| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #ifndef PXFOUNDATION_PXVEC3_H |
| 31 | #define PXFOUNDATION_PXVEC3_H |
| 32 | |
| 33 | /** \addtogroup foundation |
| 34 | @{ |
| 35 | */ |
| 36 | |
| 37 | #include "foundation/PxMath.h" |
| 38 | |
| 39 | #if !PX_DOXYGEN |
| 40 | namespace physx |
| 41 | { |
| 42 | #endif |
| 43 | |
| 44 | /** |
| 45 | \brief 3 Element vector class. |
| 46 | |
| 47 | This is a 3-dimensional vector class with public data members. |
| 48 | */ |
| 49 | class PxVec3 |
| 50 | { |
| 51 | public: |
| 52 | /** |
| 53 | \brief default constructor leaves data uninitialized. |
| 54 | */ |
| 55 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3() |
| 56 | { |
| 57 | } |
| 58 | |
| 59 | /** |
| 60 | \brief zero constructor. |
| 61 | */ |
| 62 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxZERO r) : x(0.0f), y(0.0f), z(0.0f) |
| 63 | { |
| 64 | PX_UNUSED(r); |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | \brief Assigns scalar parameter to all elements. |
| 69 | |
| 70 | Useful to initialize to zero or one. |
| 71 | |
| 72 | \param[in] a Value to assign to elements. |
| 73 | */ |
| 74 | explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float a) : x(a), y(a), z(a) |
| 75 | { |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | \brief Initializes from 3 scalar parameters. |
| 80 | |
| 81 | \param[in] nx Value to initialize X component. |
| 82 | \param[in] ny Value to initialize Y component. |
| 83 | \param[in] nz Value to initialize Z component. |
| 84 | */ |
| 85 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float nx, float ny, float nz) : x(nx), y(ny), z(nz) |
| 86 | { |
| 87 | } |
| 88 | |
| 89 | /** |
| 90 | \brief Copy ctor. |
| 91 | */ |
| 92 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(const PxVec3& v) : x(v.x), y(v.y), z(v.z) |
| 93 | { |
| 94 | } |
| 95 | |
| 96 | // Operators |
| 97 | |
| 98 | /** |
| 99 | \brief Assignment operator |
| 100 | */ |
| 101 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator=(const PxVec3& p) |
| 102 | { |
| 103 | x = p.x; |
| 104 | y = p.y; |
| 105 | z = p.z; |
| 106 | return *this; |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | \brief element access |
| 111 | */ |
| 112 | PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](unsigned int index) |
| 113 | { |
| 114 | PX_SHARED_ASSERT(index <= 2); |
| 115 | |
| 116 | return reinterpret_cast<float*>(this)[index]; |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | \brief element access |
| 121 | */ |
| 122 | PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](unsigned int index) const |
| 123 | { |
| 124 | PX_SHARED_ASSERT(index <= 2); |
| 125 | |
| 126 | return reinterpret_cast<const float*>(this)[index]; |
| 127 | } |
| 128 | |
| 129 | /** |
| 130 | \brief returns true if the two vectors are exactly equal. |
| 131 | */ |
| 132 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec3& v) const |
| 133 | { |
| 134 | return x == v.x && y == v.y && z == v.z; |
| 135 | } |
| 136 | |
| 137 | /** |
| 138 | \brief returns true if the two vectors are not exactly equal. |
| 139 | */ |
| 140 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec3& v) const |
| 141 | { |
| 142 | return x != v.x || y != v.y || z != v.z; |
| 143 | } |
| 144 | |
| 145 | /** |
| 146 | \brief tests for exact zero vector |
| 147 | */ |
| 148 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const |
| 149 | { |
| 150 | return x == 0.0f && y == 0.0f && z == 0.0f; |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.) |
| 155 | */ |
| 156 | PX_CUDA_CALLABLE PX_INLINE bool isFinite() const |
| 157 | { |
| 158 | return PxIsFinite(f: x) && PxIsFinite(f: y) && PxIsFinite(f: z); |
| 159 | } |
| 160 | |
| 161 | /** |
| 162 | \brief is normalized - used by API parameter validation |
| 163 | */ |
| 164 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const |
| 165 | { |
| 166 | const float unitTolerance = 1e-4f; |
| 167 | return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance; |
| 168 | } |
| 169 | |
| 170 | /** |
| 171 | \brief returns the squared magnitude |
| 172 | |
| 173 | Avoids calling PxSqrt()! |
| 174 | */ |
| 175 | PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const |
| 176 | { |
| 177 | return x * x + y * y + z * z; |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | \brief returns the magnitude |
| 182 | */ |
| 183 | PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const |
| 184 | { |
| 185 | return PxSqrt(a: magnitudeSquared()); |
| 186 | } |
| 187 | |
| 188 | /** |
| 189 | \brief negation |
| 190 | */ |
| 191 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-() const |
| 192 | { |
| 193 | return PxVec3(-x, -y, -z); |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | \brief vector addition |
| 198 | */ |
| 199 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator+(const PxVec3& v) const |
| 200 | { |
| 201 | return PxVec3(x + v.x, y + v.y, z + v.z); |
| 202 | } |
| 203 | |
| 204 | /** |
| 205 | \brief vector difference |
| 206 | */ |
| 207 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-(const PxVec3& v) const |
| 208 | { |
| 209 | return PxVec3(x - v.x, y - v.y, z - v.z); |
| 210 | } |
| 211 | |
| 212 | /** |
| 213 | \brief scalar post-multiplication |
| 214 | */ |
| 215 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator*(float f) const |
| 216 | { |
| 217 | return PxVec3(x * f, y * f, z * f); |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | \brief scalar division |
| 222 | */ |
| 223 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator/(float f) const |
| 224 | { |
| 225 | f = 1.0f / f; |
| 226 | return PxVec3(x * f, y * f, z * f); |
| 227 | } |
| 228 | |
| 229 | /** |
| 230 | \brief vector addition |
| 231 | */ |
| 232 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator+=(const PxVec3& v) |
| 233 | { |
| 234 | x += v.x; |
| 235 | y += v.y; |
| 236 | z += v.z; |
| 237 | return *this; |
| 238 | } |
| 239 | |
| 240 | /** |
| 241 | \brief vector difference |
| 242 | */ |
| 243 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator-=(const PxVec3& v) |
| 244 | { |
| 245 | x -= v.x; |
| 246 | y -= v.y; |
| 247 | z -= v.z; |
| 248 | return *this; |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | \brief scalar multiplication |
| 253 | */ |
| 254 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator*=(float f) |
| 255 | { |
| 256 | x *= f; |
| 257 | y *= f; |
| 258 | z *= f; |
| 259 | return *this; |
| 260 | } |
| 261 | /** |
| 262 | \brief scalar division |
| 263 | */ |
| 264 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator/=(float f) |
| 265 | { |
| 266 | f = 1.0f / f; |
| 267 | x *= f; |
| 268 | y *= f; |
| 269 | z *= f; |
| 270 | return *this; |
| 271 | } |
| 272 | |
| 273 | /** |
| 274 | \brief returns the scalar product of this and other. |
| 275 | */ |
| 276 | PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec3& v) const |
| 277 | { |
| 278 | return x * v.x + y * v.y + z * v.z; |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | \brief cross product |
| 283 | */ |
| 284 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 cross(const PxVec3& v) const |
| 285 | { |
| 286 | return PxVec3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x); |
| 287 | } |
| 288 | |
| 289 | /** return a unit vector */ |
| 290 | |
| 291 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getNormalized() const |
| 292 | { |
| 293 | const float m = magnitudeSquared(); |
| 294 | return m > 0.0f ? *this * PxRecipSqrt(a: m) : PxVec3(0, 0, 0); |
| 295 | } |
| 296 | |
| 297 | /** |
| 298 | \brief normalizes the vector in place |
| 299 | */ |
| 300 | PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize() |
| 301 | { |
| 302 | const float m = magnitude(); |
| 303 | if(m > 0.0f) |
| 304 | *this /= m; |
| 305 | return m; |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | \brief normalizes the vector in place. Does nothing if vector magnitude is under PX_NORMALIZATION_EPSILON. |
| 310 | Returns vector magnitude if >= PX_NORMALIZATION_EPSILON and 0.0f otherwise. |
| 311 | */ |
| 312 | PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeSafe() |
| 313 | { |
| 314 | const float mag = magnitude(); |
| 315 | if(mag < PX_NORMALIZATION_EPSILON) |
| 316 | return 0.0f; |
| 317 | *this *= 1.0f / mag; |
| 318 | return mag; |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | \brief normalizes the vector in place. Asserts if vector magnitude is under PX_NORMALIZATION_EPSILON. |
| 323 | returns vector magnitude. |
| 324 | */ |
| 325 | PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeFast() |
| 326 | { |
| 327 | const float mag = magnitude(); |
| 328 | PX_SHARED_ASSERT(mag >= PX_NORMALIZATION_EPSILON); |
| 329 | *this *= 1.0f / mag; |
| 330 | return mag; |
| 331 | } |
| 332 | |
| 333 | /** |
| 334 | \brief a[i] * b[i], for all i. |
| 335 | */ |
| 336 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 multiply(const PxVec3& a) const |
| 337 | { |
| 338 | return PxVec3(x * a.x, y * a.y, z * a.z); |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | \brief element-wise minimum |
| 343 | */ |
| 344 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 minimum(const PxVec3& v) const |
| 345 | { |
| 346 | return PxVec3(PxMin(a: x, b: v.x), PxMin(a: y, b: v.y), PxMin(a: z, b: v.z)); |
| 347 | } |
| 348 | |
| 349 | /** |
| 350 | \brief returns MIN(x, y, z); |
| 351 | */ |
| 352 | PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const |
| 353 | { |
| 354 | return PxMin(a: x, b: PxMin(a: y, b: z)); |
| 355 | } |
| 356 | |
| 357 | /** |
| 358 | \brief element-wise maximum |
| 359 | */ |
| 360 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 maximum(const PxVec3& v) const |
| 361 | { |
| 362 | return PxVec3(PxMax(a: x, b: v.x), PxMax(a: y, b: v.y), PxMax(a: z, b: v.z)); |
| 363 | } |
| 364 | |
| 365 | /** |
| 366 | \brief returns MAX(x, y, z); |
| 367 | */ |
| 368 | PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const |
| 369 | { |
| 370 | return PxMax(a: x, b: PxMax(a: y, b: z)); |
| 371 | } |
| 372 | |
| 373 | /** |
| 374 | \brief returns absolute values of components; |
| 375 | */ |
| 376 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 abs() const |
| 377 | { |
| 378 | return PxVec3(PxAbs(a: x), PxAbs(a: y), PxAbs(a: z)); |
| 379 | } |
| 380 | |
| 381 | float x, y, z; |
| 382 | }; |
| 383 | |
| 384 | PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec3 operator*(float f, const PxVec3& v) |
| 385 | { |
| 386 | return PxVec3(f * v.x, f * v.y, f * v.z); |
| 387 | } |
| 388 | |
| 389 | #if !PX_DOXYGEN |
| 390 | } // namespace physx |
| 391 | #endif |
| 392 | |
| 393 | /** @} */ |
| 394 | #endif // #ifndef PXFOUNDATION_PXVEC3_H |
| 395 | |