1 | // |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions |
4 | // are met: |
5 | // * Redistributions of source code must retain the above copyright |
6 | // notice, this list of conditions and the following disclaimer. |
7 | // * Redistributions in binary form must reproduce the above copyright |
8 | // notice, this list of conditions and the following disclaimer in the |
9 | // documentation and/or other materials provided with the distribution. |
10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
11 | // contributors may be used to endorse or promote products derived |
12 | // from this software without specific prior written permission. |
13 | // |
14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | // |
26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
29 | |
30 | #ifndef PSFOUNDATION_PSHASHINTERNALS_H |
31 | #define PSFOUNDATION_PSHASHINTERNALS_H |
32 | |
33 | #include "PsBasicTemplates.h" |
34 | #include "PsArray.h" |
35 | #include "PsBitUtils.h" |
36 | #include "PsHash.h" |
37 | #include "foundation/PxIntrinsics.h" |
38 | |
39 | #if PX_VC |
40 | #pragma warning(push) |
41 | #pragma warning(disable : 4127) // conditional expression is constant |
42 | #endif |
43 | namespace physx |
44 | { |
45 | namespace shdfnd |
46 | { |
47 | namespace internal |
48 | { |
49 | template <class Entry, class Key, class HashFn, class GetKey, class Allocator, bool compacting> |
50 | class HashBase : private Allocator |
51 | { |
52 | void init(uint32_t initialTableSize, float loadFactor) |
53 | { |
54 | mBuffer = NULL; |
55 | mEntries = NULL; |
56 | mEntriesNext = NULL; |
57 | mHash = NULL; |
58 | mEntriesCapacity = 0; |
59 | mHashSize = 0; |
60 | mLoadFactor = loadFactor; |
61 | mFreeList = uint32_t(EOL); |
62 | mTimestamp = 0; |
63 | mEntriesCount = 0; |
64 | |
65 | if(initialTableSize) |
66 | reserveInternal(size: initialTableSize); |
67 | } |
68 | |
69 | public: |
70 | typedef Entry EntryType; |
71 | |
72 | HashBase(uint32_t initialTableSize = 64, float loadFactor = 0.75f) : Allocator(PX_DEBUG_EXP("hashBase" )) |
73 | { |
74 | init(initialTableSize, loadFactor); |
75 | } |
76 | |
77 | HashBase(uint32_t initialTableSize, float loadFactor, const Allocator& alloc) : Allocator(alloc) |
78 | { |
79 | init(initialTableSize, loadFactor); |
80 | } |
81 | |
82 | HashBase(const Allocator& alloc) : Allocator(alloc) |
83 | { |
84 | init(initialTableSize: 64, loadFactor: 0.75f); |
85 | } |
86 | |
87 | ~HashBase() |
88 | { |
89 | destroy(); // No need to clear() |
90 | |
91 | if(mBuffer) |
92 | Allocator::deallocate(mBuffer); |
93 | } |
94 | |
95 | static const uint32_t EOL = 0xffffffff; |
96 | |
97 | PX_INLINE Entry* create(const Key& k, bool& exists) |
98 | { |
99 | uint32_t h = 0; |
100 | if(mHashSize) |
101 | { |
102 | h = hash(k); |
103 | uint32_t index = mHash[h]; |
104 | while(index != EOL && !HashFn().equal(GetKey()(mEntries[index]), k)) |
105 | index = mEntriesNext[index]; |
106 | exists = index != EOL; |
107 | if(exists) |
108 | return mEntries + index; |
109 | } |
110 | else |
111 | exists = false; |
112 | |
113 | if(freeListEmpty()) |
114 | { |
115 | grow(); |
116 | h = hash(k); |
117 | } |
118 | |
119 | uint32_t entryIndex = freeListGetNext(); |
120 | |
121 | mEntriesNext[entryIndex] = mHash[h]; |
122 | mHash[h] = entryIndex; |
123 | |
124 | mEntriesCount++; |
125 | mTimestamp++; |
126 | |
127 | return mEntries + entryIndex; |
128 | } |
129 | |
130 | PX_INLINE const Entry* find(const Key& k) const |
131 | { |
132 | if(!mEntriesCount) |
133 | return NULL; |
134 | |
135 | const uint32_t h = hash(k); |
136 | uint32_t index = mHash[h]; |
137 | while(index != EOL && !HashFn().equal(GetKey()(mEntries[index]), k)) |
138 | index = mEntriesNext[index]; |
139 | return index != EOL ? mEntries + index : NULL; |
140 | } |
141 | |
142 | PX_INLINE bool erase(const Key& k, Entry& e) |
143 | { |
144 | if(!mEntriesCount) |
145 | return false; |
146 | |
147 | const uint32_t h = hash(k); |
148 | uint32_t* ptr = mHash + h; |
149 | while(*ptr != EOL && !HashFn().equal(GetKey()(mEntries[*ptr]), k)) |
150 | ptr = mEntriesNext + *ptr; |
151 | |
152 | if(*ptr == EOL) |
153 | return false; |
154 | |
155 | PX_PLACEMENT_NEW(&e, Entry)(mEntries[*ptr]); |
156 | |
157 | return eraseInternal(ptr); |
158 | } |
159 | |
160 | PX_INLINE bool erase(const Key& k) |
161 | { |
162 | if(!mEntriesCount) |
163 | return false; |
164 | |
165 | const uint32_t h = hash(k); |
166 | uint32_t* ptr = mHash + h; |
167 | while(*ptr != EOL && !HashFn().equal(GetKey()(mEntries[*ptr]), k)) |
168 | ptr = mEntriesNext + *ptr; |
169 | |
170 | if(*ptr == EOL) |
171 | return false; |
172 | |
173 | return eraseInternal(ptr); |
174 | } |
175 | |
176 | PX_INLINE uint32_t size() const |
177 | { |
178 | return mEntriesCount; |
179 | } |
180 | |
181 | PX_INLINE uint32_t capacity() const |
182 | { |
183 | return mHashSize; |
184 | } |
185 | |
186 | void clear() |
187 | { |
188 | if(!mHashSize || mEntriesCount == 0) |
189 | return; |
190 | |
191 | destroy(); |
192 | |
193 | intrinsics::memSet(dest: mHash, c: EOL, count: mHashSize * sizeof(uint32_t)); |
194 | |
195 | const uint32_t sizeMinus1 = mEntriesCapacity - 1; |
196 | for(uint32_t i = 0; i < sizeMinus1; i++) |
197 | { |
198 | prefetchLine(ptr: mEntriesNext + i, offset: 128); |
199 | mEntriesNext[i] = i + 1; |
200 | } |
201 | mEntriesNext[mEntriesCapacity - 1] = uint32_t(EOL); |
202 | mFreeList = 0; |
203 | mEntriesCount = 0; |
204 | } |
205 | |
206 | void reserve(uint32_t size) |
207 | { |
208 | if(size > mHashSize) |
209 | reserveInternal(size); |
210 | } |
211 | |
212 | PX_INLINE const Entry* getEntries() const |
213 | { |
214 | return mEntries; |
215 | } |
216 | |
217 | PX_INLINE Entry* insertUnique(const Key& k) |
218 | { |
219 | PX_ASSERT(find(k) == NULL); |
220 | uint32_t h = hash(k); |
221 | |
222 | uint32_t entryIndex = freeListGetNext(); |
223 | |
224 | mEntriesNext[entryIndex] = mHash[h]; |
225 | mHash[h] = entryIndex; |
226 | |
227 | mEntriesCount++; |
228 | mTimestamp++; |
229 | |
230 | return mEntries + entryIndex; |
231 | } |
232 | |
233 | private: |
234 | void destroy() |
235 | { |
236 | for(uint32_t i = 0; i < mHashSize; i++) |
237 | { |
238 | for(uint32_t j = mHash[i]; j != EOL; j = mEntriesNext[j]) |
239 | mEntries[j].~Entry(); |
240 | } |
241 | } |
242 | |
243 | template <typename HK, typename GK, class A, bool comp> |
244 | PX_NOINLINE void copy(const HashBase<Entry, Key, HK, GK, A, comp>& other); |
245 | |
246 | // free list management - if we're coalescing, then we use mFreeList to hold |
247 | // the top of the free list and it should always be equal to size(). Otherwise, |
248 | // we build a free list in the next() pointers. |
249 | |
250 | PX_INLINE void freeListAdd(uint32_t index) |
251 | { |
252 | if(compacting) |
253 | { |
254 | mFreeList--; |
255 | PX_ASSERT(mFreeList == mEntriesCount); |
256 | } |
257 | else |
258 | { |
259 | mEntriesNext[index] = mFreeList; |
260 | mFreeList = index; |
261 | } |
262 | } |
263 | |
264 | PX_INLINE void freeListAdd(uint32_t start, uint32_t end) |
265 | { |
266 | if(!compacting) |
267 | { |
268 | for(uint32_t i = start; i < end - 1; i++) // add the new entries to the free list |
269 | mEntriesNext[i] = i + 1; |
270 | |
271 | // link in old free list |
272 | mEntriesNext[end - 1] = mFreeList; |
273 | PX_ASSERT(mFreeList != end - 1); |
274 | mFreeList = start; |
275 | } |
276 | else if(mFreeList == EOL) // don't reset the free ptr for the compacting hash unless it's empty |
277 | mFreeList = start; |
278 | } |
279 | |
280 | PX_INLINE uint32_t freeListGetNext() |
281 | { |
282 | PX_ASSERT(!freeListEmpty()); |
283 | if(compacting) |
284 | { |
285 | PX_ASSERT(mFreeList == mEntriesCount); |
286 | return mFreeList++; |
287 | } |
288 | else |
289 | { |
290 | uint32_t entryIndex = mFreeList; |
291 | mFreeList = mEntriesNext[mFreeList]; |
292 | return entryIndex; |
293 | } |
294 | } |
295 | |
296 | PX_INLINE bool freeListEmpty() const |
297 | { |
298 | if(compacting) |
299 | return mEntriesCount == mEntriesCapacity; |
300 | else |
301 | return mFreeList == EOL; |
302 | } |
303 | |
304 | PX_INLINE void replaceWithLast(uint32_t index) |
305 | { |
306 | PX_PLACEMENT_NEW(mEntries + index, Entry)(mEntries[mEntriesCount]); |
307 | mEntries[mEntriesCount].~Entry(); |
308 | mEntriesNext[index] = mEntriesNext[mEntriesCount]; |
309 | |
310 | uint32_t h = hash(GetKey()(mEntries[index])); |
311 | uint32_t* ptr; |
312 | for(ptr = mHash + h; *ptr != mEntriesCount; ptr = mEntriesNext + *ptr) |
313 | PX_ASSERT(*ptr != EOL); |
314 | *ptr = index; |
315 | } |
316 | |
317 | PX_INLINE uint32_t hash(const Key& k, uint32_t hashSize) const |
318 | { |
319 | return HashFn()(k) & (hashSize - 1); |
320 | } |
321 | |
322 | PX_INLINE uint32_t hash(const Key& k) const |
323 | { |
324 | return hash(k, mHashSize); |
325 | } |
326 | |
327 | PX_INLINE bool eraseInternal(uint32_t* ptr) |
328 | { |
329 | const uint32_t index = *ptr; |
330 | |
331 | *ptr = mEntriesNext[index]; |
332 | |
333 | mEntries[index].~Entry(); |
334 | |
335 | mEntriesCount--; |
336 | mTimestamp++; |
337 | |
338 | if (compacting && index != mEntriesCount) |
339 | replaceWithLast(index); |
340 | |
341 | freeListAdd(index); |
342 | return true; |
343 | } |
344 | |
345 | void reserveInternal(uint32_t size) |
346 | { |
347 | if(!isPowerOfTwo(x: size)) |
348 | size = nextPowerOfTwo(x: size); |
349 | |
350 | PX_ASSERT(!(size & (size - 1))); |
351 | |
352 | // decide whether iteration can be done on the entries directly |
353 | bool resizeCompact = compacting || freeListEmpty(); |
354 | |
355 | // define new table sizes |
356 | uint32_t oldEntriesCapacity = mEntriesCapacity; |
357 | uint32_t newEntriesCapacity = uint32_t(float(size) * mLoadFactor); |
358 | uint32_t newHashSize = size; |
359 | |
360 | // allocate new common buffer and setup pointers to new tables |
361 | uint8_t* newBuffer; |
362 | uint32_t* newHash; |
363 | uint32_t* newEntriesNext; |
364 | Entry* newEntries; |
365 | { |
366 | uint32_t newHashByteOffset = 0; |
367 | uint32_t newEntriesNextBytesOffset = newHashByteOffset + newHashSize * sizeof(uint32_t); |
368 | uint32_t newEntriesByteOffset = newEntriesNextBytesOffset + newEntriesCapacity * sizeof(uint32_t); |
369 | newEntriesByteOffset += (16 - (newEntriesByteOffset & 15)) & 15; |
370 | uint32_t newBufferByteSize = newEntriesByteOffset + newEntriesCapacity * sizeof(Entry); |
371 | |
372 | newBuffer = reinterpret_cast<uint8_t*>(Allocator::allocate(newBufferByteSize, __FILE__, __LINE__)); |
373 | PX_ASSERT(newBuffer); |
374 | |
375 | newHash = reinterpret_cast<uint32_t*>(newBuffer + newHashByteOffset); |
376 | newEntriesNext = reinterpret_cast<uint32_t*>(newBuffer + newEntriesNextBytesOffset); |
377 | newEntries = reinterpret_cast<Entry*>(newBuffer + newEntriesByteOffset); |
378 | } |
379 | |
380 | // initialize new hash table |
381 | intrinsics::memSet(dest: newHash, c: uint32_t(EOL), count: newHashSize * sizeof(uint32_t)); |
382 | |
383 | // iterate over old entries, re-hash and create new entries |
384 | if(resizeCompact) |
385 | { |
386 | // check that old free list is empty - we don't need to copy the next entries |
387 | PX_ASSERT(compacting || mFreeList == EOL); |
388 | |
389 | for(uint32_t index = 0; index < mEntriesCount; ++index) |
390 | { |
391 | uint32_t h = hash(GetKey()(mEntries[index]), newHashSize); |
392 | newEntriesNext[index] = newHash[h]; |
393 | newHash[h] = index; |
394 | |
395 | PX_PLACEMENT_NEW(newEntries + index, Entry)(mEntries[index]); |
396 | mEntries[index].~Entry(); |
397 | } |
398 | } |
399 | else |
400 | { |
401 | // copy old free list, only required for non compact resizing |
402 | intrinsics::memCopy(dest: newEntriesNext, src: mEntriesNext, count: mEntriesCapacity * sizeof(uint32_t)); |
403 | |
404 | for(uint32_t bucket = 0; bucket < mHashSize; bucket++) |
405 | { |
406 | uint32_t index = mHash[bucket]; |
407 | while(index != EOL) |
408 | { |
409 | uint32_t h = hash(GetKey()(mEntries[index]), newHashSize); |
410 | newEntriesNext[index] = newHash[h]; |
411 | PX_ASSERT(index != newHash[h]); |
412 | |
413 | newHash[h] = index; |
414 | |
415 | PX_PLACEMENT_NEW(newEntries + index, Entry)(mEntries[index]); |
416 | mEntries[index].~Entry(); |
417 | |
418 | index = mEntriesNext[index]; |
419 | } |
420 | } |
421 | } |
422 | |
423 | // swap buffer and pointers |
424 | Allocator::deallocate(mBuffer); |
425 | mBuffer = newBuffer; |
426 | mHash = newHash; |
427 | mHashSize = newHashSize; |
428 | mEntriesNext = newEntriesNext; |
429 | mEntries = newEntries; |
430 | mEntriesCapacity = newEntriesCapacity; |
431 | |
432 | freeListAdd(oldEntriesCapacity, newEntriesCapacity); |
433 | } |
434 | |
435 | void grow() |
436 | { |
437 | PX_ASSERT((mFreeList == EOL) || (compacting && (mEntriesCount == mEntriesCapacity))); |
438 | |
439 | uint32_t size = mHashSize == 0 ? 16 : mHashSize * 2; |
440 | reserve(size); |
441 | } |
442 | |
443 | uint8_t* mBuffer; |
444 | Entry* mEntries; |
445 | uint32_t* mEntriesNext; // same size as mEntries |
446 | uint32_t* mHash; |
447 | uint32_t mEntriesCapacity; |
448 | uint32_t mHashSize; |
449 | float mLoadFactor; |
450 | uint32_t mFreeList; |
451 | uint32_t mTimestamp; |
452 | uint32_t mEntriesCount; // number of entries |
453 | |
454 | public: |
455 | class Iter |
456 | { |
457 | public: |
458 | PX_INLINE Iter(HashBase& b) : mBucket(0), mEntry(uint32_t(b.EOL)), mTimestamp(b.mTimestamp), mBase(b) |
459 | { |
460 | if(mBase.mEntriesCapacity > 0) |
461 | { |
462 | mEntry = mBase.mHash[0]; |
463 | skip(); |
464 | } |
465 | } |
466 | |
467 | PX_INLINE void check() const |
468 | { |
469 | PX_ASSERT(mTimestamp == mBase.mTimestamp); |
470 | } |
471 | PX_INLINE const Entry& operator*() const |
472 | { |
473 | check(); |
474 | return mBase.mEntries[mEntry]; |
475 | } |
476 | PX_INLINE Entry& operator*() |
477 | { |
478 | check(); |
479 | return mBase.mEntries[mEntry]; |
480 | } |
481 | PX_INLINE const Entry* operator->() const |
482 | { |
483 | check(); |
484 | return mBase.mEntries + mEntry; |
485 | } |
486 | PX_INLINE Entry* operator->() |
487 | { |
488 | check(); |
489 | return mBase.mEntries + mEntry; |
490 | } |
491 | PX_INLINE Iter operator++() |
492 | { |
493 | check(); |
494 | advance(); |
495 | return *this; |
496 | } |
497 | PX_INLINE Iter operator++(int) |
498 | { |
499 | check(); |
500 | Iter i = *this; |
501 | advance(); |
502 | return i; |
503 | } |
504 | PX_INLINE bool done() const |
505 | { |
506 | check(); |
507 | return mEntry == mBase.EOL; |
508 | } |
509 | |
510 | private: |
511 | PX_INLINE void advance() |
512 | { |
513 | mEntry = mBase.mEntriesNext[mEntry]; |
514 | skip(); |
515 | } |
516 | PX_INLINE void skip() |
517 | { |
518 | while(mEntry == mBase.EOL) |
519 | { |
520 | if(++mBucket == mBase.mHashSize) |
521 | break; |
522 | mEntry = mBase.mHash[mBucket]; |
523 | } |
524 | } |
525 | |
526 | Iter& operator=(const Iter&); |
527 | |
528 | uint32_t mBucket; |
529 | uint32_t mEntry; |
530 | uint32_t mTimestamp; |
531 | HashBase& mBase; |
532 | }; |
533 | |
534 | /*! |
535 | Iterate over entries in a hash base and allow entry erase while iterating |
536 | */ |
537 | class EraseIterator |
538 | { |
539 | public: |
540 | PX_INLINE EraseIterator(HashBase& b): mBase(b) |
541 | { |
542 | reset(); |
543 | } |
544 | |
545 | PX_INLINE Entry* eraseCurrentGetNext(bool eraseCurrent) |
546 | { |
547 | if(eraseCurrent && mCurrentEntryIndexPtr) |
548 | { |
549 | mBase.eraseInternal(mCurrentEntryIndexPtr); |
550 | // if next was valid return the same ptr, if next was EOL search new hash entry |
551 | if(*mCurrentEntryIndexPtr != mBase.EOL) |
552 | return mBase.mEntries + *mCurrentEntryIndexPtr; |
553 | else |
554 | return traverseHashEntries(); |
555 | } |
556 | |
557 | // traverse mHash to find next entry |
558 | if(mCurrentEntryIndexPtr == NULL) |
559 | return traverseHashEntries(); |
560 | |
561 | const uint32_t index = *mCurrentEntryIndexPtr; |
562 | if(mBase.mEntriesNext[index] == mBase.EOL) |
563 | { |
564 | return traverseHashEntries(); |
565 | } |
566 | else |
567 | { |
568 | mCurrentEntryIndexPtr = mBase.mEntriesNext + index; |
569 | return mBase.mEntries + *mCurrentEntryIndexPtr; |
570 | } |
571 | } |
572 | |
573 | PX_INLINE void reset() |
574 | { |
575 | mCurrentHashIndex = 0; |
576 | mCurrentEntryIndexPtr = NULL; |
577 | } |
578 | |
579 | private: |
580 | PX_INLINE Entry* traverseHashEntries() |
581 | { |
582 | mCurrentEntryIndexPtr = NULL; |
583 | while (mCurrentEntryIndexPtr == NULL && mCurrentHashIndex < mBase.mHashSize) |
584 | { |
585 | if (mBase.mHash[mCurrentHashIndex] != mBase.EOL) |
586 | { |
587 | mCurrentEntryIndexPtr = mBase.mHash + mCurrentHashIndex; |
588 | mCurrentHashIndex++; |
589 | return mBase.mEntries + *mCurrentEntryIndexPtr; |
590 | } |
591 | else |
592 | { |
593 | mCurrentHashIndex++; |
594 | } |
595 | } |
596 | return NULL; |
597 | } |
598 | |
599 | EraseIterator& operator=(const EraseIterator&); |
600 | private: |
601 | uint32_t* mCurrentEntryIndexPtr; |
602 | uint32_t mCurrentHashIndex; |
603 | HashBase& mBase; |
604 | }; |
605 | }; |
606 | |
607 | template <class Entry, class Key, class HashFn, class GetKey, class Allocator, bool compacting> |
608 | template <typename HK, typename GK, class A, bool comp> |
609 | PX_NOINLINE void |
610 | HashBase<Entry, Key, HashFn, GetKey, Allocator, compacting>::copy(const HashBase<Entry, Key, HK, GK, A, comp>& other) |
611 | { |
612 | reserve(size: other.mEntriesCount); |
613 | |
614 | for(uint32_t i = 0; i < other.mEntriesCount; i++) |
615 | { |
616 | for(uint32_t j = other.mHash[i]; j != EOL; j = other.mEntriesNext[j]) |
617 | { |
618 | const Entry& otherEntry = other.mEntries[j]; |
619 | |
620 | bool exists; |
621 | Entry* newEntry = create(k: GK()(otherEntry), exists); |
622 | PX_ASSERT(!exists); |
623 | |
624 | PX_PLACEMENT_NEW(newEntry, Entry)(otherEntry); |
625 | } |
626 | } |
627 | } |
628 | |
629 | template <class Key, class HashFn, class Allocator = typename AllocatorTraits<Key>::Type, bool Coalesced = false> |
630 | class HashSetBase |
631 | { |
632 | PX_NOCOPY(HashSetBase) |
633 | public: |
634 | struct GetKey |
635 | { |
636 | PX_INLINE const Key& operator()(const Key& e) |
637 | { |
638 | return e; |
639 | } |
640 | }; |
641 | |
642 | typedef HashBase<Key, Key, HashFn, GetKey, Allocator, Coalesced> BaseMap; |
643 | typedef typename BaseMap::Iter Iterator; |
644 | |
645 | HashSetBase(uint32_t initialTableSize, float loadFactor, const Allocator& alloc) |
646 | : mBase(initialTableSize, loadFactor, alloc) |
647 | { |
648 | } |
649 | |
650 | HashSetBase(const Allocator& alloc) : mBase(64, 0.75f, alloc) |
651 | { |
652 | } |
653 | |
654 | HashSetBase(uint32_t initialTableSize = 64, float loadFactor = 0.75f) : mBase(initialTableSize, loadFactor) |
655 | { |
656 | } |
657 | |
658 | bool insert(const Key& k) |
659 | { |
660 | bool exists; |
661 | Key* e = mBase.create(k, exists); |
662 | if(!exists) |
663 | PX_PLACEMENT_NEW(e, Key)(k); |
664 | return !exists; |
665 | } |
666 | |
667 | PX_INLINE bool contains(const Key& k) const |
668 | { |
669 | return mBase.find(k) != 0; |
670 | } |
671 | PX_INLINE bool erase(const Key& k) |
672 | { |
673 | return mBase.erase(k); |
674 | } |
675 | PX_INLINE uint32_t size() const |
676 | { |
677 | return mBase.size(); |
678 | } |
679 | PX_INLINE uint32_t capacity() const |
680 | { |
681 | return mBase.capacity(); |
682 | } |
683 | PX_INLINE void reserve(uint32_t size) |
684 | { |
685 | mBase.reserve(size); |
686 | } |
687 | PX_INLINE void clear() |
688 | { |
689 | mBase.clear(); |
690 | } |
691 | |
692 | protected: |
693 | BaseMap mBase; |
694 | }; |
695 | |
696 | template <class Key, class Value, class HashFn, class Allocator = typename AllocatorTraits<Pair<const Key, Value> >::Type> |
697 | class HashMapBase |
698 | { |
699 | PX_NOCOPY(HashMapBase) |
700 | public: |
701 | typedef Pair<const Key, Value> Entry; |
702 | |
703 | struct GetKey |
704 | { |
705 | PX_INLINE const Key& operator()(const Entry& e) |
706 | { |
707 | return e.first; |
708 | } |
709 | }; |
710 | |
711 | typedef HashBase<Entry, Key, HashFn, GetKey, Allocator, true> BaseMap; |
712 | typedef typename BaseMap::Iter Iterator; |
713 | typedef typename BaseMap::EraseIterator EraseIterator; |
714 | |
715 | HashMapBase(uint32_t initialTableSize, float loadFactor, const Allocator& alloc) |
716 | : mBase(initialTableSize, loadFactor, alloc) |
717 | { |
718 | } |
719 | |
720 | HashMapBase(const Allocator& alloc) : mBase(64, 0.75f, alloc) |
721 | { |
722 | } |
723 | |
724 | HashMapBase(uint32_t initialTableSize = 64, float loadFactor = 0.75f) : mBase(initialTableSize, loadFactor) |
725 | { |
726 | } |
727 | |
728 | bool insert(const Key /*&*/ k, const Value /*&*/ v) |
729 | { |
730 | bool exists; |
731 | Entry* e = mBase.create(k, exists); |
732 | if(!exists) |
733 | PX_PLACEMENT_NEW(e, Entry)(k, v); |
734 | return !exists; |
735 | } |
736 | |
737 | Value& operator[](const Key& k) |
738 | { |
739 | bool exists; |
740 | Entry* e = mBase.create(k, exists); |
741 | if(!exists) |
742 | PX_PLACEMENT_NEW(e, Entry)(k, Value()); |
743 | |
744 | return e->second; |
745 | } |
746 | |
747 | PX_INLINE const Entry* find(const Key& k) const |
748 | { |
749 | return mBase.find(k); |
750 | } |
751 | PX_INLINE bool erase(const Key& k) |
752 | { |
753 | return mBase.erase(k); |
754 | } |
755 | PX_INLINE bool erase(const Key& k, Entry& e) |
756 | { |
757 | return mBase.erase(k, e); |
758 | } |
759 | PX_INLINE uint32_t size() const |
760 | { |
761 | return mBase.size(); |
762 | } |
763 | PX_INLINE uint32_t capacity() const |
764 | { |
765 | return mBase.capacity(); |
766 | } |
767 | PX_INLINE Iterator getIterator() |
768 | { |
769 | return Iterator(mBase); |
770 | } |
771 | PX_INLINE EraseIterator getEraseIterator() |
772 | { |
773 | return EraseIterator(mBase); |
774 | } |
775 | PX_INLINE void reserve(uint32_t size) |
776 | { |
777 | mBase.reserve(size); |
778 | } |
779 | PX_INLINE void clear() |
780 | { |
781 | mBase.clear(); |
782 | } |
783 | |
784 | protected: |
785 | BaseMap mBase; |
786 | }; |
787 | } |
788 | |
789 | } // namespace shdfnd |
790 | } // namespace physx |
791 | |
792 | #if PX_VC |
793 | #pragma warning(pop) |
794 | #endif |
795 | #endif // #ifndef PSFOUNDATION_PSHASHINTERNALS_H |
796 | |