| 1 | // Copyright John Maddock 2006. |
| 2 | // Copyright Paul A. Bristow 2006, 2012, 2017. |
| 3 | // Copyright Thomas Mang 2012. |
| 4 | |
| 5 | // Use, modification and distribution are subject to the |
| 6 | // Boost Software License, Version 1.0. (See accompanying file |
| 7 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 8 | |
| 9 | #ifndef BOOST_STATS_STUDENTS_T_HPP |
| 10 | #define BOOST_STATS_STUDENTS_T_HPP |
| 11 | |
| 12 | // http://en.wikipedia.org/wiki/Student%27s_t_distribution |
| 13 | // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm |
| 14 | |
| 15 | #include <boost/math/distributions/fwd.hpp> |
| 16 | #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x). |
| 17 | #include <boost/math/special_functions/digamma.hpp> |
| 18 | #include <boost/math/distributions/complement.hpp> |
| 19 | #include <boost/math/distributions/detail/common_error_handling.hpp> |
| 20 | #include <boost/math/distributions/normal.hpp> |
| 21 | |
| 22 | #include <utility> |
| 23 | |
| 24 | #ifdef BOOST_MSVC |
| 25 | # pragma warning(push) |
| 26 | # pragma warning(disable: 4702) // unreachable code (return after domain_error throw). |
| 27 | #endif |
| 28 | |
| 29 | namespace boost { namespace math { |
| 30 | |
| 31 | template <class RealType = double, class Policy = policies::policy<> > |
| 32 | class students_t_distribution |
| 33 | { |
| 34 | public: |
| 35 | typedef RealType value_type; |
| 36 | typedef Policy policy_type; |
| 37 | |
| 38 | students_t_distribution(RealType df) : df_(df) |
| 39 | { // Constructor. |
| 40 | RealType result; |
| 41 | detail::check_df_gt0_to_inf( // Checks that df > 0 or df == inf. |
| 42 | "boost::math::students_t_distribution<%1%>::students_t_distribution" , df_, &result, Policy()); |
| 43 | } // students_t_distribution |
| 44 | |
| 45 | RealType degrees_of_freedom()const |
| 46 | { |
| 47 | return df_; |
| 48 | } |
| 49 | |
| 50 | // Parameter estimation: |
| 51 | static RealType find_degrees_of_freedom( |
| 52 | RealType difference_from_mean, |
| 53 | RealType alpha, |
| 54 | RealType beta, |
| 55 | RealType sd, |
| 56 | RealType hint = 100); |
| 57 | |
| 58 | private: |
| 59 | // Data member: |
| 60 | RealType df_; // degrees of freedom is a real number > 0 or +infinity. |
| 61 | }; |
| 62 | |
| 63 | typedef students_t_distribution<double> students_t; // Convenience typedef for double version. |
| 64 | |
| 65 | template <class RealType, class Policy> |
| 66 | inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 67 | { // Range of permissible values for random variable x. |
| 68 | // Now including infinity. |
| 69 | using boost::math::tools::max_value; |
| 70 | //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); |
| 71 | return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>())); |
| 72 | } |
| 73 | |
| 74 | template <class RealType, class Policy> |
| 75 | inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 76 | { // Range of supported values for random variable x. |
| 77 | // Now including infinity. |
| 78 | // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
| 79 | using boost::math::tools::max_value; |
| 80 | //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); |
| 81 | return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>())); |
| 82 | } |
| 83 | |
| 84 | template <class RealType, class Policy> |
| 85 | inline RealType pdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x) |
| 86 | { |
| 87 | BOOST_FPU_EXCEPTION_GUARD |
| 88 | BOOST_MATH_STD_USING // for ADL of std functions. |
| 89 | |
| 90 | RealType error_result; |
| 91 | if(false == detail::check_x_not_NaN( |
| 92 | "boost::math::pdf(const students_t_distribution<%1%>&, %1%)" , x, &error_result, Policy())) |
| 93 | return error_result; |
| 94 | RealType df = dist.degrees_of_freedom(); |
| 95 | if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity. |
| 96 | "boost::math::pdf(const students_t_distribution<%1%>&, %1%)" , df, &error_result, Policy())) |
| 97 | return error_result; |
| 98 | |
| 99 | RealType result; |
| 100 | if ((boost::math::isinf)(x)) |
| 101 | { // - or +infinity. |
| 102 | result = static_cast<RealType>(0); |
| 103 | return result; |
| 104 | } |
| 105 | RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 106 | // Use policies so that if policy requests lower precision, |
| 107 | // then get the normal distribution approximation earlier. |
| 108 | limit = static_cast<RealType>(1) / limit; // 1/eps |
| 109 | // for 64-bit double 1/eps = 4503599627370496 |
| 110 | if (df > limit) |
| 111 | { // Special case for really big degrees_of_freedom > 1 / eps |
| 112 | // - use normal distribution which is much faster and more accurate. |
| 113 | normal_distribution<RealType, Policy> n(0, 1); |
| 114 | result = pdf(n, x); |
| 115 | } |
| 116 | else |
| 117 | { // |
| 118 | RealType basem1 = x * x / df; |
| 119 | if(basem1 < 0.125) |
| 120 | { |
| 121 | result = exp(-boost::math::log1p(basem1, Policy()) * (1+df) / 2); |
| 122 | } |
| 123 | else |
| 124 | { |
| 125 | result = pow(1 / (1 + basem1), (df + 1) / 2); |
| 126 | } |
| 127 | result /= sqrt(df) * boost::math::beta(df / 2, RealType(0.5f), Policy()); |
| 128 | } |
| 129 | return result; |
| 130 | } // pdf |
| 131 | |
| 132 | template <class RealType, class Policy> |
| 133 | inline RealType cdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x) |
| 134 | { |
| 135 | RealType error_result; |
| 136 | // degrees_of_freedom > 0 or infinity check: |
| 137 | RealType df = dist.degrees_of_freedom(); |
| 138 | if (false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity. |
| 139 | "boost::math::cdf(const students_t_distribution<%1%>&, %1%)" , df, &error_result, Policy())) |
| 140 | { |
| 141 | return error_result; |
| 142 | } |
| 143 | // Check for bad x first. |
| 144 | if(false == detail::check_x_not_NaN( |
| 145 | "boost::math::cdf(const students_t_distribution<%1%>&, %1%)" , x, &error_result, Policy())) |
| 146 | { |
| 147 | return error_result; |
| 148 | } |
| 149 | if (x == 0) |
| 150 | { // Special case with exact result. |
| 151 | return static_cast<RealType>(0.5); |
| 152 | } |
| 153 | if ((boost::math::isinf)(x)) |
| 154 | { // x == - or + infinity, regardless of df. |
| 155 | return ((x < 0) ? static_cast<RealType>(0) : static_cast<RealType>(1)); |
| 156 | } |
| 157 | |
| 158 | RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 159 | // Use policies so that if policy requests lower precision, |
| 160 | // then get the normal distribution approximation earlier. |
| 161 | limit = static_cast<RealType>(1) / limit; // 1/eps |
| 162 | // for 64-bit double 1/eps = 4503599627370496 |
| 163 | if (df > limit) |
| 164 | { // Special case for really big degrees_of_freedom > 1 / eps (perhaps infinite?) |
| 165 | // - use normal distribution which is much faster and more accurate. |
| 166 | normal_distribution<RealType, Policy> n(0, 1); |
| 167 | RealType result = cdf(n, x); |
| 168 | return result; |
| 169 | } |
| 170 | else |
| 171 | { // normal df case. |
| 172 | // |
| 173 | // Calculate probability of Student's t using the incomplete beta function. |
| 174 | // probability = ibeta(degrees_of_freedom / 2, 1/2, degrees_of_freedom / (degrees_of_freedom + t*t)) |
| 175 | // |
| 176 | // However when t is small compared to the degrees of freedom, that formula |
| 177 | // suffers from rounding error, use the identity formula to work around |
| 178 | // the problem: |
| 179 | // |
| 180 | // I[x](a,b) = 1 - I[1-x](b,a) |
| 181 | // |
| 182 | // and: |
| 183 | // |
| 184 | // x = df / (df + t^2) |
| 185 | // |
| 186 | // so: |
| 187 | // |
| 188 | // 1 - x = t^2 / (df + t^2) |
| 189 | // |
| 190 | RealType x2 = x * x; |
| 191 | RealType probability; |
| 192 | if(df > 2 * x2) |
| 193 | { |
| 194 | RealType z = x2 / (df + x2); |
| 195 | probability = ibetac(static_cast<RealType>(0.5), df / 2, z, Policy()) / 2; |
| 196 | } |
| 197 | else |
| 198 | { |
| 199 | RealType z = df / (df + x2); |
| 200 | probability = ibeta(df / 2, static_cast<RealType>(0.5), z, Policy()) / 2; |
| 201 | } |
| 202 | return (x > 0 ? 1 - probability : probability); |
| 203 | } |
| 204 | } // cdf |
| 205 | |
| 206 | template <class RealType, class Policy> |
| 207 | inline RealType quantile(const students_t_distribution<RealType, Policy>& dist, const RealType& p) |
| 208 | { |
| 209 | BOOST_MATH_STD_USING // for ADL of std functions |
| 210 | // |
| 211 | // Obtain parameters: |
| 212 | RealType probability = p; |
| 213 | |
| 214 | // Check for domain errors: |
| 215 | RealType df = dist.degrees_of_freedom(); |
| 216 | static const char* function = "boost::math::quantile(const students_t_distribution<%1%>&, %1%)" ; |
| 217 | RealType error_result; |
| 218 | if(false == (detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity. |
| 219 | function, df, &error_result, Policy()) |
| 220 | && detail::check_probability(function, probability, &error_result, Policy()))) |
| 221 | return error_result; |
| 222 | // Special cases, regardless of degrees_of_freedom. |
| 223 | if (probability == 0) |
| 224 | return -policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 225 | if (probability == 1) |
| 226 | return policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 227 | if (probability == static_cast<RealType>(0.5)) |
| 228 | return 0; // |
| 229 | // |
| 230 | #if 0 |
| 231 | // This next block is disabled in favour of a faster method than |
| 232 | // incomplete beta inverse, but code retained for future reference: |
| 233 | // |
| 234 | // Calculate quantile of Student's t using the incomplete beta function inverse: |
| 235 | probability = (probability > 0.5) ? 1 - probability : probability; |
| 236 | RealType t, x, y; |
| 237 | x = ibeta_inv(degrees_of_freedom / 2, RealType(0.5), 2 * probability, &y); |
| 238 | if(degrees_of_freedom * y > tools::max_value<RealType>() * x) |
| 239 | t = tools::overflow_error<RealType>(function); |
| 240 | else |
| 241 | t = sqrt(degrees_of_freedom * y / x); |
| 242 | // |
| 243 | // Figure out sign based on the size of p: |
| 244 | // |
| 245 | if(p < 0.5) |
| 246 | t = -t; |
| 247 | |
| 248 | return t; |
| 249 | #endif |
| 250 | // |
| 251 | // Depending on how many digits RealType has, this may forward |
| 252 | // to the incomplete beta inverse as above. Otherwise uses a |
| 253 | // faster method that is accurate to ~15 digits everywhere |
| 254 | // and a couple of epsilon at double precision and in the central |
| 255 | // region where most use cases will occur... |
| 256 | // |
| 257 | return boost::math::detail::fast_students_t_quantile(df, probability, Policy()); |
| 258 | } // quantile |
| 259 | |
| 260 | template <class RealType, class Policy> |
| 261 | inline RealType cdf(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c) |
| 262 | { |
| 263 | return cdf(c.dist, -c.param); |
| 264 | } |
| 265 | |
| 266 | template <class RealType, class Policy> |
| 267 | inline RealType quantile(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c) |
| 268 | { |
| 269 | return -quantile(c.dist, c.param); |
| 270 | } |
| 271 | |
| 272 | // |
| 273 | // Parameter estimation follows: |
| 274 | // |
| 275 | namespace detail{ |
| 276 | // |
| 277 | // Functors for finding degrees of freedom: |
| 278 | // |
| 279 | template <class RealType, class Policy> |
| 280 | struct sample_size_func |
| 281 | { |
| 282 | sample_size_func(RealType a, RealType b, RealType s, RealType d) |
| 283 | : alpha(a), beta(b), ratio(s*s/(d*d)) {} |
| 284 | |
| 285 | RealType operator()(const RealType& df) |
| 286 | { |
| 287 | if(df <= tools::min_value<RealType>()) |
| 288 | { // |
| 289 | return 1; |
| 290 | } |
| 291 | students_t_distribution<RealType, Policy> t(df); |
| 292 | RealType qa = quantile(complement(t, alpha)); |
| 293 | RealType qb = quantile(complement(t, beta)); |
| 294 | qa += qb; |
| 295 | qa *= qa; |
| 296 | qa *= ratio; |
| 297 | qa -= (df + 1); |
| 298 | return qa; |
| 299 | } |
| 300 | RealType alpha, beta, ratio; |
| 301 | }; |
| 302 | |
| 303 | } // namespace detail |
| 304 | |
| 305 | template <class RealType, class Policy> |
| 306 | RealType students_t_distribution<RealType, Policy>::find_degrees_of_freedom( |
| 307 | RealType difference_from_mean, |
| 308 | RealType alpha, |
| 309 | RealType beta, |
| 310 | RealType sd, |
| 311 | RealType hint) |
| 312 | { |
| 313 | static const char* function = "boost::math::students_t_distribution<%1%>::find_degrees_of_freedom" ; |
| 314 | // |
| 315 | // Check for domain errors: |
| 316 | // |
| 317 | RealType error_result; |
| 318 | if(false == detail::check_probability( |
| 319 | function, alpha, &error_result, Policy()) |
| 320 | && detail::check_probability(function, beta, &error_result, Policy())) |
| 321 | return error_result; |
| 322 | |
| 323 | if(hint <= 0) |
| 324 | hint = 1; |
| 325 | |
| 326 | detail::sample_size_func<RealType, Policy> f(alpha, beta, sd, difference_from_mean); |
| 327 | tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
| 328 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 329 | std::pair<RealType, RealType> r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy()); |
| 330 | RealType result = r.first + (r.second - r.first) / 2; |
| 331 | if(max_iter >= policies::get_max_root_iterations<Policy>()) |
| 332 | { |
| 333 | return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
| 334 | " either there is no answer to how many degrees of freedom are required" |
| 335 | " or the answer is infinite. Current best guess is %1%" , result, Policy()); |
| 336 | } |
| 337 | return result; |
| 338 | } |
| 339 | |
| 340 | template <class RealType, class Policy> |
| 341 | inline RealType mode(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 342 | { |
| 343 | // Assume no checks on degrees of freedom are useful (unlike mean). |
| 344 | return 0; // Always zero by definition. |
| 345 | } |
| 346 | |
| 347 | template <class RealType, class Policy> |
| 348 | inline RealType median(const students_t_distribution<RealType, Policy>& /*dist*/) |
| 349 | { |
| 350 | // Assume no checks on degrees of freedom are useful (unlike mean). |
| 351 | return 0; // Always zero by definition. |
| 352 | } |
| 353 | |
| 354 | // See section 5.1 on moments at http://en.wikipedia.org/wiki/Student%27s_t-distribution |
| 355 | |
| 356 | template <class RealType, class Policy> |
| 357 | inline RealType mean(const students_t_distribution<RealType, Policy>& dist) |
| 358 | { // Revised for https://svn.boost.org/trac/boost/ticket/7177 |
| 359 | RealType df = dist.degrees_of_freedom(); |
| 360 | if(((boost::math::isnan)(df)) || (df <= 1) ) |
| 361 | { // mean is undefined for moment <= 1! |
| 362 | return policies::raise_domain_error<RealType>( |
| 363 | "boost::math::mean(students_t_distribution<%1%> const&, %1%)" , |
| 364 | "Mean is undefined for degrees of freedom < 1 but got %1%." , df, Policy()); |
| 365 | return std::numeric_limits<RealType>::quiet_NaN(); |
| 366 | } |
| 367 | return 0; |
| 368 | } // mean |
| 369 | |
| 370 | template <class RealType, class Policy> |
| 371 | inline RealType variance(const students_t_distribution<RealType, Policy>& dist) |
| 372 | { // http://en.wikipedia.org/wiki/Student%27s_t-distribution |
| 373 | // Revised for https://svn.boost.org/trac/boost/ticket/7177 |
| 374 | RealType df = dist.degrees_of_freedom(); |
| 375 | if ((boost::math::isnan)(df) || (df <= 2)) |
| 376 | { // NaN or undefined for <= 2. |
| 377 | return policies::raise_domain_error<RealType>( |
| 378 | "boost::math::variance(students_t_distribution<%1%> const&, %1%)" , |
| 379 | "variance is undefined for degrees of freedom <= 2, but got %1%." , |
| 380 | df, Policy()); |
| 381 | return std::numeric_limits<RealType>::quiet_NaN(); // Undefined. |
| 382 | } |
| 383 | if ((boost::math::isinf)(df)) |
| 384 | { // +infinity. |
| 385 | return 1; |
| 386 | } |
| 387 | RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 388 | // Use policies so that if policy requests lower precision, |
| 389 | // then get the normal distribution approximation earlier. |
| 390 | limit = static_cast<RealType>(1) / limit; // 1/eps |
| 391 | // for 64-bit double 1/eps = 4503599627370496 |
| 392 | if (df > limit) |
| 393 | { // Special case for really big degrees_of_freedom > 1 / eps. |
| 394 | return 1; |
| 395 | } |
| 396 | else |
| 397 | { |
| 398 | return df / (df - 2); |
| 399 | } |
| 400 | } // variance |
| 401 | |
| 402 | template <class RealType, class Policy> |
| 403 | inline RealType skewness(const students_t_distribution<RealType, Policy>& dist) |
| 404 | { |
| 405 | RealType df = dist.degrees_of_freedom(); |
| 406 | if( ((boost::math::isnan)(df)) || (dist.degrees_of_freedom() <= 3)) |
| 407 | { // Undefined for moment k = 3. |
| 408 | return policies::raise_domain_error<RealType>( |
| 409 | "boost::math::skewness(students_t_distribution<%1%> const&, %1%)" , |
| 410 | "Skewness is undefined for degrees of freedom <= 3, but got %1%." , |
| 411 | dist.degrees_of_freedom(), Policy()); |
| 412 | return std::numeric_limits<RealType>::quiet_NaN(); |
| 413 | } |
| 414 | return 0; // For all valid df, including infinity. |
| 415 | } // skewness |
| 416 | |
| 417 | template <class RealType, class Policy> |
| 418 | inline RealType kurtosis(const students_t_distribution<RealType, Policy>& dist) |
| 419 | { |
| 420 | RealType df = dist.degrees_of_freedom(); |
| 421 | if(((boost::math::isnan)(df)) || (df <= 4)) |
| 422 | { // Undefined or infinity for moment k = 4. |
| 423 | return policies::raise_domain_error<RealType>( |
| 424 | "boost::math::kurtosis(students_t_distribution<%1%> const&, %1%)" , |
| 425 | "Kurtosis is undefined for degrees of freedom <= 4, but got %1%." , |
| 426 | df, Policy()); |
| 427 | return std::numeric_limits<RealType>::quiet_NaN(); // Undefined. |
| 428 | } |
| 429 | if ((boost::math::isinf)(df)) |
| 430 | { // +infinity. |
| 431 | return 3; |
| 432 | } |
| 433 | RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 434 | // Use policies so that if policy requests lower precision, |
| 435 | // then get the normal distribution approximation earlier. |
| 436 | limit = static_cast<RealType>(1) / limit; // 1/eps |
| 437 | // for 64-bit double 1/eps = 4503599627370496 |
| 438 | if (df > limit) |
| 439 | { // Special case for really big degrees_of_freedom > 1 / eps. |
| 440 | return 3; |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | //return 3 * (df - 2) / (df - 4); re-arranged to |
| 445 | return 6 / (df - 4) + 3; |
| 446 | } |
| 447 | } // kurtosis |
| 448 | |
| 449 | template <class RealType, class Policy> |
| 450 | inline RealType kurtosis_excess(const students_t_distribution<RealType, Policy>& dist) |
| 451 | { |
| 452 | // see http://mathworld.wolfram.com/Kurtosis.html |
| 453 | |
| 454 | RealType df = dist.degrees_of_freedom(); |
| 455 | if(((boost::math::isnan)(df)) || (df <= 4)) |
| 456 | { // Undefined or infinity for moment k = 4. |
| 457 | return policies::raise_domain_error<RealType>( |
| 458 | "boost::math::kurtosis_excess(students_t_distribution<%1%> const&, %1%)" , |
| 459 | "Kurtosis_excess is undefined for degrees of freedom <= 4, but got %1%." , |
| 460 | df, Policy()); |
| 461 | return std::numeric_limits<RealType>::quiet_NaN(); // Undefined. |
| 462 | } |
| 463 | if ((boost::math::isinf)(df)) |
| 464 | { // +infinity. |
| 465 | return 0; |
| 466 | } |
| 467 | RealType limit = policies::get_epsilon<RealType, Policy>(); |
| 468 | // Use policies so that if policy requests lower precision, |
| 469 | // then get the normal distribution approximation earlier. |
| 470 | limit = static_cast<RealType>(1) / limit; // 1/eps |
| 471 | // for 64-bit double 1/eps = 4503599627370496 |
| 472 | if (df > limit) |
| 473 | { // Special case for really big degrees_of_freedom > 1 / eps. |
| 474 | return 0; |
| 475 | } |
| 476 | else |
| 477 | { |
| 478 | return 6 / (df - 4); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | template <class RealType, class Policy> |
| 483 | inline RealType entropy(const students_t_distribution<RealType, Policy>& dist) |
| 484 | { |
| 485 | using std::log; |
| 486 | using std::sqrt; |
| 487 | RealType v = dist.degrees_of_freedom(); |
| 488 | RealType vp1 = (v+1)/2; |
| 489 | RealType vd2 = v/2; |
| 490 | |
| 491 | return vp1*(digamma(vp1) - digamma(vd2)) + log(sqrt(v)*beta(vd2, RealType(1)/RealType(2))); |
| 492 | } |
| 493 | |
| 494 | } // namespace math |
| 495 | } // namespace boost |
| 496 | |
| 497 | #ifdef BOOST_MSVC |
| 498 | # pragma warning(pop) |
| 499 | #endif |
| 500 | |
| 501 | // This include must be at the end, *after* the accessors |
| 502 | // for this distribution have been defined, in order to |
| 503 | // keep compilers that support two-phase lookup happy. |
| 504 | #include <boost/math/distributions/detail/derived_accessors.hpp> |
| 505 | |
| 506 | #endif // BOOST_STATS_STUDENTS_T_HPP |
| 507 | |