1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_GENERAL_PRODUCT_H |
12 | #define EIGEN_GENERAL_PRODUCT_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | enum { |
17 | Large = 2, |
18 | Small = 3 |
19 | }; |
20 | |
21 | // Define the threshold value to fallback from the generic matrix-matrix product |
22 | // implementation (heavy) to the lightweight coeff-based product one. |
23 | // See generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> |
24 | // in products/GeneralMatrixMatrix.h for more details. |
25 | // TODO This threshold should also be used in the compile-time selector below. |
26 | #ifndef EIGEN_GEMM_TO_COEFFBASED_THRESHOLD |
27 | // This default value has been obtained on a Haswell architecture. |
28 | #define EIGEN_GEMM_TO_COEFFBASED_THRESHOLD 20 |
29 | #endif |
30 | |
31 | namespace internal { |
32 | |
33 | template<int Rows, int Cols, int Depth> struct product_type_selector; |
34 | |
35 | template<int Size, int MaxSize> struct product_size_category |
36 | { |
37 | enum { |
38 | #ifndef EIGEN_GPU_COMPILE_PHASE |
39 | is_large = MaxSize == Dynamic || |
40 | Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD || |
41 | (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD), |
42 | #else |
43 | is_large = 0, |
44 | #endif |
45 | value = is_large ? Large |
46 | : Size == 1 ? 1 |
47 | : Small |
48 | }; |
49 | }; |
50 | |
51 | template<typename Lhs, typename Rhs> struct product_type |
52 | { |
53 | typedef typename remove_all<Lhs>::type _Lhs; |
54 | typedef typename remove_all<Rhs>::type _Rhs; |
55 | enum { |
56 | MaxRows = traits<_Lhs>::MaxRowsAtCompileTime, |
57 | Rows = traits<_Lhs>::RowsAtCompileTime, |
58 | MaxCols = traits<_Rhs>::MaxColsAtCompileTime, |
59 | Cols = traits<_Rhs>::ColsAtCompileTime, |
60 | MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime, |
61 | traits<_Rhs>::MaxRowsAtCompileTime), |
62 | Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime, |
63 | traits<_Rhs>::RowsAtCompileTime) |
64 | }; |
65 | |
66 | // the splitting into different lines of code here, introducing the _select enums and the typedef below, |
67 | // is to work around an internal compiler error with gcc 4.1 and 4.2. |
68 | private: |
69 | enum { |
70 | rows_select = product_size_category<Rows,MaxRows>::value, |
71 | cols_select = product_size_category<Cols,MaxCols>::value, |
72 | depth_select = product_size_category<Depth,MaxDepth>::value |
73 | }; |
74 | typedef product_type_selector<rows_select, cols_select, depth_select> selector; |
75 | |
76 | public: |
77 | enum { |
78 | value = selector::ret, |
79 | ret = selector::ret |
80 | }; |
81 | #ifdef EIGEN_DEBUG_PRODUCT |
82 | static void debug() |
83 | { |
84 | EIGEN_DEBUG_VAR(Rows); |
85 | EIGEN_DEBUG_VAR(Cols); |
86 | EIGEN_DEBUG_VAR(Depth); |
87 | EIGEN_DEBUG_VAR(rows_select); |
88 | EIGEN_DEBUG_VAR(cols_select); |
89 | EIGEN_DEBUG_VAR(depth_select); |
90 | EIGEN_DEBUG_VAR(value); |
91 | } |
92 | #endif |
93 | }; |
94 | |
95 | /* The following allows to select the kind of product at compile time |
96 | * based on the three dimensions of the product. |
97 | * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ |
98 | // FIXME I'm not sure the current mapping is the ideal one. |
99 | template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; }; |
100 | template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
101 | template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
102 | template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; |
103 | template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; |
104 | template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; }; |
105 | template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
106 | template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
107 | template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
108 | template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
109 | template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
110 | template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; |
111 | template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; |
112 | template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; |
113 | template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; }; |
114 | template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; }; |
115 | template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; }; |
116 | template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; }; |
117 | template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; }; |
118 | template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; }; |
119 | template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; }; |
120 | template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
121 | template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; }; |
122 | template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; }; |
123 | |
124 | } // end namespace internal |
125 | |
126 | /*********************************************************************** |
127 | * Implementation of Inner Vector Vector Product |
128 | ***********************************************************************/ |
129 | |
130 | // FIXME : maybe the "inner product" could return a Scalar |
131 | // instead of a 1x1 matrix ?? |
132 | // Pro: more natural for the user |
133 | // Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix |
134 | // product ends up to a row-vector times col-vector product... To tackle this use |
135 | // case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x); |
136 | |
137 | /*********************************************************************** |
138 | * Implementation of Outer Vector Vector Product |
139 | ***********************************************************************/ |
140 | |
141 | /*********************************************************************** |
142 | * Implementation of General Matrix Vector Product |
143 | ***********************************************************************/ |
144 | |
145 | /* According to the shape/flags of the matrix we have to distinghish 3 different cases: |
146 | * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine |
147 | * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine |
148 | * 3 - all other cases are handled using a simple loop along the outer-storage direction. |
149 | * Therefore we need a lower level meta selector. |
150 | * Furthermore, if the matrix is the rhs, then the product has to be transposed. |
151 | */ |
152 | namespace internal { |
153 | |
154 | template<int Side, int StorageOrder, bool BlasCompatible> |
155 | struct gemv_dense_selector; |
156 | |
157 | } // end namespace internal |
158 | |
159 | namespace internal { |
160 | |
161 | template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if; |
162 | |
163 | template<typename Scalar,int Size,int MaxSize> |
164 | struct gemv_static_vector_if<Scalar,Size,MaxSize,false> |
165 | { |
166 | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar* data() { eigen_internal_assert(false && "should never be called" ); return 0; } |
167 | }; |
168 | |
169 | template<typename Scalar,int Size> |
170 | struct gemv_static_vector_if<Scalar,Size,Dynamic,true> |
171 | { |
172 | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar* data() { return 0; } |
173 | }; |
174 | |
175 | template<typename Scalar,int Size,int MaxSize> |
176 | struct gemv_static_vector_if<Scalar,Size,MaxSize,true> |
177 | { |
178 | enum { |
179 | ForceAlignment = internal::packet_traits<Scalar>::Vectorizable, |
180 | PacketSize = internal::packet_traits<Scalar>::size |
181 | }; |
182 | #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0 |
183 | internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data; |
184 | EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } |
185 | #else |
186 | // Some architectures cannot align on the stack, |
187 | // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. |
188 | internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data; |
189 | EIGEN_STRONG_INLINE Scalar* data() { |
190 | return ForceAlignment |
191 | ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES) |
192 | : m_data.array; |
193 | } |
194 | #endif |
195 | }; |
196 | |
197 | // The vector is on the left => transposition |
198 | template<int StorageOrder, bool BlasCompatible> |
199 | struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible> |
200 | { |
201 | template<typename Lhs, typename Rhs, typename Dest> |
202 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
203 | { |
204 | Transpose<Dest> destT(dest); |
205 | enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; |
206 | gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible> |
207 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); |
208 | } |
209 | }; |
210 | |
211 | template<> struct gemv_dense_selector<OnTheRight,ColMajor,true> |
212 | { |
213 | template<typename Lhs, typename Rhs, typename Dest> |
214 | static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
215 | { |
216 | typedef typename Lhs::Scalar LhsScalar; |
217 | typedef typename Rhs::Scalar RhsScalar; |
218 | typedef typename Dest::Scalar ResScalar; |
219 | typedef typename Dest::RealScalar RealScalar; |
220 | |
221 | typedef internal::blas_traits<Lhs> LhsBlasTraits; |
222 | typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
223 | typedef internal::blas_traits<Rhs> RhsBlasTraits; |
224 | typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
225 | |
226 | typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest; |
227 | |
228 | ActualLhsType actualLhs = LhsBlasTraits::extract(lhs); |
229 | ActualRhsType actualRhs = RhsBlasTraits::extract(rhs); |
230 | |
231 | ResScalar actualAlpha = combine_scalar_factors(alpha, lhs, rhs); |
232 | |
233 | // make sure Dest is a compile-time vector type (bug 1166) |
234 | typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest; |
235 | |
236 | enum { |
237 | // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 |
238 | // on, the other hand it is good for the cache to pack the vector anyways... |
239 | EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), |
240 | ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex), |
241 | MightCannotUseDest = ((!EvalToDestAtCompileTime) || ComplexByReal) && (ActualDest::MaxSizeAtCompileTime!=0) |
242 | }; |
243 | |
244 | typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper; |
245 | typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper; |
246 | RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha); |
247 | |
248 | if(!MightCannotUseDest) |
249 | { |
250 | // shortcut if we are sure to be able to use dest directly, |
251 | // this ease the compiler to generate cleaner and more optimzized code for most common cases |
252 | general_matrix_vector_product |
253 | <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
254 | actualLhs.rows(), actualLhs.cols(), |
255 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
256 | RhsMapper(actualRhs.data(), actualRhs.innerStride()), |
257 | dest.data(), 1, |
258 | compatibleAlpha); |
259 | } |
260 | else |
261 | { |
262 | gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest; |
263 | |
264 | const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); |
265 | const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; |
266 | |
267 | ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), |
268 | evalToDest ? dest.data() : static_dest.data()); |
269 | |
270 | if(!evalToDest) |
271 | { |
272 | #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
273 | Index size = dest.size(); |
274 | EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
275 | #endif |
276 | if(!alphaIsCompatible) |
277 | { |
278 | MappedDest(actualDestPtr, dest.size()).setZero(); |
279 | compatibleAlpha = RhsScalar(1); |
280 | } |
281 | else |
282 | MappedDest(actualDestPtr, dest.size()) = dest; |
283 | } |
284 | |
285 | general_matrix_vector_product |
286 | <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
287 | actualLhs.rows(), actualLhs.cols(), |
288 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
289 | RhsMapper(actualRhs.data(), actualRhs.innerStride()), |
290 | actualDestPtr, 1, |
291 | compatibleAlpha); |
292 | |
293 | if (!evalToDest) |
294 | { |
295 | if(!alphaIsCompatible) |
296 | dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); |
297 | else |
298 | dest = MappedDest(actualDestPtr, dest.size()); |
299 | } |
300 | } |
301 | } |
302 | }; |
303 | |
304 | template<> struct gemv_dense_selector<OnTheRight,RowMajor,true> |
305 | { |
306 | template<typename Lhs, typename Rhs, typename Dest> |
307 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
308 | { |
309 | typedef typename Lhs::Scalar LhsScalar; |
310 | typedef typename Rhs::Scalar RhsScalar; |
311 | typedef typename Dest::Scalar ResScalar; |
312 | |
313 | typedef internal::blas_traits<Lhs> LhsBlasTraits; |
314 | typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
315 | typedef internal::blas_traits<Rhs> RhsBlasTraits; |
316 | typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
317 | typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned; |
318 | |
319 | typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs); |
320 | typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs); |
321 | |
322 | ResScalar actualAlpha = combine_scalar_factors(alpha, lhs, rhs); |
323 | |
324 | enum { |
325 | // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 |
326 | // on, the other hand it is good for the cache to pack the vector anyways... |
327 | DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 || ActualRhsTypeCleaned::MaxSizeAtCompileTime==0 |
328 | }; |
329 | |
330 | gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs; |
331 | |
332 | ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), |
333 | DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data()); |
334 | |
335 | if(!DirectlyUseRhs) |
336 | { |
337 | #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
338 | Index size = actualRhs.size(); |
339 | EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
340 | #endif |
341 | Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs; |
342 | } |
343 | |
344 | typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper; |
345 | typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper; |
346 | general_matrix_vector_product |
347 | <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
348 | actualLhs.rows(), actualLhs.cols(), |
349 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
350 | RhsMapper(actualRhsPtr, 1), |
351 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) |
352 | actualAlpha); |
353 | } |
354 | }; |
355 | |
356 | template<> struct gemv_dense_selector<OnTheRight,ColMajor,false> |
357 | { |
358 | template<typename Lhs, typename Rhs, typename Dest> |
359 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
360 | { |
361 | EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); |
362 | // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp |
363 | typename nested_eval<Rhs,1>::type actual_rhs(rhs); |
364 | const Index size = rhs.rows(); |
365 | for(Index k=0; k<size; ++k) |
366 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); |
367 | } |
368 | }; |
369 | |
370 | template<> struct gemv_dense_selector<OnTheRight,RowMajor,false> |
371 | { |
372 | template<typename Lhs, typename Rhs, typename Dest> |
373 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
374 | { |
375 | EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); |
376 | typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs); |
377 | const Index rows = dest.rows(); |
378 | for(Index i=0; i<rows; ++i) |
379 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); |
380 | } |
381 | }; |
382 | |
383 | } // end namespace internal |
384 | |
385 | /*************************************************************************** |
386 | * Implementation of matrix base methods |
387 | ***************************************************************************/ |
388 | |
389 | /** \returns the matrix product of \c *this and \a other. |
390 | * |
391 | * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*(). |
392 | * |
393 | * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*() |
394 | */ |
395 | template<typename Derived> |
396 | template<typename OtherDerived> |
397 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
398 | const Product<Derived, OtherDerived> |
399 | MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const |
400 | { |
401 | // A note regarding the function declaration: In MSVC, this function will sometimes |
402 | // not be inlined since DenseStorage is an unwindable object for dynamic |
403 | // matrices and product types are holding a member to store the result. |
404 | // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. |
405 | enum { |
406 | ProductIsValid = Derived::ColsAtCompileTime==Dynamic |
407 | || OtherDerived::RowsAtCompileTime==Dynamic |
408 | || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), |
409 | AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, |
410 | SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) |
411 | }; |
412 | // note to the lost user: |
413 | // * for a dot product use: v1.dot(v2) |
414 | // * for a coeff-wise product use: v1.cwiseProduct(v2) |
415 | EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
416 | INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
417 | EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
418 | INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
419 | EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
420 | #ifdef EIGEN_DEBUG_PRODUCT |
421 | internal::product_type<Derived,OtherDerived>::debug(); |
422 | #endif |
423 | |
424 | return Product<Derived, OtherDerived>(derived(), other.derived()); |
425 | } |
426 | |
427 | /** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. |
428 | * |
429 | * The returned product will behave like any other expressions: the coefficients of the product will be |
430 | * computed once at a time as requested. This might be useful in some extremely rare cases when only |
431 | * a small and no coherent fraction of the result's coefficients have to be computed. |
432 | * |
433 | * \warning This version of the matrix product can be much much slower. So use it only if you know |
434 | * what you are doing and that you measured a true speed improvement. |
435 | * |
436 | * \sa operator*(const MatrixBase&) |
437 | */ |
438 | template<typename Derived> |
439 | template<typename OtherDerived> |
440 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
441 | const Product<Derived,OtherDerived,LazyProduct> |
442 | MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const |
443 | { |
444 | enum { |
445 | ProductIsValid = Derived::ColsAtCompileTime==Dynamic |
446 | || OtherDerived::RowsAtCompileTime==Dynamic |
447 | || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), |
448 | AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, |
449 | SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) |
450 | }; |
451 | // note to the lost user: |
452 | // * for a dot product use: v1.dot(v2) |
453 | // * for a coeff-wise product use: v1.cwiseProduct(v2) |
454 | EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
455 | INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
456 | EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
457 | INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
458 | EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
459 | |
460 | return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived()); |
461 | } |
462 | |
463 | } // end namespace Eigen |
464 | |
465 | #endif // EIGEN_PRODUCT_H |
466 | |