1//
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions
4// are met:
5// * Redistributions of source code must retain the above copyright
6// notice, this list of conditions and the following disclaimer.
7// * Redistributions in binary form must reproduce the above copyright
8// notice, this list of conditions and the following disclaimer in the
9// documentation and/or other materials provided with the distribution.
10// * Neither the name of NVIDIA CORPORATION nor the names of its
11// contributors may be used to endorse or promote products derived
12// from this software without specific prior written permission.
13//
14// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
15// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25//
26// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
27// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
28// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
29
30#ifndef PXFOUNDATION_PXVEC3_H
31#define PXFOUNDATION_PXVEC3_H
32
33/** \addtogroup foundation
34@{
35*/
36
37#include "foundation/PxMath.h"
38
39#if !PX_DOXYGEN
40namespace physx
41{
42#endif
43
44/**
45\brief 3 Element vector class.
46
47This is a 3-dimensional vector class with public data members.
48*/
49class PxVec3
50{
51 public:
52 /**
53 \brief default constructor leaves data uninitialized.
54 */
55 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3()
56 {
57 }
58
59 /**
60 \brief zero constructor.
61 */
62 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxZERO r) : x(0.0f), y(0.0f), z(0.0f)
63 {
64 PX_UNUSED(r);
65 }
66
67 /**
68 \brief Assigns scalar parameter to all elements.
69
70 Useful to initialize to zero or one.
71
72 \param[in] a Value to assign to elements.
73 */
74 explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float a) : x(a), y(a), z(a)
75 {
76 }
77
78 /**
79 \brief Initializes from 3 scalar parameters.
80
81 \param[in] nx Value to initialize X component.
82 \param[in] ny Value to initialize Y component.
83 \param[in] nz Value to initialize Z component.
84 */
85 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float nx, float ny, float nz) : x(nx), y(ny), z(nz)
86 {
87 }
88
89 /**
90 \brief Copy ctor.
91 */
92 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(const PxVec3& v) : x(v.x), y(v.y), z(v.z)
93 {
94 }
95
96 // Operators
97
98 /**
99 \brief Assignment operator
100 */
101 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator=(const PxVec3& p)
102 {
103 x = p.x;
104 y = p.y;
105 z = p.z;
106 return *this;
107 }
108
109 /**
110 \brief element access
111 */
112 PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](unsigned int index)
113 {
114 PX_SHARED_ASSERT(index <= 2);
115
116 return reinterpret_cast<float*>(this)[index];
117 }
118
119 /**
120 \brief element access
121 */
122 PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](unsigned int index) const
123 {
124 PX_SHARED_ASSERT(index <= 2);
125
126 return reinterpret_cast<const float*>(this)[index];
127 }
128
129 /**
130 \brief returns true if the two vectors are exactly equal.
131 */
132 PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec3& v) const
133 {
134 return x == v.x && y == v.y && z == v.z;
135 }
136
137 /**
138 \brief returns true if the two vectors are not exactly equal.
139 */
140 PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec3& v) const
141 {
142 return x != v.x || y != v.y || z != v.z;
143 }
144
145 /**
146 \brief tests for exact zero vector
147 */
148 PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const
149 {
150 return x == 0.0f && y == 0.0f && z == 0.0f;
151 }
152
153 /**
154 \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.)
155 */
156 PX_CUDA_CALLABLE PX_INLINE bool isFinite() const
157 {
158 return PxIsFinite(f: x) && PxIsFinite(f: y) && PxIsFinite(f: z);
159 }
160
161 /**
162 \brief is normalized - used by API parameter validation
163 */
164 PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const
165 {
166 const float unitTolerance = 1e-4f;
167 return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance;
168 }
169
170 /**
171 \brief returns the squared magnitude
172
173 Avoids calling PxSqrt()!
174 */
175 PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const
176 {
177 return x * x + y * y + z * z;
178 }
179
180 /**
181 \brief returns the magnitude
182 */
183 PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const
184 {
185 return PxSqrt(a: magnitudeSquared());
186 }
187
188 /**
189 \brief negation
190 */
191 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-() const
192 {
193 return PxVec3(-x, -y, -z);
194 }
195
196 /**
197 \brief vector addition
198 */
199 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator+(const PxVec3& v) const
200 {
201 return PxVec3(x + v.x, y + v.y, z + v.z);
202 }
203
204 /**
205 \brief vector difference
206 */
207 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-(const PxVec3& v) const
208 {
209 return PxVec3(x - v.x, y - v.y, z - v.z);
210 }
211
212 /**
213 \brief scalar post-multiplication
214 */
215 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator*(float f) const
216 {
217 return PxVec3(x * f, y * f, z * f);
218 }
219
220 /**
221 \brief scalar division
222 */
223 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator/(float f) const
224 {
225 f = 1.0f / f;
226 return PxVec3(x * f, y * f, z * f);
227 }
228
229 /**
230 \brief vector addition
231 */
232 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator+=(const PxVec3& v)
233 {
234 x += v.x;
235 y += v.y;
236 z += v.z;
237 return *this;
238 }
239
240 /**
241 \brief vector difference
242 */
243 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator-=(const PxVec3& v)
244 {
245 x -= v.x;
246 y -= v.y;
247 z -= v.z;
248 return *this;
249 }
250
251 /**
252 \brief scalar multiplication
253 */
254 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator*=(float f)
255 {
256 x *= f;
257 y *= f;
258 z *= f;
259 return *this;
260 }
261 /**
262 \brief scalar division
263 */
264 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator/=(float f)
265 {
266 f = 1.0f / f;
267 x *= f;
268 y *= f;
269 z *= f;
270 return *this;
271 }
272
273 /**
274 \brief returns the scalar product of this and other.
275 */
276 PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec3& v) const
277 {
278 return x * v.x + y * v.y + z * v.z;
279 }
280
281 /**
282 \brief cross product
283 */
284 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 cross(const PxVec3& v) const
285 {
286 return PxVec3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
287 }
288
289 /** return a unit vector */
290
291 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getNormalized() const
292 {
293 const float m = magnitudeSquared();
294 return m > 0.0f ? *this * PxRecipSqrt(a: m) : PxVec3(0, 0, 0);
295 }
296
297 /**
298 \brief normalizes the vector in place
299 */
300 PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize()
301 {
302 const float m = magnitude();
303 if(m > 0.0f)
304 *this /= m;
305 return m;
306 }
307
308 /**
309 \brief normalizes the vector in place. Does nothing if vector magnitude is under PX_NORMALIZATION_EPSILON.
310 Returns vector magnitude if >= PX_NORMALIZATION_EPSILON and 0.0f otherwise.
311 */
312 PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeSafe()
313 {
314 const float mag = magnitude();
315 if(mag < PX_NORMALIZATION_EPSILON)
316 return 0.0f;
317 *this *= 1.0f / mag;
318 return mag;
319 }
320
321 /**
322 \brief normalizes the vector in place. Asserts if vector magnitude is under PX_NORMALIZATION_EPSILON.
323 returns vector magnitude.
324 */
325 PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeFast()
326 {
327 const float mag = magnitude();
328 PX_SHARED_ASSERT(mag >= PX_NORMALIZATION_EPSILON);
329 *this *= 1.0f / mag;
330 return mag;
331 }
332
333 /**
334 \brief a[i] * b[i], for all i.
335 */
336 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 multiply(const PxVec3& a) const
337 {
338 return PxVec3(x * a.x, y * a.y, z * a.z);
339 }
340
341 /**
342 \brief element-wise minimum
343 */
344 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 minimum(const PxVec3& v) const
345 {
346 return PxVec3(PxMin(a: x, b: v.x), PxMin(a: y, b: v.y), PxMin(a: z, b: v.z));
347 }
348
349 /**
350 \brief returns MIN(x, y, z);
351 */
352 PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const
353 {
354 return PxMin(a: x, b: PxMin(a: y, b: z));
355 }
356
357 /**
358 \brief element-wise maximum
359 */
360 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 maximum(const PxVec3& v) const
361 {
362 return PxVec3(PxMax(a: x, b: v.x), PxMax(a: y, b: v.y), PxMax(a: z, b: v.z));
363 }
364
365 /**
366 \brief returns MAX(x, y, z);
367 */
368 PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const
369 {
370 return PxMax(a: x, b: PxMax(a: y, b: z));
371 }
372
373 /**
374 \brief returns absolute values of components;
375 */
376 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 abs() const
377 {
378 return PxVec3(PxAbs(a: x), PxAbs(a: y), PxAbs(a: z));
379 }
380
381 float x, y, z;
382};
383
384PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec3 operator*(float f, const PxVec3& v)
385{
386 return PxVec3(f * v.x, f * v.y, f * v.z);
387}
388
389#if !PX_DOXYGEN
390} // namespace physx
391#endif
392
393/** @} */
394#endif // #ifndef PXFOUNDATION_PXVEC3_H
395

source code of qtquick3dphysics/src/3rdparty/PhysX/pxshared/include/foundation/PxVec3.h