| 1 | // Copyright 2009-2021 Intel Corporation | 
| 2 | // SPDX-License-Identifier: Apache-2.0 | 
| 3 |  | 
| 4 | #pragma once | 
| 5 |  | 
| 6 | #include "../common/ray.h" | 
| 7 | #include "curve_intersector_precalculations.h" | 
| 8 |  | 
| 9 | namespace embree | 
| 10 | { | 
| 11 |   namespace isa | 
| 12 |   { | 
| 13 |     template<int M> | 
| 14 |       struct LineIntersectorHitM | 
| 15 |       { | 
| 16 |         __forceinline LineIntersectorHitM() {} | 
| 17 |  | 
| 18 |         __forceinline LineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng) | 
| 19 |           : vu(u), vv(v), vt(t), vNg(Ng) {} | 
| 20 |          | 
| 21 |         __forceinline void finalize() {} | 
| 22 |          | 
| 23 |         __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } | 
| 24 |         __forceinline float t  (const size_t i) const { return vt[i]; } | 
| 25 |         __forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); } | 
| 26 |  | 
| 27 |         __forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); } | 
| 28 |         __forceinline vfloat<M> t () const { return vt; } | 
| 29 |         __forceinline Vec3vf<M> Ng() const { return vNg; } | 
| 30 |          | 
| 31 |       public: | 
| 32 |         vfloat<M> vu; | 
| 33 |         vfloat<M> vv; | 
| 34 |         vfloat<M> vt; | 
| 35 |         Vec3vf<M> vNg; | 
| 36 |       }; | 
| 37 |      | 
| 38 |     template<int M> | 
| 39 |       struct FlatLinearCurveIntersector1 | 
| 40 |       { | 
| 41 |         typedef CurvePrecalculations1 Precalculations; | 
| 42 |          | 
| 43 |         template<typename Ray, typename Epilog> | 
| 44 |         static __forceinline bool intersect(const vbool<M>& valid_i, | 
| 45 |                                             Ray& ray, | 
| 46 |                                             IntersectContext* context, | 
| 47 |                                             const LineSegments* geom, | 
| 48 |                                             const Precalculations& pre, | 
| 49 |                                             const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, | 
| 50 |                                             const Epilog& epilog) | 
| 51 |         { | 
| 52 |           /* transform end points into ray space */ | 
| 53 |           vbool<M> valid = valid_i; | 
| 54 |           vfloat<M> depth_scale = pre.depth_scale; | 
| 55 |           LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space; | 
| 56 |  | 
| 57 |           const Vec3vf<M> ray_org ((Vec3fa)ray.org); | 
| 58 |           const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); | 
| 59 |           const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); | 
| 60 |            | 
| 61 |           Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); | 
| 62 |           Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); | 
| 63 |            | 
| 64 |           /* approximative intersection with cone */ | 
| 65 |           const Vec4vf<M> v = p1-p0; | 
| 66 |           const Vec4vf<M> w = -p0; | 
| 67 |           const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); | 
| 68 |           const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); | 
| 69 |           const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); | 
| 70 |           const Vec4vf<M> p = madd(u,v,p0); | 
| 71 |           const vfloat<M> t = p.z; | 
| 72 |           const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); | 
| 73 |           const vfloat<M> r = p.w; | 
| 74 |           const vfloat<M> r2 = r*r; | 
| 75 |           valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()) <= t) & (t <= vfloat<M>(ray.tfar)); | 
| 76 |           if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f)  | 
| 77 |             valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections | 
| 78 |           if (unlikely(none(valid))) return false; | 
| 79 |            | 
| 80 |           /* ignore denormalized segments */ | 
| 81 |           const Vec3vf<M> T = v1.xyz()-v0.xyz(); | 
| 82 |           valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); | 
| 83 |           if (unlikely(none(valid))) return false; | 
| 84 |            | 
| 85 |           /* update hit information */ | 
| 86 |           LineIntersectorHitM<M> hit(u,zero,t,T); | 
| 87 |           return epilog(valid,hit); | 
| 88 |         } | 
| 89 |       }; | 
| 90 |      | 
| 91 |     template<int M, int K> | 
| 92 |       struct FlatLinearCurveIntersectorK | 
| 93 |       { | 
| 94 |         typedef CurvePrecalculationsK<K> Precalculations; | 
| 95 |          | 
| 96 |         template<typename Epilog> | 
| 97 |         static __forceinline bool intersect(const vbool<M>& valid_i, | 
| 98 |                                             RayK<K>& ray, size_t k, | 
| 99 |                                             IntersectContext* context, | 
| 100 |                                             const LineSegments* geom, | 
| 101 |                                             const Precalculations& pre, | 
| 102 |                                             const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, | 
| 103 |                                             const Epilog& epilog) | 
| 104 |         { | 
| 105 |           /* transform end points into ray space */ | 
| 106 |           vbool<M> valid = valid_i; | 
| 107 |           vfloat<M> depth_scale = pre.depth_scale[k]; | 
| 108 |           LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space[k]; | 
| 109 |           const Vec3vf<M> ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]); | 
| 110 |           const Vec3vf<M> ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]); | 
| 111 |  | 
| 112 |           const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); | 
| 113 |           const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); | 
| 114 |            | 
| 115 |           Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); | 
| 116 |           Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); | 
| 117 |            | 
| 118 |           /* approximative intersection with cone */ | 
| 119 |           const Vec4vf<M> v = p1-p0; | 
| 120 |           const Vec4vf<M> w = -p0; | 
| 121 |           const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); | 
| 122 |           const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); | 
| 123 |           const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); | 
| 124 |           const Vec4vf<M> p = madd(u,v,p0); | 
| 125 |           const vfloat<M> t = p.z; | 
| 126 |           const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); | 
| 127 |           const vfloat<M> r = p.w; | 
| 128 |           const vfloat<M> r2 = r*r; | 
| 129 |           valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()[k]) <= t) & (t <= vfloat<M>(ray.tfar[k])); | 
| 130 |           if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f)  | 
| 131 |             valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections | 
| 132 |           if (unlikely(none(valid))) return false; | 
| 133 |            | 
| 134 |           /* ignore denormalized segments */ | 
| 135 |           const Vec3vf<M> T = v1.xyz()-v0.xyz(); | 
| 136 |           valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); | 
| 137 |           if (unlikely(none(valid))) return false; | 
| 138 |            | 
| 139 |           /* update hit information */ | 
| 140 |           LineIntersectorHitM<M> hit(u,zero,t,T); | 
| 141 |           return epilog(valid,hit); | 
| 142 |         } | 
| 143 |       }; | 
| 144 |   } | 
| 145 | } | 
| 146 |  |