| 1 | // | 
| 2 | // Redistribution and use in source and binary forms, with or without | 
| 3 | // modification, are permitted provided that the following conditions | 
| 4 | // are met: | 
| 5 | //  * Redistributions of source code must retain the above copyright | 
| 6 | //    notice, this list of conditions and the following disclaimer. | 
| 7 | //  * Redistributions in binary form must reproduce the above copyright | 
| 8 | //    notice, this list of conditions and the following disclaimer in the | 
| 9 | //    documentation and/or other materials provided with the distribution. | 
| 10 | //  * Neither the name of NVIDIA CORPORATION nor the names of its | 
| 11 | //    contributors may be used to endorse or promote products derived | 
| 12 | //    from this software without specific prior written permission. | 
| 13 | // | 
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY | 
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 17 | // PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 25 | // | 
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. | 
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. | 
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. | 
| 29 |  | 
| 30 | #ifndef PXFOUNDATION_PXPLANE_H | 
| 31 | #define PXFOUNDATION_PXPLANE_H | 
| 32 |  | 
| 33 | /** \addtogroup foundation | 
| 34 | @{ | 
| 35 | */ | 
| 36 |  | 
| 37 | #include "foundation/PxMath.h" | 
| 38 | #include "foundation/PxVec3.h" | 
| 39 |  | 
| 40 | #if !PX_DOXYGEN | 
| 41 | namespace physx | 
| 42 | { | 
| 43 | #endif | 
| 44 |  | 
| 45 | /** | 
| 46 | \brief Representation of a plane. | 
| 47 |  | 
| 48 |  Plane equation used: n.dot(v) + d = 0 | 
| 49 | */ | 
| 50 | class PxPlane | 
| 51 | { | 
| 52 |   public: | 
| 53 | 	/** | 
| 54 | 	\brief Constructor | 
| 55 | 	*/ | 
| 56 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane() | 
| 57 | 	{ | 
| 58 | 	} | 
| 59 |  | 
| 60 | 	/** | 
| 61 | 	\brief Constructor from a normal and a distance | 
| 62 | 	*/ | 
| 63 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(float nx, float ny, float nz, float distance) : n(nx, ny, nz), d(distance) | 
| 64 | 	{ | 
| 65 | 	} | 
| 66 |  | 
| 67 | 	/** | 
| 68 | 	\brief Constructor from a normal and a distance | 
| 69 | 	*/ | 
| 70 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& normal, float distance) : n(normal), d(distance) | 
| 71 | 	{ | 
| 72 | 	} | 
| 73 |  | 
| 74 | 	/** | 
| 75 | 	\brief Constructor from a point on the plane and a normal | 
| 76 | 	*/ | 
| 77 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& point, const PxVec3& normal) | 
| 78 | 	: n(normal), d(-point.dot(v: n)) // p satisfies normal.dot(p) + d = 0 | 
| 79 | 	{ | 
| 80 | 	} | 
| 81 |  | 
| 82 | 	/** | 
| 83 | 	\brief Constructor from three points | 
| 84 | 	*/ | 
| 85 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxPlane(const PxVec3& p0, const PxVec3& p1, const PxVec3& p2) | 
| 86 | 	{ | 
| 87 | 		n = (p1 - p0).cross(v: p2 - p0).getNormalized(); | 
| 88 | 		d = -p0.dot(v: n); | 
| 89 | 	} | 
| 90 |  | 
| 91 | 	/** | 
| 92 | 	\brief returns true if the two planes are exactly equal | 
| 93 | 	*/ | 
| 94 | 	PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxPlane& p) const | 
| 95 | 	{ | 
| 96 | 		return n == p.n && d == p.d; | 
| 97 | 	} | 
| 98 |  | 
| 99 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float distance(const PxVec3& p) const | 
| 100 | 	{ | 
| 101 | 		return p.dot(v: n) + d; | 
| 102 | 	} | 
| 103 |  | 
| 104 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE bool contains(const PxVec3& p) const | 
| 105 | 	{ | 
| 106 | 		return PxAbs(a: distance(p)) < (1.0e-7f); | 
| 107 | 	} | 
| 108 |  | 
| 109 | 	/** | 
| 110 | 	\brief projects p into the plane | 
| 111 | 	*/ | 
| 112 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 project(const PxVec3& p) const | 
| 113 | 	{ | 
| 114 | 		return p - n * distance(p); | 
| 115 | 	} | 
| 116 |  | 
| 117 | 	/** | 
| 118 | 	\brief find an arbitrary point in the plane | 
| 119 | 	*/ | 
| 120 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 pointInPlane() const | 
| 121 | 	{ | 
| 122 | 		return -n * d; | 
| 123 | 	} | 
| 124 |  | 
| 125 | 	/** | 
| 126 | 	\brief equivalent plane with unit normal | 
| 127 | 	*/ | 
| 128 |  | 
| 129 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE void normalize() | 
| 130 | 	{ | 
| 131 | 		float denom = 1.0f / n.magnitude(); | 
| 132 | 		n *= denom; | 
| 133 | 		d *= denom; | 
| 134 | 	} | 
| 135 |  | 
| 136 | 	PxVec3 n; //!< The normal to the plane | 
| 137 | 	float d;  //!< The distance from the origin | 
| 138 | }; | 
| 139 |  | 
| 140 | #if !PX_DOXYGEN | 
| 141 | } // namespace physx | 
| 142 | #endif | 
| 143 |  | 
| 144 | /** @} */ | 
| 145 | #endif // #ifndef PXFOUNDATION_PXPLANE_H | 
| 146 |  |