5, 0.5}, QPointF{1.0, 0.5}, |
264 | QPointF{0.0, 1.0}, QPointF{0.5, 1.0}, QPointF{1.0, 1.0} }; |
265 | |
266 | for (auto t : tref) { |
267 | double err = 1; |
268 | QPointF fval = F(t); |
269 | int i = 0; |
270 | |
271 | // TODO: Try to abort sooner, e.g. when falling out of the interval [0-1]? |
272 | while (err > eps && i < maxIterations) { // && t.x() >= 0 && t.x() <= 1 && t.y() >= 0 && t.y() <= 1) { |
273 | t = t - solve(J(t), fval); |
274 | fval = F(t); |
275 | err = qAbs(t: fval.x()) + qAbs(t: fval.y()); // Using the Manhatten length as an error indicator. |
276 | i++; |
277 | #ifdef INTERSECTION_EXTRA_DEBUG |
278 | qCDebug(lcSGCurveIntersectionSolver) << " Newton iteration"<< i << "t ="<< t << "F ="<< fval << "Error ="<< err; |
279 | #endif |
280 | } |
281 | // Intersections at 0 count. Intersections at 1 do not. |
282 | if (err < eps && t.x() >=0 && t.x() <= 1. - 10 * eps2 && t.y() >= 0 && t.y() <= 1. - 10 * eps2) { |
283 | #ifdef INTERSECTION_EXTRA_DEBUG |
284 | qCDebug(lcSGCurveIntersectionSolver) << " Newton solution (after"<< i << ")="<< t << "("<< F(t) << ")"; |
285 | #endif |
286 | if (solutions) { |
287 | bool append = true; |
288 | for (auto solution : *solutions) { |
289 | if (qAbs(t: solution.first - t.x()) < 10 * eps2 && qAbs(t: solution.second - t.y()) < 10 * eps2) { |
290 | append = false; |
291 | break; |
292 | } |
293 | } |
294 | if (append) |
295 | solutions->append(t: {t.x(), t.y()}); |
296 | } |
297 | else |
298 | return true; |
299 | } |
300 | } |
301 | if (solutions) |
302 | return solutions->size() > 0; |
303 | else |
304 | return false; |
305 | } |
306 | |
307 | static bool isIntersecting(const QQuadPath &path, int e1, int e2, QList<QPair<float, float>> *solutions = nullptr) |
308 | { |
309 | |
310 | const QQuadPath::Element &elem1 = path.elementAt(i: e1); |
311 | const QQuadPath::Element &elem2 = path.elementAt(i: e2); |
312 | |
313 | if (elem1.isLine() && elem2.isLine()) { |
314 | return lineIntersection(l1: LinePoints {elem1.startPoint(), elem1.endPoint() }, |
315 | l2: LinePoints {elem2.startPoint(), elem2.endPoint() }, |
316 | solution: solutions); |
317 | } else { |
318 | return isIntersecting(t1: TrianglePoints { elem1.startPoint(), elem1.controlPoint(), elem1.endPoint() }, |
319 | t2: TrianglePoints { elem2.startPoint(), elem2.controlPoint(), elem2.endPoint() }, |
320 | solutions); |
321 | } |
322 | } |
323 | |
324 | struct TriangleData |
325 | { |
326 | TrianglePoints points; |
327 | int pathElementIndex; |
328 | TrianglePoints normals; |
329 | }; |
330 | |
331 | // Returns a normalized vector that is perpendicular to baseLine, pointing to the right |
332 | inline QVector2D normalVector(QVector2D baseLine) |
333 | { |
334 | QVector2D normal = QVector2D(-baseLine.y(), baseLine.x()).normalized(); |
335 | return normal; |
336 | } |
337 | |
338 | // Returns a vector that is normal to the path and pointing to the right. If endSide is false |
339 | // the vector is normal to the start point, otherwise to the end point |
340 | QVector2D normalVector(const QQuadPath::Element &element, bool endSide = false) |
341 | { |
342 | if (element.isLine()) |
343 | return normalVector(baseLine: element.endPoint() - element.startPoint()); |
344 | else if (!endSide) |
345 | return normalVector(baseLine: element.controlPoint() - element.startPoint()); |
346 | else |
347 | return normalVector(baseLine: element.endPoint() - element.controlPoint()); |
348 | } |
349 | |
350 | // Returns a vector that is parallel to the path. If endSide is false |
351 | // the vector starts at the start point and points forward, |
352 | // otherwise it starts at the end point and points backward |
353 | QVector2D tangentVector(const QQuadPath::Element &element, bool endSide = false) |
354 | { |
355 | if (element.isLine()) { |
356 | if (!endSide) |
357 | return element.endPoint() - element.startPoint(); |
358 | else |
359 | return element.startPoint() - element.endPoint(); |
360 | } else { |
361 | if (!endSide) |
362 | return element.controlPoint() - element.startPoint(); |
363 | else |
364 | return element.controlPoint() - element.endPoint(); |
365 | } |
366 | } |
367 | |
368 | // Really simplistic O(n^2) triangulator - only intended for five points |
369 | QList<TriangleData> simplePointTriangulator(const QList<QVector2D> &pts, const QList<QVector2D> &normals, int elementIndex) |
370 | { |
371 | int count = pts.size(); |
372 | Q_ASSERT(count >= 3); |
373 | Q_ASSERT(normals.size() == count); |
374 | |
375 | // First we find the convex hull: it's always in positive determinant winding order |
376 | QList<int> hull; |
377 | float det1 = determinant(p1: pts[0], p2: pts[1], p3: pts[2]); |
378 | if (det1 > 0) |
379 | hull << 0 << 1 << 2; |
380 | else |
381 | hull << 2 << 1 << 0; |
382 | auto connectableInHull = [&](int idx) -> QList<int> { |
383 | QList<int> r; |
384 | const int n = hull.size(); |
385 | const auto &pt = pts[idx]; |
386 | for (int i = 0; i < n; ++i) { |
387 | const auto &i1 = hull.at(i); |
388 | const auto &i2 = hull.at(i: (i+1) % n); |
389 | if (determinant(p1: pts[i1], p2: pts[i2], p3: pt) < 0.0f) |
390 | r << i; |
391 | } |
392 | return r; |
393 | }; |
394 | for (int i = 3; i < count; ++i) { |
395 | auto visible = connectableInHull(i); |
396 | if (visible.isEmpty()) |
397 | continue; |
398 | int visCount = visible.count(); |
399 | int hullCount = hull.count(); |
400 | // Find where the visible part of the hull starts. (This is the part we need to triangulate to, |
401 | // and the part we're going to replace. "visible" contains the start point of the line segments that are visible from p. |
402 | int boundaryStart = visible[0]; |
403 | for (int j = 0; j < visCount - 1; ++j) { |
404 | if ((visible[j] + 1) % hullCount != visible[j+1]) { |
405 | boundaryStart = visible[j + 1]; |
406 | break; |
407 | } |
408 | } |
409 | // Finally replace the points that are now inside the hull |
410 | // We insert the new point after boundaryStart, and before boundaryStart + visCount (modulo...) |
411 | // and remove the points in between |
412 | int pointsToKeep = hullCount - visCount + 1; |
413 | QList<int> newHull; |
414 | newHull << i; |
415 | for (int j = 0; j < pointsToKeep; ++j) { |
416 | newHull << hull.at(i: (j + boundaryStart + visCount) % hullCount); |
417 | } |
418 | hull = newHull; |
419 | } |
420 | |
421 | // Now that we have a convex hull, we can trivially triangulate it |
422 | QList<TriangleData> ret; |
423 | for (int i = 1; i < hull.size() - 1; ++i) { |
424 | int i0 = hull[0]; |
425 | int i1 = hull[i]; |
426 | int i2 = hull[i+1]; |
427 | ret.append(t: {.points: {pts[i0], pts[i1], pts[i2]}, .pathElementIndex: elementIndex, .normals: {normals[i0], normals[i1], normals[i2]}}); |
428 | } |
429 | return ret; |
430 | } |
431 | |
432 | |
433 | inline bool needsSplit(const QQuadPath::Element &el) |
434 | { |
435 | Q_ASSERT(!el.isLine()); |
436 | const auto v1 = el.controlPoint() - el.startPoint(); |
437 | const auto v2 = el.endPoint() - el.controlPoint(); |
438 | float cos = QVector2D::dotProduct(v1, v2) / (v1.length() * v2.length()); |
439 | return cos < 0.9; |
440 | } |
441 | |
442 | |
443 | inline void splitElementIfNecessary(QQuadPath *path, int index, int level) { |
444 | if (level > 0 && needsSplit(el: path->elementAt(i: index))) { |
445 | path->splitElementAt(index); |
446 | splitElementIfNecessary(path, index: path->indexOfChildAt(i: index, childNumber: 0), level: level - 1); |
447 | splitElementIfNecessary(path, index: path->indexOfChildAt(i: index, childNumber: 1), level: level - 1); |
448 | } |
449 | } |
450 | |
451 | static QQuadPath subdivide(const QQuadPath &path, int subdivisions) |
452 | { |
453 | QQuadPath newPath = path; |
454 | newPath.iterateElements(lambda: [&](QQuadPath::Element &e, int index) { |
455 | if (!e.isLine()) |
456 | splitElementIfNecessary(path: &newPath, index, level: subdivisions); |
457 | }); |
458 | |
459 | return newPath; |
460 | } |
461 | |
462 | static QList<TriangleData> customTriangulator2(const QQuadPath &path, float penWidth, Qt::PenJoinStyle joinStyle, Qt::PenCapStyle capStyle, float miterLimit) |
463 | { |
464 | const bool bevelJoin = joinStyle == Qt::BevelJoin; |
465 | const bool roundJoin = joinStyle == Qt::RoundJoin; |
466 | const bool miterJoin = !bevelJoin && !roundJoin; |
467 | |
468 | const bool roundCap = capStyle == Qt::RoundCap; |
469 | const bool squareCap = capStyle == Qt::SquareCap; |
470 | // We can't use the simple miter for miter joins, since the shader currently only supports round joins |
471 | const bool simpleMiter = joinStyle == Qt::RoundJoin; |
472 | |
473 | Q_ASSERT(miterLimit > 0 || !miterJoin); |
474 | float inverseMiterLimit = miterJoin ? 1.0f / miterLimit : 1.0; |
475 | |
476 | const float penFactor = penWidth / 2; |
477 | |
478 | // Returns {inner1, inner2, outer1, outer2, outerMiter} |
479 | // where foo1 is for the end of element1 and foo2 is for the start of element2 |
480 | // and inner1 == inner2 unless we had to give up finding a decent point |
481 | auto calculateJoin = [&](const QQuadPath::Element *element1, const QQuadPath::Element *element2, |
482 | bool &outerBisectorWithinMiterLimit, bool &innerIsRight, bool &giveUp) -> std::array<QVector2D, 5> |
483 | { |
484 | outerBisectorWithinMiterLimit = true; |
485 | innerIsRight = true; |
486 | giveUp = false; |
487 | if (!element1) { |
488 | Q_ASSERT(element2); |
489 | QVector2D n = normalVector(element: *element2); |
490 | return {n, n, -n, -n, -n}; |
491 | } |
492 | if (!element2) { |
493 | Q_ASSERT(element1); |
494 | QVector2D n = normalVector(element: *element1, endSide: true); |
495 | return {n, n, -n, -n, -n}; |
496 | } |
497 | |
498 | Q_ASSERT(element1->endPoint() == element2->startPoint()); |
499 | |
500 | const auto p1 = element1->isLine() ? element1->startPoint() : element1->controlPoint(); |
501 | const auto p2 = element1->endPoint(); |
502 | const auto p3 = element2->isLine() ? element2->endPoint() : element2->controlPoint(); |
503 | |
504 | const auto v1 = (p1 - p2).normalized(); |
505 | const auto v2 = (p3 - p2).normalized(); |
506 | const auto b = (v1 + v2); |
507 | |
508 | constexpr float epsilon = 1.0f / 32.0f; |
509 | bool smoothJoin = qAbs(t: b.x()) < epsilon && qAbs(t: b.y()) < epsilon; |
510 | |
511 | if (smoothJoin) { |
512 | // v1 and v2 are almost parallel and pointing in opposite directions |
513 | // angle bisector formula will give an almost null vector: use normal of bisector of normals instead |
514 | QVector2D n1(-v1.y(), v1.x()); |
515 | QVector2D n2(-v2.y(), v2.x()); |
516 | QVector2D n = (n2 - n1).normalized(); |
517 | return {n, n, -n, -n, -n}; |
518 | } |
519 | // Calculate the length of the bisector, so it will cover the entire miter. |
520 | // Using the identity sin(x/2) == sqrt((1 - cos(x)) / 2), and the fact that the |
521 | // dot product of two unit vectors is the cosine of the angle between them |
522 | // The length of the miter is w/sin(x/2) where x is the angle between the two elements |
523 | |
524 | const auto bisector = b.normalized(); |
525 | float cos2x = QVector2D::dotProduct(v1, v2); |
526 | cos2x = qMin(a: 1.0f, b: cos2x); // Allow for float inaccuracy |
527 | float sine = sqrt(x: (1.0f - cos2x) / 2); |
528 | innerIsRight = determinant(p1, p2, p3) > 0; |
529 | sine = qMax(a: sine, b: 0.01f); // Avoid divide by zero |
530 | float length = penFactor / sine; |
531 | |
532 | // Check if bisector is longer than one of the lines it's trying to bisect |
533 | |
534 | auto tooLong = [](QVector2D p1, QVector2D p2, QVector2D n, float length, float margin) -> bool { |
535 | auto v = p2 - p1; |
536 | // It's too long if the projection onto the bisector is longer than the bisector |
537 | // and the projection onto the normal to the bisector is shorter |
538 | // than the pen margin (that projection is just v - proj) |
539 | // (we're adding a 10% safety margin to make room for AA -- not exact) |
540 | auto projLen = QVector2D::dotProduct(v1: v, v2: n); |
541 | return projLen * 0.9f < length && (v - n * projLen).length() * 0.9 < margin; |
542 | }; |
543 | |
544 | |
545 | // The angle bisector of the tangent lines is not correct for curved lines. We could fix this by calculating |
546 | // the exact intersection point, but for now just give up and use the normals. |
547 | |
548 | giveUp = !element1->isLine() || !element2->isLine() |
549 | || tooLong(p1, p2, bisector, length, penFactor) |
550 | || tooLong(p3, p2, bisector, length, penFactor); |
551 | outerBisectorWithinMiterLimit = sine >= inverseMiterLimit / 2.0f; |
552 | bool simpleJoin = simpleMiter && outerBisectorWithinMiterLimit && !giveUp; |
553 | const QVector2D bn = bisector / sine; |
554 | |
555 | if (simpleJoin) |
556 | return {bn, bn, -bn, -bn, -bn}; // We only have one inner and one outer point TODO: change inner point when conflict/curve |
557 | const QVector2D n1 = normalVector(element: *element1, endSide: true); |
558 | const QVector2D n2 = normalVector(element: *element2); |
559 | if (giveUp) { |
560 | if (innerIsRight) |
561 | return {n1, n2, -n1, -n2, -bn}; |
562 | else |
563 | return {-n1, -n2, n1, n2, -bn}; |
564 | |
565 | } else { |
566 | if (innerIsRight) |
567 | return {bn, bn, -n1, -n2, -bn}; |
568 | else |
569 | return {bn, bn, n1, n2, -bn}; |
570 | } |
571 | }; |
572 | |
573 | QList<TriangleData> ret; |
574 | |
575 | auto triangulateCurve = [&](int idx, const QVector2D &p1, const QVector2D &p2, const QVector2D &p3, const QVector2D &p4, |
576 | const QVector2D &n1, const QVector2D &n2, const QVector2D &n3, const QVector2D &n4) |
577 | { |
578 | const auto &element = path.elementAt(i: idx); |
579 | Q_ASSERT(!element.isLine()); |
580 | const auto &s = element.startPoint(); |
581 | const auto &c = element.controlPoint(); |
582 | const auto &e = element.endPoint(); |
583 | // TODO: Don't flatten the path in addCurveStrokeNodes, but iterate over the children here instead |
584 | bool controlPointOnRight = determinant(p1: s, p2: c, p3: e) > 0; |
585 | QVector2D startNormal = normalVector(element); |
586 | QVector2D endNormal = normalVector(element, endSide: true); |
587 | QVector2D controlPointNormal = (startNormal + endNormal).normalized(); |
588 | if (controlPointOnRight) |
589 | controlPointNormal = -controlPointNormal; |
590 | QVector2D p5 = c + controlPointNormal * penFactor; // This is too simplistic |
591 | TrianglePoints t1{p1, p2, p5}; |
592 | TrianglePoints t2{p3, p4, p5}; |
593 | bool simpleCase = !checkTriangleOverlap(triangle1&: t1, triangle2&: t2); |
594 | |
595 | if (simpleCase) { |
596 | ret.append(t: {.points: {p1, p2, p5}, .pathElementIndex: idx, .normals: {n1, n2, controlPointNormal}}); |
597 | ret.append(t: {.points: {p3, p4, p5}, .pathElementIndex: idx, .normals: {n3, n4, controlPointNormal}}); |
598 | if (controlPointOnRight) { |
599 | ret.append(t: {.points: {p1, p3, p5}, .pathElementIndex: idx, .normals: {n1, n3, controlPointNormal}}); |
600 | } else { |
601 | ret.append(t: {.points: {p2, p4, p5}, .pathElementIndex: idx, .normals: {n2, n4, controlPointNormal}}); |
602 | } |
603 | } else { |
604 | ret.append(other: simplePointTriangulator(pts: {p1, p2, p5, p3, p4}, normals: {n1, n2, controlPointNormal, n3, n4}, elementIndex: idx)); |
605 | } |
606 | }; |
607 | |
608 | // Each element is calculated independently, so we don't have to special-case closed sub-paths. |
609 | // Take care so the end points of one element are precisely equal to the start points of the next. |
610 | // Any additional triangles needed for joining are added at the end of the current element. |
611 | |
612 | int count = path.elementCount(); |
613 | int subStart = 0; |
614 | while (subStart < count) { |
615 | int subEnd = subStart; |
616 | for (int i = subStart + 1; i < count; ++i) { |
617 | const auto &e = path.elementAt(i); |
618 | if (e.isSubpathStart()) { |
619 | subEnd = i - 1; |
620 | break; |
621 | } |
622 | if (i == count - 1) { |
623 | subEnd = i; |
624 | break; |
625 | } |
626 | } |
627 | bool closed = path.elementAt(i: subStart).startPoint() == path.elementAt(i: subEnd).endPoint(); |
628 | const int subCount = subEnd - subStart + 1; |
629 | |
630 | auto addIdx = [&](int idx, int delta) -> int { |
631 | int subIdx = idx - subStart; |
632 | if (closed) |
633 | subIdx = (subIdx + subCount + delta) % subCount; |
634 | else |
635 | subIdx += delta; |
636 | return subStart + subIdx; |
637 | }; |
638 | auto elementAt = [&](int idx, int delta) -> const QQuadPath::Element * { |
639 | int subIdx = idx - subStart; |
640 | if (closed) { |
641 | subIdx = (subIdx + subCount + delta) % subCount; |
642 | return &path.elementAt(i: subStart + subIdx); |
643 | } |
644 | subIdx += delta; |
645 | if (subIdx >= 0 && subIdx < subCount) |
646 | return &path.elementAt(i: subStart + subIdx); |
647 | return nullptr; |
648 | }; |
649 | |
650 | for (int i = subStart; i <= subEnd; ++i) { |
651 | const auto &element = path.elementAt(i); |
652 | const auto *nextElement = elementAt(i, +1); |
653 | const auto *prevElement = elementAt(i, -1); |
654 | |
655 | const auto &s = element.startPoint(); |
656 | const auto &e = element.endPoint(); |
657 | |
658 | bool startInnerIsRight; |
659 | bool startBisectorWithinMiterLimit; // Not used |
660 | bool giveUpOnStartJoin; // Not used |
661 | auto startJoin = calculateJoin(prevElement, &element, |
662 | startBisectorWithinMiterLimit, startInnerIsRight, |
663 | giveUpOnStartJoin); |
664 | const QVector2D &startInner = startJoin[1]; |
665 | const QVector2D &startOuter = startJoin[3]; |
666 | |
667 | bool endInnerIsRight; |
668 | bool endBisectorWithinMiterLimit; |
669 | bool giveUpOnEndJoin; |
670 | auto endJoin = calculateJoin(&element, nextElement, |
671 | endBisectorWithinMiterLimit, endInnerIsRight, |
672 | giveUpOnEndJoin); |
673 | QVector2D endInner = endJoin[0]; |
674 | QVector2D endOuter = endJoin[2]; |
675 | QVector2D nextOuter = endJoin[3]; |
676 | QVector2D outerB = endJoin[4]; |
677 | |
678 | QVector2D p1, p2, p3, p4; |
679 | QVector2D n1, n2, n3, n4; |
680 | |
681 | if (startInnerIsRight) { |
682 | n1 = startInner; |
683 | n2 = startOuter; |
684 | } else { |
685 | n1 = startOuter; |
686 | n2 = startInner; |
687 | } |
688 | |
689 | p1 = s + n1 * penFactor; |
690 | p2 = s + n2 * penFactor; |
691 | |
692 | // repeat logic above for the other end: |
693 | if (endInnerIsRight) { |
694 | n3 = endInner; |
695 | n4 = endOuter; |
696 | } else { |
697 | n3 = endOuter; |
698 | n4 = endInner; |
699 | } |
700 | |
701 | p3 = e + n3 * penFactor; |
702 | p4 = e + n4 * penFactor; |
703 | |
704 | // End caps |
705 | |
706 | if (!prevElement) { |
707 | QVector2D capSpace = tangentVector(element).normalized() * -penFactor; |
708 | if (roundCap) { |
709 | p1 += capSpace; |
710 | p2 += capSpace; |
711 | } else if (squareCap) { |
712 | QVector2D c1 = p1 + capSpace; |
713 | QVector2D c2 = p2 + capSpace; |
714 | ret.append(t: {.points: {p1, s, c1}, .pathElementIndex: -1, .normals: {}}); |
715 | ret.append(t: {.points: {c1, s, c2}, .pathElementIndex: -1, .normals: {}}); |
716 | ret.append(t: {.points: {p2, s, c2}, .pathElementIndex: -1, .normals: {}}); |
717 | } |
718 | } |
719 | if (!nextElement) { |
720 | QVector2D capSpace = tangentVector(element, endSide: true).normalized() * -penFactor; |
721 | if (roundCap) { |
722 | p3 += capSpace; |
723 | p4 += capSpace; |
724 | } else if (squareCap) { |
725 | QVector2D c3 = p3 + capSpace; |
726 | QVector2D c4 = p4 + capSpace; |
727 | ret.append(t: {.points: {p3, e, c3}, .pathElementIndex: -1, .normals: {}}); |
728 | ret.append(t: {.points: {c3, e, c4}, .pathElementIndex: -1, .normals: {}}); |
729 | ret.append(t: {.points: {p4, e, c4}, .pathElementIndex: -1, .normals: {}}); |
730 | } |
731 | } |
732 | |
733 | if (element.isLine()) { |
734 | ret.append(t: {.points: {p1, p2, p3}, .pathElementIndex: i, .normals: {n1, n2, n3}}); |
735 | ret.append(t: {.points: {p2, p3, p4}, .pathElementIndex: i, .normals: {n2, n3, n4}}); |
736 | } else { |
737 | triangulateCurve(i, p1, p2, p3, p4, n1, n2, n3, n4); |
738 | } |
739 | |
740 | bool trivialJoin = simpleMiter && endBisectorWithinMiterLimit && !giveUpOnEndJoin; |
741 | if (!trivialJoin && nextElement) { |
742 | // inside of join (opposite of bevel) is defined by |
743 | // triangle s, e, next.e |
744 | bool innerOnRight = endInnerIsRight; |
745 | |
746 | const auto outer1 = e + endOuter * penFactor; |
747 | const auto outer2 = e + nextOuter * penFactor; |
748 | //const auto inner = e + endInner * penFactor; |
749 | |
750 | if (bevelJoin || (miterJoin && !endBisectorWithinMiterLimit)) { |
751 | ret.append(t: {.points: {outer1, e, outer2}, .pathElementIndex: -1, .normals: {}}); |
752 | } else if (roundJoin) { |
753 | ret.append(t: {.points: {outer1, e, outer2}, .pathElementIndex: i, .normals: {}}); |
754 | QVector2D nn = calcNormalVector(a: outer1, b: outer2).normalized() * penFactor; |
755 | if (!innerOnRight) |
756 | nn = -nn; |
757 | ret.append(t: {.points: {outer1, outer1 + nn, outer2}, .pathElementIndex: i, .normals: {}}); |
758 | ret.append(t: {.points: {outer1 + nn, outer2, outer2 + nn}, .pathElementIndex: i, .normals: {}}); |
759 | |
760 | } else if (miterJoin) { |
761 | QVector2D outer = e + outerB * penFactor; |
762 | ret.append(t: {.points: {outer1, e, outer}, .pathElementIndex: -2, .normals: {}}); |
763 | ret.append(t: {.points: {outer, e, outer2}, .pathElementIndex: -2, .normals: {}}); |
764 | } |
765 | |
766 | if (!giveUpOnEndJoin) { |
767 | QVector2D inner = e + endInner * penFactor; |
768 | ret.append(t: {.points: {inner, e, outer1}, .pathElementIndex: i, .normals: {endInner, {}, endOuter}}); |
769 | // The remaining triangle ought to be done by nextElement, but we don't have start join logic there (yet) |
770 | int nextIdx = addIdx(i, +1); |
771 | ret.append(t: {.points: {inner, e, outer2}, .pathElementIndex: nextIdx, .normals: {endInner, {}, nextOuter}}); |
772 | } |
773 | } |
774 | } |
775 | subStart = subEnd + 1; |
776 | } |
777 | return ret; |
778 | } |
779 | |
780 | // TODO: we could optimize by preprocessing e1, since we call this function multiple times on the same |
781 | // elements |
782 | // Returns true if a change was made |
783 | static bool handleOverlap(QQuadPath &path, int e1, int e2, int recursionLevel = 0) |
784 | { |
785 | // Splitting lines is not going to help with overlap, since we assume that lines don't intersect |
786 | if (path.elementAt(i: e1).isLine() && path.elementAt(i: e1).isLine()) |
787 | return false; |
788 | |
789 | if (!isOverlap(path, e1, e2)) { |
790 | return false; |
791 | } |
792 | |
793 | if (recursionLevel > 8) { |
794 | qCDebug(lcSGCurveProcessor) << "Triangle overlap: recursion level"<< recursionLevel << "aborting!"; |
795 | return false; |
796 | } |
797 | |
798 | if (path.elementAt(i: e1).childCount() > 1) { |
799 | auto e11 = path.indexOfChildAt(i: e1, childNumber: 0); |
800 | auto e12 = path.indexOfChildAt(i: e1, childNumber: 1); |
801 | handleOverlap(path, e1: e11, e2, recursionLevel: recursionLevel + 1); |
802 | handleOverlap(path, e1: e12, e2, recursionLevel: recursionLevel + 1); |
803 | } else if (path.elementAt(i: e2).childCount() > 1) { |
804 | auto e21 = path.indexOfChildAt(i: e2, childNumber: 0); |
805 | auto e22 = path.indexOfChildAt(i: e2, childNumber: 1); |
806 | handleOverlap(path, e1, e2: e21, recursionLevel: recursionLevel + 1); |
807 | handleOverlap(path, e1, e2: e22, recursionLevel: recursionLevel + 1); |
808 | } else { |
809 | path.splitElementAt(index: e1); |
810 | auto e11 = path.indexOfChildAt(i: e1, childNumber: 0); |
811 | auto e12 = path.indexOfChildAt(i: e1, childNumber: 1); |
812 | bool overlap1 = isOverlap(path, e1: e11, e2); |
813 | bool overlap2 = isOverlap(path, e1: e12, e2); |
814 | if (!overlap1 && !overlap2) |
815 | return true; // no more overlap: success! |
816 | |
817 | // We need to split more: |
818 | if (path.elementAt(i: e2).isLine()) { |
819 | // Splitting a line won't help, so we just split e1 further |
820 | if (overlap1) |
821 | handleOverlap(path, e1: e11, e2, recursionLevel: recursionLevel + 1); |
822 | if (overlap2) |
823 | handleOverlap(path, e1: e12, e2, recursionLevel: recursionLevel + 1); |
824 | } else { |
825 | // See if splitting e2 works: |
826 | path.splitElementAt(index: e2); |
827 | auto e21 = path.indexOfChildAt(i: e2, childNumber: 0); |
828 | auto e22 = path.indexOfChildAt(i: e2, childNumber: 1); |
829 | if (overlap1) { |
830 | handleOverlap(path, e1: e11, e2: e21, recursionLevel: recursionLevel + 1); |
831 | handleOverlap(path, e1: e11, e2: e22, recursionLevel: recursionLevel + 1); |
832 | } |
833 | if (overlap2) { |
834 | handleOverlap(path, e1: e12, e2: e21, recursionLevel: recursionLevel + 1); |
835 | handleOverlap(path, e1: e12, e2: e22, recursionLevel: recursionLevel + 1); |
836 | } |
837 | } |
838 | } |
839 | return true; |
840 | } |
841 | } |
842 | |
843 | // Returns true if the path was changed |
844 | bool QSGCurveProcessor::solveOverlaps(QQuadPath &path) |
845 | { |
846 | bool changed = false; |
847 | if (path.testHint(hint: QQuadPath::PathNonOverlappingControlPointTriangles)) |
848 | return false; |
849 | |
850 | const auto candidates = findOverlappingCandidates(path); |
851 | for (auto candidate : candidates) |
852 | changed = handleOverlap(path, e1: candidate.first, e2: candidate.second) || changed; |
853 | |
854 | path.setHint(hint: QQuadPath::PathNonOverlappingControlPointTriangles); |
855 | return changed; |
856 | } |
857 | |
858 | // A fast algorithm to find path elements that might overlap. We will only check the overlap of the |
859 | // triangles that define the elements. |
860 | // We will order the elements first and then pool them depending on their x-values. This should |
861 | // reduce the complexity to O(n log n), where n is the number of elements in the path. |
862 | QList<QPair<int, int>> QSGCurveProcessor::findOverlappingCandidates(const QQuadPath &path) |
863 | { |
864 | struct BRect { float xmin; float xmax; float ymin; float ymax; }; |
865 | |
866 | // Calculate all bounding rectangles |
867 | QVarLengthArray<int, 64> elementStarts, elementEnds; |
868 | QVarLengthArray<BRect, 64> boundingRects; |
869 | elementStarts.reserve(sz: path.elementCount()); |
870 | boundingRects.reserve(sz: path.elementCount()); |
871 | for (int i = 0; i < path.elementCount(); i++) { |
872 | QQuadPath::Element e = path.elementAt(i); |
873 | |
874 | BRect bR{.xmin: qMin(a: qMin(a: e.startPoint().x(), b: e.controlPoint().x()), b: e.endPoint().x()), |
875 | .xmax: qMax(a: qMax(a: e.startPoint().x(), b: e.controlPoint().x()), b: e.endPoint().x()), |
876 | .ymin: qMin(a: qMin(a: e.startPoint().y(), b: e.controlPoint().y()), b: e.endPoint().y()), |
877 | .ymax: qMax(a: qMax(a: e.startPoint().y(), b: e.controlPoint().y()), b: e.endPoint().y())}; |
878 | boundingRects.append(t: bR); |
879 | elementStarts.append(t: i); |
880 | } |
881 | |
882 | // Sort the bounding rectangles by x-startpoint and x-endpoint |
883 | auto compareXmin = [&](int i, int j){return boundingRects.at(idx: i).xmin < boundingRects.at(idx: j).xmin;}; |
884 | auto compareXmax = [&](int i, int j){return boundingRects.at(idx: i).xmax < boundingRects.at(idx: j).xmax;}; |
885 | std::sort(first: elementStarts.begin(), last: elementStarts.end(), comp: compareXmin); |
886 | elementEnds = elementStarts; |
887 | std::sort(first: elementEnds.begin(), last: elementEnds.end(), comp: compareXmax); |
888 | |
889 | QList<int> bRpool; |
890 | QList<QPair<int, int>> overlappingBB; |
891 | |
892 | // Start from x = xmin and move towards xmax. Add a rectangle to the pool and check for |
893 | // intersections with all other rectangles in the pool. If a rectangles xmax is smaller |
894 | // than the new xmin, it can be removed from the pool. |
895 | int firstElementEnd = 0; |
896 | for (const int addIndex : std::as_const(t&: elementStarts)) { |
897 | const BRect &newR = boundingRects.at(idx: addIndex); |
898 | // First remove elements from the pool that cannot touch the new one |
899 | // because xmax is too small |
900 | while (bRpool.size() && firstElementEnd < elementEnds.size()) { |
901 | int removeIndex = elementEnds.at(idx: firstElementEnd); |
902 | if (bRpool.contains(t: removeIndex) && newR.xmin > boundingRects.at(idx: removeIndex).xmax) { |
903 | bRpool.removeOne(t: removeIndex); |
904 | firstElementEnd++; |
905 | } else { |
906 | break; |
907 | } |
908 | } |
909 | |
910 | // Now compare the new element with all elements in the pool. |
911 | for (int j = 0; j < bRpool.size(); j++) { |
912 | int i = bRpool.at(i: j); |
913 | const BRect &r1 = boundingRects.at(idx: i); |
914 | // We don't have to check for x because the pooling takes care of it. |
915 | //if (r1.xmax <= newR.xmin || newR.xmax <= r1.xmin) |
916 | // continue; |
917 | |
918 | bool isNeighbor = false; |
919 | if (i - addIndex == 1) { |
920 | if (!path.elementAt(i: addIndex).isSubpathEnd()) |
921 | isNeighbor = true; |
922 | } else if (addIndex - i == 1) { |
923 | if (!path.elementAt(i).isSubpathEnd()) |
924 | isNeighbor = true; |
925 | } |
926 | // Neighbors need to be completely different (otherwise they just share a point) |
927 | if (isNeighbor && (r1.ymax <= newR.ymin || newR.ymax <= r1.ymin)) |
928 | continue; |
929 | // Non-neighbors can also just touch |
930 | if (!isNeighbor && (r1.ymax < newR.ymin || newR.ymax < r1.ymin)) |
931 | continue; |
932 | // If the bounding boxes are overlapping it is a candidate for an intersection. |
933 | overlappingBB.append(t: QPair<int, int>(i, addIndex)); |
934 | } |
935 | bRpool.append(t: addIndex); //Add the new element to the pool. |
936 | } |
937 | return overlappingBB; |
938 | } |
939 | |
940 | // Remove paths that are nested inside another path and not required to fill the path correctly |
941 | bool QSGCurveProcessor::removeNestedSubpaths(QQuadPath &path) |
942 | { |
943 | // Ensure that the path is not intersecting first |
944 | Q_ASSERT(path.testHint(QQuadPath::PathNonIntersecting)); |
945 | |
946 | if (path.fillRule() != Qt::WindingFill) { |
947 | // If the fillingRule is odd-even, all internal subpaths matter |
948 | return false; |
949 | } |
950 | |
951 | // Store the starting and end elements of the subpaths to be able |
952 | // to jump quickly between them. |
953 | QList<int> subPathStartPoints; |
954 | QList<int> subPathEndPoints; |
955 | for (int i = 0; i < path.elementCount(); i++) { |
956 | if (path.elementAt(i).isSubpathStart()) |
957 | subPathStartPoints.append(t: i); |
958 | if (path.elementAt(i).isSubpathEnd()) { |
959 | subPathEndPoints.append(t: i); |
960 | } |
961 | } |
962 | const int subPathCount = subPathStartPoints.size(); |
963 | |
964 | // If there is only one subpath, none have to be removed |
965 | if (subPathStartPoints.size() < 2) |
966 | return false; |
967 | |
968 | // We set up a matrix that tells us which path is nested in which other path. |
969 | QList<bool> isInside; |
970 | bool isAnyInside = false; |
971 | isInside.reserve(asize: subPathStartPoints.size() * subPathStartPoints.size()); |
972 | for (int i = 0; i < subPathCount; i++) { |
973 | for (int j = 0; j < subPathCount; j++) { |
974 | if (i == j) { |
975 | isInside.append(t: false); |
976 | } else { |
977 | isInside.append(t: path.contains(point: path.elementAt(i: subPathStartPoints.at(i)).startPoint(), |
978 | fromIndex: subPathStartPoints.at(i: j), toIndex: subPathEndPoints.at(i: j))); |
979 | if (isInside.last()) |
980 | isAnyInside = true; |
981 | } |
982 | } |
983 | } |
984 | |
985 | // If no nested subpaths are present we can return early. |
986 | if (!isAnyInside) |
987 | return false; |
988 | |
989 | // To find out which paths are filled and which not, we first calculate the |
990 | // rotation direction (clockwise - counterclockwise). |
991 | QList<bool> clockwise; |
992 | clockwise.reserve(asize: subPathCount); |
993 | for (int i = 0; i < subPathCount; i++) { |
994 | float sumProduct = 0; |
995 | for (int j = subPathStartPoints.at(i); j <= subPathEndPoints.at(i); j++) { |
996 | const QVector2D startPoint = path.elementAt(i: j).startPoint(); |
997 | const QVector2D endPoint = path.elementAt(i: j).endPoint(); |
998 | sumProduct += (endPoint.x() - startPoint.x()) * (endPoint.y() + startPoint.y()); |
999 | } |
1000 | clockwise.append(t: sumProduct > 0); |
1001 | } |
1002 | |
1003 | // Set up a list that tells us which paths create filling and which path create holes. |
1004 | // Holes in Holes and fillings in fillings can then be removed. |
1005 | QList<bool> isFilled; |
1006 | isFilled.reserve(asize: subPathStartPoints.size() ); |
1007 | for (int i = 0; i < subPathCount; i++) { |
1008 | int crossings = clockwise.at(i) ? 1 : -1; |
1009 | for (int j = 0; j < subPathStartPoints.size(); j++) { |
1010 | if (isInside.at(i: i * subPathCount + j)) |
1011 | crossings += clockwise.at(i: j) ? 1 : -1; |
1012 | } |
1013 | isFilled.append(t: crossings != 0); |
1014 | } |
1015 | |
1016 | // A helper function to find the most inner subpath that is around a subpath. |
1017 | // Returns -1 if the subpath is a toplevel subpath. |
1018 | auto findClosestOuterSubpath = [&](int subPath) { |
1019 | // All paths that contain the current subPath are candidates. |
1020 | QList<int> candidates; |
1021 | for (int i = 0; i < subPathStartPoints.size(); i++) { |
1022 | if (isInside.at(i: subPath * subPathCount + i)) |
1023 | candidates.append(t: i); |
1024 | } |
1025 | int maxNestingLevel = -1; |
1026 | int maxNestingLevelIndex = -1; |
1027 | for (int i = 0; i < candidates.size(); i++) { |
1028 | int nestingLevel = 0; |
1029 | for (int j = 0; j < candidates.size(); j++) { |
1030 | if (isInside.at(i: candidates.at(i) * subPathCount + candidates.at(i: j))) { |
1031 | nestingLevel++; |
1032 | } |
1033 | } |
1034 | if (nestingLevel > maxNestingLevel) { |
1035 | maxNestingLevel = nestingLevel; |
1036 | maxNestingLevelIndex = candidates.at(i); |
1037 | } |
1038 | } |
1039 | return maxNestingLevelIndex; |
1040 | }; |
1041 | |
1042 | bool pathChanged = false; |
1043 | QQuadPath fixedPath; |
1044 | fixedPath.setPathHints(path.pathHints()); |
1045 | |
1046 | // Go through all subpaths and find the closest surrounding subpath. |
1047 | // If it is doing the same (create filling or create hole) we can remove it. |
1048 | for (int i = 0; i < subPathCount; i++) { |
1049 | int j = findClosestOuterSubpath(i); |
1050 | if (j >= 0 && isFilled.at(i) == isFilled.at(i: j)) { |
1051 | pathChanged = true; |
1052 | } else { |
1053 | for (int k = subPathStartPoints.at(i); k <= subPathEndPoints.at(i); k++) |
1054 | fixedPath.addElement(e: path.elementAt(i: k)); |
1055 | } |
1056 | } |
1057 | |
1058 | if (pathChanged) |
1059 | path = fixedPath; |
1060 | return pathChanged; |
1061 | } |
1062 | |
1063 | // Returns true if the path was changed |
1064 | bool QSGCurveProcessor::solveIntersections(QQuadPath &path, bool removeNestedPaths) |
1065 | { |
1066 | if (path.testHint(hint: QQuadPath::PathNonIntersecting)) { |
1067 | if (removeNestedPaths) |
1068 | return removeNestedSubpaths(path); |
1069 | else |
1070 | return false; |
1071 | } |
1072 | |
1073 | if (path.elementCount() < 2) { |
1074 | path.setHint(hint: QQuadPath::PathNonIntersecting); |
1075 | return false; |
1076 | } |
1077 | |
1078 | struct IntersectionData { int e1; int e2; float t1; float t2; bool in1 = false, in2 = false, out1 = false, out2 = false; }; |
1079 | QList<IntersectionData> intersections; |
1080 | |
1081 | // Helper function to mark an intersection as handled when the |
1082 | // path i is processed moving forward/backward |
1083 | auto markIntersectionAsHandled = [=](IntersectionData *data, int i, bool forward) { |
1084 | if (data->e1 == i) { |
1085 | if (forward) |
1086 | data->out1 = true; |
1087 | else |
1088 | data->in1 = true; |
1089 | } else if (data->e2 == i){ |
1090 | if (forward) |
1091 | data->out2 = true; |
1092 | else |
1093 | data->in2 = true; |
1094 | } else { |
1095 | Q_UNREACHABLE(); |
1096 | } |
1097 | }; |
1098 | |
1099 | // First make a O(n log n) search for candidates. |
1100 | const QList<QPair<int, int>> candidates = findOverlappingCandidates(path); |
1101 | // Then check the candidates for actual intersections. |
1102 | for (const auto &candidate : candidates) { |
1103 | QList<QPair<float,float>> res; |
1104 | int e1 = candidate.first; |
1105 | int e2 = candidate.second; |
1106 | if (isIntersecting(path, e1, e2, solutions: &res)) { |
1107 | for (const auto &r : res) |
1108 | intersections.append(t: {.e1: e1, .e2: e2, .t1: r.first, .t2: r.second}); |
1109 | } |
1110 | } |
1111 | |
1112 | qCDebug(lcSGCurveIntersectionSolver) << "----- Checking for Intersections -----"; |
1113 | qCDebug(lcSGCurveIntersectionSolver) << "Found"<< intersections.length() << "intersections"; |
1114 | if (lcSGCurveIntersectionSolver().isDebugEnabled()) { |
1115 | for (const auto &i : intersections) { |
1116 | auto p1 = path.elementAt(i: i.e1).pointAtFraction(t: i.t1); |
1117 | auto p2 = path.elementAt(i: i.e2).pointAtFraction(t: i.t2); |
1118 | qCDebug(lcSGCurveIntersectionSolver) << " between"<< i.e1 << "and"<< i.e2 << "at"<< i.t1 << "/"<< i.t2 << "->"<< p1 << "/"<< p2; |
1119 | } |
1120 | } |
1121 | |
1122 | if (intersections.isEmpty()) { |
1123 | path.setHint(hint: QQuadPath::PathNonIntersecting); |
1124 | if (removeNestedPaths) { |
1125 | qCDebug(lcSGCurveIntersectionSolver) << "No Intersections found. Looking for enclosed subpaths."; |
1126 | return removeNestedSubpaths(path); |
1127 | } else { |
1128 | qCDebug(lcSGCurveIntersectionSolver) << "Returning the path unchanged."; |
1129 | return false; |
1130 | } |
1131 | } |
1132 | |
1133 | |
1134 | // Store the starting and end elements of the subpaths to be able |
1135 | // to jump quickly between them. Also keep a list of handled paths, |
1136 | // so we know if we need to come back to a subpath or if it |
1137 | // was already united with another subpath due to an intersection. |
1138 | QList<int> subPathStartPoints; |
1139 | QList<int> subPathEndPoints; |
1140 | QList<bool> subPathHandled; |
1141 | for (int i = 0; i < path.elementCount(); i++) { |
1142 | if (path.elementAt(i).isSubpathStart()) |
1143 | subPathStartPoints.append(t: i); |
1144 | if (path.elementAt(i).isSubpathEnd()) { |
1145 | subPathEndPoints.append(t: i); |
1146 | subPathHandled.append(t: false); |
1147 | } |
1148 | } |
1149 | |
1150 | // A small helper to find the subPath of an element with index |
1151 | auto subPathIndex = [&](int index) { |
1152 | for (int i = 0; i < subPathStartPoints.size(); i++) { |
1153 | if (index >= subPathStartPoints.at(i) && index <= subPathEndPoints.at(i)) |
1154 | return i; |
1155 | } |
1156 | return -1; |
1157 | }; |
1158 | |
1159 | // Helper to ensure that index i and position t are valid: |
1160 | auto ensureInBounds = [&](int *i, float *t, float deltaT) { |
1161 | if (*t <= 0.f) { |
1162 | if (path.elementAt(i: *i).isSubpathStart()) |
1163 | *i = subPathEndPoints.at(i: subPathIndex(*i)); |
1164 | else |
1165 | *i = *i - 1; |
1166 | *t = 1.f - deltaT; |
1167 | } else if (*t >= 1.f) { |
1168 | if (path.elementAt(i: *i).isSubpathEnd()) |
1169 | *i = subPathStartPoints.at(i: subPathIndex(*i)); |
1170 | else |
1171 | *i = *i + 1; |
1172 | *t = deltaT; |
1173 | } |
1174 | }; |
1175 | |
1176 | // Helper function to find a siutable starting point between start and end. |
1177 | // A suitable starting point is where right is inside and left is outside |
1178 | // If left is inside and right is outside it works too, just move in the |
1179 | // other direction (forward = false). |
1180 | auto findStart = [=](QQuadPath &path, int start, int end, int *result, bool *forward) { |
1181 | for (int i = start; i < end; i++) { |
1182 | int adjecent; |
1183 | if (subPathStartPoints.contains(t: i)) |
1184 | adjecent = subPathEndPoints.at(i: subPathStartPoints.indexOf(t: i)); |
1185 | else |
1186 | adjecent = i - 1; |
1187 | |
1188 | QQuadPath::Element::FillSide fillSide = path.fillSideOf(elementIdx: i, elementT: 1e-4f); |
1189 | const bool leftInside = fillSide == QQuadPath::Element::FillSideLeft; |
1190 | const bool rightInside = fillSide == QQuadPath::Element::FillSideRight; |
1191 | qCDebug(lcSGCurveIntersectionSolver) << "Element"<< i << "/"<< adjecent << "meeting point is left/right inside:"<< leftInside << "/"<< rightInside; |
1192 | if (rightInside) { |
1193 | *result = i; |
1194 | *forward = true; |
1195 | return true; |
1196 | } else if (leftInside) { |
1197 | *result = adjecent; |
1198 | *forward = false; |
1199 | return true; |
1200 | } |
1201 | } |
1202 | return false; |
1203 | }; |
1204 | |
1205 | // Also store handledElements (handled is when we touch the start point). |
1206 | // This is used to identify and abort on errors. |
1207 | QVarLengthArray<bool> handledElements(path.elementCount(), false); |
1208 | // Only store handledElements when it is not touched due to an intersection. |
1209 | bool regularVisit = true; |
1210 | |
1211 | QQuadPath fixedPath; |
1212 | fixedPath.setFillRule(path.fillRule()); |
1213 | |
1214 | int i1 = 0; |
1215 | float t1 = 0; |
1216 | |
1217 | int i2 = 0; |
1218 | float t2 = 0; |
1219 | |
1220 | float t = 0; |
1221 | bool forward = true; |
1222 | |
1223 | int startedAtIndex = -1; |
1224 | float startedAtT = -1; |
1225 | |
1226 | if (!findStart(path, 0, path.elementCount(), &i1, &forward)) { |
1227 | qCDebug(lcSGCurveIntersectionSolver) << "No suitable start found. This should not happen. Returning the path unchanged."; |
1228 | return false; |
1229 | } |
1230 | |
1231 | // Helper function to start a new subpath and update temporary variables. |
1232 | auto startNewSubPath = [&](int i, bool forward) { |
1233 | if (forward) { |
1234 | fixedPath.moveTo(to: path.elementAt(i).startPoint()); |
1235 | t = startedAtT = 0; |
1236 | } else { |
1237 | fixedPath.moveTo(to: path.elementAt(i).endPoint()); |
1238 | t = startedAtT = 1; |
1239 | } |
1240 | startedAtIndex = i; |
1241 | subPathHandled[subPathIndex(i)] = true; |
1242 | }; |
1243 | startNewSubPath(i1, forward); |
1244 | |
1245 | // If not all interactions where found correctly, we might end up in an infinite loop. |
1246 | // Therefore we count the total number of iterations and bail out at some point. |
1247 | int totalIterations = 0; |
1248 | |
1249 | // We need to store the last intersection so we don't jump back and forward immediately. |
1250 | int prevIntersection = -1; |
1251 | |
1252 | do { |
1253 | // Sanity check: Make sure that we do not process the same corner point more than once. |
1254 | if (regularVisit && (t == 0 || t == 1)) { |
1255 | int nextIndex = i1; |
1256 | if (t == 1 && path.elementAt(i: i1).isSubpathEnd()) { |
1257 | nextIndex = subPathStartPoints.at(i: subPathIndex(i1)); |
1258 | } else if (t == 1) { |
1259 | nextIndex = nextIndex + 1; |
1260 | } |
1261 | if (handledElements[nextIndex]) { |
1262 | qCDebug(lcSGCurveIntersectionSolver) << "Revisiting an element when trying to solve intersections. This should not happen. Returning the path unchanged."; |
1263 | return false; |
1264 | } |
1265 | handledElements[nextIndex] = true; |
1266 | } |
1267 | // Sanity check: Keep an eye on total iterations |
1268 | totalIterations++; |
1269 | |
1270 | qCDebug(lcSGCurveIntersectionSolver) << "Checking section"<< i1 << "from"<< t << "going"<< (forward ? "forward": "backward"); |
1271 | |
1272 | // Find the next intersection that is as close as possible to t but in direction of processing (forward or !forward). |
1273 | int iC = -1; //intersection candidate |
1274 | t1 = forward? 1 : -1; //intersection candidate t-value |
1275 | for (int j = 0; j < intersections.size(); j++) { |
1276 | if (j == prevIntersection) |
1277 | continue; |
1278 | if (i1 == intersections[j].e1 && |
1279 | intersections[j].t1 * (forward ? 1 : -1) >= t * (forward ? 1 : -1) && |
1280 | intersections[j].t1 * (forward ? 1 : -1) < t1 * (forward ? 1 : -1)) { |
1281 | iC = j; |
1282 | t1 = intersections[j].t1; |
1283 | i2 = intersections[j].e2; |
1284 | t2 = intersections[j].t2; |
1285 | } |
1286 | if (i1 == intersections[j].e2 && |
1287 | intersections[j].t2 * (forward ? 1 : -1) >= t * (forward ? 1 : -1) && |
1288 | intersections[j].t2 * (forward ? 1 : -1) < t1 * (forward ? 1 : -1)) { |
1289 | iC = j; |
1290 | t1 = intersections[j].t2; |
1291 | i2 = intersections[j].e1; |
1292 | t2 = intersections[j].t1; |
1293 | } |
1294 | } |
1295 | prevIntersection = iC; |
1296 | |
1297 | if (iC < 0) { |
1298 | qCDebug(lcSGCurveIntersectionSolver) << " No intersection found on my way. Adding the rest of the segment "<< i1; |
1299 | regularVisit = true; |
1300 | // If no intersection with the current element was found, just add the rest of the element |
1301 | // to the fixed path and go on. |
1302 | // If we reached the end (going forward) or start (going backward) of a subpath, we have |
1303 | // to wrap aroud. Abort condition for the loop comes separately later. |
1304 | if (forward) { |
1305 | if (path.elementAt(i: i1).isLine()) { |
1306 | fixedPath.lineTo(to: path.elementAt(i: i1).endPoint()); |
1307 | } else { |
1308 | const QQuadPath::Element rest = path.elementAt(i: i1).segmentFromTo(t0: t, t1: 1); |
1309 | fixedPath.quadTo(control: rest.controlPoint(), to: rest.endPoint()); |
1310 | } |
1311 | if (path.elementAt(i: i1).isSubpathEnd()) { |
1312 | int index = subPathEndPoints.indexOf(t: i1); |
1313 | qCDebug(lcSGCurveIntersectionSolver) << " Going back to the start of subPath"<< index; |
1314 | i1 = subPathStartPoints.at(i: index); |
1315 | } else { |
1316 | i1++; |
1317 | } |
1318 | t = 0; |
1319 | } else { |
1320 | if (path.elementAt(i: i1).isLine()) { |
1321 | fixedPath.lineTo(to: path.elementAt(i: i1).startPoint()); |
1322 | } else { |
1323 | const QQuadPath::Element rest = path.elementAt(i: i1).segmentFromTo(t0: 0, t1: t).reversed(); |
1324 | fixedPath.quadTo(control: rest.controlPoint(), to: rest.endPoint()); |
1325 | } |
1326 | if (path.elementAt(i: i1).isSubpathStart()) { |
1327 | int index = subPathStartPoints.indexOf(t: i1); |
1328 | qCDebug(lcSGCurveIntersectionSolver) << " Going back to the end of subPath"<< index; |
1329 | i1 = subPathEndPoints.at(i: index); |
1330 | } else { |
1331 | i1--; |
1332 | } |
1333 | t = 1; |
1334 | } |
1335 | } else { // Here comes the part where we actually handle intersections. |
1336 | qCDebug(lcSGCurveIntersectionSolver) << " Found an intersection at"<< t1 << "with"<< i2 << "at"<< t2; |
1337 | |
1338 | // Mark the subpath we intersected with as visisted. We do not have to come here explicitly again. |
1339 | subPathHandled[subPathIndex(i2)] = true; |
1340 | |
1341 | // Mark the path that lead us to this intersection as handled on the intersection level. |
1342 | // Note the ! in front of forward. This is required because we move towards the intersection. |
1343 | markIntersectionAsHandled(&intersections[iC], i1, !forward); |
1344 | |
1345 | // Split the path from the last point to the newly found intersection. |
1346 | // Add the part of the current segment to the fixedPath. |
1347 | const QQuadPath::Element &elem1 = path.elementAt(i: i1); |
1348 | if (elem1.isLine()) { |
1349 | fixedPath.lineTo(to: elem1.pointAtFraction(t: t1)); |
1350 | } else { |
1351 | QQuadPath::Element partUntilIntersection; |
1352 | if (forward) { |
1353 | partUntilIntersection = elem1.segmentFromTo(t0: t, t1); |
1354 | } else { |
1355 | partUntilIntersection = elem1.segmentFromTo(t0: t1, t1: t).reversed(); |
1356 | } |
1357 | fixedPath.quadTo(control: partUntilIntersection.controlPoint(), to: partUntilIntersection.endPoint()); |
1358 | } |
1359 | |
1360 | // If only one unhandled path is left the decision how to proceed is trivial |
1361 | if (intersections[iC].in1 && intersections[iC].in2 && intersections[iC].out1 && !intersections[iC].out2) { |
1362 | i1 = intersections[iC].e2; |
1363 | t = intersections[iC].t2; |
1364 | forward = true; |
1365 | } else if (intersections[iC].in1 && intersections[iC].in2 && !intersections[iC].out1 && intersections[iC].out2) { |
1366 | i1 = intersections[iC].e1; |
1367 | t = intersections[iC].t1; |
1368 | forward = true; |
1369 | } else if (intersections[iC].in1 && !intersections[iC].in2 && intersections[iC].out1 && intersections[iC].out2) { |
1370 | i1 = intersections[iC].e2; |
1371 | t = intersections[iC].t2; |
1372 | forward = false; |
1373 | } else if (!intersections[iC].in1 && intersections[iC].in2 && intersections[iC].out1 && intersections[iC].out2) { |
1374 | i1 = intersections[iC].e1; |
1375 | t = intersections[iC].t1; |
1376 | forward = false; |
1377 | } else { |
1378 | // If no trivial path is left, calculate the intersection angle to decide which path to move forward. |
1379 | // For winding fill we take the left most path forward, so the inside stays on the right side |
1380 | // For odd even fill we take the right most path forward so we cut of the smallest area. |
1381 | // We come back at the intersection and add the missing pieces as subpaths later on. |
1382 | if (t1 !=0 && t1 != 1 && t2 != 0 && t2 != 1) { |
1383 | QVector2D tangent1 = elem1.tangentAtFraction(t: t1); |
1384 | if (!forward) |
1385 | tangent1 = -tangent1; |
1386 | const QQuadPath::Element &elem2 = path.elementAt(i: i2); |
1387 | const QVector2D tangent2 = elem2.tangentAtFraction(t: t2); |
1388 | const float angle = angleBetween(v1: -tangent1, v2: tangent2); |
1389 | qCDebug(lcSGCurveIntersectionSolver) << " Angle at intersection is"<< angle; |
1390 | // A small angle. Everything smaller is interpreted as tangent |
1391 | constexpr float deltaAngle = 1e-3f; |
1392 | if ((angle > deltaAngle && path.fillRule() == Qt::WindingFill) || (angle < -deltaAngle && path.fillRule() == Qt::OddEvenFill)) { |
1393 | forward = true; |
1394 | i1 = i2; |
1395 | t = t2; |
1396 | qCDebug(lcSGCurveIntersectionSolver) << " Next going forward from"<< t << "on"<< i1; |
1397 | } else if ((angle < -deltaAngle && path.fillRule() == Qt::WindingFill) || (angle > deltaAngle && path.fillRule() == Qt::OddEvenFill)) { |
1398 | forward = false; |
1399 | i1 = i2; |
1400 | t = t2; |
1401 | qCDebug(lcSGCurveIntersectionSolver) << " Next going backward from"<< t << "on"<< i1; |
1402 | } else { // this is basically a tangential touch and and no crossing. So stay on the current path, keep direction |
1403 | qCDebug(lcSGCurveIntersectionSolver) << " Found tangent. Staying on element"; |
1404 | } |
1405 | } else { |
1406 | // If we are intersecting exactly at a corner, the trick with the angle does not help. |
1407 | // Therefore we have to rely on finding the next path by looking forward and see if the |
1408 | // path there is valid. This is more expensive than the method above and is therefore |
1409 | // just used as a fallback for corner cases. |
1410 | constexpr float deltaT = 1e-4f; |
1411 | int i2after = i2; |
1412 | float t2after = t2 + deltaT; |
1413 | ensureInBounds(&i2after, &t2after, deltaT); |
1414 | QQuadPath::Element::FillSide fillSideForwardNew = path.fillSideOf(elementIdx: i2after, elementT: t2after); |
1415 | if (fillSideForwardNew == QQuadPath::Element::FillSideRight) { |
1416 | forward = true; |
1417 | i1 = i2; |
1418 | t = t2; |
1419 | qCDebug(lcSGCurveIntersectionSolver) << " Next going forward from"<< t << "on"<< i1; |
1420 | } else { |
1421 | int i2before = i2; |
1422 | float t2before = t2 - deltaT; |
1423 | ensureInBounds(&i2before, &t2before, deltaT); |
1424 | QQuadPath::Element::FillSide fillSideBackwardNew = path.fillSideOf(elementIdx: i2before, elementT: t2before); |
1425 | if (fillSideBackwardNew == QQuadPath::Element::FillSideLeft) { |
1426 | forward = false; |
1427 | i1 = i2; |
1428 | t = t2; |
1429 | qCDebug(lcSGCurveIntersectionSolver) << " Next going backward from"<< t << "on"<< i1; |
1430 | } else { |
1431 | qCDebug(lcSGCurveIntersectionSolver) << " Staying on element."; |
1432 | } |
1433 | } |
1434 | } |
1435 | } |
1436 | |
1437 | // Mark the path that takes us away from this intersection as handled on the intersection level. |
1438 | if (!(i1 == startedAtIndex && t == startedAtT)) |
1439 | markIntersectionAsHandled(&intersections[iC], i1, forward); |
1440 | |
1441 | // If we took all paths from an intersection it can be deleted. |
1442 | if (intersections[iC].in1 && intersections[iC].in2 && intersections[iC].out1 && intersections[iC].out2) { |
1443 | qCDebug(lcSGCurveIntersectionSolver) << " This intersection was processed completely and will be removed"; |
1444 | intersections.removeAt(i: iC); |
1445 | prevIntersection = -1; |
1446 | } |
1447 | regularVisit = false; |
1448 | } |
1449 | |
1450 | if (i1 == startedAtIndex && t == startedAtT) { |
1451 | // We reached the point on the subpath where we started. This subpath is done. |
1452 | // We have to find an unhandled subpath or a new subpath that was generated by cuts/intersections. |
1453 | qCDebug(lcSGCurveIntersectionSolver) << "Reached my starting point and try to find a new subpath."; |
1454 | |
1455 | // Search for the next subpath to handle. |
1456 | int nextUnhandled = -1; |
1457 | for (int i = 0; i < subPathHandled.size(); i++) { |
1458 | if (!subPathHandled.at(i)) { |
1459 | |
1460 | // Not nesesarrily handled (if findStart return false) but if we find no starting |
1461 | // point, we cannot/don't need to handle it anyway. So just mark it as handled. |
1462 | subPathHandled[i] = true; |
1463 | |
1464 | if (findStart(path, subPathStartPoints.at(i), subPathEndPoints.at(i), &i1, &forward)) { |
1465 | nextUnhandled = i; |
1466 | qCDebug(lcSGCurveIntersectionSolver) << "Found a new subpath"<< i << "to be processed."; |
1467 | startNewSubPath(i1, forward); |
1468 | regularVisit = true; |
1469 | break; |
1470 | } |
1471 | } |
1472 | } |
1473 | |
1474 | // If no valid subpath is left, we have to go back to the unhandled intersections. |
1475 | while (nextUnhandled < 0) { |
1476 | qCDebug(lcSGCurveIntersectionSolver) << "All subpaths handled. Looking for unhandled intersections."; |
1477 | if (intersections.isEmpty()) { |
1478 | qCDebug(lcSGCurveIntersectionSolver) << "All intersections handled. I am done."; |
1479 | fixedPath.setHint(hint: QQuadPath::PathNonIntersecting); |
1480 | path = fixedPath; |
1481 | return true; |
1482 | } |
1483 | |
1484 | IntersectionData &unhandledIntersec = intersections[0]; |
1485 | prevIntersection = 0; |
1486 | regularVisit = false; |
1487 | qCDebug(lcSGCurveIntersectionSolver) << "Revisiting intersection of"<< unhandledIntersec.e1 << "with"<< unhandledIntersec.e2; |
1488 | qCDebug(lcSGCurveIntersectionSolver) << "Handled are"<< unhandledIntersec.e1 << "in:"<< unhandledIntersec.in1 << "out:"<< unhandledIntersec.out1 |
1489 | << "/"<< unhandledIntersec.e2 << "in:"<< unhandledIntersec.in2 << "out:"<< unhandledIntersec.out2; |
1490 | |
1491 | // Searching for the correct direction to go forward. |
1492 | // That requires that the intersection + small delta (here 1e-4) |
1493 | // is a valid starting point (filling only on one side) |
1494 | auto lookForwardOnIntersection = [&](bool *handledPath, int nextE, float nextT, bool nextForward) { |
1495 | if (*handledPath) |
1496 | return false; |
1497 | constexpr float deltaT = 1e-4f; |
1498 | int eForward = nextE; |
1499 | float tForward = nextT + (nextForward ? deltaT : -deltaT); |
1500 | ensureInBounds(&eForward, &tForward, deltaT); |
1501 | QQuadPath::Element::FillSide fillSide = path.fillSideOf(elementIdx: eForward, elementT: tForward); |
1502 | if ((nextForward && fillSide == QQuadPath::Element::FillSideRight) || |
1503 | (!nextForward && fillSide == QQuadPath::Element::FillSideLeft)) { |
1504 | fixedPath.moveTo(to: path.elementAt(i: nextE).pointAtFraction(t: nextT)); |
1505 | i1 = startedAtIndex = nextE; |
1506 | t = startedAtT = nextT; |
1507 | forward = nextForward; |
1508 | *handledPath = true; |
1509 | return true; |
1510 | } |
1511 | return false; |
1512 | }; |
1513 | |
1514 | if (lookForwardOnIntersection(&unhandledIntersec.in1, unhandledIntersec.e1, unhandledIntersec.t1, false)) |
1515 | break; |
1516 | if (lookForwardOnIntersection(&unhandledIntersec.in2, unhandledIntersec.e2, unhandledIntersec.t2, false)) |
1517 | break; |
1518 | if (lookForwardOnIntersection(&unhandledIntersec.out1, unhandledIntersec.e1, unhandledIntersec.t1, true)) |
1519 | break; |
1520 | if (lookForwardOnIntersection(&unhandledIntersec.out2, unhandledIntersec.e2, unhandledIntersec.t2, true)) |
1521 | break; |
1522 | |
1523 | intersections.removeFirst(); |
1524 | qCDebug(lcSGCurveIntersectionSolver) << "Found no way to move forward at this intersection and removed it."; |
1525 | } |
1526 | } |
1527 | |
1528 | } while (totalIterations < path.elementCount() * 50); |
1529 | // Check the totalIterations as a sanity check. Should never be triggered. |
1530 | |
1531 | qCDebug(lcSGCurveIntersectionSolver) << "Could not solve intersections of path. This should not happen. Returning the path unchanged."; |
1532 | |
1533 | return false; |
1534 | } |
1535 | |
1536 | |
1537 | void QSGCurveProcessor::processStroke(const QQuadPath &strokePath, |
1538 | float miterLimit, |
1539 | float penWidth, |
1540 | Qt::PenJoinStyle joinStyle, |
1541 | Qt::PenCapStyle capStyle, |
1542 | addStrokeTriangleCallback addTriangle, |
1543 | int subdivisions) |
1544 | { |
1545 | auto thePath = subdivide(path: strokePath, subdivisions).flattened(); // TODO: don't flatten, but handle it in the triangulator |
1546 | auto triangles = customTriangulator2(path: thePath, penWidth, joinStyle, capStyle, miterLimit); |
1547 | |
1548 | auto addCurveTriangle = [&](const QQuadPath::Element &element, const TriangleData &t) { |
1549 | addTriangle(t.points, |
1550 | { element.startPoint(), element.controlPoint(), element.endPoint() }, |
1551 | t.normals, |
1552 | element.isLine()); |
1553 | }; |
1554 | |
1555 | auto addBevelTriangle = [&](const TrianglePoints &p) |
1556 | { |
1557 | QVector2D fp1 = p[0]; |
1558 | QVector2D fp2 = p[2]; |
1559 | |
1560 | // That describes a path that passes through those points. We want the stroke |
1561 | // edge, so we need to shift everything down by the stroke offset |
1562 | |
1563 | QVector2D nn = calcNormalVector(a: p[0], b: p[2]); |
1564 | if (determinant(p) < 0) |
1565 | nn = -nn; |
1566 | float delta = penWidth / 2; |
1567 | |
1568 | QVector2D offset = nn.normalized() * delta; |
1569 | fp1 += offset; |
1570 | fp2 += offset; |
1571 | |
1572 | TrianglePoints n; |
1573 | // p1 is inside, so n[1] is {0,0} |
1574 | n[0] = (p[0] - p[1]).normalized(); |
1575 | n[2] = (p[2] - p[1]).normalized(); |
1576 | |
1577 | addTriangle(p, { fp1, QVector2D(0.0f, 0.0f), fp2 }, n, true); |
1578 | }; |
1579 | |
1580 | for (const auto &triangle : triangles) { |
1581 | if (triangle.pathElementIndex < 0) { |
1582 | addBevelTriangle(triangle.points); |
1583 | continue; |
1584 | } |
1585 | const auto &element = thePath.elementAt(i: triangle.pathElementIndex); |
1586 | addCurveTriangle(element, triangle); |
1587 | } |
1588 | } |
1589 | |
1590 | // 2x variant of qHash(float) |
1591 | inline size_t qHash(QVector2D key, size_t seed = 0) noexcept |
1592 | { |
1593 | Q_STATIC_ASSERT(sizeof(QVector2D) == sizeof(quint64)); |
1594 | // ensure -0 gets mapped to 0 |
1595 | key[0] += 0.0f; |
1596 | key[1] += 0.0f; |
1597 | quint64 k; |
1598 | memcpy(dest: &k, src: &key, n: sizeof(QVector2D)); |
1599 | return QHashPrivate::hash(key: k, seed); |
1600 | } |
1601 | |
1602 | void QSGCurveProcessor::processFill(const QQuadPath &fillPath, |
1603 | Qt::FillRule fillRule, |
1604 | addTriangleCallback addTriangle) |
1605 | { |
1606 | QPainterPath internalHull; |
1607 | internalHull.setFillRule(fillRule); |
1608 | |
1609 | QMultiHash<QVector2D, int> pointHash; |
1610 | |
1611 | auto roundVec2D = [](const QVector2D &p) -> QVector2D { |
1612 | return { qRound64(f: p.x() * 32.0f) / 32.0f, qRound64(f: p.y() * 32.0f) / 32.0f }; |
1613 | }; |
1614 | |
1615 | auto addCurveTriangle = [&](const QQuadPath::Element &element, |
1616 | const QVector2D &sp, |
1617 | const QVector2D &ep, |
1618 | const QVector2D &cp) { |
1619 | addTriangle({ sp, cp, ep }, |
1620 | {}, |
1621 | [&element](QVector2D v) { return elementUvForPoint(e: element, p: v); }); |
1622 | }; |
1623 | |
1624 | auto addCurveTriangleWithNormals = [&](const QQuadPath::Element &element, |
1625 | const std::array<QVector2D, 3> &v, |
1626 | const std::array<QVector2D, 3> &n) { |
1627 | addTriangle(v, n, [&element](QVector2D v) { return elementUvForPoint(e: element, p: v); }); |
1628 | }; |
1629 | |
1630 | auto outsideNormal = [](const QVector2D &startPoint, |
1631 | const QVector2D &endPoint, |
1632 | const QVector2D &insidePoint) { |
1633 | |
1634 | QVector2D baseLine = endPoint - startPoint; |
1635 | QVector2D insideVector = insidePoint - startPoint; |
1636 | QVector2D normal = normalVector(baseLine); |
1637 | |
1638 | bool swap = QVector2D::dotProduct(v1: insideVector, v2: normal) < 0; |
1639 | |
1640 | return swap ? normal : -normal; |
1641 | }; |
1642 | |
1643 | auto addTriangleForLine = [&](const QQuadPath::Element &element, |
1644 | const QVector2D &sp, |
1645 | const QVector2D &ep, |
1646 | const QVector2D &cp) { |
1647 | addCurveTriangle(element, sp, ep, cp); |
1648 | |
1649 | // Add triangles on the outer side to make room for AA |
1650 | const QVector2D normal = outsideNormal(sp, ep, cp); |
1651 | constexpr QVector2D null; |
1652 | addCurveTriangleWithNormals(element, {sp, sp, ep}, {null, normal, null}); |
1653 | addCurveTriangleWithNormals(element, {sp, ep, ep}, {normal, normal, null}); |
1654 | }; |
1655 | |
1656 | auto addTriangleForConcave = [&](const QQuadPath::Element &element, |
1657 | const QVector2D &sp, |
1658 | const QVector2D &ep, |
1659 | const QVector2D &cp) { |
1660 | addTriangleForLine(element, sp, ep, cp); |
1661 | }; |
1662 | |
1663 | auto addTriangleForConvex = [&](const QQuadPath::Element &element, |
1664 | const QVector2D &sp, |
1665 | const QVector2D &ep, |
1666 | const QVector2D &cp) { |
1667 | addCurveTriangle(element, sp, ep, cp); |
1668 | // Add two triangles on the outer side to get some more AA |
1669 | |
1670 | constexpr QVector2D null; |
1671 | // First triangle on the line sp-cp, replacing ep |
1672 | { |
1673 | const QVector2D normal = outsideNormal(sp, cp, ep); |
1674 | addCurveTriangleWithNormals(element, {sp, sp, cp}, {null, normal, null}); |
1675 | } |
1676 | |
1677 | // Second triangle on the line ep-cp, replacing sp |
1678 | { |
1679 | const QVector2D normal = outsideNormal(ep, cp, sp); |
1680 | addCurveTriangleWithNormals(element, {ep, ep, cp}, {null, normal, null}); |
1681 | } |
1682 | }; |
1683 | |
1684 | auto addFillTriangle = [&](const QVector2D &p1, const QVector2D &p2, const QVector2D &p3) { |
1685 | constexpr QVector3D uv(0.0, 1.0, -1.0); |
1686 | addTriangle({ p1, p2, p3 }, |
1687 | {}, |
1688 | [&uv](QVector2D) { return uv; }); |
1689 | }; |
1690 | |
1691 | fillPath.iterateElements(lambda: [&](const QQuadPath::Element &element, int index) { |
1692 | QVector2D sp(element.startPoint()); |
1693 | QVector2D cp(element.controlPoint()); |
1694 | QVector2D ep(element.endPoint()); |
1695 | QVector2D rsp = roundVec2D(sp); |
1696 | |
1697 | if (element.isSubpathStart()) |
1698 | internalHull.moveTo(p: sp.toPointF()); |
1699 | if (element.isLine()) { |
1700 | internalHull.lineTo(p: ep.toPointF()); |
1701 | pointHash.insert(key: rsp, value: index); |
1702 | } else { |
1703 | QVector2D rep = roundVec2D(ep); |
1704 | QVector2D rcp = roundVec2D(cp); |
1705 | if (element.isConvex()) { |
1706 | internalHull.lineTo(p: ep.toPointF()); |
1707 | addTriangleForConvex(element, rsp, rep, rcp); |
1708 | pointHash.insert(key: rsp, value: index); |
1709 | } else { |
1710 | internalHull.lineTo(p: cp.toPointF()); |
1711 | internalHull.lineTo(p: ep.toPointF()); |
1712 | addTriangleForConcave(element, rsp, rep, rcp); |
1713 | pointHash.insert(key: rcp, value: index); |
1714 | } |
1715 | } |
1716 | }); |
1717 | |
1718 | // Points in p are already rounded do 1/32 |
1719 | // Returns false if the triangle needs to be split. Adds the triangle to the graphics buffers and returns true otherwise. |
1720 | // (Does not handle ambiguous vertices that are on multiple unrelated lines/curves) |
1721 | auto onSameSideOfLine = [](const QVector2D &p1, |
1722 | const QVector2D &p2, |
1723 | const QVector2D &linePoint, |
1724 | const QVector2D &lineNormal) { |
1725 | float side1 = testSideOfLineByNormal(a: linePoint, n: lineNormal, p: p1); |
1726 | float side2 = testSideOfLineByNormal(a: linePoint, n: lineNormal, p: p2); |
1727 | return side1 * side2 >= 0; |
1728 | }; |
1729 | |
1730 | auto pointInSafeSpace = [&](const QVector2D &p, const QQuadPath::Element &element) -> bool { |
1731 | const QVector2D a = element.startPoint(); |
1732 | const QVector2D b = element.endPoint(); |
1733 | const QVector2D c = element.controlPoint(); |
1734 | // There are "safe" areas of the curve also across the baseline: the curve can never cross: |
1735 | // line1: the line through A and B' |
1736 | // line2: the line through B and A' |
1737 | // Where A' = A "mirrored" through C and B' = B "mirrored" through C |
1738 | const QVector2D n1 = calcNormalVector(a, b: c + (c - b)); |
1739 | const QVector2D n2 = calcNormalVector(a: b, b: c + (c - a)); |
1740 | bool safeSideOf1 = onSameSideOfLine(p, c, a, n1); |
1741 | bool safeSideOf2 = onSameSideOfLine(p, c, b, n2); |
1742 | return safeSideOf1 && safeSideOf2; |
1743 | }; |
1744 | |
1745 | // Returns false if the triangle belongs to multiple elements and need to be split. |
1746 | // Otherwise adds the triangle, optionally splitting it to avoid "unsafe space" |
1747 | auto handleTriangle = [&](const QVector2D (&p)[3]) -> bool { |
1748 | bool isLine = false; |
1749 | bool isConcave = false; |
1750 | bool isConvex = false; |
1751 | int elementIndex = -1; |
1752 | |
1753 | bool foundElement = false; |
1754 | int si = -1; |
1755 | int ei = -1; |
1756 | |
1757 | for (int i = 0; i < 3; ++i) { |
1758 | auto pointFoundRange = std::as_const(t&: pointHash).equal_range(key: roundVec2D(p[i])); |
1759 | |
1760 | if (pointFoundRange.first == pointHash.constEnd()) |
1761 | continue; |
1762 | |
1763 | // This point is on some element, now find the element |
1764 | int testIndex = *pointFoundRange.first; |
1765 | bool ambiguous = std::next(x: pointFoundRange.first) != pointFoundRange.second; |
1766 | if (ambiguous) { |
1767 | // The triangle should be on the inside of exactly one of the elements |
1768 | // We're doing the test for each of the points, which maybe duplicates some effort, |
1769 | // but optimize for simplicity for now. |
1770 | for (auto it = pointFoundRange.first; it != pointFoundRange.second; ++it) { |
1771 | auto &el = fillPath.elementAt(i: *it); |
1772 | bool fillOnLeft = !el.isFillOnRight(); |
1773 | auto sp = roundVec2D(el.startPoint()); |
1774 | auto ep = roundVec2D(el.endPoint()); |
1775 | // Check if the triangle is on the inside of el; i.e. each point is either sp, ep, or on the inside. |
1776 | auto pointInside = [&](const QVector2D &p) { |
1777 | return p == sp || p == ep |
1778 | || QQuadPath::isPointOnLeft(p, sp: el.startPoint(), ep: el.endPoint()) == fillOnLeft; |
1779 | }; |
1780 | if (pointInside(p[0]) && pointInside(p[1]) && pointInside(p[2])) { |
1781 | testIndex = *it; |
1782 | break; |
1783 | } |
1784 | } |
1785 | } |
1786 | |
1787 | const auto &element = fillPath.elementAt(i: testIndex); |
1788 | // Now we check if p[i] -> p[j] is on the element for some j |
1789 | // For a line, the relevant line is sp-ep |
1790 | // For concave it's cp-sp/ep |
1791 | // For convex it's sp-ep again |
1792 | bool onElement = false; |
1793 | for (int j = 0; j < 3; ++j) { |
1794 | if (i == j) |
1795 | continue; |
1796 | if (element.isConvex() || element.isLine()) |
1797 | onElement = roundVec2D(element.endPoint()) == p[j]; |
1798 | else // concave |
1799 | onElement = roundVec2D(element.startPoint()) == p[j] || roundVec2D(element.endPoint()) == p[j]; |
1800 | if (onElement) { |
1801 | if (foundElement) |
1802 | return false; // Triangle already on some other element: must split |
1803 | si = i; |
1804 | ei = j; |
1805 | foundElement = true; |
1806 | elementIndex = testIndex; |
1807 | isConvex = element.isConvex(); |
1808 | isLine = element.isLine(); |
1809 | isConcave = !isLine && !isConvex; |
1810 | break; |
1811 | } |
1812 | } |
1813 | } |
1814 | |
1815 | if (isLine) { |
1816 | int ci = (6 - si - ei) % 3; // 1+2+3 is 6, so missing number is 6-n1-n2 |
1817 | addTriangleForLine(fillPath.elementAt(i: elementIndex), p[si], p[ei], p[ci]); |
1818 | } else if (isConcave) { |
1819 | addCurveTriangle(fillPath.elementAt(i: elementIndex), p[0], p[1], p[2]); |
1820 | } else if (isConvex) { |
1821 | int oi = (6 - si - ei) % 3; |
1822 | const auto &otherPoint = p[oi]; |
1823 | const auto &element = fillPath.elementAt(i: elementIndex); |
1824 | // We have to test whether the triangle can cross the line |
1825 | // TODO: use the toplevel element's safe space |
1826 | bool safeSpace = pointInSafeSpace(otherPoint, element); |
1827 | if (safeSpace) { |
1828 | addCurveTriangle(element, p[0], p[1], p[2]); |
1829 | } else { |
1830 | // Find a point inside the triangle that's also in the safe space |
1831 | QVector2D newPoint = (p[0] + p[1] + p[2]) / 3; |
1832 | // We should calculate the point directly, but just do a lazy implementation for now: |
1833 | for (int i = 0; i < 7; ++i) { |
1834 | safeSpace = pointInSafeSpace(newPoint, element); |
1835 | if (safeSpace) |
1836 | break; |
1837 | newPoint = (p[si] + p[ei] + newPoint) / 3; |
1838 | } |
1839 | if (safeSpace) { |
1840 | // Split triangle. We know the original triangle is only on one path element, so the other triangles are both fill. |
1841 | // Curve triangle is (sp, ep, np) |
1842 | addCurveTriangle(element, p[si], p[ei], newPoint); |
1843 | // The other two are (sp, op, np) and (ep, op, np) |
1844 | addFillTriangle(p[si], p[oi], newPoint); |
1845 | addFillTriangle(p[ei], p[oi], newPoint); |
1846 | } else { |
1847 | // fallback to fill if we can't find a point in safe space |
1848 | addFillTriangle(p[0], p[1], p[2]); |
1849 | } |
1850 | } |
1851 | |
1852 | } else { |
1853 | addFillTriangle(p[0], p[1], p[2]); |
1854 | } |
1855 | return true; |
1856 | }; |
1857 | |
1858 | QTriangleSet triangles = qTriangulate(path: internalHull); |
1859 | // Workaround issue in qTriangulate() for single-triangle path |
1860 | if (triangles.indices.size() == 3) |
1861 | triangles.indices.setDataUint({ 0, 1, 2 }); |
1862 | |
1863 | const quint32 *idxTable = static_cast<const quint32 *>(triangles.indices.data()); |
1864 | for (int triangle = 0; triangle < triangles.indices.size() / 3; ++triangle) { |
1865 | const quint32 *idx = &idxTable[triangle * 3]; |
1866 | |
1867 | QVector2D p[3]; |
1868 | for (int i = 0; i < 3; ++i) { |
1869 | p[i] = roundVec2D(QVector2D(float(triangles.vertices.at(i: idx[i] * 2)), |
1870 | float(triangles.vertices.at(i: idx[i] * 2 + 1)))); |
1871 | } |
1872 | if (qFuzzyIsNull(f: determinant(p1: p[0], p2: p[1], p3: p[2]))) |
1873 | continue; // Skip degenerate triangles |
1874 | bool needsSplit = !handleTriangle(p); |
1875 | if (needsSplit) { |
1876 | QVector2D c = (p[0] + p[1] + p[2]) / 3; |
1877 | for (int i = 0; i < 3; ++i) { |
1878 | qSwap(value1&: c, value2&: p[i]); |
1879 | handleTriangle(p); |
1880 | qSwap(value1&: c, value2&: p[i]); |
1881 | } |
1882 | } |
1883 | } |
1884 | } |
1885 | |
1886 | |
1887 | QT_END_NAMESPACE |
1888 |
Definitions
- lcSGCurveProcessor
- lcSGCurveIntersectionSolver
- uvForPoint
- curveUv
- elementUvForPoint
- calcNormalVector
- testSideOfLineByNormal
- determinant
- determinant
- fixWinding
- checkEdge
- lineIntersection
- checkTriangleOverlap
- checkLineTriangleOverlap
- isOverlap
- angleBetween
- isIntersecting
- isIntersecting
- TriangleData
- normalVector
- normalVector
- tangentVector
- simplePointTriangulator
- needsSplit
- splitElementIfNecessary
- subdivide
- customTriangulator2
- handleOverlap
- solveOverlaps
- findOverlappingCandidates
- removeNestedSubpaths
- solveIntersections
- processStroke
- qHash
Learn to use CMake with our Intro Training
Find out more