| 1 | // | 
| 2 | // Redistribution and use in source and binary forms, with or without | 
| 3 | // modification, are permitted provided that the following conditions | 
| 4 | // are met: | 
| 5 | //  * Redistributions of source code must retain the above copyright | 
| 6 | //    notice, this list of conditions and the following disclaimer. | 
| 7 | //  * Redistributions in binary form must reproduce the above copyright | 
| 8 | //    notice, this list of conditions and the following disclaimer in the | 
| 9 | //    documentation and/or other materials provided with the distribution. | 
| 10 | //  * Neither the name of NVIDIA CORPORATION nor the names of its | 
| 11 | //    contributors may be used to endorse or promote products derived | 
| 12 | //    from this software without specific prior written permission. | 
| 13 | // | 
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY | 
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 17 | // PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 25 | // | 
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. | 
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. | 
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. | 
| 29 |  | 
| 30 | #ifndef PXFOUNDATION_PXVEC2_H | 
| 31 | #define PXFOUNDATION_PXVEC2_H | 
| 32 |  | 
| 33 | /** \addtogroup foundation | 
| 34 | @{ | 
| 35 | */ | 
| 36 |  | 
| 37 | #include "foundation/PxMath.h" | 
| 38 |  | 
| 39 | #if !PX_DOXYGEN | 
| 40 | namespace physx | 
| 41 | { | 
| 42 | #endif | 
| 43 |  | 
| 44 | /** | 
| 45 | \brief 2 Element vector class. | 
| 46 |  | 
| 47 | This is a 2-dimensional vector class with public data members. | 
| 48 | */ | 
| 49 | class PxVec2 | 
| 50 | { | 
| 51 |   public: | 
| 52 | 	/** | 
| 53 | 	\brief default constructor leaves data uninitialized. | 
| 54 | 	*/ | 
| 55 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2() | 
| 56 | 	{ | 
| 57 | 	} | 
| 58 |  | 
| 59 | 	/** | 
| 60 | 	\brief zero constructor. | 
| 61 | 	*/ | 
| 62 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(PxZERO r) : x(0.0f), y(0.0f) | 
| 63 | 	{ | 
| 64 | 		PX_UNUSED(r); | 
| 65 | 	} | 
| 66 |  | 
| 67 | 	/** | 
| 68 | 	\brief Assigns scalar parameter to all elements. | 
| 69 |  | 
| 70 | 	Useful to initialize to zero or one. | 
| 71 |  | 
| 72 | 	\param[in] a Value to assign to elements. | 
| 73 | 	*/ | 
| 74 | 	explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(float a) : x(a), y(a) | 
| 75 | 	{ | 
| 76 | 	} | 
| 77 |  | 
| 78 | 	/** | 
| 79 | 	\brief Initializes from 2 scalar parameters. | 
| 80 |  | 
| 81 | 	\param[in] nx Value to initialize X component. | 
| 82 | 	\param[in] ny Value to initialize Y component. | 
| 83 | 	*/ | 
| 84 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(float nx, float ny) : x(nx), y(ny) | 
| 85 | 	{ | 
| 86 | 	} | 
| 87 |  | 
| 88 | 	/** | 
| 89 | 	\brief Copy ctor. | 
| 90 | 	*/ | 
| 91 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(const PxVec2& v) : x(v.x), y(v.y) | 
| 92 | 	{ | 
| 93 | 	} | 
| 94 |  | 
| 95 | 	// Operators | 
| 96 |  | 
| 97 | 	/** | 
| 98 | 	\brief Assignment operator | 
| 99 | 	*/ | 
| 100 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator=(const PxVec2& p) | 
| 101 | 	{ | 
| 102 | 		x = p.x; | 
| 103 | 		y = p.y; | 
| 104 | 		return *this; | 
| 105 | 	} | 
| 106 |  | 
| 107 | 	/** | 
| 108 | 	\brief element access | 
| 109 | 	*/ | 
| 110 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](int index) | 
| 111 | 	{ | 
| 112 | 		PX_SHARED_ASSERT(index >= 0 && index <= 1); | 
| 113 |  | 
| 114 | 		return reinterpret_cast<float*>(this)[index]; | 
| 115 | 	} | 
| 116 |  | 
| 117 | 	/** | 
| 118 | 	\brief element access | 
| 119 | 	*/ | 
| 120 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](int index) const | 
| 121 | 	{ | 
| 122 | 		PX_SHARED_ASSERT(index >= 0 && index <= 1); | 
| 123 |  | 
| 124 | 		return reinterpret_cast<const float*>(this)[index]; | 
| 125 | 	} | 
| 126 |  | 
| 127 | 	/** | 
| 128 | 	\brief returns true if the two vectors are exactly equal. | 
| 129 | 	*/ | 
| 130 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec2& v) const | 
| 131 | 	{ | 
| 132 | 		return x == v.x && y == v.y; | 
| 133 | 	} | 
| 134 |  | 
| 135 | 	/** | 
| 136 | 	\brief returns true if the two vectors are not exactly equal. | 
| 137 | 	*/ | 
| 138 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec2& v) const | 
| 139 | 	{ | 
| 140 | 		return x != v.x || y != v.y; | 
| 141 | 	} | 
| 142 |  | 
| 143 | 	/** | 
| 144 | 	\brief tests for exact zero vector | 
| 145 | 	*/ | 
| 146 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const | 
| 147 | 	{ | 
| 148 | 		return x == 0.0f && y == 0.0f; | 
| 149 | 	} | 
| 150 |  | 
| 151 | 	/** | 
| 152 | 	\brief returns true if all 2 elems of the vector are finite (not NAN or INF, etc.) | 
| 153 | 	*/ | 
| 154 | 	PX_CUDA_CALLABLE PX_INLINE bool isFinite() const | 
| 155 | 	{ | 
| 156 | 		return PxIsFinite(f: x) && PxIsFinite(f: y); | 
| 157 | 	} | 
| 158 |  | 
| 159 | 	/** | 
| 160 | 	\brief is normalized - used by API parameter validation | 
| 161 | 	*/ | 
| 162 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const | 
| 163 | 	{ | 
| 164 | 		const float unitTolerance = 1e-4f; | 
| 165 | 		return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance; | 
| 166 | 	} | 
| 167 |  | 
| 168 | 	/** | 
| 169 | 	\brief returns the squared magnitude | 
| 170 |  | 
| 171 | 	Avoids calling PxSqrt()! | 
| 172 | 	*/ | 
| 173 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const | 
| 174 | 	{ | 
| 175 | 		return x * x + y * y; | 
| 176 | 	} | 
| 177 |  | 
| 178 | 	/** | 
| 179 | 	\brief returns the magnitude | 
| 180 | 	*/ | 
| 181 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const | 
| 182 | 	{ | 
| 183 | 		return PxSqrt(a: magnitudeSquared()); | 
| 184 | 	} | 
| 185 |  | 
| 186 | 	/** | 
| 187 | 	\brief negation | 
| 188 | 	*/ | 
| 189 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator-() const | 
| 190 | 	{ | 
| 191 | 		return PxVec2(-x, -y); | 
| 192 | 	} | 
| 193 |  | 
| 194 | 	/** | 
| 195 | 	\brief vector addition | 
| 196 | 	*/ | 
| 197 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator+(const PxVec2& v) const | 
| 198 | 	{ | 
| 199 | 		return PxVec2(x + v.x, y + v.y); | 
| 200 | 	} | 
| 201 |  | 
| 202 | 	/** | 
| 203 | 	\brief vector difference | 
| 204 | 	*/ | 
| 205 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator-(const PxVec2& v) const | 
| 206 | 	{ | 
| 207 | 		return PxVec2(x - v.x, y - v.y); | 
| 208 | 	} | 
| 209 |  | 
| 210 | 	/** | 
| 211 | 	\brief scalar post-multiplication | 
| 212 | 	*/ | 
| 213 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator*(float f) const | 
| 214 | 	{ | 
| 215 | 		return PxVec2(x * f, y * f); | 
| 216 | 	} | 
| 217 |  | 
| 218 | 	/** | 
| 219 | 	\brief scalar division | 
| 220 | 	*/ | 
| 221 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator/(float f) const | 
| 222 | 	{ | 
| 223 | 		f = 1.0f / f; // PT: inconsistent notation with operator /= | 
| 224 | 		return PxVec2(x * f, y * f); | 
| 225 | 	} | 
| 226 |  | 
| 227 | 	/** | 
| 228 | 	\brief vector addition | 
| 229 | 	*/ | 
| 230 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator+=(const PxVec2& v) | 
| 231 | 	{ | 
| 232 | 		x += v.x; | 
| 233 | 		y += v.y; | 
| 234 | 		return *this; | 
| 235 | 	} | 
| 236 |  | 
| 237 | 	/** | 
| 238 | 	\brief vector difference | 
| 239 | 	*/ | 
| 240 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator-=(const PxVec2& v) | 
| 241 | 	{ | 
| 242 | 		x -= v.x; | 
| 243 | 		y -= v.y; | 
| 244 | 		return *this; | 
| 245 | 	} | 
| 246 |  | 
| 247 | 	/** | 
| 248 | 	\brief scalar multiplication | 
| 249 | 	*/ | 
| 250 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator*=(float f) | 
| 251 | 	{ | 
| 252 | 		x *= f; | 
| 253 | 		y *= f; | 
| 254 | 		return *this; | 
| 255 | 	} | 
| 256 | 	/** | 
| 257 | 	\brief scalar division | 
| 258 | 	*/ | 
| 259 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator/=(float f) | 
| 260 | 	{ | 
| 261 | 		f = 1.0f / f; // PT: inconsistent notation with operator / | 
| 262 | 		x *= f; | 
| 263 | 		y *= f; | 
| 264 | 		return *this; | 
| 265 | 	} | 
| 266 |  | 
| 267 | 	/** | 
| 268 | 	\brief returns the scalar product of this and other. | 
| 269 | 	*/ | 
| 270 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec2& v) const | 
| 271 | 	{ | 
| 272 | 		return x * v.x + y * v.y; | 
| 273 | 	} | 
| 274 |  | 
| 275 | 	/** return a unit vector */ | 
| 276 |  | 
| 277 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 getNormalized() const | 
| 278 | 	{ | 
| 279 | 		const float m = magnitudeSquared(); | 
| 280 | 		return m > 0.0f ? *this * PxRecipSqrt(a: m) : PxVec2(0, 0); | 
| 281 | 	} | 
| 282 |  | 
| 283 | 	/** | 
| 284 | 	\brief normalizes the vector in place | 
| 285 | 	*/ | 
| 286 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize() | 
| 287 | 	{ | 
| 288 | 		const float m = magnitude(); | 
| 289 | 		if(m > 0.0f) | 
| 290 | 			*this /= m; | 
| 291 | 		return m; | 
| 292 | 	} | 
| 293 |  | 
| 294 | 	/** | 
| 295 | 	\brief a[i] * b[i], for all i. | 
| 296 | 	*/ | 
| 297 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 multiply(const PxVec2& a) const | 
| 298 | 	{ | 
| 299 | 		return PxVec2(x * a.x, y * a.y); | 
| 300 | 	} | 
| 301 |  | 
| 302 | 	/** | 
| 303 | 	\brief element-wise minimum | 
| 304 | 	*/ | 
| 305 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 minimum(const PxVec2& v) const | 
| 306 | 	{ | 
| 307 | 		return PxVec2(PxMin(a: x, b: v.x), PxMin(a: y, b: v.y)); | 
| 308 | 	} | 
| 309 |  | 
| 310 | 	/** | 
| 311 | 	\brief returns MIN(x, y); | 
| 312 | 	*/ | 
| 313 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const | 
| 314 | 	{ | 
| 315 | 		return PxMin(a: x, b: y); | 
| 316 | 	} | 
| 317 |  | 
| 318 | 	/** | 
| 319 | 	\brief element-wise maximum | 
| 320 | 	*/ | 
| 321 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 maximum(const PxVec2& v) const | 
| 322 | 	{ | 
| 323 | 		return PxVec2(PxMax(a: x, b: v.x), PxMax(a: y, b: v.y)); | 
| 324 | 	} | 
| 325 |  | 
| 326 | 	/** | 
| 327 | 	\brief returns MAX(x, y); | 
| 328 | 	*/ | 
| 329 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const | 
| 330 | 	{ | 
| 331 | 		return PxMax(a: x, b: y); | 
| 332 | 	} | 
| 333 |  | 
| 334 | 	float x, y; | 
| 335 | }; | 
| 336 |  | 
| 337 | PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec2 operator*(float f, const PxVec2& v) | 
| 338 | { | 
| 339 | 	return PxVec2(f * v.x, f * v.y); | 
| 340 | } | 
| 341 |  | 
| 342 | #if !PX_DOXYGEN | 
| 343 | } // namespace physx | 
| 344 | #endif | 
| 345 |  | 
| 346 | /** @} */ | 
| 347 | #endif // #ifndef PXFOUNDATION_PXVEC2_H | 
| 348 |  |