1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #pragma once |
5 | |
6 | #include "../common/ray.h" |
7 | #include "curve_intersector_precalculations.h" |
8 | |
9 | namespace embree |
10 | { |
11 | namespace isa |
12 | { |
13 | template<int M> |
14 | struct LineIntersectorHitM |
15 | { |
16 | __forceinline LineIntersectorHitM() {} |
17 | |
18 | __forceinline LineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng) |
19 | : vu(u), vv(v), vt(t), vNg(Ng) {} |
20 | |
21 | __forceinline void finalize() {} |
22 | |
23 | __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } |
24 | __forceinline float t (const size_t i) const { return vt[i]; } |
25 | __forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); } |
26 | |
27 | __forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); } |
28 | __forceinline vfloat<M> t () const { return vt; } |
29 | __forceinline Vec3vf<M> Ng() const { return vNg; } |
30 | |
31 | public: |
32 | vfloat<M> vu; |
33 | vfloat<M> vv; |
34 | vfloat<M> vt; |
35 | Vec3vf<M> vNg; |
36 | }; |
37 | |
38 | template<int M> |
39 | struct FlatLinearCurveIntersector1 |
40 | { |
41 | typedef CurvePrecalculations1 Precalculations; |
42 | |
43 | template<typename Ray, typename Epilog> |
44 | static __forceinline bool intersect(const vbool<M>& valid_i, |
45 | Ray& ray, |
46 | IntersectContext* context, |
47 | const LineSegments* geom, |
48 | const Precalculations& pre, |
49 | const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, |
50 | const Epilog& epilog) |
51 | { |
52 | /* transform end points into ray space */ |
53 | vbool<M> valid = valid_i; |
54 | vfloat<M> depth_scale = pre.depth_scale; |
55 | LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space; |
56 | |
57 | const Vec3vf<M> ray_org ((Vec3fa)ray.org); |
58 | const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); |
59 | const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); |
60 | |
61 | Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); |
62 | Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); |
63 | |
64 | /* approximative intersection with cone */ |
65 | const Vec4vf<M> v = p1-p0; |
66 | const Vec4vf<M> w = -p0; |
67 | const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); |
68 | const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); |
69 | const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); |
70 | const Vec4vf<M> p = madd(u,v,p0); |
71 | const vfloat<M> t = p.z; |
72 | const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); |
73 | const vfloat<M> r = p.w; |
74 | const vfloat<M> r2 = r*r; |
75 | valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()) <= t) & (t <= vfloat<M>(ray.tfar)); |
76 | if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) |
77 | valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections |
78 | if (unlikely(none(valid))) return false; |
79 | |
80 | /* ignore denormalized segments */ |
81 | const Vec3vf<M> T = v1.xyz()-v0.xyz(); |
82 | valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); |
83 | if (unlikely(none(valid))) return false; |
84 | |
85 | /* update hit information */ |
86 | LineIntersectorHitM<M> hit(u,zero,t,T); |
87 | return epilog(valid,hit); |
88 | } |
89 | }; |
90 | |
91 | template<int M, int K> |
92 | struct FlatLinearCurveIntersectorK |
93 | { |
94 | typedef CurvePrecalculationsK<K> Precalculations; |
95 | |
96 | template<typename Epilog> |
97 | static __forceinline bool intersect(const vbool<M>& valid_i, |
98 | RayK<K>& ray, size_t k, |
99 | IntersectContext* context, |
100 | const LineSegments* geom, |
101 | const Precalculations& pre, |
102 | const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, |
103 | const Epilog& epilog) |
104 | { |
105 | /* transform end points into ray space */ |
106 | vbool<M> valid = valid_i; |
107 | vfloat<M> depth_scale = pre.depth_scale[k]; |
108 | LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space[k]; |
109 | const Vec3vf<M> ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]); |
110 | const Vec3vf<M> ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]); |
111 | |
112 | const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); |
113 | const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); |
114 | |
115 | Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); |
116 | Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); |
117 | |
118 | /* approximative intersection with cone */ |
119 | const Vec4vf<M> v = p1-p0; |
120 | const Vec4vf<M> w = -p0; |
121 | const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); |
122 | const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); |
123 | const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); |
124 | const Vec4vf<M> p = madd(u,v,p0); |
125 | const vfloat<M> t = p.z; |
126 | const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); |
127 | const vfloat<M> r = p.w; |
128 | const vfloat<M> r2 = r*r; |
129 | valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()[k]) <= t) & (t <= vfloat<M>(ray.tfar[k])); |
130 | if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) |
131 | valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections |
132 | if (unlikely(none(valid))) return false; |
133 | |
134 | /* ignore denormalized segments */ |
135 | const Vec3vf<M> T = v1.xyz()-v0.xyz(); |
136 | valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); |
137 | if (unlikely(none(valid))) return false; |
138 | |
139 | /* update hit information */ |
140 | LineIntersectorHitM<M> hit(u,zero,t,T); |
141 | return epilog(valid,hit); |
142 | } |
143 | }; |
144 | } |
145 | } |
146 | |