1 | // Copyright John Maddock 2006, 2007. |
2 | // Copyright Paul A. Bristow 2008, 2010. |
3 | |
4 | // Use, modification and distribution are subject to the |
5 | // Boost Software License, Version 1.0. |
6 | // (See accompanying file LICENSE_1_0.txt |
7 | // or copy at http://www.boost.org/LICENSE_1_0.txt) |
8 | |
9 | #ifndef BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP |
10 | #define BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP |
11 | |
12 | #include <boost/math/distributions/fwd.hpp> |
13 | #include <boost/math/special_functions/gamma.hpp> // for incomplete beta. |
14 | #include <boost/math/distributions/complement.hpp> // complements |
15 | #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
16 | #include <boost/math/special_functions/fpclassify.hpp> |
17 | |
18 | #include <utility> |
19 | |
20 | namespace boost{ namespace math{ |
21 | |
22 | template <class RealType = double, class Policy = policies::policy<> > |
23 | class chi_squared_distribution |
24 | { |
25 | public: |
26 | typedef RealType value_type; |
27 | typedef Policy policy_type; |
28 | |
29 | chi_squared_distribution(RealType i) : m_df(i) |
30 | { |
31 | RealType result; |
32 | detail::check_df( |
33 | "boost::math::chi_squared_distribution<%1%>::chi_squared_distribution" , m_df, &result, Policy()); |
34 | } // chi_squared_distribution |
35 | |
36 | RealType degrees_of_freedom()const |
37 | { |
38 | return m_df; |
39 | } |
40 | |
41 | // Parameter estimation: |
42 | static RealType find_degrees_of_freedom( |
43 | RealType difference_from_variance, |
44 | RealType alpha, |
45 | RealType beta, |
46 | RealType variance, |
47 | RealType hint = 100); |
48 | |
49 | private: |
50 | // |
51 | // Data member: |
52 | // |
53 | RealType m_df; // degrees of freedom is a positive real number. |
54 | }; // class chi_squared_distribution |
55 | |
56 | typedef chi_squared_distribution<double> chi_squared; |
57 | |
58 | #ifdef BOOST_MSVC |
59 | #pragma warning(push) |
60 | #pragma warning(disable:4127) |
61 | #endif |
62 | |
63 | template <class RealType, class Policy> |
64 | inline const std::pair<RealType, RealType> range(const chi_squared_distribution<RealType, Policy>& /*dist*/) |
65 | { // Range of permissible values for random variable x. |
66 | if (std::numeric_limits<RealType>::has_infinity) |
67 | { |
68 | return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()); // 0 to + infinity. |
69 | } |
70 | else |
71 | { |
72 | using boost::math::tools::max_value; |
73 | return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + max. |
74 | } |
75 | } |
76 | |
77 | #ifdef BOOST_MSVC |
78 | #pragma warning(pop) |
79 | #endif |
80 | |
81 | template <class RealType, class Policy> |
82 | inline const std::pair<RealType, RealType> support(const chi_squared_distribution<RealType, Policy>& /*dist*/) |
83 | { // Range of supported values for random variable x. |
84 | // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
85 | return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity. |
86 | } |
87 | |
88 | template <class RealType, class Policy> |
89 | RealType pdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square) |
90 | { |
91 | BOOST_MATH_STD_USING // for ADL of std functions |
92 | RealType degrees_of_freedom = dist.degrees_of_freedom(); |
93 | // Error check: |
94 | RealType error_result; |
95 | |
96 | static const char* function = "boost::math::pdf(const chi_squared_distribution<%1%>&, %1%)" ; |
97 | |
98 | if(false == detail::check_df( |
99 | function, degrees_of_freedom, &error_result, Policy())) |
100 | return error_result; |
101 | |
102 | if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) |
103 | { |
104 | return policies::raise_domain_error<RealType>( |
105 | function, "Chi Square parameter was %1%, but must be > 0 !" , chi_square, Policy()); |
106 | } |
107 | |
108 | if(chi_square == 0) |
109 | { |
110 | // Handle special cases: |
111 | if(degrees_of_freedom < 2) |
112 | { |
113 | return policies::raise_overflow_error<RealType>( |
114 | function, 0, Policy()); |
115 | } |
116 | else if(degrees_of_freedom == 2) |
117 | { |
118 | return 0.5f; |
119 | } |
120 | else |
121 | { |
122 | return 0; |
123 | } |
124 | } |
125 | |
126 | return gamma_p_derivative(degrees_of_freedom / 2, chi_square / 2, Policy()) / 2; |
127 | } // pdf |
128 | |
129 | template <class RealType, class Policy> |
130 | inline RealType cdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square) |
131 | { |
132 | RealType degrees_of_freedom = dist.degrees_of_freedom(); |
133 | // Error check: |
134 | RealType error_result; |
135 | static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)" ; |
136 | |
137 | if(false == detail::check_df( |
138 | function, degrees_of_freedom, &error_result, Policy())) |
139 | return error_result; |
140 | |
141 | if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) |
142 | { |
143 | return policies::raise_domain_error<RealType>( |
144 | function, "Chi Square parameter was %1%, but must be > 0 !" , chi_square, Policy()); |
145 | } |
146 | |
147 | return boost::math::gamma_p(degrees_of_freedom / 2, chi_square / 2, Policy()); |
148 | } // cdf |
149 | |
150 | template <class RealType, class Policy> |
151 | inline RealType quantile(const chi_squared_distribution<RealType, Policy>& dist, const RealType& p) |
152 | { |
153 | RealType degrees_of_freedom = dist.degrees_of_freedom(); |
154 | static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)" ; |
155 | // Error check: |
156 | RealType error_result; |
157 | if(false == |
158 | ( |
159 | detail::check_df(function, degrees_of_freedom, &error_result, Policy()) |
160 | && detail::check_probability(function, p, &error_result, Policy())) |
161 | ) |
162 | return error_result; |
163 | |
164 | return 2 * boost::math::gamma_p_inv(degrees_of_freedom / 2, p, Policy()); |
165 | } // quantile |
166 | |
167 | template <class RealType, class Policy> |
168 | inline RealType cdf(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c) |
169 | { |
170 | RealType const& degrees_of_freedom = c.dist.degrees_of_freedom(); |
171 | RealType const& chi_square = c.param; |
172 | static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)" ; |
173 | // Error check: |
174 | RealType error_result; |
175 | if(false == detail::check_df( |
176 | function, degrees_of_freedom, &error_result, Policy())) |
177 | return error_result; |
178 | |
179 | if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) |
180 | { |
181 | return policies::raise_domain_error<RealType>( |
182 | function, "Chi Square parameter was %1%, but must be > 0 !" , chi_square, Policy()); |
183 | } |
184 | |
185 | return boost::math::gamma_q(degrees_of_freedom / 2, chi_square / 2, Policy()); |
186 | } |
187 | |
188 | template <class RealType, class Policy> |
189 | inline RealType quantile(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c) |
190 | { |
191 | RealType const& degrees_of_freedom = c.dist.degrees_of_freedom(); |
192 | RealType const& q = c.param; |
193 | static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)" ; |
194 | // Error check: |
195 | RealType error_result; |
196 | if(false == ( |
197 | detail::check_df(function, degrees_of_freedom, &error_result, Policy()) |
198 | && detail::check_probability(function, q, &error_result, Policy())) |
199 | ) |
200 | return error_result; |
201 | |
202 | return 2 * boost::math::gamma_q_inv(degrees_of_freedom / 2, q, Policy()); |
203 | } |
204 | |
205 | template <class RealType, class Policy> |
206 | inline RealType mean(const chi_squared_distribution<RealType, Policy>& dist) |
207 | { // Mean of Chi-Squared distribution = v. |
208 | return dist.degrees_of_freedom(); |
209 | } // mean |
210 | |
211 | template <class RealType, class Policy> |
212 | inline RealType variance(const chi_squared_distribution<RealType, Policy>& dist) |
213 | { // Variance of Chi-Squared distribution = 2v. |
214 | return 2 * dist.degrees_of_freedom(); |
215 | } // variance |
216 | |
217 | template <class RealType, class Policy> |
218 | inline RealType mode(const chi_squared_distribution<RealType, Policy>& dist) |
219 | { |
220 | RealType df = dist.degrees_of_freedom(); |
221 | static const char* function = "boost::math::mode(const chi_squared_distribution<%1%>&)" ; |
222 | // Most sources only define mode for df >= 2, |
223 | // but for 0 <= df <= 2, the pdf maximum actually occurs at random variate = 0; |
224 | // So one could extend the definition of mode thus: |
225 | //if(df < 0) |
226 | //{ |
227 | // return policies::raise_domain_error<RealType>( |
228 | // function, |
229 | // "Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.", |
230 | // df, Policy()); |
231 | //} |
232 | //return (df <= 2) ? 0 : df - 2; |
233 | |
234 | if(df < 2) |
235 | return policies::raise_domain_error<RealType>( |
236 | function, |
237 | "Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%." , |
238 | df, Policy()); |
239 | return df - 2; |
240 | } |
241 | |
242 | //template <class RealType, class Policy> |
243 | //inline RealType median(const chi_squared_distribution<RealType, Policy>& dist) |
244 | //{ // Median is given by Quantile[dist, 1/2] |
245 | // RealType df = dist.degrees_of_freedom(); |
246 | // if(df <= 1) |
247 | // return tools::domain_error<RealType>( |
248 | // BOOST_CURRENT_FUNCTION, |
249 | // "The Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.", |
250 | // df); |
251 | // return df - RealType(2)/3; |
252 | //} |
253 | // Now implemented via quantile(half) in derived accessors. |
254 | |
255 | template <class RealType, class Policy> |
256 | inline RealType skewness(const chi_squared_distribution<RealType, Policy>& dist) |
257 | { |
258 | BOOST_MATH_STD_USING // For ADL |
259 | RealType df = dist.degrees_of_freedom(); |
260 | return sqrt (8 / df); // == 2 * sqrt(2 / df); |
261 | } |
262 | |
263 | template <class RealType, class Policy> |
264 | inline RealType kurtosis(const chi_squared_distribution<RealType, Policy>& dist) |
265 | { |
266 | RealType df = dist.degrees_of_freedom(); |
267 | return 3 + 12 / df; |
268 | } |
269 | |
270 | template <class RealType, class Policy> |
271 | inline RealType kurtosis_excess(const chi_squared_distribution<RealType, Policy>& dist) |
272 | { |
273 | RealType df = dist.degrees_of_freedom(); |
274 | return 12 / df; |
275 | } |
276 | |
277 | // |
278 | // Parameter estimation comes last: |
279 | // |
280 | namespace detail |
281 | { |
282 | |
283 | template <class RealType, class Policy> |
284 | struct df_estimator |
285 | { |
286 | df_estimator(RealType a, RealType b, RealType variance, RealType delta) |
287 | : alpha(a), beta(b), ratio(delta/variance) |
288 | { // Constructor |
289 | } |
290 | |
291 | RealType operator()(const RealType& df) |
292 | { |
293 | if(df <= tools::min_value<RealType>()) |
294 | return 1; |
295 | chi_squared_distribution<RealType, Policy> cs(df); |
296 | |
297 | RealType result; |
298 | if(ratio > 0) |
299 | { |
300 | RealType r = 1 + ratio; |
301 | result = cdf(cs, quantile(complement(cs, alpha)) / r) - beta; |
302 | } |
303 | else |
304 | { // ratio <= 0 |
305 | RealType r = 1 + ratio; |
306 | result = cdf(complement(cs, quantile(cs, alpha) / r)) - beta; |
307 | } |
308 | return result; |
309 | } |
310 | private: |
311 | RealType alpha; |
312 | RealType beta; |
313 | RealType ratio; // Difference from variance / variance, so fractional. |
314 | }; |
315 | |
316 | } // namespace detail |
317 | |
318 | template <class RealType, class Policy> |
319 | RealType chi_squared_distribution<RealType, Policy>::find_degrees_of_freedom( |
320 | RealType difference_from_variance, |
321 | RealType alpha, |
322 | RealType beta, |
323 | RealType variance, |
324 | RealType hint) |
325 | { |
326 | static const char* function = "boost::math::chi_squared_distribution<%1%>::find_degrees_of_freedom(%1%,%1%,%1%,%1%,%1%)" ; |
327 | // Check for domain errors: |
328 | RealType error_result; |
329 | if(false == |
330 | detail::check_probability(function, alpha, &error_result, Policy()) |
331 | && detail::check_probability(function, beta, &error_result, Policy())) |
332 | { // Either probability is outside 0 to 1. |
333 | return error_result; |
334 | } |
335 | |
336 | if(hint <= 0) |
337 | { // No hint given, so guess df = 1. |
338 | hint = 1; |
339 | } |
340 | |
341 | detail::df_estimator<RealType, Policy> f(alpha, beta, variance, difference_from_variance); |
342 | tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
343 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
344 | std::pair<RealType, RealType> r = |
345 | tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy()); |
346 | RealType result = r.first + (r.second - r.first) / 2; |
347 | if(max_iter >= policies::get_max_root_iterations<Policy>()) |
348 | { |
349 | policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
350 | " either there is no answer to how many degrees of freedom are required" |
351 | " or the answer is infinite. Current best guess is %1%" , result, Policy()); |
352 | } |
353 | return result; |
354 | } |
355 | |
356 | } // namespace math |
357 | } // namespace boost |
358 | |
359 | // This include must be at the end, *after* the accessors |
360 | // for this distribution have been defined, in order to |
361 | // keep compilers that support two-phase lookup happy. |
362 | #include <boost/math/distributions/detail/derived_accessors.hpp> |
363 | |
364 | #endif // BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP |
365 | |